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Abstract. Antiarcha data are essential to quantitative studies of basal jawed vertebrates. The absence of
structured data on key groups of early vertebrates, such as Antiarcha, has lagged in understanding their
diversity and distribution patterns. Previous works of early vertebrates usually focused on anatomy and
phylogeny, given their significant impacts on the evolution of key characters but lacked comprehensive
structured data. Here, we contribute an unprecedented open access Antiarcha dataset covering 60 genera
of 6025 specimens from the Ludfordian to the Famennian globally. We have organized an expert team
to collect and curate 142 publications spanning from 1939 to 2021. Additionally, we have two-stage
quality controls in the process, domain experts examined the literature, and senior experts reviewed the
results. In this paper, we give details of the data storage structure, and visualize these antiarch fossil sites
on the paleogeographic map,-and-present-the-biodiversity-ef-the-Antiarcha. The novel Antiarcha dataset
has tremendous research potential, including testing previous qualitative hypotheses in biodiversity
changes, spatiotemporal distribution, evolution, and community composition. It is now an essential part
of the DeepBone database and will update with the latest publication, also available on

https://zenodo.org/record/6536446 (Pan and Zhu, 2021).
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1 Introduction

Placodermi is an extinct group of jawed vertebrates that first occurred in the Silurian, then dominated
the Devonian and constituted a prevalent biotic component of the marine vertebrate ecosystem from
425.0 to 358.9 million years ago (Carr, 1995; Denison, 1978; Janvier, 1996; Young, 2010; Zhu, 1996).
Recent prevailing phylogenetic hypotheses placed Placodermi as jawed stem-Gnathostomata that is sister
to crown-Gnathostomata or modern jawed vertebrates (Brazeau, 2009; Davis et al., 2012; Dupret et al.,
2014; Giles et al., 2015; King, 2021; Long et al., 2015; Qiao et al., 2016; Trinajstic et al., 2015; Zhu et
al., 2013, 2016). In this scenario, Antiarcha has usually been placed at the most basal position in the
Placodermi (Fig. 1), representing the most basal jawed vertebrates. The spatiotemporal distribution of
Antiarcha will thus help us understand the origin and early evolution of jawed vertebrates. For example,
Sallan et al. (2018) found that vertebrate diversification occurred primarily in nearshore environments
by analyzing early vertebrate occurrence and habitat data. Historically, antiarchs resided in various paleo-
environments across all paleo-continents, including marine and freshwater environments close to shore.
As a successful vertebrate group during the Devonian (Long, 2011; Young, 2010), Antiarcha has
contributed significantly to the Devonian stratigraphic correlation. For instance, the biozonation of the
East Baltic and southern East Antarctica Devonian succession is partly based upon the antiarchs
Bothriolepis, Asterolepis, and Pambulaspis (Young, 1974, 1988). Lukseviés (1996) identified 14
bothriolepid species (12 Bothriolepis and 2 Grossilepis) in the Frasnian-Famennian formations of the
East European Platform, proposed nine antiarch assemblages, and set up the most detailed zonation of

the Main Devonian Field, north-western part of the East European Platform (Latvia and NW Russia).
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Figure 1 Phylogenetic relationships of major early vertebrate groups from Qiao et al. (2016) and Pan et al.
(2018). Silhouettes indicate groups of Antiarcha.

Collecting and visualizing the data of Antiarcha is a prerequisite to explaining the spatial and temporal
distribution of early vertebrates. With the help of data visualization, we could better understand the
biogeographic evolution of early vertebrates. Although Zigaite and Blieck (2013) advocated a
quantitative analysis to define early vertebrates' biogeographic patterns, efficient quantitative analysis is
still lacking to understand the dispersal of early vertebrates. This occurs mainly because no

comprehensive data collection of early vertebrates was accomplished. What's more, Fhe—the

disadvantages of unstructured data are clear: the absence of schema and structure makes them difficult
to manage, and the lack of predefined attributes makes them difficult to be reused or extended.

In this paper, we present an unprecedented structured dataset of Antiarcha that potentially facilitates
understanding the spatiotemporal distribution pattern and quantifying the variety of antiarchs. This
dataset is open access and follows the FAIR principles (findability, accessibility, interoperability, and

reusability). This dataset complements existing fossil records of early vertebrates. Moreover, it is the
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first step to accomplishing the global coverage of the vertebrate fossil dataset to analyze the Middle
Paleozoic biogeography and paleogeography. VisualizingUnderstanding the distribution of antiarchs in
the paleogeographic background with reference to the global paleogeographic reconstructions of Scotese

(2021), our preliminary results can also be used to test the hypothesis of paleogeographic reconstructions.

2. Method

2.1 Overview

Comprehensive data are essential for quantitative studies and simulation analysis on early vertebrates.
Sallan et al. (2018) pointed out that a lack of early vertebrate fossil data has limited quantitative
approaches and hindered the resolution of issues regarding ancestral habitat in vertebrate evolution. To
bring the study of Vertebrate Paleontology into the next phase of macroevolutionary, we built the
DeepBone database with the implementation of a project entitled "Big Earth Data Science Engineering
(CASEarth)" in 2018 (Guo, 2017; Pan and Zhu, 2019).

With continuously refining data, the Antiarcha dataset of the DeepBone database is the first and most
comprehensive dataset endorsed by Chinese researchers at the Institute of Vertebrate Paleontology and
Paleoanthropology, Chinese Academy of Sciences. The Antiarcha dataset of DeepBone differs from that
of PBDB (https://paleobiodb.org/) in its basic unit, which is the specimen ID coupled with the
occurrence and other detailed data. All the specimens are referenced in taxa and literature to guarantee
accuracy. Because the data format was designed as specimen-based, we input the metadata according to
the published specimen ID or virtual specimen ID. The literature on classic systematic paleontology
always has real specimen IDs. When it handled stratigraphic topics, the authors usually cited fossil
records instead of real specimens. We introduce a virtual specimen ID to store the taxon information in
this kind of literature containing no real specimens.

Since no satisfactory approach can automatically extract paleontological data from the literature, we
recruit several data entry assistants, including researchers, master's and Ph.D. students, to collect and
curate the data. In order to guarantee the quality of the data, we designed a four-step data processing
procedure (Fig. 2):

1. Experts who obtained his/her Ph.D. degree in Paleontology collected and sifted the Data source.



90 2. Data entry assistants read the related references, extracted the antiarch placoderm data, and
manually filled them into the online record file under the supervision of vertebrate paleontology
experts.

3. According to the references, experts reviewed and cleaned the data line by line as the quality
control procedure.

95 4. Senior experts, who have outstanding achievements in vertebrate paleontology, reviewed the
data again to guarantee quality.

5. DeepBone.org published the dataset with visualization. A better user interface helps
dissemination.
Next, we provide more details on the data processing and visualization.

100

DeepBone.org

DeepBone.org

Figure 2 Workflow of the data processing. 1, collecting and sifting lectures by experienced experts. 2, data
entry assistants digitalize paleontological descriptions from the page into the DeepBone database. 3,
According to the reference, experts are accountable for data review and cleaning to implement quality control.
105 4, senior researchers review the data again. 5, data managers release the data to the public through

DeepBone.org.
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2.2 Data Source

The data were extracted from the published literature containing information on antiarch specimens.
Most of the journals are professional journals on Paleontology. The main journals include Alcheringa,
Acta Geologica Polonica, Bulletin of the Geological Society of China, Estonian Journal of Earth Sciences,
Journal of Vertebrate Paleontology, Journal of Paleontology, Palaeontologia Electronica, Palaeontology,
Palaeoworld, and Vertebrata PalAsiatica. Totally we have collected 142 publications spanning from 1939
to 2021 (see dataset for more details). The satisfactory literature should include an accurate description
or revision of the specimen and taxon. We accepted the latest peer-reviewed literature to deal with the

inconsistent descriptions of stratigraphy and taxonomy.

2.3 Data Processing and Quality Control

We made a tailored web page that provides a better user interface for data entry assistants to fill in the
rows of paleontological data. After that, the other related experts would review the data so that a
researcher could quickly access them to perform quantitative analysis (Fig. 2). This workflow was
adopted from the Geobiodiversity Database (GBDB) (Xu et al., 2020). Almost all antiarch literature was
published in English, Russian, French, German, and Chinese. The data entry assistant could handle the
literature in Chinese and English well. Many fossils were documented in French, Russian, and German.
We invited paleontology postgraduates, who know French, Russian, or German, to deal with the literature

in these languages.

2.4 Data Visualization

Due to the easy access of the paleo-geographic coordinates calculator (PointTrack version 7.0) (Scotese,
2021) and its widely used in Paleontology (Ke et al., 2016; Kiel, 2017), we decided to use Scotese's
paleocontinent reconstruction to perform the plot map, although many paleogeographic reconstructions
were proposed (Heckel and Witzke, 1979; Li and Powell, 2001). Using the TrackPoint software, we
converted the excavation locations from the current GPS to paleo-GPS and visualized the locations using

the Web Mercator algorithm (Battershy et al., 2014).
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The timescale follows the International Commission on Stratigraphy International Chronostratigraphic

Chart version 2021/07 (Cohen et al., 2021).

2.5 Reason for choosing genus level to perform visualization

The faunistic elements in the communities are used herein at the genus level for their distributions

because many Bothriolepis and Asterolepis species were described based on isolated plates lacking

diagnostic characters (Blieck and Janvier, 1993; Downs, 2011). Identifying a specimen depends on the

ability to recognize species in a way that is coherent within a particular genus and through broader

groups. This is very difficult for fossil material by two especially intractable problems: practically,

of the fragmentary nature of the fossil, and philosophically by questions with the criteria by which

on demarcates fossil species ( Nelson, 1984: Thomson and Thomas, 2001). For example, Thomson

and Thomas (2001) reviewed the previous study on Bothriolepis and proposed that B. nitida, B.

minor, B. virginiensis, B. darbiensis, and B. colocadensis could not be consistently distinguished.

Weems (2004) questioned the validity of B. virginiensis. Since there is no consensus on the species

level of Bothriolepis and Asterolepis, the former researchers only used the evidence of Antiarcha on

the genus level to discuss the biostratigraphic significance (Lelievre and Goujet, 1986; Pan, 1981;

Young et al., 2010; Young and Lu, 2020). To keep accuracy and consistency, here we choose the

genus of Antiarcha to perform data visualization.
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3. Results

3.1 Data Overview

This dataset consists of 60 genera of 6025 specimens, covering all known antiarch lineages. The observed

guantity of genus and species in our dataset over time were summarized in histograms (Fig. 3). The 6025

specimens include 5867 fossil specimens that have been systematically described and documented and
158 virtual specimens introduced to describe the taxon information when no specimen was assigned for
the referred fossil records. Each specimen has at least one reference within our dataset, and the specimens
lacking precise age are excluded. We followed the lithostratigraphic information of the original authors,
except we found a revision. We accepted the latest revision in the literature to modify our dataset. The
amendments were linked to the latest reference as an endorsement. We took the geological background
data in our dataset unless it was missing from the original literature. We transferred the unstructured data
from the literature to structured data for further research in as much detail as possible. Table 1 shows the
data structure of our present dataset. Among all the referred specimens, 6.51% belong to

Yunnanolepidoidei, 2.86% belong to Sinolepidoidei, 78.92% belong to 'Bothriolepidoidei’, 11.71%

belong to Asterolepidoidei.

histograms-{Fig—6)-—We plotted all the fossil sites of the constituent groups in Figure 34.

Specimen Reference
Specimen ID Genus Literature type
Lithostratigraphy_formation Species Title
Lithostratigraphy_member | Custodian institute Keywords
Fossil site Custodian country Volume
Discovery country | System / Period Issue
Latitude Series / Epoch Pages
Longitude Stage / Age Authors
Paleo-latitude  |eference age lo calciate Year
Paleo-longitude Journal
Doi

Table 1 The structure of Antiarcha dataset.
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Figure 3 Histogram of specimen number. (a) The genus number at different time intervals, and (b) the species
175 number at different time intervals.
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Figure 3-4 Antiarch placoderm spatial distribution-ard-richness. The tree topology is simplified from the
phylogenetic result in Pan et al. (2018). Numbers under the pie chart represent each group's relative amounts
of specimens. Terminal groups are linked with their geographic distributions. Each node represents a single
specimen. Specimens from one locality overlap each other.

GBDB is a stratigraphic and palaeontological database, but no antiarch record exists. Compared to the
138 records of Antiarcha in the Paleobiology Database (PBDB, 2021-08-12), this is the most
comprehensive dataset of Antiarcha up to now (Table 2). Only taxon rank, reference, and occurrence
location are available in PBDB. DeepBone dataset has more fields on the structured information of the
specimen than that is in the PBDB, such as lithostratigraphic fields (Table 1). Some records in PBDB
are not stored at the genus or species level. There are some typing errors in PBDB, for instance,
‘Jiangxilepus', '‘Bothriolepiodei' and 'Pterichthys'. Jiangxilepis, '‘Bothriolepidoidei' and Pterichthyodes
are correct spellings. Macrodontophion is not a genus of Antiarcha, but PBDB adopts it in antiarchs.
PBDB also adopts Silurolepis as an antiarch ignoring the latest research of Zhu et al. (2019). To ensure

accuracy, every specimen of DeepBone is endorsed by the latest publication and reviewed by the experts

10
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who have focused on Antiarcha. It is open to access through the website of the DeepBone database or

https://doi.org/10.5281/zenodo.6478602.

DeepBone Database Paleobiology Database(PBDB)

Type specimen-based fossil-occurrence-based
No. of references 142 19

No. of genera 60 26

No. of species 187 98

No. of 6025 138
Specimens/ occurrences

Found in 2018 1998

Websit www.deepbone.org https://palecbiodb.org/

(last access: 22 October 2021)

Table 2 Comparison of Antiarcha data in two paleontological databases.

3.2 The Geospatial Distribution of the Antiarcha Dataset

The Geospatial Distribution of the Antiarcha are shown in Figure 4, Yunnanolepidoidei is endemic in

the South China block (comprising southern China and northern Vietnam) regarding the fossil site
distribution. Sinolepidoidei is limited in South China and Australia (East Gondwana). In contrast,

'‘Bothriolepidoidei’ and Asterolepidoidei are cosmopolitan, especially Bothriolepis. Fhe—faunistic

Janvier;1993: Downs—2011)-The heat map of fossil sites (Fig. 45) shows that Europe, Australia, and

China account for the most fossil sites globally, partly due to their long research history.

11
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Figure 4-5 Heat map of Antiarcha fossil sites based on the modern world map. Each spot represents a single
fossil site. The blue color indicates the area with sparse fossil sites. The red color indicates the area with dense
fossil sites.

3.3 The Paleogeographic Distribution of the Antiarcha Dataset

As _Young (1990) mentioned that biogeographic data must be interpreted in the context of

paleogeographic hypotheses, we plot our data on a paleogeographic atlas (Fig. 6) only to generate an

outline of their past. The further interpreting data studies will be published separately. The continental

reconstructions of Scotese place Baltica, China, and Australia in the tropic and subtropic near the

equator from Llandovery to Famennian. We plotted-these-fossil-sites-on-the-paleogeographic-map-{Fig-

5)-exeeptexcluded the Silurian Shimenolepis, because it is the earliest record of Yunnanolepidoidei and
the only documented antiarch specimen before the Devonian (Wang, 1991; Zhao et al., 2016). Most of
the fossil sites were positioned around the paleo equator. In the present scenario, the suborder

Yunnanolepidoidei apparently originated as early as the Silurian in the South China block, forming a

12
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highly endemic fauna. All fossil sites of Yunnanolepidoidei lay in southern China and northern Vietnam
(Wang et al., 2010). From Ludlow (Silurian) to the Early Devonian, Yunnanolepidoidei formed dominant
antiarchs. Sinolepidoidei and 'Bothriolepidoidei’ first appeared in Pragian in South China, and
Asterolepidoidei first evolved in Emsian in Australia or East Gondwana. During the middle Devonian,
along with lessened isolation of South China, Yunnanolepidoidei became extinct. Euantiarcha
(‘Bothriolepidoidei' + Asterolepidoidei) dominated Middle and Late Devonian antiarchs, and only a few
members of Sinolepidoidei coexisted with them in China and Australia. In Eifelian, Asterolepidoidei
suddenly bloomed in Baltica without any clue from the older horizons based on existing research. The
distribution and—diversity—of Antiarcha reached a peak in Givetian. 'Bothriolepidoidei’ and

Asterolepidoidei represent the main groups of Antiarcha in Givetian, comprising five bothriolepidoid

genera with 42 fossil locations and nine asterolepidoid genera with 49 fossil locations. Fhe-records-of

13
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Figure 5-6 The distributions of Antiarcha during Devonian. Each spot represents the location of one specimen
on the paleogeographic map. Specimens from the same locality and the same age overlap each other. The
paleo-coordinates are calculated by TrackPoint. Colors denoting respective groups follow Figure 34.

. .

4.1-3.4 First Appearance Record

A taxon's first appearance record or lineage is important in Paleontology and Evolutionary Biology. It
renders a hard minimum constraint on molecular clock calibration for a taxon (Benton and Donoghue,
2007; Benton et al., 2009; Donoghue and Benton, 2007). Based on our dataset, the oldest record of
yunnanolepidoids or antiarchs is Shimenolepis graniferus from the Xiaoxi Formation at Shanmen
Reservoir, Lixian County, Hunan, China. Shimenolepis was first described as the oldest known
placoderm, dated as Telychian of Llandovery (Janvier, 1996; Wang, 1991). However, after a detailed
stratigraphic work, Zhao et al. (2016) suggested that the age of Shimenolepis is late Ludlow rather than
late Llandovery. Janvier and Téng-Dzuy (1998) also documented an indeterminate yunnanolepidoid
(Antiarcha gen. sp. indet.) from the Do Son Formation of northern Vietnam, which could be another
earliest antiarch potentially.

The oldest sinolepid is Liujiangolepis suni, from the Nakaoling Formation (Pragian), Xiangzhou,
Guangxi, China (Wang, 1987). The oldest bothriolepidid is Houershanaspis zhangi, documented from
the Danlin Formation (Pragian) in Houershan, Dushan county, Guizhou, southwestern China, based on
a bothriolepid-like anterior median dorsal plate (Lu et al., 2017). The earliest asterolepidoid records are
represented by Wurungulepis and some disarticulated specimens, which have been documented from the
Broken River Formation, Broken River, Australia. The age of the Broken River Formation was first
referred to Eifelian and then reassigned to Emsian (serotinus Zone) (Burrow, 1996; De Pomeroy, 1996;

Young, 19842, 1990b).

14
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54 Data Availability

The current dataset achieved via Zenodo represents a static version of the dataset in June 2022:
https://zenodo.org/record/6536446 (Pan and Zhu, 2021). The latest version of the dataset is always freely
available via https://deepbone.org/ (last access: June 2022).

6-5 Conclusions

We presented here an open-access dataset of Antiarcha, the most basal jawed vertebrate, from the late
Silurian to the Late Devonian. This dataset significantly expands the previously available data of antiarch
fossils. Paleontologists, stratigraphers, and evolutionary biologists could import the tab-delimited file for
future research studies, especially for biodiversity analysis, stratigraphic correlation, and molecular clock
calibration. With the information of 6025 specimens, our Antiacha dataset is far more comprehensive
than the other sources in lithostratigraphy and specimen details. Data are significant for quantitative
analysis and potentially contribute to data-driven paleontology research. We performed a visualization
of the data to understand-show the spatiotemporal distribution of Antiarcha. In brief, Antiarcha first

appeared in the Pan-CathaysianPan-Cathaysia province during the late Ludlow and then boomed around

the-worldwide. At the end of Devonian, Antiarcha was extinct along with the traditional placoderms. Fhe

is-the-Chinese-placederm-extinction-in-the-late-Eifelian—The available Antiarcha data may be just the tip

of the historical reality due to the incomplete fossil record. We will continue to update the dataset with

the latest publication.

Author contributions. MZ supervised the project. ZHP and ZBN developed-the-model-and-performed

the visualizationsimulations. ZHP prepared and revised the manuscript with contributions from MZ and
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