

1 **Pre- and post-production processes ~~along supply chains~~**
2 **increasingly dominate greenhouse gas~~GHG~~ emissions from**
3 **agri-food systems ~~globally and in most countries~~**

4 Francesco N. Tubiello¹, Kevin Karl^{1,2}, Alessandro Flammini^{1,3}, Johannes Gütschow⁴, Griffiths
5 Obli-Laryea¹, Giulia Conchedda¹, Xueyao Pan¹, Sally Yue Qi², Hörn Halldórudóttir
6 Heiðarsdóttir¹, Nathan Wanner¹, Roberta Quadrelli⁵, Leonardo Rocha Souza⁶, Philippe Benoit²,
7 Matthew Hayek⁷, David Sandalow², Erik Mencos-Contrera^{8,9}, Cynthia Rosenzweig^{9,8}, Jose'
8 Rosero Moncayo¹, Piero Conforti¹ and Maximo Torero¹

9 ¹Food and Agriculture Organization, Rome, Italy

10 ²Center on Global Energy Policy, Columbia University, New York, USA

11 ³United Nations Industrial Development Organization, Department of Environment, Vienna, Austria

12 ⁴Potsdam Institute for Global Climate Research, Potsdam, Germany

13 ⁵International Energy Agency, Paris, France

14 ⁶United Nations Statistics Division, New York, USA

15 ⁷Department of Environmental Science, New York University, New York, USA

16 ⁸Center of Global Climate Research, Columbia University, New York, USA

17 ⁹NASA Goddard Institute for Space Studies, New York, USA

18 *Corresponding author: Francesco N. Tubiello, francesco.tubiello@fao.org

19
20 **Abstract.** We present results from the FAOSTAT agri-food systems Emissions shares database, relative
21 tocovering emissions from agri-food systems and their shares to total anthropogenic emissions for 196 236
22 countries and 40 territories, andforover the period 1990–2019. We find that in 2019, world totalglobal agri–
23 food systems emissions were 16.56.5 (95% CI range: 11–22)–billion metric tonnes (Gt CO₂eq yr^{–1}), corresponding to
24 31% (range: 19–43%) of total anthropogenic emissions. Of the agri–food systems total, global emissions within the
25 farm gate—from crop and livestock production processes including on–farm energy use—were 7.2 Gt CO₂eq yr^{–1}
26 ; emissions from land use change, due to deforestation and peatland degradation, were 3.5 Gt CO₂eq yr^{–1}; and
27 emissions from pre–and post–production processes—manufacturing of fertilizers, food processing, packaging,
28 transport, retail, household consumption and food waste disposal—were 5.8 Gt CO₂eq yr^{–1}. Over the study period
29 1990–2019, agri–food systems emissions increased in total by 17%, largely driven by a doubling of emissions from
30 pre–and post–production processes. Conversely, the FAOSTAT data show that since 1990 land use emissions
31 decreased by 25%, while emissions within the farm gate increased—only 9%. In 2019, in terms of single
32 GHGindividual greenhouse gases (GHGs), pre–and post–production processes emitted the most CO₂ (3.9 Gt CO₂
33 yr^{–1}; preceding land use change (3.3 Gt CO₂ yr^{–1}) and farm–gate (1.2 Gt CO₂ yr^{–1}) emissions. Conversely, farm–gate activities were
34 by far the major emitter of methane (140 Mt CH₄ yr^{–1}) and of nitrous oxide (7.8 Mt N₂O yr^{–1}). Pre–and post–production processes were
35 also significant emitters of methane (49 Mt CH₄ yr^{–1}), mostly generated from the decay of solid food waste in landfills and open–dumps. The most importantOne key trend over the 30–40 years

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font: Italic

Formatted: Font: Italic

Commented [KK1]: Response to RC 1.

Commented [KK2R1]: Line 30: "in terms of single GHG" change to "in terms of individual greenhouse gases (GHGs)"

1 year period since 1990 highlighted by our analysis is the increasingly important role of food-related emissions
2 generated outside of agricultural land, in pre- and post-production processes along ~~food supply chains~~^{the agri-food}
3 ~~system, at all scales from~~^{global, regional and} ~~national scales from 1990 to 2019~~^{1990 to 2019}. In fact, our data show that by
4 2019, ~~food supply chains~~^{pre- and post-production processes} had overtaken farm-gate processes to become the
5 largest GHG component of agri-food systems emissions in Annex I parties (2.2 Gt CO_{2eq} yr⁻¹). They also more
6 than doubled in non-Annex I parties (to 3.5 Gt CO_{2eq} yr⁻¹), becoming larger than emissions from land-use change.
7 By 2019 food supply chains had become the largest agri-food system component in China (1100 Mt CO_{2eq} yr⁻¹);
8 USA (700 Mt CO_{2eq} yr⁻¹) and EU-27 (600 Mt CO_{2eq} yr⁻¹). This has important repercussions for food-relevant
9 national mitigation strategies, considering that until recently these have focused mainly on reductions of non-CO₂
10 gases within the farm gate and on CO₂ mitigation from land use change. ^(Höne et al., 2019). The information used
11 in this work is available as open data with DOI 10.5281/zenodo.5615082 at: <https://zenodo.org/record/5615082>
12 (Tubiello et al., 2021d). It is also available to users via the FAOSTAT database (FAO, 2021a), with annual updates.
13 **Keywords:** Agri-food systems, GHG emissions, farm gate, land use change, supply chains
14

Commented [KK3]: Response to RC 1

Commented [KK4R3]: Line 34: the time period (1990-2019) is mentioned twice, at the beginning and end of the sentence

Commented [KK5]:

Formatted: Font: (Asian) Times New Roman

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

1 1. Introduction

2 Agriculture is a significant contributor to climate change as well as ~~one of the the~~ economic sectors most at risk
3 from it. Greenhouse gas (GHG) emissions generated within the farm gate by crop and livestock production and
4 related land use change contribute about one-fifth to one-quarter of total emissions from all human activities, when
5 measured in CO₂ equivalents (Mbow et al., 2019; Smith et al., 2014; Vermeulen et al., 2012). ~~In terms of single~~
6 ~~gases, impacts are even starker~~
7 ~~The impacts are even starker in terms of individual GHG emissions~~. Agriculture
8 contribute nearly 50% of ~~world total global~~ anthropogenic methane (CH₄) and 75% of the total nitrous oxide (N₂O)
9 emissions (FAO, 2021b; Gütschow et al., 2021; Saunois, et al., 2020). Once pre- and post-production activities
10 along agri-food systems supply chains are included, food and agriculture activities generate up to one-third of all
11 anthropogenic emissions globally (~~Crippa et al., 2021a,b; Rosenzweig et al., 2020; Tubiello et al., 2021a~~). This
12 larger food systems perspective expands the potential for designing GHG mitigation strategies ~~that can address~~
13 ~~options in food and agriculture~~ across the entire food system, i.e., over and above the more traditional focus on
14 agricultural production and land use management ~~that is currently found~~ within countries' Nationally Determined
Contributions (FAO, 2019).

15 Significant progress has recently resulted in the development of novel databases with global coverage of country-
16 level data on agri-food systems emissions (Crippa et al., 2021a,b; Tubiello et al., 2021a). Tubiello et al. (2021a)
17 in particular, provided a mapping of emission categories of the Intergovernmental Panel on Climate Change
18 (IPCC) ~~— used by countries for climate reporting by countries of their national GHG inventories (NGHGI) to the~~
19 ~~United Nations Framework Convention on Climate Change (UNFCCC) — to more relevant to internationally~~
20 ~~accepted food and agriculture concepts that, developed by FAO and used to disseminate food and agriculture~~
21 ~~statistics in FAOSTAT, are more easily understood by farmers and planners in countries, including~~ in Ministries
22 of Agriculture. ~~Such mapping allows to more could~~
23 ~~By providing a correspondence between IPCC and FAO terminology, we seek to help~~
24 ~~enable countries to more~~
25 ~~adequately capture important aspects of food and agriculture activities within existing climate reporting (Fig. 1, adapted from Tubiello et al., 2021a), so that they can better~~
26 ~~identify effective climate actions across their agri-food systems (Fig. 1, adapted from Tubiello et al., 2021a).~~
27 Firstly, ~~it~~
28 ~~the correspondence mapping~~ expands the IPCC "agriculture" definition to include, in addition to non-
29 CO₂ emissions from the farm, also the CO₂ generated in drained peatlands on agricultural land (Conchedda and
30 Tubiello, 2020; Drösler et al., 2014) and ~~by~~
31 ~~through~~ energy use in farm operations (FAO, 2020b; Flammini et al.,
32 2021; Sims and Flammini, 2014). Secondly, it usefully disaggregates the 'Land Use, land use change and forestry'
33 (LULUCF) of IPCC (2003) ~~used in NGHGI~~, by separating out ~~carbon sinks from land-based~~
34 ~~the~~ emissions ~~sources~~
35 ~~that are more~~
36 ~~directly linked to food and agriculture activities~~, such as those generated by deforestation (Curtis et
37 al., 2020; Tubiello et al., 2021c) and peat fires (Prosperi et al., 2020), ~~from carbon removals, which are largely~~
38 ~~associated to processes in managed forests rather than on agricultural land~~ (Grassi et al., 2021).

39 We present herein and discuss results from the first agri-food systems emissions database in FAOSTAT-~~of food~~
40 ~~and agriculture emissions~~. The new database covers, as in previous versions (Tubiello et al., 2013) agriculture
41 production activities within the farm gate and associated land use and land use change emissions on agricultural
42 land. Importantly, it also includes estimates of emissions from pre- and post-production processes along food
43 supply chains, including: fertilizer manufacturing, energy use within the farm gate, food processing, domestic and
44 international food transport, retail, packaging, household consumption and food systems waste disposal. The new

Commented [KK6]: Response to RC 1.

Commented [KK7R6]: Line 2: *typo in the first sentence, should read "as well as one of the economic sectors most at risk from it"*

Commented [KK8]: Response to RC 1.

Commented [KK9R8]: Line 8: *EDGAR-FOOD would be another important reference to include in this sentence (<https://www.nature.com/articles/s43016-021-00225-9>)*

1 FAOSTAT database provides ~~information of~~ emissions ~~data of the~~ for four main GHG gases/categories (CO₂,
2 CH₄, N₂O and ~~F-gasefluorinated gases~~), as well as ~~and~~ their combined CO₂eq levels. ~~Data are available~~ by
3 country, over the period 1990-2019, ~~as well as by regional and other relevant aggregations~~. ~~Importantly, data are~~
4 ~~provided in both IPCC and FAO classifications, facilitating the identification of~~ We examine new results and
5 ~~discuss how they can inform~~ national mitigation strategies ~~across agri-food systems~~ that are relevant to food and
6 agriculture ~~in in~~ countries, regionally and globally.

7

1 2. **Materials and methods**

Formatted: Font: 10 pt, Bold

2 Recent work (Rosenzweig et al., 2021; Tubiello et al., 2021a) helped to characterize agri-food systems emissions
3 into three components: 1) Farm Gate; 2) Land Use Change; and 3) Pre- and Post-Production. Emissions estimates
4 from the first two—generated by crop and livestock production activities within the farm gate and by the
5 conversion of natural ecosystems to agriculture, such as deforestation and peatland degradation—have been
6 longare well established (IPCC, 2019). In particular, FAO and data are regularly disseminates annual updatesed in
7 FAOSTAT (FAO, 2021; Tubiello, 2019). This paper expands the available FAOSTAT data to include estimates
8 of emissions fromadds pre- and post-production processes, emissions, along food supply and waste chains outside
9 of agricultural land, including those generated from energy use in fertilizer manufacturing; food processing;
10 packaging; transport; retail; household consumption; and waste disposal.

11 2.1 Mapping Agri-food Systems Components

Formatted: Font color: Auto

12 The new FAOSTAT Emissions data are provided, for each country, in both IPCC and FAO classifications.
13 Specifically, organized inon the one hand, data can be downloaded using IPCC emissions categories: *Energy;*
14 *Industrial Processes and Product Use* (IPPU, henceforth referred to as *Industry*); *Waste; Agriculture; Land Use,*
15 *Land Use Change and Forestry* (LULUCF); and *Other*. Both the total emissions from IPCC sectors are provided,
16 as well as the portion directly related to agri-food systems. IPCC sectors and sub-sectors are mappedOn the other
17 hand, through the IPCC to FAO mapping discussed above and extending previous work (Tubiello, 2021a), data
18 can also be downloaded in relevant FAO categories, covering emissions from: Farm Gate, Land Use Change, and
19 Pre- and Post-Production, processes (Fig. 1)ecategories relevant to food and agriculture, in line with recent work
20 (Tubiello, 2021a), with extensions made to cover all IPCC sectors with relevant food systems activities (Fig. 1).
21 To the extent possible, GHG emissions are accounted forThe FAOSTAT emissions estimates follow the IPCC
22 (2006) “territorial approach,” i.e., they are assigned to in -the countries where theyemissions occur, independently
23 of production or consumption considerations. For example, CO₂ emissions from energy use in fertilizers
24 manufacturing are accounted for in the producing country producing fertilizers, whileand the N₂O emissions from
25 synthetic fertilizerfertilizer applications used on a country’s agricultural land for crop production are accounted
26 for in that countries where the fertilizer is applied. Similarly, GHG emissions from energy use in agri-food
27 systems activities are accounted for in countries where fuel combustion for that particular activity occurs, including
28 electricity generation, in accordance with IPCC methodology (IPCC, 2006). The methods applied herein do not
29 cover additional, upstream emissions associated with fuel supply chains, which are therefore not assigned to agri-
30 food systems. More details on the scope of this work are found in section 2.3.

Formatted: Font: Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto, Subscript

Formatted: Font color: Auto

Formatted: Font color: Auto, Subscript

Formatted: Font color: Auto

31 The methods applied herein cover a large component of food supply chain processes. It does not cover by design
32 embedded energy in machinery and upstream emissions associated with oil and gas supply chains.

Formatted: Font color: Auto

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Space After: 1.2 line, Line spacing: 1.5 lines

Formatted: Font: 10 pt

1 (2021b), while Karl and Tubiello (2021 a.b) presented methods for estimating agri-food systems emissions in
2 transport and waste disposal. Finally, emissions from on-farm energy use were developed by Flammini *et al.*,
3 2021). We refer the interested reader to those original publications for full details, while for completeness we
4 also provide a sufficiently detailed summary of methods and coefficients as Supplementary Material of this
5 manuscript.

6 We provide here the basic estimation methods used for this work, while referring and refer the interested reader to
7 a series of technical papers that document the underlying methodologies in full, detailing all coefficients and data
8 sources used to estimate emissions from energy use in fertilizers manufacturing, food processing, transport, retail,
9 household consumption, waste disposal (Tubiello et al., 2021b; Karl and Tubiello, 2021a, b); as well as energy use
10 on the farm (Flammini et al., 2021). More generally, a More generally, a step-wise approach was followed for the
11 estimation of agri-food systems emissions, as follows:

12 *Step 1:* identified for each food systems component, the relevant international statistics needed to characterize
13 country-level activity data (AD);

14 *Step 2:* determined the food-related shares of the activity data (AD_{food}) and assigns relevant GHG emission factors
15 (EF) to each activity;

16 *Step 3:* implemented the generic IPCC method for estimating GHG emissions (E_{food}), using inputs of activity data
17 and emission factors from the first two steps, as follows:

$$E_{food} = EF * AD_{food} \quad (1)$$

Finally, where country-specific activity data were lacking, Step 4: Imputed any missing agri-food systems GHG emissions data by component. This step was limited to pre- and post-production processes, and applied where country-specific activity data were lacking. The imputation method used – using as input PRIMAP, a complete dataset of emissions estimates for all IPCC sectors, by country, covering the period 1990–2019 (Gütschow et al., 2021). The imputations were performed by applying country-specific food system emissions shares to years with missing data, or by applying regional averages when no country-specific data is available (See Tubiello et al., 2021b for more details). The PRIMAP dataset is already available in FAOSTAT for the computation of emissions shares of agriculture to the total anthropogenic total (FAO, 2019; Tubiello et al., 2021a). It compiles all available information on GHG emissions by country, including from official reporting. They were used internationally as the basis for an early, first-order estimate of agri-food systems shares in total GHG emissions (IPCC, 2019). Additionally, they were recently used in a UNFCCC Synthesis Report (UNFCCC, 2021) to assess world GHG emissions from all sectors in preparation of a stock take exercise that will be undertaken in 2022–2023 to assess countries' performance against their mitigation commitments under the Paris Agreement. The imputations in equation (1) were performed by applying to the PRIMAP sectoral emissions country-specific food system emissions shares (Tubiello et al., 2021b for more details). The combined use of FAOSTAT and PRIMAP data presented herein is referred to as the FAOSTAT-PRIMAP dataset.

2.3 Global Warming Potentials Used

The estimated emissions data are converted from expressed in CH₄ methane and N₂O nitrous oxide gases were converted to CO₂ equivalents by using the 100-year global warming potentials (GWP) of the as found in the IPCC

1 [Fifth Assessment Report \(AR5\)](#), specifically: [Details on conversions factors are as follows](#); [found as follows](#).
2 [GWP-CH₄ = 28 \(100-year time horizon global warming potential\)](#), to convert Gg CH₄ to Gg CO₂eq; [GWP-N₂O](#)
3 [= 265 to convert Gg N₂O to Gg CO₂eq](#) (IPCC AR5, 2014: Synthesis Report, Box 3.2 Tab. 1, pg. 87).

4 2.3 Data uncertainty and limitations

5 2.3.1 Boundaries

6 [Uncertainties in farm gate and land use change emissions estimates have been characterized elsewhere, ranging](#)
7 [30–70% across many processes \(Tubiello, 2019\). The uncertainties in the estimates of pre- and post-production](#)
8 [activities described herein are less documented. On the one hand, uncertainties in underlying energy activity data](#)
9 [and emissions factors are likely lower than for the other two components. On the other, the relative novelty in](#)
10 [estimating food system shares for a range of activity data makes our estimates more uncertain, with heavy reliance](#)
11 [on literature results from a subset of countries or regions that are necessarily extended to the rest of the world \(Karl](#)
12 [and Tubiello, 2021a\). In addition, it should be noted that](#) [The processes covered herein do not span all processes](#)
13 [attributable to agri-food systems. In particular, the scope of this work does not include, by design, upstream GHG](#)
14 [emissions in the fuel chain, such as petroleum refining, as well as a-methane leaks during extraction processes and](#)
15 [piping.](#) [These are expected to be not negligible if considered.](#) [While emissions from such sources can be estimated](#)
16 [using a fixed fuel chain coefficient for certain fuel supply chains \(see Crippa et al., 2021a\), the authors do not](#)
17 [consider such sources to be within scope of this work.](#) [GHG emissions attributable to electricity generation are](#)
18 [included in the scope of this work, and likewise which t-itself excludes upstream GHG emissions in the fuel chain](#)
19 [used to generate electricity \(Flammini et al., 2021; Tubiello et al., 2021b\).](#)

20 [Conversely, processes such as F-gas emissions of fluorinated gases \(f-gases\) from household refrigeration and](#)
21 [from climate-controlled transportation were not included for lack of available country-level data](#) [for disaggregated](#)
22 [cold chain elements.](#) [Furthermore](#) [However, one estimate suggests that the majority \(over 60%\) of global food-](#)
23 [related F-gas emissions occur in the retail stage, which is accounted for here in this work \(International](#)
24 [InstituteInstitute of Refrigeration, 2021\).](#) [and estimation methods.](#) Emissions from pesticide manufacturing were
25 [also not included due to the paucity of information and methodologies for their estimation](#) [at the-country level](#), in
26 [contrast to advanced work in fertilizers manufacturing \(Brentrup et al., 2016; Brentrup et al., 2018; IFS, 2019\).](#) [To](#)
27 [put the magnitude of pesticides manufacturing into perspective,](#) [Bellard et al. \(2008\) estimated global that](#)
28 [emissions fromthe pesticides industry accounts for approximately manufacturing to be roughly 72 \(range: 3-140\)](#)
29 [Mt CO₂eq yr⁻¹, roughly 1-2% of the pre- and post-production total estimated in this work.](#) [of emissionspesticide,](#)
30 [although this estimate was presented with a large amount of uncertainty \(3-140 Mt CO₂eq yr⁻¹\).](#)

31 2.3.2 Uncertainty

32 [Uncertainties in FAOSTAT farm gate and land use change emissions estimates have been characterized elsewhere,](#)
33 [and computed in line with IPCC \(2006\) guidelines as ranging 30–70% across componentmany processes](#)
34 [\(Tubiello, 2019\). In particular we assign uncertainties of 30% and 50% respectively to the farm gate and land use](#)
35 [change components of the FAOSTAT agri-food systems emissions, following previous work \(i.e., Tubiello et al.,](#)
36 [2013; 2021b\). The uncertainties in the estimates of pre- and post-production activities described herein are by](#)
37 [contrast less documented. On the one hand, uncertainties in underlying energy activity data and emissions factors](#)
38 [known to beare likelylower than for the other two components, ranging 5-20%](#) (Flammini et al., 2022). [On the](#)

Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 10 pt, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, 10 pt, Font color: Auto

Formatted: Font: 10 pt, Font color: Auto

Commented [KK12]: Line 5-11: Can the authors restructure to make a clear distinction between emissions sources that are (a) not included because they are indirect and out of scope ("upstream GHG emissions, refining, etc.") and (b) not included because data was not available, even though they are direct and within scope?

Commented [KK13]: Response to RC 1.

Commented [KK14]: It would be important to note in (a) whether or not indirect emissions from electricity use are also excluded, as this is generally the largest indirect source across all sectors; and in (b) how significant these sources are in estimated CO₂ equivalents, and whether this is a complete list of omitted direct emissions sources.

Formatted: Font: 10 pt, Bold

1 other hand, the relative novelty in estimating food systems shares for a range of activity data across many processes
2 makes our estimates more uncertain, with heavy reliance on literature results from a subset of countries and
3 regions that are necessarily extended to the rest of the world (Karl and Tubiello, 2021a). For this reason, we assign
4 an uncertainty of 30% overall to the pre- and post-production component of agri-food systems, higher than the
5 uncertainty in the underlying energy processes, yet quite in line with values used in similar recent work (Crippa et
6 al., 2021a). As shown below, considering a roughly equal, one-third contribution of the three components and their
7 assigned uncertainties, an overall uncertainty of 40% was estimated for the agri-food systems emissions totals,
8 applicable to countries and regional aggregates.

9 The above uncertainties are meant only as first rough estimates, useful to determine tentative 95% confidence
10 intervals for the overall agri-food system component of FAOSTAT emissions. Significantly more research is
11 needed for further refinements in future studies, in particular on In particular, significant errors may be introduced
12 by the use of better characterizing sub-regional and regional activity data and emissions coefficients, given the
13 diversity in agri-food system typology and their dependence on physical geography and national socio-economic
14 drivers. These limitations nonetheless reflect the paucity of activity data available to describe agri-food systems
15 components and their trends, globally and regionally. While knowledge and data exist for regions and countries
16 such as the EU, USA, China, and India, much remains to be done in terms of regional and country specific coverage.
17 Uncertainties also exist in estimating GHG emission factors. These are typically related to difficulties in derive
18 generic coefficients in the face of natural spatial and temporal variability characterizing the underlying bio-physical
19 processes. More detailed information on uncertainties associated with emission factors and activity data can be
20 found in the IPCC guidelines (2006).

21 2.3.3 Areas for Advancement

22 Work towards estimating agri-food systems emissions at the country level can be advanced in several ways. The
23 present approach could be expanded on by including other country- and region-specific studies that estimate trends
24 in energy consumption across a range of similar activities as proxies—whether or not they are distinctly related
25 to food. Furthermore, other data sources could help explain and estimate variations in agri-food systems between
26 countries, such as: GDP per capita, urbanization levels, proxies for infrastructure and industrial development, and
27 geographic and climate considerations. The development of a methodology to estimate emissions from pesticides
28 could be explored, as it would help complement the understanding of emissions associated with chemical use in
29 agriculture, in addition to fertilizers. Emissions from machinery manufacturing and from upstream GHG emissions
30 in the fuel chain could also be added to further refine the analysis. This work could be further expanded by focusing
31 on specific food commodities—requiring an additional focus on international trade and on supply and demand
32 patterns (Dalin and Rodríguez-Iturbe, 2016). Such analysis would ultimately enable consumers to understand the
33 full carbon footprint of particular commodities across global supply chains, which can facilitate GHG mitigation
34 actions taken at the consumer level (Poore and Nemecek, 2018). Furthermore, it would be also useful to further
35 investigate the increasing role of bioenergy and renewables as important mitigation opportunities in the food sector
36 (Clark et al., 2020; JRC, 2015; Pablo-Romero et al., 2017; Wang, 2014).

37

38 Data availability

Commented [KK15]: Response to RC1.

Commented [KK16R15]: Line 35- page 5 line 4: These sentences belong in the subsequent section on uncertainty.

Formatted: Snap to grid

1 The GHG emission data presented herein cover the period 1990-2019, at the country level, with regional and global
2 aggregates. They are available as open data at: <https://zenodo.org/record/5615082> data, with DOI
3 [10.5281/zenodo.5615082](https://doi.org/10.5281/zenodo.5615082) (Tubiello et al., 2021d) and via the FAOSTAT [emissions shares database](#) (FAO, 2021a)
4 [database](#).

Formatted: Default Paragraph Font, Font: 12 pt

5 3 Results

6 3.1 Global trends

7 [The FAOSTAT TT-PRIMAP dataset which underlies considered in this study estimates in 2019 total anthropogenic](#)
8 [emissions at about 52 Gt CO₂eq yr⁻¹ without land use, land use change and forestry emissions \(LULCF\), and](#)
9 [about 54 Gt CO₂eq yr⁻¹ with LULCF—consistently with recent estimates \(IPCC, 2019\). We use the latter figure](#)
10 [to compute emissions shares.](#) In 2019 world-total agri-food systems emissions, [expressed in terms of 95%](#)
11 [confidence intervals \(CI\) determined using an overall uncertainty of 40%, were 16.5 \(CI range: 10-23\) Gt CO₂eq yr⁻¹](#)
12 [metric tonnes \(Gt CO₂eq yr⁻¹\), corresponding to 31% \(range: 19%-42%\) of total anthropogenic emissions \(Tab. 1\).](#)
13 Of the food systems total, global emissions within the farm gate—from crop and livestock production processes
14 including on-farm energy use—were 7.2 (range: 5-9) Gt CO₂eq yr⁻¹; emissions from land use change, due to
15 deforestation and peatland degradation, were 3.5 (range: 2-5) Gt CO₂eq yr⁻¹; and emissions from pre- and post-
16 production processes—manufacturing of fertilizers, food processing, packaging, transport, retail, household
17 consumption and food waste disposal—were 5.8 (range: 4-8) Gt CO₂eq yr⁻¹. Over the study period 1990-2019, agri-
18 food systems emissions increased in total by 17%, though they have remained rather constant since about 2006
19 (Fig. 2). These trends were largely driven by a doubling of emissions from pre- and post-production processes,
20 while land use emissions decreased by 25% and farm gate increased only 9%. In terms of single GHG, pre- and
21 post- production processes emitted the most CO₂ (3.9 Gt CO₂ yr⁻¹) in 2019, preceding land use change (3.3 Gt CO₂
22 yr⁻¹) and farm-gate (1.2 Gt CO₂ yr⁻¹) emissions. Conversely, farm-gate activities were by far the major emitter of
23 methane (140 Mt CH₄ yr⁻¹) and of nitrous oxide (7.8 Mt N₂O yr⁻¹). Pre-and post- processes were also significant
24 emitters of methane (49 Mt CH₄ yr⁻¹), mostly generated from the decay of solid food waste in landfills and open-
25 dumps.

26 Emissions from within the farm gate and those due to related land use processes, including details of their sub-
27 components, have been discussed in Tubiello et al. (2021a) and are regularly presented within FAOSTAT statistical
28 briefs (e.g., FAO, 2020a; 2021b). Here we provide a detailed discussion of the components of agri-food systems
29 emissions from pre- and post-production activities along supply chains and their relative contribution to the food
30 system totals (Fig. 3). [Considering that the uncertainties used above are rough estimates, we will not report](#)
31 [uncertainties in the following analysis.](#) Our data show that in 2019 emissions from deforestation were the single
32 largest emission component of agri-food systems, at 3.1058 Gt CO₂ yr⁻¹, having decreased 30% since 1990. The
33 second most important component were non-CO₂ emissions from enteric fermentation (2.823 Gt CO₂eq yr⁻¹),
34 with increases of 13%. These were followed by emissions from livestock manure (1.3345 Gt CO₂eq yr⁻¹) and
35 several pre- and post-production emissions, including CO₂ from household consumption (1.3309 Gt CO₂eq yr⁻¹),
36 CH₄ from food waste disposal (1.3278 Gt CO₂eq yr⁻¹), mostly CO₂ from fossil-fuel combustion for on-farm
37 energy use (1.0024 Gt CO₂eq yr⁻¹), and CO₂ and F-gases emissions from food retail (0.9932 Gt CO₂eq yr⁻¹).
38 Importantly, our data show that growth in pre- and post-production components was particularly strong, with

1 emissions from retail increasing from 1990 to 2019 by more than seven-fold, while emissions from household
2 consumption more than doubled over the same period.

3 [Finally, while emissions from agri-food systems increased globally by 16 percent between 1990 and 2019, their](#)
4 [share in total emissions decreased, from 40 percent to 31 percent, as did the per capita emissions, from 2.7 to](#)
5 [2.1 tonnes CO₂eq per capita \(Fig 2.\)](#)

Formatted: English (United Kingdom)

6 **3.2 Regional Trends**

7 Our results indicate significant regional variation in terms of the composition of agri-food systems emissions by
8 component (Fig. 4). Specifically, in terms of total agri-food systems emissions in 2019, Asia had the largest
9 contribution, at 7 Gt CO₂eq yr⁻¹, followed by Africa (2.7 Gt CO₂eq yr⁻¹), South America (2.4 Gt CO₂eq yr⁻¹) and
10 Europe (2.1 Gt CO₂eq yr⁻¹). North America (1.5 Gt CO₂eq yr⁻¹) and Oceania (0.3 Gt CO₂eq yr⁻¹) were the smallest
11 emitters among regions (Fig. 4). Focusing on GHG emissions beyond agricultural land, pre- and post-production
12 emissions in 2019 were largest in Asia (2.9 Gt CO₂eq yr⁻¹), followed by Europe and North America (0.8-1.1 Gt
13 CO₂eq yr⁻¹). Regions also varied in terms of how agri-food systems components contributed to the total (Tab. 2).
14 In 2019, pre- and post- production emissions were the largest food systems contributor in Europe (55%), North
15 America (52%) and Asia (42%). Conversely, they were smallest in Oceania (23%), Africa (14%) and South
16 America (12%). Additionally, the contribution of pre- and post-production processes along food supply chains
17 significantly increased since 1990, when in no region they were the dominant emissions component. Since then,
18 they doubled in all regions except in Africa—where it remained below 15%.

19 [Finally, The data show which pre- and post-production process was most important by region \(Tab. 2\). In 2019,](#)
20 [food household consumption was the dominant process outside of agricultural land emissions in Asia \(0.9 Gt](#)
21 [CO₂eq yr⁻¹\) and Africa \(0.2 Gt CO₂eq yr⁻¹\). Conversely, Europe, Oceania and North America pre- and post-](#)
22 [production processes were led by emissions from food retail \(0.3-0.4 Gt CO₂eq yr⁻¹\), while South America was](#)
23 [dominated by emissions from food -waste disposal \(0.2 Gt CO₂eq yr⁻¹\).](#)

24 **3.3 Country Trends**

25 Our estimates show a marked variation among countries in terms of total emissions as well as the composition of
26 contributions across farm gate, land use change and pre- and post-processing components (Fig. 5). China had the
27 most emissions (1.9 Gt CO₂eq yr⁻¹), followed by India, Brazil, Indonesia and the USA (1.2-1.3 Gt CO₂eq yr⁻¹).
28 Democratic Republic of Congo (DRC) and Russian Federation followed with 0.5-0.6 Gt CO₂eq yr⁻¹, followed by
29 Pakistan, Canada and Mexico with 0.2-0.3 Gt CO₂eq yr⁻¹. The contribution of the three main agri-food systems
30 components to the national total differed among countries significantly (Fig. 5). For instance, China and India had
31 virtually no contribution from land use change to agri-food systems emissions. The land use contribution was also
32 minor in the USA, Russian Federation and Pakistan. Conversely, the latter was the dominant emissions component
33 in Brazil, Indonesia and the DRC. Additionally, the new database allowed for an in-depth analysis by country of
34 pre- and post-production emissions along the agri-food chain, highlighting a significant variety in most relevant
35 sub-process contribution (Tab. 3). For the year 2019, pre- and post-production emissions were dominated in China
36 by food household consumption processes (463 Mt CO₂eq yr⁻¹), whereas food waste disposal was the dominant
37 pathway in Brazil, Indonesia (77 Mt CO₂eq yr⁻¹), DRC (8 Mt CO₂eq yr⁻¹), Pakistan (33 Mt CO₂eq yr⁻¹) and Mexico,
38 (56 Mt CO₂eq yr⁻¹). Emissions from food retail dominated the pre- and post-production component in the USA

1 (292 Mt CO₂eq yr⁻¹), Russian Federation (177 Mt CO₂eq yr⁻¹) and Canada (20 Mt CO₂eq yr⁻¹). Finally, on-farm
2 energy use was the largest pre- and post-production component in India (205 Mt CO₂eq yr⁻¹).

3 4 Discussion

4 4.1 Comparisons with previous work

Formatted: Font: Bold

5 The overall assessment of total agri-food systems emissions found in this work confirms recent previous
6 findings by the IPCC (2019) and Crippa et al. (2021). As displayed in Tab. 4, theWith regards to pre- and
7 post-production, the FAOSTAT agri-food systems emissions estimates were consistent (Tab. 4) with previous
8 findings work performed by(i.e., -Crippa et al., -(2021a, b; Vermuelen et al., 2012; Poore and Nemecek,
9 2018). In particular, for emissions estimates for the activities of food transport, processing, waste and retail
10 were consistent with EDGAR-FOOD components—considering uncertainties of about 30 (Karl and Tubiello,
11 2021b) and estimates for fertilizers manufacturing were in line with previous work by Vermeulen
12 (2012) percent in EDGAR-FOOD estimations (Crippa et al., 2021a,b). ConverselyConversely, our methods led
13 toFAOSTAT estimates were significantly higher than EDGAR-FOOD forestimates of household
14 consumption emissions, and significantly lower for food packaging, the latter possibly linked to. For food
15 processing, EDGAR-FOOD estimates include emissions from industrial wastewater management, which are
16 instead accounted for separately in our approach (Karl and Tubiello, 2021b).

Formatted: Font: Not Italic

17 FAOSTAT estimates for food packaging were likewise consistently lower, often by a factor of 2–3, than
18 published results, including Vermuelen et al. (2012) and Poore and Nemecek (2018), which nonetheless, as noted
19 forFAOSTAT estimates excluding EDGAR-FOOD data, included additional,indirect life cycle
20 processesemissions from fuel supply chains, which were instead included in previously published estimates.
21 compared to those considered in this methodology. Nevertheless, our estimates for emissions from energy use in
22 the manufacturing of specific food system packaging materials are consistently higher than EDGAR-FOOD
23 estimates, likely owing to differences in food share assumptions and activity data used as input (Tab. 4).

Formatted: Space After: 10 pt

Formatted: Font: Not Italic

24 Our estimates of GHG emissions from energy use in fertilizers manufacturing were about 420 million tonnes
25 CO₂eq in 2019, representing less than 8 percent of pre- and post production emissions. While EDGAR-FOOD
26 emissions from fertilizers were not available as a stand-alone component, our estimates of 325 million tonnes
27 CO₂eq in 2007 were within the range 282–575 million tonnes CO₂eq estimated for the same year by Vermeulen
28 et al. (2012), though the latter included life cycle processes that our methods exclude by design—for instance
29 indirect emissions from the extraction and supply of fossil fuels or from the storage and transfer of phosphorus
30 and potassium fertilizers (Tab 4.).

Formatted: Font: 10 pt

31 Finally, our estimates of F-gas The good agreement on eemissions from food retail between FAO and agreed well
32 with those published in EDGAR-FOOD.

Formatted: Font: Not Bold

Formatted: Heading 1

33 The most important disagreement with previous work was observed -was largely related to F-gas emissions,
34 which dominate this food system component total and are estimated similarly between the two
35 approaches. Small differences on the other hand could be related to different activity data (UNSD vs. IEA
36 energy statistics). Our estimates are consistent with specific current literature on national trends. For the

1 United Kingdom of Great Britain and Northern Ireland for instance, our estimates of the contribution of
2 energy use in retail, about 1.5–2 percent, were consistent with those of Tassou et al. (2011).

Formatted: Font: Not Italic

3 in relation to The most pronounced difference between our estimates and EDGAR-FOOD was for household
4 consumption emissions, as our methods lead to estimated emissions in 2015 of roughly FAOSTAT estimates in
5 this work, -1.2 Gt CO₂eq, were , or nearly three times those of EDGAR-FOOD (with reference to 2015, the last
6 year for which EDGAR data was available) values. While much more research is needed to refine estimates in
7 this important agri-food systems component, our estimates were in fact well aligned with earlier FAO (2011) Yet,
8 FAO work (2011) estimates of this food systems component in the early 2000s, of about 1.2 Gt CO₂eq, is closer
9 to our estimates of 0.8 Gt CO₂eq for the same period, whereas EDGAR-FOOD estimates only about half that
10 amount (Figure 4). The trend in our estimates may be more realistic, as it properly), as well as more consistent
11 with observed reflects concomitant increases in world population growth during the study period, an important
12 determinant of whereas such trends are missing from the EDGAR-FOOD data. Indeed, trends in household
13 consumption trends should match global population growth. For instance, global residential energy use grew by
14 25 percent from 1993 to 2013, while per capita use remained rather constant over the same period (Pablo-
15 Romero et al., 2017). At the same time, major energy transitions occurred in Asia, especially rural China, where
16 between 1992 and 2002 electricity and LPG consumption were multiplied by 97 and 7, respectively, while
17 consumption of biomass decreased by more than 50 percent (Tao et al., 2018).

Formatted: Font: Not Bold

18 4.2 Trends

19 The most importantOne notable trend over the 30-year period since 1990 to present that emerges from our analysis
20 is the increasingly important role of food-related emissions generated outside of agricultural land, in pre- and post-
21 production processes along food supply chains, at all- global, regional and national scalesseas from global,
22 regional and national, from 1990 to 2019. Our data show that by 2019, food supply chains pre- and post-production
23 processes had overtaken farm-gate processes to become the largest GHG component of agri-food systems
24 emissions in Annex I parties (2.2 Gt CO₂eq yr⁻¹). While farm gate emissions still dominated food-systems processes
25 in non-Annex I parties, emissions from pre- and post-production were closing the gap in 2019, surpassing land use
26 change, and – having doubled since 1990 to 3.5 Gt CO₂eq yr⁻¹. By 2019, food supply chains pre- and post-production
27 processes had become the largest agri-food system component in China (1.1400 GMt CO₂eq yr⁻¹); USA (0.700
28 GMt CO₂eq yr⁻¹) and EU-27 (0.6600 GMt CO₂eq yr⁻¹). This has important repercussions for food-relevant national
29 mitigation strategies, such as those included in countries' NDCs, considering that until recently these have focused
30 mainly on reductions of non-CO₂ gases within the farm gate and on CO₂ mitigation from land use change (Höne
31 et al., 2019).

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold

32 Importantly, the FAOSTAT database presented here allows for an estimation of the percentage share contribution
33 of food systems emissions in total anthropogenic emissions, by country as well as at regional and global levels,
34 over the period 1990–2019. The FAOSTAT PRIMAP database covering all sectors which underlies this study
35 estimates total anthropogenic emissions at about 52 Gt CO₂eq yr⁻¹ without land use, land use change and forestry
36 emissions (LULCF), and about 54 Gt CO₂eq yr⁻¹ with LULCF – consistently with recent estimates (IPCC,
37 2019). We use the latter figure to compute emissions shares. A number of important issues can be highlighted to
38 this end (Tab. 54 and Fig. 6). First, in terms of CO₂eq, the share of world total agri-food systems emissions
39 decreased from 40% in 1990 to 31% in 2019. Thus while it is important to note that one-third of all GHG emissions

Formatted: Font: Not Bold

Commented [K(17): Response to RC1

1 today are generated by agri-food systems, their shares in total emissions may continue to decrease~~ing~~ in the near
2 future. This decreasing trend was driven by trends in large regions, with ongoing~~consistently with~~ transformations
3 in their agri-food systems and land use change patterns. For instance, in South America, the region with the highest
4 food systems share over the entire study period (Fig. 6), food shares decreased~~went~~ from 96% in 1990 to 72% in
5 2019. In Africa, from 67% to 57%, in Asia from 49% to 24% and in Oceania from 57% to 39%. In contrast to
6 these trends however, our data suggested that in regions dominated by modern agri-food systems, such as Europe
7 and North America, our data suggest that the overall share of agri-food systems emissions in fact increased from
8 1990 to 2019, specifically from 24% to 31% in Europe and from 17% to 21% in North America. Such increases in
9 these two regions were due to a disproportionate increase~~could be explained by increases~~ in absolute emissions
10 from pre- and post-production activities, as noted earlier, resulting in addition to doubling absolute emission also
11 doubled their underlying shares (Tab. 5.4), re-enforced by concomitant, The phenomenon of increasing shares of
12 agri food systems emissions in Europe and North America may also be attributable to sustained declines in
13 emissions decreases from other sectors in non-food sector, such as especially from energy systems (Lamb et al.,
14 2022). It is also worth noting that~~The noted increase in in all regions~~ absolute emissions from~~form~~ pre- and post-
15 production activities increased from 1990 to 2019 was in fact present in all regions, leading to increases in the
16 relative contributions to agri-food systems of this component, except for Africa, and that such increased in all
17 regions but Africa were accompanied by larger relative shares of this food system component in 2019 compared
18 to 1990.

19 An final analysis on agri-food systems impacts on total GHG emissions would not be complete without a focus on
20 component gases in addition to quantities expressed in CO₂eq. The FAOSTAT data confirm the trends from 1990
21 to 2019 seen for total CO₂eq emissions, with important features (Tab. 6S). First, the impact of agri-food systems
22 on world total CO₂ emissions was 21% in 2019 (down from 31% in 1990), a respectable share considering the
23 importance of carbon dioxide in any effective long-term mitigation strategy. While most regions had contributions
24 around this value, ranging 13%-23% for North America, Oceania, Europe and Asia, the CO₂ contribution of agri-
25 food systems was highest~~er~~ in Africa (52%) and South America (70%), largely in relation to the land use change
26 emissions, that are still significant therein. Additionally, Europe and North America were the only regions where
27 the CO₂ share of agri-food systems s-actually increased from 1990 to 2019, confirming the growing weight of pre-
28 and post-production processes, which typically involve fossil-fuel energy use and thus emissions of CO₂ gas
29 through combustion. Second, the data highlight the significant contribution of agri-food systems to 2019 world
30 total emissions of CH₄ (53%) and N₂O (78%), also confirmed at regional levels (Tab. 6S), linked to farm gate
31 production processes (Tubiello, 2019).

32 Finally, the data highlight a very large increase in agri-food systems contributions of F-gas emissions, which went
33 from near zero in 1990 to more than one-quarter of the world total in 2019 –with larger contributions in many
34 regions. At least with respect to the underlying assumptions made in our methods, sSuch a marked increase was
35 entirely mainly due to theis consistent with the growth in use of hydrofluorocarbons (HFCs) as refrigerants in the
36 food retail and other sectors, following the banning of CFCs in 1990 sector, which increased significantly after the
37 Montreal Protocol, and have only recently begun to taper off in many places due to the Kigali Amendment to the
38 Montreal Protocol, strong growth of refrigeration in the food retail seector (Hart et al., 2020; International Institute
39 of Refrigeration, 2021; Tubiello et al., 2021b). This sharp increase reflects marked jumps in globalOur findings
40 are furthermore consistent with the strong growth in F-gas emissions reported in recent studies overall, which are

Commented [K(18): Response to RC 1: "Presumably it is also due to shifts in other sectors, e.g. all else equal, reductions in power sector emissions will increase the proportion of food system emissions in the total. And power sector emissions have been declining in most EU countries and the US"]

1 one of the fastest growing classes of GHG emissions (Minx et al., 2021; Park et al., 2021). See Crippa et al. (2021a)
2 for a specific list of HFCs used in agri-food systems, which form the basis of the GHG emissions data estimated
3 in this work.

4 An important other aspect of the dataset underlying presented in this study is that its provision of food and
5 agriculture relevant information mapped across IPCC and FAO definitions and classifications categories alike. In
6 terms of national GHG inventories Specific IPCC sectors include Agriculture and Land use, land use change and
7 forestry (LULUCF). The IPCC further considers the Agriculture, Forestry and Other Land Use (AFOLU). While
8 countries report their agriculture and food emissions to the UNFCCC within National GHG Inventories, our, it is
9 worth pointing out that while findings highlight the importance to expand that reporting to a fuller agri-food
10 systems view, one that properly weights the contribution of food to the global economy, were found to be
11 aboutIndeed, our results show that agri-food systems emissions in 2019 were one-third of total anthropogenic
12 emissions. This important picture does not emerge from NGHGI reporting aligned to IPCC categories, according
13 to which for instance, our data indicated that emissions from land use, land use change and forestry (LULUCF)
14 in 2019 LULUCF and AFOLU emissions only represented contributed 3 respectively 4%; and while emissions
15 from agriculture, forestry and other land use (AFOLU), were a mere 15% of the total anthropogenic emissions.

16 5 Conclusions

17 This paper provided details of a new FAOSTAT domain database characterizing on GHG emissions along the
18 entire agri-food systems chain, including crop and livestock production processes on the farm, land use change
19 activities from the conversion of natural ecosystems to agricultural land, and processes along food supply chains,
20 from input manufacturing to food processing, transport and retail, including household consumption and waste
21 disposal.

22 The data are provided in open access mode to users worldwide and are available by country over the time period
23 1990-2019, with plans for annual updates. The major trends identified in this work help identify locate GHG
24 emissions hotspots across agri-food systems and by at the country, regional and global level, country, helping
25 This can to identify inform the process of designing areas for effective mitigation actions in food and agriculture.
26 This work adds to knowledge on GHG emissions from agriculture and land use generally well established in
27 the literature but limited in terms of datasets to farm gate processes and land use change, by adding a wide
28 range of additional details critical information on emissions from a range of pre- and post-production processes.
29 The new data highlight the increasingly important role that these pre- and post-production processes play in the
30 overall emissions GHG footprint of agri-food systems, which may provide insight into reflecting a pattern of
31 development from the relationship between agri-food system development trends and GHG emissions future
32 mitigation options.

33 traditional to modern agri food systems and overall economic growth. The granularity of the dataset allows, for the
34 first time, to highlight specific processes of importance in specific countries or group of countries with similar
35 characteristics. The relevance of the information being provided cuts across several national and international
36 priorities, specifically those aiming at achieving more productive and sustainable food systems, including in
37 relation to climate change. To this end, the work presented herein completes a mapping of IPCC categories, used
38 by countries for reporting to the climate convention, to food and agriculture categories that are more readily
39 understandable by farmers and ministries of agriculture in countries. This helps better identify agri-food systems

Formatted: Font: Italic

1 entry points within existing and future national determined contributions. Finally, the methodological work
2 underlying these efforts complements and extends recent pioneering efforts by FAO and other groups in
3 characterizing technical coefficients to enable quantifying the weight of agri-food systems within countries'
4 emissions profiles. The next steps in such efforts would need the involvement of interested national and
5 international experts in compiling a first set of coefficients for agri-food systems as a practical 'agri-food systems
6 annex' to the existing guidelines of the Intergovernmental Panel on Climate Change, providing guidance to
7 countries on how to better characterize food and agriculture emissions within their national GHG inventories.

8 **6. Disclaimer**

9 The views expressed in this paper are the authors' only and do not necessarily reflect those of FAO, UNSD,
10 UNIDO and IEA.

11 **7. Acknowledgements**

12 FAOSTAT is supported by the FAO regular budget, funded by its member countries. We acknowledge the efforts
13 of national experts who provide the statistics on food and agriculture as well as on energy use that are at the basis
14 of this effort. All authors contributed critically to the drafts and gave final approval for the publication. We are
15 grateful for overall support by the Food Climate Partnership at Columbia University.

| 16

1 6 References

2 Bellarby, J., Foereid, B., & Hastings, A. 2008. *Cool Farming: Climate Impacts of Agriculture and Mitigation Potential*.

3 Formatted: Justified

4 Brentrup, F., Hoxha, A., and Christensen, B. 2016. Carbon footprint analysis of mineral fertilizer production in Europe and other world regions. In *10th International Conference on Life Cycle Assessment of Food*.

5 Formatted: No underline, Font color: Auto

6 Brentrup, F., Lammel, J., Stephani, T., and Christensen, B. 2018. Updated carbon footprint values for mineral fertilizer from different world regions. In *11th International Conference on Life Cycle Assessment of Food*.
7 <https://www.researchgate.net/publication/329774170> Updated carbon footprint values for mineral fertilizer from different world regions

8 Formatted: Font color: Auto

9 Formatted

10 Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., & Hill, J. D. 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*, 370(6517), 705–708. <https://doi.org/10.1126/science.aba7357>

11 Formatted: Font color: Auto

12 Crippa, M., Solazzo, E., Guzzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. 2021a. Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food*, 1–12.

13 Formatted: No underline, Font color: Auto

14 Crippa, M., Solazzo, E., Guzzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. 2021b. Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food*, 1–12.

15 Formatted: Font color: Auto

16 Crippa, M., Guzzardi, D., Schaaf, E., Solazzo, E., Muntean, M., Monforti-Ferrario, F., Olivier, J.G.J., Vignati, E. 2021b. Emissions Database for Global Atmospheric Research (EDGAR) v6.0. Available from: https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60

17 Formatted: No underline, Font color: Auto

18 Formatted: Font color: Auto

19 Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. 2018. Classifying drivers of global forest loss. *Science*, 361(6407), 1108–1111. <https://doi.org/10.1126/science.aau3445>

20 Formatted: No underline, Font color: Auto

21 Dalin, C., and Rodriguez-Iturbe, I. 2016. Environmental impacts of food trade via resource use and greenhouse gas emissions. *Environmental Research Letters*, 11(3), 035012. <https://doi.org/10.1088/1748-9326/11/3/035012>

22 Formatted: No underline, Font color: Auto

23 Drösler, M., Verchot, L. V., Freibauer, A., Pan, G., Evans, C., D.Borbonniere, R. A., ... Couwenberg, J. 2014. Chapter 2: Drained inland organic soils. In T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, & T. Troxler (Eds.), *2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands* (pp. 1–79). IPCC: Switzerland.

24 Formatted: Font: 10 pt

25 Formatted: No underline, Font color: Auto

26 Formatted: Font: 10 pt

27 Fang, X., Ravishankara, A. R., Velders, G. J. M., Molina, M. J., Su, S., Zhang, J., Hu, J., & Prinn, R. G. 2018. Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the Montreal Protocol. *Environmental Science & Technology*, 52(19), 11359–11366. <https://doi.org/10.1021/acs.est.8b01280>

28 Formatted: No underline, Font color: Auto

29 Formatted: Font color: Auto

30 FAO. 2011. Energy-smart food for people and climate. Rome. Available at: <http://www.fao.org/3/i2454e/i2454e00.pdf>

31 Formatted: No underline, Font color: Auto

32 FAO. 2014. Opportunities for Agri-Food Chains to become Energy-Smart. Available online at: <http://www.fao.org/3/a-i5125e.pdf>

33 Formatted: No underline, Font color: Auto

34 FAO. 2020a. Emissions due to agriculture. Global, regional and country trends 2000–2018. FAOSTAT Analytical Brief Series No 18. Rome

35 Formatted: No underline, Font color: Auto

36 FAO. 2020b. FAOSTAT: Energy Use. In: *FAO.org* [online]. <https://www.fao.org/faostat/en/#data/GN>

37 FAO. 2021a. FAOSTAT: Emissions Shares. In: *FAO.org* [online]. <https://www.fao.org/faostat/en/#data/EM>

38 FAO. 2021b. FAOSTAT: Emissions Totals. In: *FAO.org* [online]. <https://www.fao.org/faostat/en/#data/GT>

39 Flammini, A., Pan, X., Tubiello, F.N., Qiu, S.Y., Rocha Souza, L., Quadrelli, R., Bracco, S., Benoit, P. and Sims, R., 2021. [1 \(preprint\)](#). Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019. *Earth System Science Data Discussions*. Available at <https://essd.copernicus.org/preprints/essd-2021-262/>

40 Formatted: No underline, Font color: Auto

41 Formatted: No underline, Font color: Auto

42 Gütschow J., Jeffery L. and R. Gieseke. 2021. The PRIMAP-hist national historical emissions time series v2.3 (1850–2017). GFZ Data Services. Available from: <https://doi.org/10.5880/pik.2019.001>

43 Formatted: No underline, Font color: Auto

44 Hart, M., Austin, W., Acha, S., Le Brun, N., Markides, C. N., & Shah, N. 2020. A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry. *Journal of Cleaner Production*, 275, 123039. <https://doi.org/10.1016/j.jclepro.2020.123039>

45 Formatted: No underline, Font color: Auto

46 Formatted: No underline, Font color: Auto

47 Höhne, S. E., Heidecke, C., & Osterburg, B. 2019. Climate change mitigation strategies for agriculture: An analysis of nationally determined contributions, biennial reports and biennial update reports. *Climate Policy*, 19(6), 688–702. <https://doi.org/10.1080/14693062.2018.1559793>

48 Formatted: Font: 10 pt

49 Formatted: No underline, Font color: Auto

50 Formatted: No underline, Font color: Auto

51 Formatted: No underline, Font color: Auto

52 Formatted: No underline, Font color: Auto

53 Formatted: No underline, Font color: Auto

54 Formatted: No underline, Font color: Auto

55 Formatted: No underline, Font color: Auto

56 Formatted: No underline, Font color: Auto

57 Formatted: No underline, Font color: Auto

58 Formatted: No underline, Font color: Auto

59 Formatted: No underline, Font color: Auto

60 Formatted: No underline, Font color: Auto

61 Formatted: No underline, Font color: Auto

62 Formatted: No underline, Font color: Auto

63 Formatted: No underline, Font color: Auto

64 Formatted: No underline, Font color: Auto

65 Formatted: No underline, Font color: Auto

66 Formatted: No underline, Font color: Auto

67 Formatted: No underline, Font color: Auto

68 Formatted: No underline, Font color: Auto

69 Formatted: No underline, Font color: Auto

70 Formatted: No underline, Font color: Auto

71 Formatted: No underline, Font color: Auto

72 Formatted: No underline, Font color: Auto

73 Formatted: No underline, Font color: Auto

74 Formatted: No underline, Font color: Auto

75 Formatted: No underline, Font color: Auto

76 Formatted: No underline, Font color: Auto

77 Formatted: No underline, Font color: Auto

78 Formatted: No underline, Font color: Auto

79 Formatted: No underline, Font color: Auto

80 Formatted: No underline, Font color: Auto

81 Formatted: No underline, Font color: Auto

82 Formatted: No underline, Font color: Auto

83 Formatted: No underline, Font color: Auto

84 Formatted: No underline, Font color: Auto

85 Formatted: No underline, Font color: Auto

86 Formatted: No underline, Font color: Auto

87 Formatted: No underline, Font color: Auto

88 Formatted: No underline, Font color: Auto

89 Formatted: No underline, Font color: Auto

90 Formatted: No underline, Font color: Auto

91 Formatted: No underline, Font color: Auto

92 Formatted: No underline, Font color: Auto

93 Formatted: No underline, Font color: Auto

94 Formatted: No underline, Font color: Auto

95 Formatted: No underline, Font color: Auto

96 Formatted: No underline, Font color: Auto

97 Formatted: No underline, Font color: Auto

98 Formatted: No underline, Font color: Auto

99 Formatted: No underline, Font color: Auto

100 Formatted: No underline, Font color: Auto

101 Formatted: No underline, Font color: Auto

102 Formatted: No underline, Font color: Auto

103 Formatted: No underline, Font color: Auto

104 Formatted: No underline, Font color: Auto

105 Formatted: No underline, Font color: Auto

106 Formatted: No underline, Font color: Auto

107 Formatted: No underline, Font color: Auto

108 Formatted: No underline, Font color: Auto

109 Formatted: No underline, Font color: Auto

110 Formatted: No underline, Font color: Auto

111 Formatted: No underline, Font color: Auto

112 Formatted: No underline, Font color: Auto

113 Formatted: No underline, Font color: Auto

114 Formatted: No underline, Font color: Auto

115 Formatted: No underline, Font color: Auto

116 Formatted: No underline, Font color: Auto

117 Formatted: No underline, Font color: Auto

118 Formatted: No underline, Font color: Auto

119 Formatted: No underline, Font color: Auto

120 Formatted: No underline, Font color: Auto

121 Formatted: No underline, Font color: Auto

122 Formatted: No underline, Font color: Auto

123 Formatted: No underline, Font color: Auto

124 Formatted: No underline, Font color: Auto

125 Formatted: No underline, Font color: Auto

126 Formatted: No underline, Font color: Auto

127 Formatted: No underline, Font color: Auto

128 Formatted: No underline, Font color: Auto

129 Formatted: No underline, Font color: Auto

130 Formatted: No underline, Font color: Auto

131 Formatted: No underline, Font color: Auto

132 Formatted: No underline, Font color: Auto

133 Formatted: No underline, Font color: Auto

134 Formatted: No underline, Font color: Auto

135 Formatted: No underline, Font color: Auto

136 Formatted: No underline, Font color: Auto

137 Formatted: No underline, Font color: Auto

138 Formatted: No underline, Font color: Auto

139 Formatted: No underline, Font color: Auto

140 Formatted: No underline, Font color: Auto

141 Formatted: No underline, Font color: Auto

142 Formatted: No underline, Font color: Auto

143 Formatted: No underline, Font color: Auto

144 Formatted: No underline, Font color: Auto

145 Formatted: No underline, Font color: Auto

146 Formatted: No underline, Font color: Auto

147 Formatted: No underline, Font color: Auto

148 Formatted: No underline, Font color: Auto

149 Formatted: No underline, Font color: Auto

150 Formatted: No underline, Font color: Auto

151 Formatted: No underline, Font color: Auto

152 Formatted: No underline, Font color: Auto

153 Formatted: No underline, Font color: Auto

154 Formatted: No underline, Font color: Auto

155 Formatted: No underline, Font color: Auto

156 Formatted: No underline, Font color: Auto

157 Formatted: No underline, Font color: Auto

158 Formatted: No underline, Font color: Auto

159 Formatted: No underline, Font color: Auto

160 Formatted: No underline, Font color: Auto

161 Formatted: No underline, Font color: Auto

162 Formatted: No underline, Font color: Auto

163 Formatted: No underline, Font color: Auto

164 Formatted: No underline, Font color: Auto

165 Formatted: No underline, Font color: Auto

166 Formatted: No underline, Font color: Auto

167 Formatted: No underline, Font color: Auto

168 Formatted: No underline, Font color: Auto

169 Formatted: No underline, Font color: Auto

170 Formatted: No underline, Font color: Auto

171 Formatted: No underline, Font color: Auto

172 Formatted: No underline, Font color: Auto

173 Formatted: No underline, Font color: Auto

174 Formatted: No underline, Font color: Auto

175 Formatted: No underline, Font color: Auto

176 Formatted: No underline, Font color: Auto

177 Formatted: No underline, Font color: Auto

178 Formatted: No underline, Font color: Auto

179 Formatted: No underline, Font color: Auto

180 Formatted: No underline, Font color: Auto

181 Formatted: No underline, Font color: Auto

182 Formatted: No underline, Font color: Auto

183 Formatted: No underline, Font color: Auto

184 Formatted: No underline, Font color: Auto

185 Formatted: No underline, Font color: Auto

186 Formatted: No underline, Font color: Auto

187 Formatted: No underline, Font color: Auto

188 Formatted: No underline, Font color: Auto

189 Formatted: No underline, Font color: Auto

190 Formatted: No underline, Font color: Auto

191 Formatted: No underline, Font color: Auto

192 Formatted: No underline, Font color: Auto

193 Formatted: No underline, Font color: Auto

194 Formatted: No underline, Font color: Auto

195 Formatted: No underline, Font color: Auto

196 Formatted: No underline, Font color: Auto

197 Formatted: No underline, Font color: Auto

198 Formatted: No underline, Font color: Auto

199 Formatted: No underline, Font color: Auto

200 Formatted: No underline, Font color: Auto

201 Formatted: No underline, Font color: Auto

202 Formatted: No underline, Font color: Auto

203 Formatted: No underline, Font color: Auto

204 Formatted: No underline, Font color: Auto

205 Formatted: No underline, Font color: Auto

206 Formatted: No underline, Font color: Auto

207 Formatted: No underline, Font color: Auto

208 Formatted: No underline, Font color: Auto

209 Formatted: No underline, Font color: Auto

210 Formatted: No underline, Font color: Auto

211 Formatted: No underline, Font color: Auto

212 Formatted: No underline, Font color: Auto

213 Formatted: No underline, Font color: Auto

214 Formatted: No underline, Font color: Auto

215 Formatted: No underline, Font color: Auto

216 Formatted: No underline, Font color: Auto

217 Formatted: No underline, Font color: Auto

218 Formatted: No underline, Font color: Auto

219 Formatted: No underline, Font color: Auto

220 Formatted: No underline, Font color: Auto

221 Formatted: No underline, Font color: Auto

222 Formatted: No underline, Font color: Auto

223 Formatted: No underline, Font color: Auto

224 Formatted: No underline, Font color: Auto

225 Formatted: No underline, Font color: Auto

226 Formatted: No underline, Font color: Auto

227 Formatted: No underline, Font color: Auto

228 Formatted: No underline, Font color: Auto

229 Formatted: No underline, Font color: Auto

230 Formatted: No underline, Font color: Auto

231 Formatted: No underline, Font color: Auto

232 Formatted: No underline, Font color: Auto

233 Formatted: No underline, Font color: Auto

234 Formatted: No underline, Font color: Auto

235 Formatted: No underline, Font color: Auto

236 Formatted: No underline, Font color: Auto

237 Formatted: No underline, Font color: Auto

238 Formatted: No underline, Font color: Auto

239 Formatted: No underline, Font color: Auto

240 Formatted: No underline, Font color: Auto

241 Formatted: No underline, Font color: Auto

242 Formatted: No underline, Font color: Auto

243 Formatted: No underline, Font color: Auto

244 Formatted: No underline, Font color: Auto

245 Formatted: No underline, Font color: Auto

246 Formatted: No underline, Font color: Auto

247 Formatted: No underline, Font color: Auto

248 Formatted: No underline, Font color: Auto

249 Formatted: No underline, Font color: Auto

250 Formatted: No underline, Font color: Auto

251 Formatted: No underline, Font color: Auto

252 Formatted: No underline, Font color: Auto

253 Formatted: No underline, Font color: Auto

254 Formatted: No underline, Font color: Auto

255 Formatted: No underline, Font color: Auto

256 Formatted: No underline, Font color: Auto

257 Formatted: No underline, Font color: Auto

258 Formatted: No underline, Font color: Auto

259 Formatted: No underline, Font color: Auto

260 Formatted: No underline, Font color: Auto

261 Formatted: No underline, Font color: Auto

262 Formatted: No underline, Font color: Auto

263 Formatted: No underline, Font color: Auto

264 Formatted: No underline, Font color: Auto

265 Formatted: No underline, Font color: Auto

266 Formatted: No underline, Font color: Auto

267 Formatted: No underline, Font color: Auto

268 Formatted: No underline, Font color: Auto

269 Formatted: No underline, Font color: Auto

270 Formatted: No underline, Font color: Auto

271 Formatted: No underline, Font color: Auto

272 Formatted: No underline, Font color: Auto

273 Formatted: No underline, Font color: Auto

274 Formatted: No underline, Font color: Auto

275 Formatted: No underline, Font color: Auto

276 Formatted: No underline, Font color: Auto

277 Formatted: No underline, Font color: Auto

278 Formatted: No underline, Font color: Auto

279 Formatted: No underline, Font color: Auto

280 Formatted: No underline, Font color: Auto

281 Formatted: No underline, Font color: Auto

282 Formatted: No underline, Font color: Auto

283 Formatted: No underline, Font color: Auto

284 Formatted: No underline, Font color: Auto

285 Formatted: No underline, Font color: Auto

286 Formatted: No underline, Font color: Auto

287 Formatted: No underline, Font color: Auto

288 Formatted: No underline, Font color: Auto

289 Formatted: No underline, Font color: Auto

290 Formatted: No underline, Font color: Auto

291 Formatted: No underline, Font color: Auto

292 Formatted: No underline, Font color: Auto

293 Formatted: No underline, Font color: Auto

294 Formatted: No underline, Font color: Auto

295 Formatted: No underline, Font color: Auto

296 Formatted: No underline, Font color: Auto

297 Formatted: No underline, Font color: Auto

298 Formatted: No underline, Font color: Auto

299 Formatted: No underline, Font color: Auto

300 Formatted: No underline, Font color: Auto

301 Formatted: No underline, Font color: Auto

302 Formatted: No underline, Font color: Auto

303 Formatted: No underline, Font color: Auto

304 Formatted: No underline, Font color: Auto

305 Formatted: No underline, Font color: Auto

306 Formatted: No underline, Font color: Auto

307 Formatted: No underline, Font color: Auto

308 Formatted: No underline, Font color: Auto

309 Formatted: No underline, Font color: Auto

310 Formatted: No underline, Font color: Auto

311 Formatted: No underline, Font color: Auto

312 Formatted: No underline, Font color: Auto

313 Formatted: No underline, Font color: Auto

314 Formatted: No underline, Font color: Auto

315 Formatted: No underline, Font color: Auto

316 Formatted: No underline, Font color: Auto

317 Formatted: No underline, Font color: Auto

318 Formatted: No underline, Font color: Auto

319 Formatted: No underline, Font color: Auto

320 Formatted: No underline, Font color: Auto

321 Formatted: No underline, Font color: Auto

322 Formatted: No underline, Font color: Auto

323 Formatted: No underline, Font color: Auto

324 Formatted: No underline, Font color: Auto

325 Formatted: No underline, Font color: Auto

326 Formatted: No underline, Font color: Auto

327 Formatted: No underline, Font color: Auto

328 Formatted: No underline, Font color: Auto

329 Formatted: No underline, Font color: Auto

330 Formatted: No underline, Font color: Auto

331 Formatted: No underline, Font color: Auto

332 Formatted: No underline, Font color: Auto

333 Formatted: No underline, Font color: Auto

334 Formatted: No underline, Font color: Auto

335 Formatted: No underline, Font color: Auto

336 Formatted: No underline, Font color: Auto

337 Formatted: No underline, Font color: Auto

338 Formatted: No underline, Font color: Auto

339 Formatted: No underline, Font color: Auto

340 Formatted: No underline, Font color: Auto

341 Formatted: No underline, Font color: Auto

342 Formatted: No underline, Font color: Auto

343 Formatted: No underline, Font color: Auto

344 Formatted: No underline, Font color: Auto

345 Formatted: No underline, Font color: Auto

346 Formatted: No underline, Font color: Auto

347 Formatted: No underline, Font color: Auto

348 Formatted: No underline, Font color: Auto

349 Formatted: No underline, Font color: Auto

350 Formatted: No underline, Font color: Auto

351 Formatted: No underline, Font color: Auto

352 Formatted: No underline, Font color: Auto

353 Formatted: No underline, Font color: Auto

354 Formatted: No underline, Font color: Auto

355 Formatted: No underline, Font color: Auto

356 Formatted: No underline, Font color: Auto

357 Formatted: No underline, Font color: Auto

358 Formatted: No underline, Font color: Auto

359 Formatted: No underline, Font color: Auto

360 Formatted: No underline, Font color: Auto

361 Formatted: No underline, Font color: Auto

362 Formatted: No underline, Font color: Auto

363 Formatted: No underline, Font color: Auto

364 Formatted: No underline, Font color: Auto

365 Formatted: No underline, Font color: Auto

366 Formatted: No underline, Font color: Auto

367 Formatted: No underline, Font color: Auto

368 Formatted: No underline, Font color: Auto

369 Formatted: No underline, Font color: Auto

370 Formatted: No underline, Font color: Auto

371 Formatted: No underline, Font color: Auto

372 Formatted: No underline, Font color: Auto

373 Formatted: No underline, Font color: Auto

374 Formatted: No underline, Font color: Auto

375 Formatted: No underline, Font color: Auto

376 Formatted: No underline, Font color: Auto

377 Formatted: No underline, Font color: Auto

378 Formatted: No underline, Font color: Auto

379 Formatted: No underline, Font color: Auto

380 Formatted: No underline, Font color: Auto

381 Formatted: No underline, Font color: Auto

382 Formatted: No underline, Font color: Auto

383 Formatted: No underline, Font color: Auto

384 Formatted: No underline, Font color: Auto

385 Formatted: No underline, Font color: Auto

386 Formatted: No underline, Font color: Auto

387 Formatted: No underline, Font color: Auto

388 Formatted: No underline, Font color: Auto

389 Formatted: No underline, Font color: Auto

390 Formatted: No underline, Font color: Auto

391 Formatted: No underline, Font color: Auto

392 Formatted: No underline, Font color: Auto

393 Formatted: No underline, Font color: Auto

394 Formatted: No underline, Font color: Auto

395 Formatted: No underline, Font color: Auto

396 Formatted: No underline, Font color: Auto

397 Formatted: No underline, Font color: Auto

398 Formatted: No underline, Font color: Auto

399 Formatted: No underline, Font color: Auto

400 Formatted: No underline, Font color: Auto

401 Formatted: No underline, Font color: Auto

402 Formatted: No underline, Font color: Auto

403 Formatted: No underline, Font color: Auto

404 Formatted: No underline, Font color: Auto

405 Formatted: No underline, Font color: Auto

406 Formatted: No underline, Font color: Auto

407 Formatted: No underline, Font color: Auto

408 Formatted: No underline, Font color: Auto

409 Formatted: No underline, Font color: Auto

410 Formatted: No underline, Font color: Auto

411 Formatted: No underline, Font color: Auto

412 Formatted: No underline, Font color: Auto

413 Formatted: No underline, Font color: Auto

414 Formatted: No underline, Font color: Auto

415 Formatted: No underline, Font color: Auto

416 Formatted: No underline, Font color: Auto

417 Formatted: No underline, Font color: Auto

418 Formatted: No underline, Font color: Auto

419 Formatted: No underline, Font color: Auto

420 Formatted: No underline, Font color: Auto

421 Formatted: No underline, Font color: Auto

422 Formatted: No underline, Font color: Auto

423 Formatted: No underline, Font color: Auto

424 Formatted: No underline, Font color: Auto

425 Formatted: No underline, Font color: Auto

426 Formatted: No underline, Font color: Auto

427 Formatted: No underline, Font color: Auto

428 Formatted: No underline, Font color: Auto

429 Formatted: No underline, Font color: Auto

430 Formatted: No underline, Font color: Auto

431 Formatted: No underline, Font color: Auto

432 Formatted: No underline, Font color: Auto

433 Formatted: No underline, Font color: Auto

434 Formatted: No underline, Font color: Auto

435 Formatted: No underline, Font color: Auto

436 Formatted: No underline, Font color: Auto

437 Formatted: No underline, Font color: Auto

438 Formatted: No underline, Font color: Auto

439 Formatted: No underline, Font color: Auto

440 Formatted: No underline, Font color: Auto

441 Formatted: No underline, Font color: Auto

442 Formatted: No underline, Font color: Auto

443 Formatted: No underline, Font color: Auto

444 Formatted: No underline, Font color: Auto

445 Formatted: No underline, Font color: Auto

446 Formatted: No underline, Font color: Auto

447 Formatted: No underline, Font color: Auto

448 Formatted: No underline, Font color: Auto

449 Formatted: No underline, Font color: Auto

450 Formatted: No underline, Font color: Auto

451 Formatted: No underline, Font color: Auto

452 Formatted: No underline, Font color: Auto

453 Formatted: No underline, Font color: Auto

454 Formatted: No underline, Font color: Auto

455 Formatted: No underline, Font color: Auto

456 Formatted: No underline, Font color: Auto

457 Formatted: No underline, Font color: Auto

458 Formatted: No underline, Font color: Auto

459 Formatted: No underline, Font color: Auto

460 Formatted: No underline, Font color: Auto

461 Formatted: No underline, Font color: Auto

462 Formatted: No underline, Font color: Auto

463 Formatted: No underline, Font color: Auto

464 Formatted: No underline, Font color: Auto

465 Formatted: No underline, Font color: Auto

466 Formatted: No underline, Font color: Auto

467 Formatted: No underline, Font color: Auto

468 Formatted: No underline, Font color: Auto

469 Formatted: No underline, Font color: Auto

470 Formatted: No underline, Font color: Auto

471 Formatted: No underline, Font color: Auto

472 Formatted: No underline, Font color: Auto

473 Formatted: No underline, Font color: Auto

474 Formatted: No underline, Font color: Auto

475 Formatted: No underline, Font color: Auto

476 Formatted: No underline, Font color: Auto

477 Formatted: No underline, Font color: Auto

478 Formatted: No underline, Font color: Auto

479 Formatted: No underline, Font color: Auto

480 Formatted: No underline, Font color: Auto

481 Formatted: No underline, Font color: Auto

482 Formatted: No underline, Font color: Auto

483 Formatted: No underline, Font color: Auto

484 Formatted: No underline, Font color: Auto

485 Formatted: No underline, Font color: Auto

486 Formatted: No underline, Font color: Auto

487 Formatted: No underline, Font color: Auto

488 Formatted: No underline, Font color: Auto

489 Formatted: No underline, Font color: Auto

490 Formatted: No underline, Font color: Auto

491 Formatted

1 International Fertiliser Society. 2019. The carbon footprint of fertiliser production: regional reference values.
 2 Available from: <https://www.fertilizerseurope.com/wp-content/uploads/2020/01/The-carbon-footprint-of->
 3 fertilizer-production_Regional-reference-values.pdf

4 International Institute of Refrigeration. 2021. *The Carbon Footprint of the Cold Chain, 7th Informatory Note on*
 5 *Refrigeration and Food*. <https://iifir.org/en/fridoc/the-carbon-footprint-of-the-cold-chain-7-lt-sup-gt-th-lt-sup-gt->
 6 [informatory-143457](https://iifir.org/en/fridoc/the-carbon-footprint-of-the-cold-chain-7-lt-sup-gt-th-lt-sup-gt-informatory-143457)

7 IPCC. 1996. Climate Change 1995 - The Science of Climate Change: Contribution of Working Group I to the
 8 Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. Available at:
 9 https://www.ipcc.ch/ipccreports/sar/wg_1/ipcc_sar_wg_1_full_report.pdf

10 IPCC. 2000. Good practice guidance and uncertainty management in national greenhouse gas inventories. In: J.
 11 Penman *et al.* (Eds.), IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama,
 12 Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/gp/english/gpaua_en.html

13 IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National
 14 Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. & Tanabe K. (eds).
 15 Published: IGES, Japan. Available at: <https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html>

16 IPCC. 2014. *Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth*
 17 *Assessment Report of the Intergovernmental Panel on Climate Change*. Available at:
 18 https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf

19 JRC. European Commission. 2015. Monforti, F., Dallemand, J., Pascua, I., Motola, V., Banja, M., Scarlat, N.,
 20 Medarac, H., Castellazzi, L., Labanca, N., Bertoldi, P., Pennington, D., Goralczyk, M., & Schau, E., Saouter, E.,
 21 & Sala, S., Notarnicola, B., Tassielli, G., and Renzulli, P. Energy use in the EU food sector: State of play and
 22 opportunities for improvement.

23 Karl, K. and Tubiello, F.N. 2021a. *Methods for Estimating Greenhouse Gas Emissions from Food Systems: Domestic Food Transport*. Rome.

24 Karl, K. and Tubiello, F.N. 2021b. *Methods for Estimating Greenhouse Gas Emissions from Food Systems: Food Systems Waste Disposal*. Rome.

25 Lamb, W. F., Grubb, M., Diluiso, F., & Minx, J. C. 2022. *Countries with sustained greenhouse gas emissions*
 26 *reductions: An analysis of trends and progress by sector*. *Climate Policy*, 22(1), 1–17.
 27 <https://doi.org/10.1080/14693062.2021.1990831>

28 Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan,
 29 M.G. Rivera-Ferre, T. Sapkota, F.N. Tubiello, Y. Xu, 2019: Food Security. In: Climate Change and Land:
 30 an IPCC special report on climate change, desertification, land degradation, sustainable land management, food
 31 security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, *et al.* (eds.)].

32 Minx, J. C., Lamb, W. F., Andrew, R. M., Canadell, J. G., Crippa, M., Döbbeling, N., Forster, P. M., Guizzardi,
 33 D., Olivier, J., Peters, G. P., Pongratz, J., Reisinger, A., Rigby, M., Saunois, M., Smith, S. J., Solazzo, E., & Tian,
 34 H. 2021. *A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by*
 35 *sector 1970–2018 with an extension to 2019*. *Earth System Science Data*, 13(11), 5213–5252.
 36 <https://doi.org/10.5194/essd-13-5213-2021>

37 Pablo-Romero, María del P., Rafael Pozo-Barajas, and Rocío Yñiguez. 2017. “Global Changes in Residential
 38 Energy Consumption.” *Energy Policy* 101. Available at: <https://doi.org/10.1016/j.enpol.2016.10.032>

39 Park, W. Y., Shah, N., Vine, E., Blake, P., Holuj, B., Kim, J. H., & Kim, D. H. 2021. *Ensuring the climate benefits*
 40 *of the Montreal Protocol: Global governance architecture for cooling efficiency and alternative refrigerants*.
 41 *Energy Research & Social Science*, 76, 102068. <https://doi.org/10.1016/j.erss.2021.102068>

42 Pablo-Romero, María del P., Rafael Pozo-Barajas, and Rocío Yñiguez. 2017. “Global Changes in Residential
 43 Energy Consumption.” *Energy Policy* 101. Available at: <https://doi.org/10.1016/j.enpol.2016.10.032>

44 Poore, J. & Nemecek, T. 2018. Reducing Food’s Environmental Impacts through Producers and Consumers.
 45 *Science* 360, no. 6392: 987–92. <https://doi.org/10.1126/science.aao216>

46 Ritchie H.. 2019. *Food production is responsible for one-quarter of the world’s greenhouse gas emissions*.
 47 Available online at <https://ourworldindata.org/food-ghg-emissions>

48 Rosenzweig, C., Tubiello, F.N., Sandalow, D., Benoit, P. and Hayek, M.N., 2021. Finding and fixing food system
 49 emissions: the double helix of science and policy. *Environmental Research Letters*, 16(6).

50 51

1 Rosenzweig, C., Mbow, C., Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., Liwenga, E. T., Pradhan,
2 P., Rivera-Ferre, M. G., Sapkota, T., Tubiello, F. N., Xu, Y., Mencos Contreras, E., & Portugal-Pereira, J. 2020.
3 Climate change responses benefit from a global food system approach. *Nature Food*, 1(2), 94–97.
4 <https://doi.org/10.1038/s43016-020-0031-z>

5 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A.,
6 Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D.
7 R., Braihsford, G., Bruhwiler, L., Carlson, K. M., Carroll, M., ... Zhuang, Q. 2020. The Global Methane Budget
8 2000–2017. *Earth System Science Data*, 12(3), 1561–1623. <https://doi.org/10.5194/essd-12-1561-2020>

9 Sims R.E.H. and Flammini A., 2014. Energy-smart food – technologies, practices and policies. Chapter 6.
10 Sustainable Energy Solutions in Agriculture. Taylor & Francis Group, London, UK

11 Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J.,
12 Jafari, M., Masera, O., Mbow, C., Ravindranath, N. J., Rice, C. W., Robledo Abad, C., Romanovskaya, A.,
13 Sperling, F., and Tubiello, F. N. 2014. Agriculture, Forestry and Other Land Use (AFOLU), in Working Group III
14 contribution to the IPCC 5th Assessment Report, Climate Change 2014: Mitigation of Climate Change, edited by:
15 Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner,
16 S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J. C.,
17 Cambridge University Press, Cambridge, UK, New York, NY, USA.

18 Tao, S., M. Y. Ru, W. Du, X. Zhu, Q. R. Zhong, B. G. Li, G. F. Shen, et al. 2018. “Quantifying
19 the Rural Residential Energy Transition in China from 1992 to 2012 through a Representative National
20 Survey.” *Nature Energy* 3, no. 7: 567–73. <https://doi.org/10.1038/s41560-018-0158-4>

21 Tassou, S. A., Ge, Y., Hadaway, A., & Marriott, D. 2011. Energy consumption and conservation in food retailing.
22 *Applied Thermal Engineering*, 31(2), 147–156. <https://doi.org/10.1016/j.applthermaleng.2010.08.023>

23 Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. 2013. *The FAOSTAT database of
24 greenhouse gas emissions from agriculture*. 8(1), 015009. <https://doi.org/10.1088/1748-9326/8/1/015009>

25 Tubiello, F.N., Rosenzweig, C., Conchedda, G., Karl, K., Gütschow, J., Xueyao, P., Obli-Laryea, G., Wanner, N.,
26 Qiu, S.Y., De Barros, J. and Flammini, A., 2021a. Greenhouse gas emissions from food systems: building the
27 evidence base. *Environmental Research Letters*, 16(6), p.065007.

28 Tubiello, F.N., Flammini, A., Karl, K., Obli-Laryea, G., Qiu, S.Y., Heiðarsdóttir, H., Pan, X., and Conchedda, G.,
29 2021b. *Methods for estimating greenhouse gas emissions from food systems. Part III: energy use in fertilizer
30 manufacturing, food processing, packaging, retail and household consumption*. FAO Statistics Working Paper 21-
31 29. Rome.

32 Tubiello, F. N., Conchedda, G., Wanner, N., Federici, S., Rossi, S., & Grassi, G. 2021c. Carbon emissions and
33 removals from forests: New estimates, 1990–2020. *Earth System Science Data*, 13(4), 1681–1691.
34 <https://doi.org/10.5194/essd-13-1681-2021>

35 Tubiello, F.N., Karl, K., Flammini, A., Conchedda, G., and Obli-Laryea, G., 2021d. Food Systems Emissions
36 Shares, 1990–2019. Open access dataset, available at <https://zenodo.org/record/5615082>

37 UNFCCC. 2021. Nationally determined contributions under the Paris Agreement. *Synthesis report by the
38 secretariat*. Available at: <https://unfccc.int/documents/306848>

39 Wang, Lijun. 2014. “Energy Efficiency Technologies for Sustainable Food Processing.” *Energy Efficiency*, vol. 7,
40 no. 5, pp. 791–810. *Springer Link*. doi:10.1007/s12053-014-9256-8.

41 Vermeulen, Sonja J., Bruce M. Campbell, and John S.I. Ingram. 2012. “Climate Change and Food Systems.”
42 *Annual Review of Environment and Resources* 37, no. 1: 195–222. <https://doi.org/10.1146/annurev-environ-020411-130608>

43

44

45

46

47

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: English (United Kingdom)

Field Code Changed

Formatted: Font color: Auto

Formatted: English (United Kingdom)

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: No underline, Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

Formatted: Font color: Auto

Field Code Changed

Formatted: Font color: Auto

1 TABLES

Process Activity	Agri-Food System Category	1990	2019	Change
Net Forest conversion	Land Use Change	4,392	3,058	-30%
Enteric Fermentation	Farm-Gate	2,494	2,823	13%
Livestock Manure	Farm-Gate	1,101	1,315	19%
Household Consumption	Pre- and Post- Production	541	1,309	
Waste Disposal	Pre- and Post- Production	984	1,278	142%
On-farm energy use	Farm-Gate	757	1,021	30%
Food Retail	Pre- and Post- Production	128	932	35%
Drained organic soils	Pre- and Post- Production	736	833	13%
Rice Cultivation	Farm-Gate	621	674	9%
Fires	Land Use Change	558	654	17%
Synthetic Fertilizers	Farm-Gate	422	601	42%
Food Transport	Pre- and Post- Production	327	586	
Food Processing	Pre- and Post- Production	421	510	79%
Fertilizers Manufacturing	Pre- and Post- Production	152	408	21%
Food Packaging	Pre- and Post- Production	166	310	168%
Crop Residues	Farm-Gate	161	226	40%
Forestland	N/A	-3,391	-2,571	-24%

Table 1. GHG emissions (Mt CO₂eq) by agri-food systems component for all processes considered in this work.

Data on forestland removals are provided for completeness of land-based emissions available in FAOSTAT.

Uncertainties (not shown) are estimated at 30% for farm gate and pre- and post-production components and at 50%

for land use change processes.

| 1

1
2

Region	Farm Gate	LUC	PPP	Total	%PPP (1990)	Highest PPP	note
Asia	3.2	0.9	2.9	7.0	42%	24%	0.9 Household
Africa	1.1	1.2	0.4	2.7	14%	16%	0.2 Household
South America	1.0	1.1	0.3	2.4	12%	6%	0.1 Waste
Europe	0.9	0.1	1.1	2.1	55%	26%	0.4 Retail
Northern America	0.6	0.2	0.8	1.5	52%	35%	0.3 Retail
Oceania	0.2	0.0	0.1	0.3	23%	11%	0.0 Retail

3

4

5

6

7

8

9

10

11

Table 2. Regional GHG emissions (Gt CO₂eq) by agri-food systems component, showing farm gate, land use change (LUC), pre- and post-production processes (PPP) and total emissions. Total food systems emissions and percentage contribution of emissions from PPP shown pre- and post-production processes for the year – 1990 and 2019. The last two columns show the largest estimated sub-component contributing PPP activity of pre- and post-production emissions by region. Uncertainties are estimated to be 30% for farm gate and PPP activities, 50% for land use change.

Country	Farm-gate	LUC	PPP	Total	Max	Note	Main	Top	PPP
					Main	Top	Name	Activity	Single PPP
China	792	0	1102	1894	469		Household	Consumption	
India	768	0	618	1386	205		On-farm		
Brazil	553	663	144	1360	79		Food	Waste Disposal	
Indonesia	491	658	132	1281	76		Food	Waste Disposal	
United States	477	60	696	1232	292		Retail		
<i>of</i>									
<i>AmericaUSA</i>									
DRC	28	624	9	660	8		Food	Waste Disposal	
Russian Federation	146	35	362	542	177		Retail		
Pakistan	205	7	71	283	33		Food	Waste Disposal	
Canada	97	96	81	274	20		Retail		
Mexico	115	15	116	246	56		Food	Waste Disposal	

Table 3. Top ten country GHG emissions (Mg CO₂eq) by agri-food systems component and total food systems emissions, 2019. The last two columns show the dominant sub-component of pre- and post-production processes. [Agri-food system GHG emissions from the top 10 countries represent 55% of global agri-food system emissions when summed](#). Country level uncertainties those used for global and regional estimates.

1

Food system component	FAO (2011) ¹	Vermeulen <i>et al.</i> (2012) ²	Poore & Nemecik (2018) ³	Ritchie (2019) ⁴	Tubiello <i>et al.</i> (2021a) ⁵	Crippa <i>et al.</i> (2021)	EDGAR-FOOD ⁶	This analysis ⁶
Reference year	Mid-2000s	2004–2007	2009–2011	2017	2019	2015	2019	
Fertilizer manufacturing	–	0.3–0.6	–	–	–	–	0.4	
Food processing		0.2	0.6	0.5		0.5	0.5	
Food packaging	2.1	0.4	0.6	0.7	4.3 (incl. retail and household consumption)	1.0	0.3	
Food transport			0.8	0.8	0.5	0.9	0.6	
Food retail		0.7	0.4	0.4		0.8	0.9	
Food household consumption	1.2	0.2	–	–		0.5	1.3	
Waste disposal	–	0.1	–	–	1.0	1.6	1.3	
On-farm electricity generation	–	–	–	–	–	–	0.5	
TOTAL	3.3	1.9–2.2	2.4	2.4	5.8	5.3	5.8	

2 ¹ Includes emissions from indirect energy inputs (e.g. manufacturing of machinery). Global estimate based on literature.

3 ² Global estimate based on Chinese and British emission patterns and literature.

4 ³ Meta-analysis of life-cycle assessments

5 ⁴ Global estimate based on literature

6 ⁵ Global estimate largely based on country-level (bottom-up) analysis (relying on FAOSTAT and EDGAR-FOOD)

7 ⁶ Global estimate largely based on country-level (bottom-up) analysis

10

11 **Table 4.** Overview of pre- and post-food production GHG emission estimates from selected studies. Gt CO₂eq.

12 Adapted from Tubiello *et al.* (2021b).

13

14

Formatted: Font color: Auto

Formatted: No bullets or numbering

Formatted: Font: 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font color: Auto

Formatted: Font: Not Italic, Font color: Auto

Formatted: Font color: Auto

	Farm gate		Land Use Change		Supply Chains		Pre- and Post- Production	Agri- Food Systems	Total
	1990	2019	1990	2019	1990	2019	1990	2019	
Africa	705	1139	1017	1220	323	388	2045	2747	
	23%	24%	33%	26%	11%	8%	67%	57%	
Asia	2595	3250	1273	865	1223	2930	5091	7044	
	25%	11%	12%	3%	12%	10%	49%	24%	
Europe	1603	854	88	83	589	1140	2280	2077	
	16%	13%	1%	1%	6%	17%	23%	31%	
North America	538	574	175	156	376	777	1089	1507	
	8%	8%	3%	2%	6%	11%	17%	21%	
South America	728	982	1974	1106	176	281	2878	2369	
	23%	30%	64%	34%	6%	9%	93%	72%	
Oceania	267	223	65	16	42	71	374	309	
	40%	28%	10%	2%	6%	9%	57%	39%	
World	6604	7214	4676	3503	2886	5827	14165	16544	
	19%	13%	13%	6%	8%	11%	40%	31%	

Table 54. Regional GHG emissions (MGt CO₂eq) by agri-food systems component and total food systems emissions, 2019. The last two columns show the dominant sub-component of pre- and post-production processes. [Uncertainties \(not shown\) are estimated at 30% for farm gate and pre- and post-production components and at 50% for land use change processes.](#)

1
2
3

4

5

6

7

8

9

10

11

12

	1990	2019	1990	2019	1990	2019	1990	2019	1990	2019
	CO ₂ eq		CO ₂		CH ₄		N ₂ O		F-gases	
World	40	31	31	21	60	53	79	78	0	27
Africa	67	57	65	52	63	58	90	87	0	20
Northern America	17	21	11	13	36	42	60	70	0	56
South America	93	72	97	70	82	75	94	92	0	6
Asia	49	24	38	16	66	49	84	80	0	9
Europe	23	31	13	23	46	47	70	74	0	28
Oceania	57	39	38	22	76	64	93	77	0	63

Table 65. World total and regional GHG agri-food systems emissions shares (%), 1990-2019-2019, by for all single gasGHG and in CO₂eq. Uncertainties in shares (not shown) are the same as those estimated for absolute emissions. See Crippa et al. (2021a) for a specific list of HFCs used in agri-food systems, which form the basis of the F-gasGHG emissions data estimated in this work.

1 **FIGURE LEGENDS**

Formatted: Font: Bold

2

3 **Figure 1.** Mapping of emissions across agri-food systems. Left-hand panel: IPCC sectors and processes used in
4 national GHG emissions inventories. Right-hand panel: food and agriculture sectors and categories aligned to
5 FAO's definitions.

6

7 **Figure 2.** World-total GHG emissions from agri-food systems, 1990-2019. Color bars show contributions by
8 emissions within the farm gate (yellow); land use change (green) and pre- and post- production along food supply
9 chains (blue). Source: FAOSTAT (FAO, 2021). Also shown are emissions per capita (authors' own calculations).

10

11 **Figure 3.** World total 2019 GHG emission from agri-food systems, showing contributions on agricultural land
12 (left panel) and from pre- and post- production along food supply chains (right panel). Net removals on forest land
13 are also shown, for completeness. The sum of emissions from agricultural land and forest land correspond to the
14 IPCC AFOLU category. Source: FAOSTAT (FAO, 2021).

15

16 **Figure 4.** Total GHG emission from agri-food systems by FAO regions, 2019. Color bars show contributions by
17 emissions within the farm gate (yellow); land use change (green) and pre- and post- production along food supply
18 chains (blue). Source: FAOSTAT (FAO, 2021).

19

Field Code Changed

20 **Figure 5.** Total GHG emission from agri-food systems by country, top ten emitters, 2019. Color bars show
21 contributions by emissions within the farm gate (yellow); land use change (green) and pre- and post- production
22 along food supply chains (blue). Source: FAOSTAT (FAO, 2021).

23

24 **Figure 6.** Top panel: Agri-food systems emissions ($\text{GtCO}_2\text{eq yr}^{-1}$); Bottom panel: shares of agri-food systems in
25 total anthropogenic emissions (%). Data shown by region, 1990-2019. Color bars show contributions component:
26 farm gate (yellow); land use change (green) and pre- and post- production along food supply chains (blue). Source:
27 FAOSTAT (FAO, 2021).

28

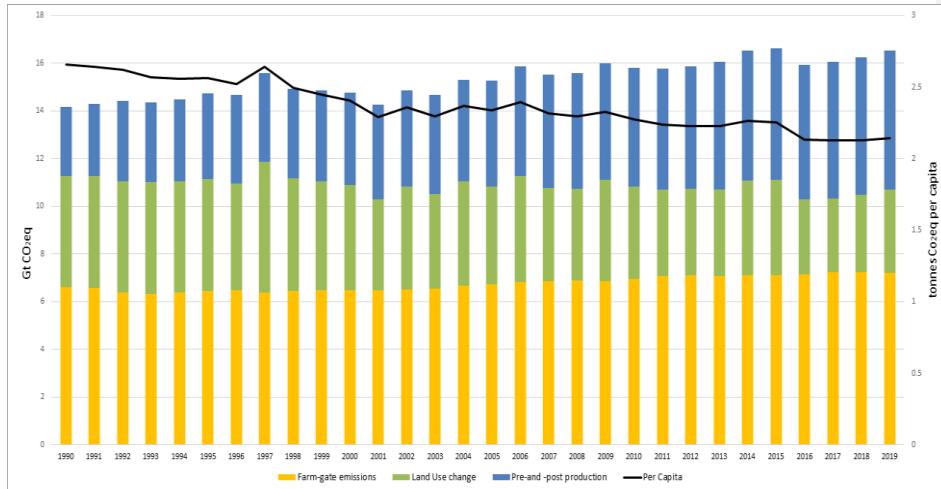
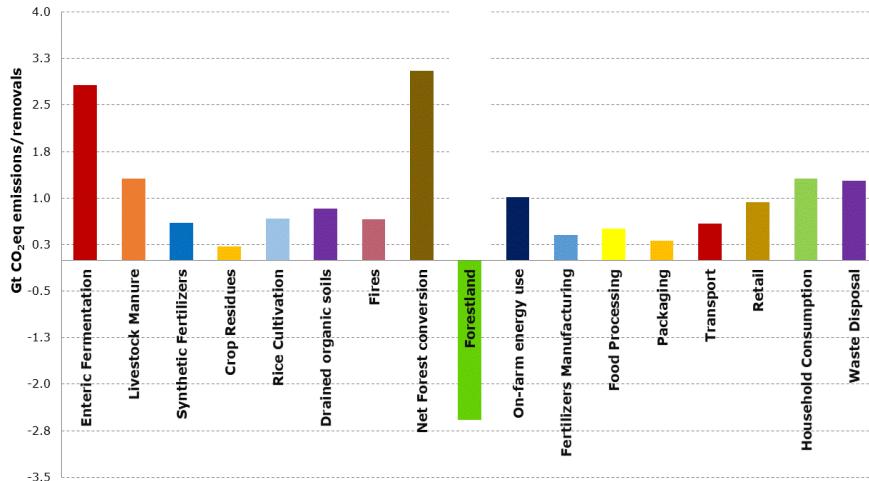

IPCC	Food Systems Activity	GHG			FAO		
		CH ₄	N ₂ O	CO ₂	LAND USE CHANGE	AGRICULTURAL LAND	FOOD SYSTEMS
AFOLU	Net Forest Conversion	x	x	x			
	Tropical Forest Fires	x	x	x			
	Peat Fires	x		x			
	Drained Organic Soils		x				
	Burning - Crop residues	x	x				
	Burning - Savanna	x	x				
	Crop Residues		x				
	Drained Organic Soils		x				
	Enteric Fermentation	x					
	Manure Management	x	x				
AGRICULTURE	Manure Applied to Soils			x			
	Manure Left on Pasture			x			
	Rice Cultivation	x					
	Synthetic Fertilizers		x				
	On-farm Energy Use	x	x	x			
	Transport	x	x	x			
	Processing	x	x	x			
ENERGY	Packaging	x	x	x			
	Fertilizer manufacturing	x	x	x			
	Household consumption	x	x	x			
	Retail -Energy Use	x	x	x			
	Retail -Refrigeration	x	x	x			
	Solid Food Waste	x					
	Incineration			x			
WASTE	Industrial Wastewater	x	x				
	Domestic Wastewater	x	x				

Figure 1. Mapping of emissions across agri-food systems. Left-hand panel: IPCC sectors and processes used in national GHG emissions inventories. Right-hand panel: food and agriculture sectors and categories aligned to FAO's definitions

Formatted: Font color: Auto

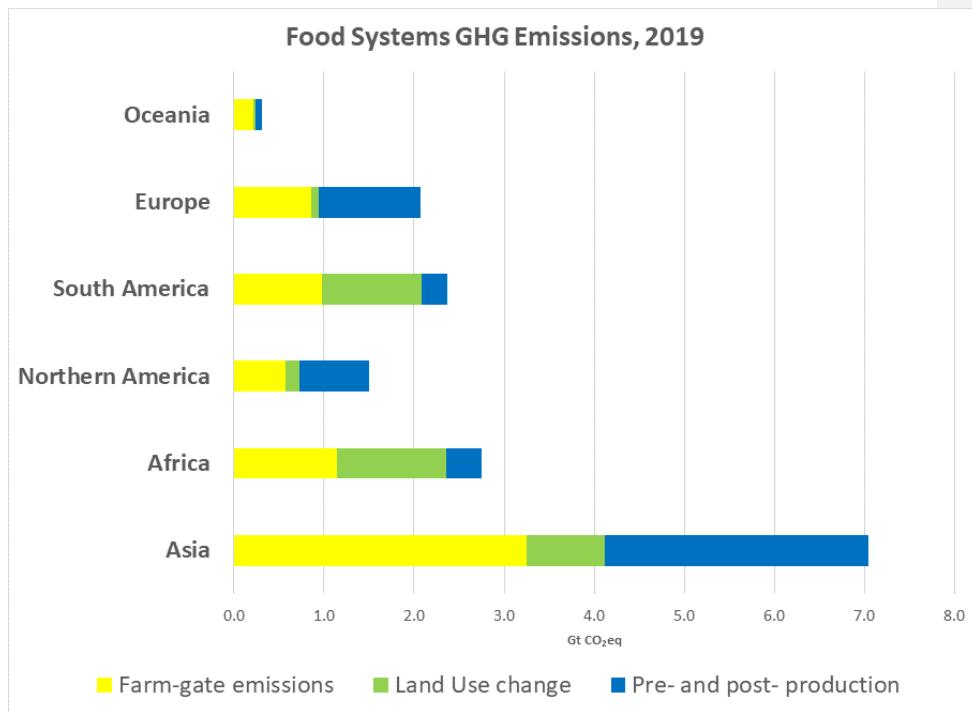
Formatted: Font: Not Bold, Font color: Auto

1
2



3
4 **Figure 2. World-total GHG emissions from agri-food systems, 1990-2019.** Color bars show contributions by emissions
5 within the farm gate (yellow); land use change (green) and pre- and post- production along food supply chains (blue). Source:
6 FAOSTAT (FAO, 2021). Also shown are emissions per capita (authors' own calculations).

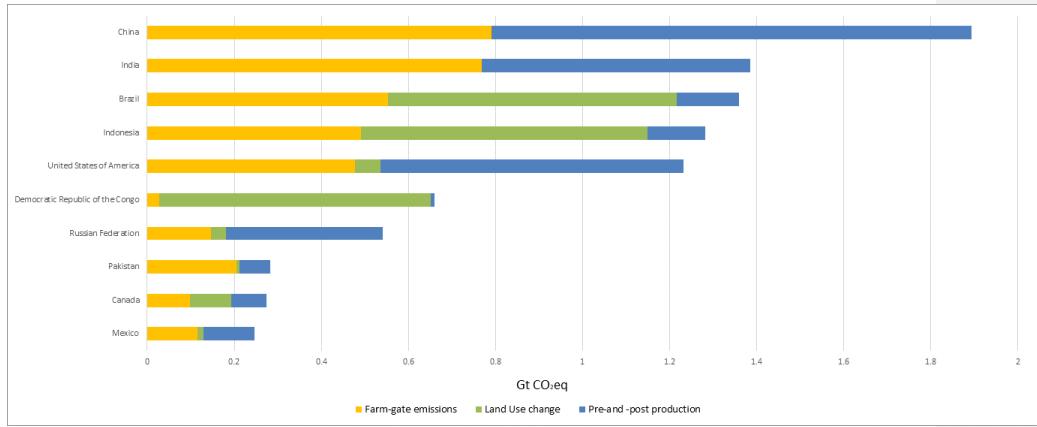
7


Formatted: Font color: Auto

Formatted: Font: Not Bold, Font color: Auto

1
2 **Figure 3. World total 2019 GHG emission from agri-food systems.** Contributions on agricultural land are
3 displayed on the left (left panel) and from pre- and post- production along food supply chains (right panel). Net
4 removals on forest land are also shown in the center for completeness. The sum of emissions from agricultural land and forest
5 land correspond to the IPCC AFOLU category. Source: FAOSTAT (FAO, 2021).
6

Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto
Formatted: Font: Not Bold, Font color: Auto
Formatted: Font color: Auto


1
2

3 **Figure 4. Total GHG emission from agri-food systems by FAO regions, 2019.** Color bars show contributions by emissions
4 within the farm gate (yellow); land use change (green) and pre- and post- production along food supply chains (blue). Source:
5 FAOSTAT (FAO, 2021).▲

Formatted: Font color: Auto

Formatted: Font: Not Bold, Font color: Auto

Formatted: Font color: Auto

1

2 **Figure 5. Total GHG emission from agri-food systems by country, top ten emitters, 2019.** Color bars show contributions
 3 by emissions within the farm gate (yellow); land use change (green) and pre- and post- production along food supply chains
 4. Source: FAOSTAT (FAO, 2021).▲

5

Formatted: Font color: Auto

Formatted: Font: Not Bold, Font color: Auto

Formatted: Font color: Auto

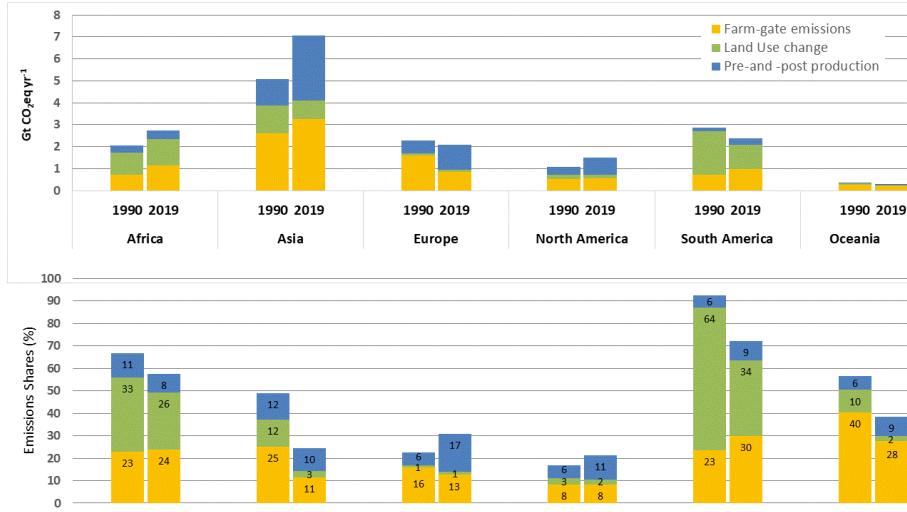


Figure 6. Top panel: Agri-food systems emissions (GtCO₂eq yr⁻¹). Bottom panel: shares of agri-food systems in total anthropogenic emissions (%). Data shown by region, 1990-2019. Color bars show contributions component: farm gate (yellow); land use change (green) and pre- and post- production along food supply chains (blue). Source: FAOSTAT (FAO, 2021).

Formatted: Font color: Auto

Formatted: Font: Not Bold, Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

CC1:
 Question rather than comment. Layman's question at that – apologies in advance... I'm struggling with the amount of stuff published on FALU/food, agriculture and food systems! A simple question I came across a stat that 80% of agricultural emissions (so not food supply) come from meat, dairy and rice – is this correct? Next what is your estimate of FALU only emissions currently i.e. land use change, agriculture, farming, livestock and crops. Thank you.

Formatted: Font color: Auto

RC1:

Overall this is an important contribution, updating one of the major datasets on global food system emissions. However the manuscript requires further work to make transparent key assumptions and issues with the data (scope and uncertainty), while the dataset itself is not sufficiently user friendly and appropriately documented in its current form. Nevertheless, I strongly support this effort and congratulate the authors on their work.

Page 1

1 Line 28: is it FAO or FAOSTAT (line 20)?

2 Line 30: "in terms of single GHG" change to "in terms of individual greenhouse gases (GHGs)"

3 Line 34: the time period (1990–2019) is mentioned twice, at the beginning and end of the sentence

4

5

6 Page 3

7 Line 2: typo in the first sentence, should read "as well as one of the economic sectors most at risk from it"

8

9 Line 8: EDGAR FOOD would be another important reference to include in this sentence

10 (<https://www.nature.com/articles/s43016-021-00225-9>)

11

12 Page 4

13 Line 31: typo in 2022–2023

14 Line 35 page 5 line 4: These sentences belong in the subsequent section on uncertainty.

15

16 Page 5

17 Line 5–11: Can the authors restructure to make a clear distinction between emissions sources that are (a) not included because they are indirect and out of scope ("upstream GHG emissions, refining, etc.") and (b) not included because data was not available, even though they are direct and within scope?

18

19

20

21 It would be important to note in (a) whether or not indirect emissions from electricity use are also excluded, as this is generally the largest indirect source across all sectors, and in (b) how significant these sources are in estimated CO₂ equivalents, and whether this is a complete list of omitted direct emissions sources.

22

23

24

25

26 Line 12–21: This is a relatively short discussion of uncertainty—given its importance in the context of food system emissions. As stated above, several sentences from the prior section could be brought down. Several further points could be made:

27

28

1 Does the estimated uncertainty range ("30–70% across many processes (Tubiello, 2019)") also
2 hold true for this dataset? Please be explicit.

3 Could uncertainty estimates be provided for sub-components of the data (e.g. by gas, or food
4 system component)? This is critical information for the data users.

5 To what extent does uncertainty prevent us from making policy relevant statements on (1) total
6 emissions levels, (2) total emissions trends, (3) the relative importance and impact of different
7 food system components?

8 Does uncertainty increase with decreasing scale (global to regional to country level data)?

9 -

10 Page 6

11 Line 7: Perhaps state the denominator here too (total global GHG emissions) and its source? It is
12 also not in Table 1. (I see that it appears in the discussion. Please move up here.) You might
13 consider placing it in the abstract too, since the sentence appears there too.

14 Line 7: What would be the emissions range for the global total ($\pm x \text{ GtCO}_2 \text{ eq yr}^{-1}$), given the
15 previously stated uncertainty?

16 -

17 Page 8

18 Line 2-4: This is an important claim, also in the abstract. Can it be sourced? What is the measure
19 of "national mitigation strategies"? Sector based targets within NDCs?

20 Line 17-22: Presumably it is also due to shifts in other sectors, e.g. all else equal, reductions in
21 power sector emissions will increase the proportion of food system emissions in the total. And
22 power sector emissions have been declining in most EU countries and the US (e.g.
23 <https://www.tandfonline.com/doi/full/10.1080/14693062.2021.1990833>)

24 Line 37: The result on F-gases is surprising – and interesting. Can the authors provide a little
25 more detail? Which are the main gases? Perhaps a link could be made to Minx et al. 2021, which
26 corroborates F-gas growth in inventories with atmospheric inversions (Fig 2
27 https://essd.copernicus.org/articles/13/5213/2021/essd_13_5213_2021.html) Also, in Table 5, F-
28 gases were 0 in 1990. Is this a data artefact? Or is it due to Montreal gases being replaced by
29 HFCs/PFCs in the intervening decades?

30 -

31 Page 9

1 Line 1-6: The language here suggests these subcomponents are trivial sources ("only", "mere").
2 Arguably 15% or even 34% is not trivial, so I would simply present the numbers without
3 inferring their importance. If one wants to make a normative point, I would argue that all
4 emissions sources should be considered important and worth policy attention.

5 Line 12-32: There are multiple typos and phrasing errors here that could be improved. Please
6 carefully check. Please also consider splitting this long paragraph into smaller chunks each with
7 a substantive point.

8 -

9 Other comments on the manuscript:

10 Table 1: Could headings be added to group these sources into their higher level categories, e.g.
11 as in Figures 1 and 2?

12 Table 3: You could add the fraction of global food system emissions that the top 10 add up to, in
13 the caption.

14 What global warming potentials are applied to estimate GHG emissions in CO₂eq?

15 -

16 Comments on the dataset:

17 My first impression is that the dataset is too large (200mb), unstructured, and lacking important
18 metadata. Together these make it only available for advanced users. Some specific comments:

19 If one opens the .csv in Excel, a warning comes up that the data is not fully loaded (too many
20 rows). Could it be split into several files? Or could a basic user friendly excel version be provided
21 alongside the raw csv file, perhaps for a useful series of aggregates (e.g. global emissions by
22 food system component, by gas, by region/country), or the full data just for high
23 emitters/regions? Such simplified sheets would presumably be important to assist national
24 agricultural ministries to better understand emissions along the supply chain (a claim in the
25 manuscript).

26 There is no explanation of the column headings embedded in the file (What are the flags? What
27 are the codes? Are two codes for years really needed?). For example, a basic user wouldn't know
28 that Area contains both countries and regions, and Element contains two separate variables for
29 five different gases (I would personally split this in two and have a gas column).

30 There are no country ISO codes, which raises barriers to joining other datasets (e.g. population,
31 gdp).

1 Most tricky: what is the hierarchy and structure of the "Item" column? If I filter by "World",
2 "2019", and "Emissions (CO₂eq) (AR5)", the sum of Value is 228 GtCO₂eq. So there is double
3 counting among the items. Which items do I exclude to produce the number in the manuscript—
4 16.5 GtCO₂eq? I see already that "Energy" is included (37 GtCO₂eq) and shouldn't be. How do I
5 know which items are in and which are out of the food system account? Could you add a column
6 for this, so we don't have to use complicated string operations?

7 Can we have the GHGs in native units, so that different global warming potential metrics can be
8 applied? (Or conversely, a column with the applied AR5 GWP_s?)

9 Citation: <https://doi.org/10.5194/essd-2021-389-RC1>

10

11

12 RC2:

13 The dataset is of interest but the methodology and underlying data is not described in the
14 article. It is described in FAO Statistics Working Paper Series working papers, but it is not
15 acceptable to have the methodology central in the data setting not described in the article (or in
16 other peer reviewed articles). In particular, those methodologies are supposed to be peer
17 reviewed, and also available (possibly as supplementary material) with a reviewed article. The
18 methodologies from those working papers can be shortened, but upon reading them it seems
19 that simply copying over most of the information, maybe with a summary in the main paper and
20 a development in a supplementary material, or all in the main paper depending on the style of
21 the review would be good as they are well written and describe adequately the
22 methodologies. Another reason to bring those in the article is that there may be some
23 additional peer review comments based on those methodologies.

24 It is somewhat unclear if additional data should be provided along with the main dataset. For
25 instance shares of the food system. However this cannot really be discussed if the underlying
26 methodology is not presented and discussed.

27 Most of the informations and the data corresponds to an already existing article, Tubiello et al.,
28 2021a "Greenhouse gas emissions from food systems: building the evidence base". Therefore I
29 am not sure about originality, but it may be normal as here the dataset is the focus. It makes all
30 the more important to describe the methodology in the data article as it would be some
31 originality.

32 The dataset combines different and incompatible disaggregations and nomenclatures, which is
33 an interesting and important point of the methodology. There is an explanation of the
34 relationships between the nomenclatures in figure 1, and in the
35 <https://zenodo.org/record/5615082> page. It is badly explained in the article, only very briefly in
36 2.1, although describing the data should be important in the article.

1 For the general public, as the dataset combines different and incompatible disaggregations and
2 nomenclatures it is not clear if it would be of interest. Although it is important to have these
3 informations to understand the methodology and how these data can be derived from the
4 PRIMAP data based on the IPCC nomenclature, for a non specialist this makes a very unclear
5 dataset.

6 A comparison with Crippa et al would also be welcome as it is a similar work with care to explain
7 what is exactly the same when crippa et al has been used as a source. It is already done
8 adequately, as far as I can tell from my readings in the Working Paper Series working papers,
9 but it should be in the peer reviewed article and may trigger additional comments here.

10 More remarks

11 p 4133 and following, the discussion about uncertainty does not add much information, all the
12 information is quite generic. There is some validation done in the FAO Statistics Working Paper
13 Series articles, theis should be presented/discussed here.

14 p 4125 The Step 4 of imputation of missing emissions is not clear (missing how?). It should be
15 associated with additional data showing which data is imputed and which data is not.

16 p 6135 3.2 Regional Trends

17

18 The numbers per regional blocks or countries are not very interesting as the populations may be
19 very different. Also some goods may be exported which makes these numbers also difficult to
20 interpret. Some emissions are directly linked with the consumption, so should be local, but it is
21 not the case for processing, packaging and fertilizer production.

22 p 817 the database FAOSTAT PRIMAP is not introduced before nor really presented. It should
23 be presented and even be available with this data, as if I understand well it is the data which
24 corresponds to the methodology, the data presented is an aggregation.

25 -

26 A minor remark, since the data is about reorganizing disaggregated data in different categories,
27 the comparison of nomenclatures can be of interest in term of methodology to understand the
28 strength and limitations of each nomenclature and warn about uses. However, this is not done
29 at all in the article.

30 Citation: <https://doi.org/10.5194/essd-2021-389-RC2>

31