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Abstract 49 
 50 
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their 51 

redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing 52 

climate is critical to better understand the global carbon cycle, support the development of 53 

climate policies, and project future climate change. Here we describe and synthesise data 54 

sets and methodology to quantify the five major components of the global carbon budget 55 

and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and 56 

cement production data, while emissions from land-use change (ELUC), mainly deforestation, 57 

are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 58 

concentration is measured directly, and its growth rate (GATM) is computed from the annual 59 

changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean 60 

biogeochemistry models and observation-based data-products. The terrestrial CO2 sink 61 

(SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget 62 

imbalance (BIM), the difference between the estimated total emissions and the estimated 63 

changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data 64 
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and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. 65 

For the first time, an approach is shown to reconcile the difference in our ELUC estimate with 66 

the one from national greenhouse gases inventories, supporting the assessment of 67 

collective countries’ climate progress. 68 

For the year 2020, EFOS declined by 5.4% relative to 2019, with fossil emissions at 9.5 ± 0.5 69 

GtC yr-1 (9.3 ± 0.5 GtC yr-1 when the cement carbonation sink is included), ELUC was 0.9 ± 0.7 70 

GtC yr-1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr-1 (37.4 ± 2.9 GtCO2). 71 

Also, for 2020, GATM was 5.0 ± 0.2 GtC yr-1 (2.4 ± 0.1 ppm yr-1), SOCEAN was 3.0 ± 0.4 GtC yr-1 72 

and SLAND was 2.9 ± 1 GtC yr-1, with a BIM of -0.8 GtC yr-1. The global atmospheric CO2 73 

concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021, 74 

suggest a rebound in EFOS relative to 2020 of +4.8% (4.2% to 5.4%) globally.  75 

Overall, the mean and trend in the components of the global carbon budget are consistently 76 

estimated over the period 1959-2020, but discrepancies of up to 1 GtC yr-1 persist for the 77 

representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates 78 

from multiple approaches and observations shows: (1) a persistent large uncertainty in the 79 

estimate of land-use changes emissions, (2) a low agreement between the different 80 

methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a 81 

discrepancy between the different methods on the strength of the ocean sink over the last 82 

decade. This living data update documents changes in the methods and data sets used in 83 

this new global carbon budget and the progress in understanding of the global carbon cycle 84 

compared with previous publications of this data set (Friedlingstein et al., 2020; 85 

Friedlingstein et al., 2019; Le Quéré et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013). 86 

The data presented in this work are available at https://doi.org/10.18160/gcp-2021 87 

(Friedlingstein et al., 2021).  88 
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Executive Summary 89 

Global fossil CO2 emissions (excluding cement carbonation) in 2021 are returning towards 90 

their 2019 levels after decreasing [5.4%] in 2020. The 2020 decrease was 0.52 GtC yr-1 (1.9 91 

GtCO2 yr-1), bringing 2020 emissions to 9.5 ± 0.5 GtC yr-1 (34.8 ± 1.8 GtCO2 yr-1), comparable 92 

to the emissions level of 2012. Preliminary estimates based on data available in March 2022 93 

suggest fossil CO2 emissions rebounded 4.8% in 2021 (4.2% to 5.4%), bringing emissions at 94 

9.9 GtC yr-1 (36.4 GtCO2 yr-1), back to about the same level as in 2019 (10.0 ± 0.5 GtC yr-1, 95 

36.7 ± 1.8 GtCO2 yr-1). Emissions from coal and gas in 2021 are expected to have rebounded 96 

above 2019 levels, while emissions from oil were still below their 2019 level.  Emissions are 97 

expected to have been 5.7% higher in 2021 than in 2019 in China, reaching 3.0 GtC (11.1 98 

GtCO2) and also higher in India with a 3.2% increase in 2021 relative to 2019, reaching 0.74 99 

GtC (2.7 GtCO2). In contrast, projected 2021 emissions in the United States (1.4 GtC, 5.0 100 

GtCO2), European Union (0.8 GtC, 2.8 GtCO2), and the rest of the world (4.0 GtC, 14.8 GtCO2, 101 

in aggregate) remained respectively 4.5%, 5.3%, and 4.0% below their 2019 levels. These 102 

changes in 2021 emissions  reflect the stringency of the COVID-19 confinement levels in 103 

2020 and the pre-covid background trends in emissions in these countries.  104 

Fossil CO2 emissions significantly decreased in 23 countries during the decade 2010-2019.  105 

Altogether, these 23 countries contribute to about 2.5 GtC yr-1 fossil fuel CO2 emissions over 106 

the last decade, only about one quarter of world CO2 fossil emissions.  107 

Global CO2 emissions from land-use, land-use change, and forestry (LUC) converge based 108 

on revised data of land-use change and show a small decrease over the past two decades. 109 

Near constant gross emissions estimated at 3.8 ± 0.6 GtC yr-1 in the 2011-2020 decade are 110 

only partly offset by growing carbon removals on managed land of 2.7 ± 0.4 GtC yr-1, 111 

resulting in the net emissions in managed land of 1.1 ± 0.7 GtC yr-1 (4.1 ± 2.6 GtCO2 yr-1). 112 

These net emissions decreased by 0.2 GtC in 2020 compared to 2019 levels, with large 113 

uncertainty. Preliminary estimates for emissions in 2021 suggest a 0.1 GtC decrease for 114 

2021, giving net emissions of 0.8 GtC yr-1 (2.9 GtCO2 yr-1). The small decrease in net LUC 115 

emissions amidst large uncertainty prohibits robust conclusions concerning trend changes of 116 

total anthropogenic emissions. For the first time, we link the global carbon budget models' 117 

estimates to the official country reporting of national greenhouse gases inventories. While 118 
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the global carbon budget distinguishes anthropogenic from natural drivers of land carbon 119 

fluxes, country reporting is area-based and attributes part of the natural terrestrial sink on 120 

managed land to the land-use sector. Accounting for this redistribution, the two approaches 121 

are shown to be consistent with each other. 122 

The remaining carbon budget for a 50% likelihood to limit global warming to 1.5°C, 1.7°C 123 

and 2°C has respectively reduced to 120 GtC (420 GtCO2), 210 GtC (770 GtCO2) and 350 GtC 124 

(1270 GtCO2) from the beginning of 2022, equivalent to 11, 20 and 32 years, assuming 125 

2021 emissions levels. Total anthropogenic emissions were 10.4 GtC yr-1 (38.0 GtCO2 yr-1) in 126 

2020, with a preliminary estimate of 10.7 GtC yr-1 (39.3 GtCO2 yr-1) for 2021. The remaining 127 

carbon budget to keep global temperatures below these climate targets has shrunk by 21 128 

GtC (77 GtCO2) since the release of the IPCC AR6 Working Group 1 assessment. Reaching 129 

zero CO2 emissions by 2050 entails cutting total anthropogenic CO2 emissions by about 0.4 130 

GtC (1.4 GtCO2) each year on average, comparable to the decrease during 2020, highlighting 131 

the scale of the action needed. 132 

The concentration of CO2 in the atmosphere is set to reach 414.7 ppm in 2021, 50% above 133 

pre-industrial levels. The atmospheric CO2 growth was 5.1 ± 0.02 GtC yr-1 during the decade 134 

2011-2020 (47% of total CO2 emissions) with a preliminary 2021 growth rate estimate of 135 

around 5 GtC yr-1.  136 

The ocean CO2 sink resumed a more rapid growth in the past decade after low or no 137 

growth during the 1991-2002 period. However, the growth of the ocean CO2 sink in the 138 

past decade has an uncertainty of a factor of three, with estimates based on data products 139 

and estimates based on models showing an ocean sink increase of 0.9 GtC yr-1 and 0.3 GtC 140 

yr-1 since 2010, respectively. The discrepancy in the trend originates from all latitudes but is 141 

largest in the Southern Ocean. The ocean CO2 sink was 2.8 ± 0.4 GtC yr-1 during the decade 142 

2011-2020 (26% of total CO2 emissions), with a preliminary 2021 estimate of around 2.9 GtC 143 

yr-1.   144 

The land CO2 sink continued to increase during the 2011-2020 period primarily in response 145 

to increased atmospheric CO2, albeit with large interannual variability.   The land CO2 sink 146 

was 3.1 ± 0.6 GtC yr-1 during the 2011-2020 decade (29% of total CO2 emissions), 0.5 GtC yr-1 147 

larger than during the previous decade (2000-2009), with a preliminary 2021 estimate of 148 
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around 3.3 GtC yr-1. Year to year variability in the land sink is about 1 GtC yr-1, making small 149 

annual changes in anthropogenic emissions hard to detect in global atmospheric CO2 150 

concentration.  151 
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1 Introduction 152 

The concentration of carbon dioxide (CO2) in the atmosphere has increased from 153 

approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of 154 

the Industrial Era, to 412.4 ± 0.1 ppm in 2020 (Dlugokencky and Tans, 2022); Fig. 1). The 155 

atmospheric CO2 increase above pre-industrial levels was, initially, primarily caused by the 156 

release of carbon to the atmosphere from deforestation and other land-use change 157 

activities (Canadell et al., 2021). While emissions from fossil fuels started before the 158 

Industrial Era, they became the dominant source of anthropogenic emissions to the 159 

atmosphere from around 1950 and their relative share has continued to increase until 160 

present. Anthropogenic emissions occur on top of an active natural carbon cycle that 161 

circulates carbon between the reservoirs of the atmosphere, ocean, and terrestrial 162 

biosphere on time scales from sub-daily to millennia, while exchanges with geologic 163 

reservoirs occur at longer timescales (Archer et al., 2009). 164 

The global carbon budget (GCB) presented here refers to the mean, variations, and trends in 165 

the perturbation of CO2 in the environment, referenced to the beginning of the Industrial 166 

Era (defined here as 1750). This paper describes the components of the global carbon cycle 167 

over the historical period with a stronger focus on the recent period (since 1958, onset of 168 

atmospheric CO2 measurements), the last decade (2011-2020), the last year (2020) and the 169 

current year (2021). We quantify the input of CO2 to the atmosphere by emissions from 170 

human activities, the growth rate of atmospheric CO2 concentration, and the resulting 171 

changes in the storage of carbon in the land and ocean reservoirs in response to increasing 172 

atmospheric CO2 levels, climate change and variability, and other anthropogenic and natural 173 

changes (Fig. 2). An understanding of this perturbation budget over time and the underlying 174 

variability and trends of the natural carbon cycle is necessary to understand the response of 175 

natural sinks to changes in climate, CO2 and land-use change drivers, and to quantify  176 

emissions compatible with a given climate stabilisation target.  177 

The components of the CO2 budget that are reported annually in this paper include separate 178 

and independent estimates for the CO2 emissions from (1) fossil fuel combustion and 179 

oxidation from all energy and industrial processes; also including cement production and 180 

carbonation (EFOS; GtC yr-1) and (2) the emissions resulting from deliberate human activities 181 

on land, including those leading to land-use change (ELUC; GtC yr-1); and their partitioning 182 
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among (3) the growth rate of atmospheric CO2 concentration (GATM; GtC yr-1), and the 183 

uptake of CO2 (the ‘CO2 sinks’) in (4) the ocean (SOCEAN; GtC yr-1) and (5) on land (SLAND; GtC 184 

yr-1). The CO2 sinks as defined here conceptually include the response of the land (including 185 

inland waters and estuaries) and ocean (including coasts and territorial seas) to elevated 186 

CO2 and changes in climate and other environmental conditions, although in practice not all 187 

processes are fully accounted for (see Section 2.7). Global emissions and their partitioning 188 

among the atmosphere, ocean and land are in reality in balance. Due to the combination of 189 

imperfect spatial and/or temporal data coverage, errors in each estimate, and smaller terms 190 

not included in our budget estimate (discussed in Section 2.7), the independent estimates 191 

(1) to (5) above do not necessarily add up to zero. We therefore (a) additionally assess a set 192 

of global atmospheric inverse model results that by design close the global carbon balance 193 

(see Section 2.6), and (b) estimate a budget imbalance (BIM), which is a measure of the 194 

mismatch between the estimated emissions and the estimated changes in the atmosphere, 195 

land and ocean, as follows: 196 

𝐵!" = 𝐸#$% + 𝐸&'( − (𝐺)*" + 𝑆$(+), + 𝑆&),-)      (1) 197 

GATM is usually reported in ppm yr-1, which we convert to units of carbon mass per year, GtC 198 

yr-1, using 1 ppm = 2.124 GtC (Ballantyne et al., 2012; Table 1). All quantities are presented 199 

in units of gigatonnes of carbon (GtC, 1015 gC), which is the same as petagrams of carbon 200 

(PgC; Table 1). Units of gigatonnes of CO2 (or billion tonnes of CO2) used in policy are equal 201 

to 3.664 multiplied by the value in units of GtC. 202 

We also include a quantification of EFOS by country, computed with both territorial and 203 

consumption-based accounting (see Section 2), and discuss missing terms from sources 204 

other than the combustion of fossil fuels (see Section 2.7).  205 

The global CO2 budget has been assessed by the Intergovernmental Panel on Climate 206 

Change (IPCC) in all assessment reports (Prentice et al., 2001; Schimel et al., 1995; Watson 207 

et al., 1990; Denman et al., 2007; Ciais et al., 2013; Canadell et al., 2021), and by others (e.g. 208 

Ballantyne et al., 2012). The Global Carbon Project (GCP, www.globalcarbonproject.org, last 209 

access: 11 March 2022) has coordinated this cooperative community effort for the annual 210 

publication of global carbon budgets for the year 2005 (Raupach et al., 2007; including fossil 211 

emissions only), year 2006 (Canadell et al., 2007), year 2007 (GCP, 2008), year 2008 (Le 212 

Quéré et al., 2009), year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b), 213 
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year 2012 (Le Quéré et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al., 2014), year 214 

2014 (Le Quéré et al., 2015a; Friedlingstein et al., 2014), year 2015 (Jackson et al., 2016; Le 215 

Quéré et al., 2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le Quéré et al., 2018a; 216 

Peters et al., 2017), year 2018 (Le Quéré et al., 2018b; Jackson et al., 2018)  year 2019 217 

(Friedlingstein et al., 2019; Jackson et al., 2019; Peters et al., 2020) and more recently the 218 

year 2020 (Friedlingstein et al.,  2020; Le Quéré et al., 2021) . Each of these papers updated 219 

previous estimates with the latest available information for the entire time series.  220 

We adopt a range of ±1 standard deviation (σ) to report the uncertainties in our estimates, 221 

representing a likelihood of 68% that the true value will be within the provided range if the 222 

errors have a Gaussian distribution, and no bias is assumed. This choice reflects the difficulty 223 

of characterising the uncertainty in the CO2 fluxes between the atmosphere and the ocean 224 

and land reservoirs individually, particularly on an annual basis, as well as the difficulty of 225 

updating the CO2 emissions from land-use change. A likelihood of 68% provides an 226 

indication of our current capability to quantify each term and its uncertainty given the 227 

available information. The uncertainties reported here combine statistical analysis of the 228 

underlying data, assessments of uncertainties in the generation of the data sets, and expert 229 

judgement of the likelihood of results lying outside this range. The limitations of current 230 

information are discussed in the paper and have been examined in detail elsewhere 231 

(Ballantyne et al., 2015; Zscheischler et al., 2017). We also use a qualitative assessment of 232 

confidence level to characterise the annual estimates from each term based on the type, 233 

amount, quality, and consistency of the evidence as defined by the IPCC (Stocker et al., 234 

2013). 235 

This paper provides a detailed description of the data sets and methodology used to 236 

compute the global carbon budget estimates for the industrial period, from 1750 to 2020, 237 

and in more detail for the period since 1959. It also provides decadal averages starting in 238 

1960 including the most recent decade (2011-2020), results for the year 2020, and a 239 

projection for the year 2021. Finally, it provides cumulative emissions from fossil fuels and 240 

land-use change since the year 1750, the pre-industrial period; and since the year 1850, the 241 

reference year for historical simulations in IPCC AR6 (Eyring et al., 2016). This paper is 242 

updated every year using the format of ‘living data’ to keep a record of budget versions and 243 

the changes in new data, revision of data, and changes in methodology that lead to changes 244 
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in estimates of the carbon budget. Additional materials associated with the release of each 245 

new version will be posted at the Global Carbon Project (GCP) website 246 

(http://www.globalcarbonproject.org/carbonbudget, last access: 11 March 2022), with fossil 247 

fuel emissions also available through the Global Carbon Atlas 248 

(http://www.globalcarbonatlas.org, last access: 11 March 2022). With this approach, we aim 249 

to provide the highest transparency and traceability in the reporting of CO2, the key driver 250 

of climate change. 251 

2 Methods 252 

Multiple organisations and research groups around the world generated the original 253 

measurements and data used to complete the global carbon budget. The effort presented 254 

here is thus mainly one of synthesis, where results from individual groups are collated, 255 

analysed, and evaluated for consistency. We facilitate access to original data with the 256 

understanding that primary data sets will be referenced in future work (see Table 2 for how 257 

to cite the data sets). Descriptions of the measurements, models, and methodologies follow 258 

below, and detailed descriptions of each component are provided elsewhere. 259 

This is the 16th version of the global carbon budget and the tenth revised version in the 260 

format of a living data update in Earth System Science Data. It builds on the latest published 261 

global carbon budget of Friedlingstein et al. (2020). The main changes are: the inclusion of 262 

(1) data to year 2020 and a projection for the global carbon budget for year 2021; (2) a Kaya 263 

analysis to identify the driving factors behind the recent trends in fossil fuel emissions 264 

(changes in population, GDP per person, energy use per GDP, and CO2 emissions per unit 265 

energy), (3) an estimate of the ocean sink from models and data-products combined, (4) an 266 

assessment of the relative contributions of increased atmospheric CO2 and climate change 267 

in driving the land and ocean sinks, and  (5) an assessment of the current trends in 268 

anthropogenic emissions and implications for the remaining carbon budget for specific 269 

climate targets. The main methodological differences between recent annual carbon 270 

budgets (2016-2020) are summarised in Table 3 and previous changes since 2006 are 271 

provided in Table A7. 272 
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2.1 Fossil CO2 emissions (EFOS) 273 

2.1.1 Historical period 1850-2020 274 

The estimates of global and national fossil CO2 emissions (EFOS) include the oxidation of fossil 275 

fuels through both combustion (e.g., transport, heating) and chemical oxidation (e.g. carbon 276 

anode decomposition in aluminium refining) activities, and the decomposition of carbonates 277 

in industrial processes (e.g. the production of cement). We also include CO2 uptake from the 278 

cement carbonation process. Several emissions sources are not estimated or not fully 279 

covered: coverage of emissions from lime production are not global, and decomposition of 280 

carbonates in glass and ceramic production are included only for the “Annex 1” countries of 281 

the United Nations Framework Convention on Climate Change (UNFCCC)  for lack of activity 282 

data. These omissions are considered to be minor. Short-cycle carbon emissions - for 283 

example from combustion of biomass - are not included here but are accounted for in the 284 

CO2 emissions from land use (see section 2.2). 285 

Our estimates of fossil CO2 emissions are derived using the standard approach of activity 286 

data and emission factors, relying on data collection by many other parties. Our goal is to 287 

produce the best estimate of this flux, and we therefore use a prioritisation framework to 288 

combine data from different sources that have used different methods, while being careful 289 

to avoid double counting and undercounting of emissions sources. The CDIAC-FF emissions 290 

dataset, derived largely from UN energy data, forms the foundation, and we extend 291 

emissions to year Y-1 using energy growth rates reported by BP. We then proceed to replace 292 

estimates using data from what we consider to be superior sources, for example Annex 1 293 

countries’ official submissions to the UNFCCC. All data points are potentially subject to 294 

revision, not just the latest year. For full details see Andrew and Peters (2021). 295 

Other estimates of global fossil CO2 emissions exist, and these are compared by Andrew 296 

(2020a). The most common reason for differences in estimates of global fossil CO2 emissions 297 

is a difference in which emissions sources are included in the datasets. Datasets such as 298 

those published by BP energy company, the US Energy Information Administration, and the 299 

International Energy Agency’s ‘CO2 emissions from fuel combustion’ are all generally limited 300 

to emissions from combustion of fossil fuels. In contrast, datasets such as PRIMAP-hist, 301 

CEDS, EDGAR, and GCP’s dataset aim to include all sources of fossil CO2 emissions. See 302 

Andrew (2020a) for detailed comparisons and discussion. 303 
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Cement absorbs CO2 from the atmosphere over its lifetime, a process known as ‘cement 304 

carbonation’. We estimate this CO2 sink as the average of two studies in the literature (Cao 305 

et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et al. 306 

(2016), with different parameterisations and input data. Since carbonation is a function of 307 

both current and previous cement production, we extend these estimates by one year to 308 

2020 by using the growth rate derived from the smoothed cement emissions (10-year 309 

smoothing) fitted to the carbonation data. 310 

We use the Kaya Identity for a simple decomposition of CO2 emissions into the key drivers 311 

(Raupach et al., 2007). While there are variations (Peters et al 2017), we focus here on a 312 

decomposition of CO2 emissions into population, GDP per person, energy use per GDP, and 313 

CO2 emissions per energy. Multiplying these individual components together returns the 314 

CO2 emissions. Using the decomposition, it is possible to attribute the change in CO2 315 

emissions to the change in each of the drivers. This method gives a first order understanding 316 

of what causes CO2 emissions to change each year. 317 

2.1.2 2021 projection 318 

We provide a projection of global CO2 emissions in 2021 by combining separate projections 319 

for China, USA, EU, India, and for all other countries combined. The methods are different 320 

for each of these. For China we combine monthly fossil fuel production data from the 321 

National Bureau of Statistics, import/export data from the Customs Administration, and 322 

monthly coal consumption estimates from SX Coal (2021), giving us partial data for the 323 

growth rates to date of natural gas, petroleum, and cement, and of the consumption itself 324 

for raw coal. We then use a regression model to project full-year emissions based on 325 

historical observations. For the USA our projection is taken directly from the Energy 326 

Information Administration’s (EIA) Short-Term Energy Outlook (EIA, 2022), combined with 327 

the year-to-date growth rate of cement production. For the EU we use monthly energy data 328 

from Eurostat to derive estimates of monthly CO2 emissions through July, with coal 329 

emissions extended first through September using a statistical relationship with reported 330 

electricity generation from coal and other factors, then through December assuming normal 331 

seasonal patterns. EU emissions from natural gas - a strongly seasonal cycle - are extended 332 

through December using bias-adjusted Holt-Winters exponential smoothing (Chatfield, 333 

1978). EU emissions from oil are derived using the EIA’s projection of oil consumption for 334 
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Europe. EU cement emissions are based on available year-to-date data from two of the 335 

largest producers, Germany and Poland. India’s projected emissions are derived from 336 

estimates through August (September for coal) using the methods of Andrew (2020b) and 337 

extrapolated assuming normal seasonal patterns. Emissions for the rest of the world are 338 

derived using projected growth in economic production from the IMF (2022) combined with 339 

extrapolated changes in emissions intensity of economic production. More details on the 340 

EFOS methodology and its 2021 projection can be found in Appendix C.1. 341 

2.2 CO2 emissions from land-use, land-use change and forestry (ELUC) 342 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change 343 

emissions in the rest of the text) includes CO2 fluxes from deforestation, afforestation, 344 

logging and forest degradation (including harvest activity), shifting cultivation (cycle of 345 

cutting forest for agriculture, then abandoning), and regrowth of forests following wood 346 

harvest or abandonment of agriculture. Emissions from peat burning and drainage are 347 

added from external datasets.  348 

Three bookkeeping approaches (updated estimates each of BLUE (Hansis et al., 2015), 349 

OSCAR (Gasser et al., 2020), and H&N2017 (Houghton and Nassikas, 2017)) were used to 350 

quantify gross sources and sinks and the resulting net ELUC. Uncertainty estimates were 351 

derived from the Dynamic Global vegetation Models (DGVMs) ensemble for the time period 352 

prior to 1960, using for the recent decades an uncertainty range of ±0.7 GtC yr-1, which is a 353 

semi-quantitative measure for annual and decadal emissions and reflects our best value 354 

judgement that there is at least 68% chance (±1σ) that the true land-use change emission 355 

lies within the given range, for the range of processes considered here. This uncertainty 356 

range had been increased from 0.5 GtC yr-1 after new bookkeeping models were included 357 

that indicated a larger spread than assumed before (Le Quéré et al., 2018). Projections for 358 

2021 are based on fire activity from tropical deforestation and degradation as well as 359 

emissions from peat fires and drainage.  360 

 361 

Our ELUC estimates follow the definition of global carbon cycle models of CO2 fluxes related 362 

to land-use and land management and differ from IPCC definitions adopted in National GHG 363 

Inventories (NGHGI) for reporting under the UNFCCC, which additionally generally include, 364 

through adoption of the IPCC so-called managed land proxy approach, the terrestrial fluxes 365 
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occurring on land defined by countries as managed. This partly includes fluxes due to 366 

environmental change (e.g. atmospheric CO2 increase), which are part of  SLAND in our 367 

definition. This causes the global emission estimates to be smaller for NGHGI than for the 368 

global carbon budget definition (Grassi et al., 2018). The same is the case for the Food 369 

Agriculture Organization (FAO) estimates of carbon fluxes on forest land, which include, 370 

compared to SLAND, both anthropogenic and natural sources on managed land (Tubiello et 371 

al., 2021). Using the approach outlined in Grassi et al. (2021), here we map as additional 372 

information the two definitions to each other, to provide a comparison of the 373 

anthropogenic carbon budget to the official country reporting to the climate convention. 374 

More details on the ELUC methodology can be found in Appendix C.2. 375 

2.3 Growth rate in atmospheric CO2 concentration (GATM) 376 

2.3.1 Historical period 377 

The rate of growth of the atmospheric CO2 concentration is provided for years 1959-2020 by 378 

the US National Oceanic and Atmospheric Administration Earth System Research Laboratory 379 

(NOAA/ESRL; Dlugokencky and Tans, 2022), which is updated from Ballantyne et al. (2012) 380 

and includes recent revisions to the calibration scale of atmospheric CO2 measurements 381 

(Hall et al., 2021). For the 1959-1979 period, the global growth rate is based on 382 

measurements of atmospheric CO2 concentration averaged from the Mauna Loa and South 383 

Pole stations, as observed by the CO2 Program at Scripps Institution of Oceanography 384 

(Keeling et al., 1976). For the 1980-2020 time period, the global growth rate is based on the 385 

average of multiple stations selected from the marine boundary layer sites with well-mixed 386 

background air (Ballantyne et al., 2012), after fitting each station with a smoothed curve as 387 

a function of time, and averaging by latitude band (Masarie and Tans, 1995). The annual 388 

growth rate is estimated by Dlugokencky and Tans (2022) from atmospheric CO2 389 

concentration by taking the average of the most recent December-January months 390 

corrected for the average seasonal cycle and subtracting this same average one year earlier. 391 

The growth rate in units of ppm yr-1 is converted to units of GtC yr-1 by multiplying by a 392 

factor of 2.124 GtC per ppm, assuming instantaneous mixing of CO2 throughout the 393 

atmosphere (Ballantyne et al., 2012). 394 
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Starting in 2020, NOAA/ESRL now provides estimates of atmospheric CO2 concentrations 395 

with respect to a new calibration scale, referred to as WMO-CO2-X2019, in line with the 396 

recommendation of the World Meteorological Organization (WMO) Global Atmosphere 397 

Watch (GAW) community (Hall et al., 2021). The WMO-CO2-X2019 scale improves upon the 398 

earlier WMO-CO2-X2007 scale by including a broader set of standards, which contain CO2 in 399 

a wider range of concentrations that span the range 250-800 ppm (versus 250–520 ppm for 400 

WMO-CO2-X2007). In addition, NOAA/ESRL made two minor corrections to the analytical 401 

procedure used to quantify CO2 concentrations, fixing an error in the second virial 402 

coefficient of CO2 and accounting for loss of a small amount of CO2 to materials in the 403 

manometer during the measurement process.  The difference in concentrations measured 404 

using WMO-CO2-X2019 versus WMO-CO2-X2007 is ~+0.18 ppm at 400 ppm and the 405 

observational record of atmospheric CO2 concentrations have been revised accordingly. The 406 

revisions have been applied retrospectively in all cases where the calibrations were 407 

performed by NOAA/ESRL, thus affecting measurements made by members of the WMO-408 

GAW programme and other regionally coordinated programmes (e.g., Integrated Carbon 409 

Observing System, ICOS). Changes to the CO2 concentrations measured across these 410 

networks propagate to the global mean CO2 concentrations. Comparing the estimates of 411 

GATM made by Dlugokencky and Tans (2020), used in the Global Carbon Budget 2020 412 

(Friedlingstein et al., 2020), with updated estimates from Dlugokencky and Tans (2022), 413 

used here, we find that GATM reduced on average by -0.06 GtC yr-1 during 2010-2019 and by -414 

0.01 GtC yr-1 during 1959-2019 due to the new calibration. These changes are well within 415 

the uncertainty ranges reported below. Hence the change in analytical procedures made by 416 

NOAA/ESRL has a negligible impact on the atmospheric growth rate GATM. 417 

The uncertainty around the atmospheric growth rate is due to four main factors. First, the 418 

long-term reproducibility of reference gas standards (around 0.03 ppm for 1σ from the 419 

1980s; Dlugokencky and Tans, 2022). Second, small unexplained systematic analytical errors 420 

that may have a duration of several months to two years come and go. They have been 421 

simulated by randomising both the duration and the magnitude (determined from the 422 

existing evidence) in a Monte Carlo procedure. Third, the network composition of the 423 

marine boundary layer with some sites coming or going, gaps in the time series at each site, 424 

etc (Dlugokencky and Tans, 2022). The latter uncertainty was estimated by NOAA/ESRL with 425 
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a Monte Carlo method by constructing 100 "alternative" networks (Masarie and Tans, 1995; 426 

NOAA/ESRL, 2019). The second and third uncertainties, summed in quadrature, add up to 427 

0.085 ppm on average (Dlugokencky and Tans, 2022). Fourth, the uncertainty associated 428 

with using the average CO2 concentration from a surface network to approximate the true 429 

atmospheric average CO2 concentration (mass-weighted, in 3 dimensions) as needed to 430 

assess the total atmospheric CO2 burden. In reality, CO2 variations measured at the stations 431 

will not exactly track changes in total atmospheric burden, with offsets in magnitude and 432 

phasing due to vertical and horizontal mixing. This effect must be very small on decadal and 433 

longer time scales, when the atmosphere can be considered well mixed. Preliminary 434 

estimates suggest this effect would increase the annual uncertainty, but a full analysis is not 435 

yet available. We therefore maintain an uncertainty around the annual growth rate based 436 

on the multiple stations data set ranges between 0.11 and 0.72 GtC yr-1, with a mean of 0.61 437 

GtC yr-1 for 1959-1979 and 0.17 GtC yr-1 for 1980-2020, when a larger set of stations were 438 

available as provided by Dlugokencky and Tans (2022) but recognise further exploration of 439 

this uncertainty is required. At this time, we estimate the uncertainty of the decadal 440 

averaged growth rate after 1980 at 0.02 GtC yr-1 based on the calibration and the annual 441 

growth rate uncertainty but stretched over a 10-year interval. For years prior to 1980, we 442 

estimate the decadal averaged uncertainty to be 0.07 GtC yr-1 based on a factor 443 

proportional to the annual uncertainty prior and after 1980 (0.02 * [0.61/0.17] GtC yr-1). 444 

We assign a high confidence to the annual estimates of GATM because they are based on 445 

direct measurements from multiple and consistent instruments and stations distributed 446 

around the world (Ballantyne et al., 2012; Hall et al., 2021). 447 

To estimate the total carbon accumulated in the atmosphere since 1750 or 1850, we use an 448 

atmospheric CO2 concentration of 277 ± 3 ppm or 286 ± 3 ppm, respectively, based on a 449 

cubic spline fit to ice core data (Joos and Spahni, 2008). For the construction of the 450 

cumulative budget shown in Figure 3, we use the fitted estimates of CO2 concentration from 451 

Joos and Spahni (2008) to estimate the annual atmospheric growth rate using the 452 

conversion factors shown in Table 1.  The uncertainty of ±3 ppm (converted to ±1σ) is taken 453 

directly from the IPCC’s AR5 assessment (Ciais et al., 2013). Typical uncertainties in the 454 

growth rate in atmospheric CO2 concentration from ice core data are equivalent to ±0.1-455 



19 
 

0.15 GtC yr-1 as evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-456 

year intervals over the period from 1850 to 1960 (Bruno and Joos, 1997). 457 

2.3.2 2021 projection 458 

We provide an assessment of GATM for 2021 based on the monthly calculated global 459 

atmospheric CO2 concentration (GLO) through August (Dlugokencky and Tans, 2022), and 460 

bias-adjusted Holt–Winters exponential smoothing with additive seasonality (Chatfield, 461 

1978) to project to January 2022. Additional analysis suggests that the first half of the year 462 

(the boreal winter-spring-summer transition) shows more interannual variability than the 463 

second half of the year (the boreal summer-autumn-winter transition), so that the exact 464 

projection method applied to the second half of the year has a relatively smaller impact on 465 

the projection of the full year.  Uncertainty is estimated from past variability using the 466 

standard deviation of the last 5 years' monthly growth rates. 467 

2.4 Ocean CO2 sink  468 

The reported estimate of the global ocean anthropogenic CO2 sink SOCEAN is derived as the 469 

average of two estimates. The first estimate is derived as the mean over an ensemble of 470 

eight global ocean biogeochemistry models (GOBMs, Table 4 and Table A2). The second 471 

estimate is obtained as the mean over an ensemble of seven observation-based data-472 

products (Table 4 and Table A3). An eighth product (Watson et al., 2020) is shown, but is not 473 

included in the ensemble average as it differs from the other products by adjusting the flux 474 

to a cool, salty ocean surface skin (see Appendix C.3.1 for a discussion of the Watson 475 

product).  The GOBMs simulate both the natural and anthropogenic CO2 cycles in the ocean. 476 

They constrain the anthropogenic air-sea CO2 flux (the dominant component of SOCEAN) by 477 

the transport of carbon into the ocean interior, which is also the controlling factor of 478 

present-day ocean carbon uptake in the real world. They cover the full globe and all seasons 479 

and were recently evaluated against surface ocean carbon observations, suggesting they are 480 

suitable to estimate the annual ocean carbon sink (Hauck et al., 2020). The data-products 481 

are tightly linked to observations of fCO2 (fugacity of CO2, which equals pCO2 corrected for 482 

the non-ideal behaviour of the gas; Pfeil et al., 2013), which carry imprints of temporal and 483 

spatial variability, but are also sensitive to uncertainties in gas-exchange parameterizations 484 

and data-sparsity. Their asset is the assessment of interannual and spatial variability (Hauck 485 
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et al., 2020).  We further use two diagnostic ocean models to estimate SOCEAN over the 486 

industrial era (1781-1958).  487 

The global fCO2-based flux estimates were adjusted to remove the pre-industrial ocean 488 

source of CO2 to the atmosphere of 0.61 GtC yr-1 from river input to the ocean (the average 489 

of 0.45 ± 0.18 GtC yr-1 by Jacobson et al. (2007) and 0.78 ± 0.41 GtC yr-1 by Resplandy et al., 490 

2018), to satisfy our definition of SOCEAN (Hauck et al., 2020). The river flux adjustment was 491 

distributed over the latitudinal bands using the regional distribution of Aumont et al. (2001; 492 

North: 0.16 GtC yr-1, Tropics: 0.15 GtC yr-1, South: 0.30 GtC yr-1), acknowledging that the 493 

boundaries of Aumont et al (2001; namely 20°S and 20°N) are not consistent with the 494 

boundaries otherwise used in the GCB (30°S and 30°N). A recent modelling study (Lacroix et 495 

al., 2020) suggests that more of the riverine outgassing is located in the tropics than in the 496 

Southern Ocean; and hence this regional distribution is associated with a major uncertainty. 497 

Anthropogenic perturbations of river carbon and nutrient transport to the ocean are not 498 

considered (see section 2.7). 499 

We derive SOCEAN from GOBMs by using a simulation (sim A) with historical forcing of climate 500 

and atmospheric CO2, accounting for model biases and drift from a control simulation (sim 501 

B) with constant atmospheric CO2 and normal year climate forcing. A third simulation (sim 502 

C) with historical atmospheric CO2 increase and normal year climate forcing is used to 503 

attribute the ocean sink to CO2 (sim C minus sim B) and climate (sim A minus sim C) effects. 504 

Data-products are adjusted to represent the full ocean area by a simple scaling approach 505 

when coverage is below 98%. GOBMs and data-products fall within the observational 506 

constraints over the 1990s (2.2 ± 0.7 GtC yr-1 , Ciais et al., 2013) after applying adjustments .  507 

We assign an uncertainty of ± 0.4 GtC yr-1 to the ocean sink based on a combination of 508 

random (ensemble standard deviation) and systematic uncertainties (GOBMs bias in 509 

anthropogenic carbon accumulation, previously reported uncertainties in fCO2-based data-510 

products; see section C.3.3). We assess a medium confidence level to the annual ocean CO2 511 

sink and its uncertainty because it is based on multiple lines of evidence, it is consistent with 512 

ocean interior carbon estimates (Gruber et al., 2019, see section 3.5.5) and the results are 513 

consistent in that the interannual variability in the GOBMs and data-based estimates are all 514 

generally small compared to the variability in the growth rate of atmospheric CO2 515 

concentration. We refrain from assigning a high confidence because of the systematic 516 
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deviation between the GOBM and data-product trends since around 2002. More details on 517 

the SOCEAN methodology can be found in Appendix C.3. 518 

The ocean CO2 sink forecast for the year 2021 is based on the annual historical and 519 

estimated 2021 atmospheric CO2 concentration (Dlugokencky and Tans 2021), historical and 520 

estimated 2021 annual global fossil fuel emissions from this year’s carbon budget, and the 521 

spring (March, April, May) Oceanic Niño Index (ONI) index (NCEP, 2022). Using a non-linear 522 

regression approach, i.e., a feed-forward neural network, atmospheric CO2, the ONI index 523 

and the fossil fuel emissions are used as training data to best match the annual ocean CO2 524 

sink (i.e. combined SOCEAN estimate from GOBMs and data products) from 1959 through 525 

2020 from this year’s carbon budget. Using this relationship, the 2021 SOCEAN can then be 526 

estimated from the projected 2021 input data using the non-linear relationship established 527 

during the network training. To avoid overfitting, the neural network was trained with a 528 

variable number of hidden neurons (varying between 2-5) and 20% of the randomly 529 

selected training data were withheld for independent internal testing. Based on the best 530 

output performance (tested using the 20% withheld input data), the best performing 531 

number of neurons was selected. In a second step, we trained the network 10 times using 532 

the best number of neurons identified in step 1 and different sets of randomly selected 533 

training data. The mean of the 10 trainings is considered our best forecast, whereas the 534 

standard deviation of the 10 ensembles provides a first order estimate of the forecast 535 

uncertainty. This uncertainty is then combined with the SOCEAN uncertainty (0.4 GtC yr-1) to 536 

estimate the overall uncertainty of the 2021 prediction. 537 

2.5 Terrestrial CO2 sink 538 

The terrestrial land sink (SLAND) is thought to be due to the combined effects of fertilisation 539 

by rising atmospheric CO2 and N inputs on plant growth, as well as the effects of climate 540 

change such as the lengthening of the growing season in northern temperate and boreal 541 

areas. SLAND does not include land sinks directly resulting from land-use and land-use change 542 

(e.g., regrowth of vegetation) as these are part of the land-use flux (ELUC), although system 543 

boundaries make it difficult to attribute exactly CO2 fluxes on land between SLAND and ELUC 544 

(Erb et al., 2013). 545 

SLAND is estimated from the multi-model mean of 17 DGVMs (Table A1). As described in 546 

Appendix C.4, DGVMs simulations include all climate variability and CO2 effects over land, 547 
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with 12 DGVMs also including the effect of N inputs. The DGVMs estimate of SLAND does not 548 

include the export of carbon to aquatic systems or its historical perturbation, which is 549 

discussed in Appendix D3. See Appendix C.4 for DGVMs evaluation and uncertainty 550 

assessment for SLAND, using the International Land Model Benchmarking system (ILAMB; 551 

Collier et al., 2018). More details on the SLAND methodology can be found in Appendix C.4. 552 

Like the ocean forecast, the land CO2 sink (SLAND) forecast is based on the annual historical 553 

and estimated 2021 atmospheric CO2 concentration (Dlugokencky and Tans 2021), historical 554 

and estimated 2021 annual global fossil fuel emissions from this year’s carbon budget, and 555 

the summer (June, July, August) ONI index (NCEP, 2021). All training data are again used to 556 

best match SLAND from 1959 through 2020 from this year’s carbon budget using a feed-557 

forward neural network. To avoid overfitting, the neural network was trained with a variable 558 

number of hidden neurons (varying between 2-15), larger than for SOCEAN prediction due to 559 

the stronger land carbon interannual variability. As done for SOCEAN, a pre-training selects the 560 

optimal number of hidden neurons based on 20% withheld input data, and in a second step, 561 

an ensemble of 10 forecasts is produced to provide the mean forecast plus uncertainty. This 562 

uncertainty is then combined with the SLAND uncertainty for 2020 (1.0 GtC yr-1) to estimate 563 

the overall uncertainty of the 2021 prediction. 564 

2.6 The atmospheric perspective 565 

The world-wide network of in-situ atmospheric measurements and satellite derived 566 

atmospheric CO2 column (xCO2) observations put a strong constraint on changes in the 567 

atmospheric abundance of CO2. This is true globally (hence our large confidence in GATM), 568 

but also regionally in regions with sufficient observational density found mostly in the extra-569 

tropics. This allows atmospheric inversion methods to constrain the magnitude and location 570 

of the combined total surface CO2 fluxes from all sources, including fossil and land-use 571 

change emissions and land and ocean CO2 fluxes. The inversions assume EFOS to be well 572 

known, and they solve for the spatial and temporal distribution of land and ocean fluxes 573 

from the residual gradients of CO2 between stations that are not explained by fossil fuel 574 

emissions. By design, such systems thus close the carbon balance (BIM = 0) and thus provide 575 

an additional perspective on the independent estimates of the ocean and land fluxes.  576 

This year’s release includes six inversion systems that are described in Table A4. Each system 577 

is rooted in Bayesian inversion principles but uses slightly different methodologies. These 578 
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differences concern the selection of atmospheric CO2 data and the choice of a-priori fluxes 579 

to refine with these datas. They also differ in spatial and temporal resolution, assumed 580 

correlation structures, and mathematical approach of the models (see references in Table 581 

A4 for details). Importantly, the systems use a variety of transport models, which was 582 

demonstrated to be a driving factor behind differences in atmospheric inversion-based flux 583 

estimates, and specifically their distribution across latitudinal bands (Gaubert et al., 2019; 584 

Schuh et al., 2019). Multiple inversion systems (UoE, CTE, and CAMS) were previously tested 585 

with satellite xCO2 retrievals from GOSAT or OCO-2 measurements, but their results at the 586 

larger scales (as discussed in this work) did not deviate substantially from their in-situ 587 

counterparts and are therefore not separately included. One inversion this year (CMS-Flux) 588 

used ACOS-GOSAT v9 retrievals between July 2009 and Dec 2014 and OCO-2 b10 retrievals 589 

between Jan 2015 to Dec 2015, in addition to the in-situ observational CO2 mole fraction 590 

records.  591 

The original products delivered by the inverse modellers were modified to facilitate the 592 

comparison to the other elements of the budget, specifically on 3 accounts: (1) global total 593 

fossil fuel emissions, (2) riverine CO2 transport, and (3) cement carbonation CO2 uptake. 594 

Details are given below. We note that with these adjustments the inverse results no longer 595 

represent the net atmosphere-surface exchange over land/ocean areas as sensed by 596 

atmospheric observations. Instead for land, they become the net uptake of CO2 by 597 

vegetation and soils that is not exported by fluvial systems, similar to the DGVMs estimates. 598 

For oceans, they become the net uptake of anthropogenic CO2, similar to the GOBMs 599 

estimates. 600 

The inversion systems prescribe global fossil fuel emissions based on the GCP’s Gridded 601 

Fossil Emissions Dataset version 2021.2 (GCP-GridFEDv2021.2; Jones et al., 2021b), which is 602 

an update to 2019 of the first version of GCP-GridFED presented by Jones et al. (2021a). 603 

GCP-GridFEDv2021.2 scales gridded estimates of CO2 emissions from EDGARv4.3.2 604 

(Janssens-Maenhout et al., 2019) within national territories to match national emissions 605 

estimates provided by the GCB for the years 1959-2020, which were compiled following the 606 

methodology described in Section 2.1 with all datasets available on August 14th 2021 (R. 607 

Andrew, pers. comm.). Small differences between the systems due to for instance regridding 608 

to the transport model resolution are corrected for in the latitudinal partitioning we 609 
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present, to ensure agreement with the estimate of EFOS in this budget. We also note that the 610 

ocean fluxes used as prior by 5 out of 6 inversions are part of the suite of the ocean process 611 

model or fCO2 data products listed in Section 2.4. Although these fluxes are further adjusted 612 

by the atmospheric inversions, it makes the inversion estimates of the ocean fluxes not 613 

completely independent of SOCEAN assessed here. 614 

To facilitate comparisons to the independent SOCEAN and SLAND, we used the same corrections 615 

for transport and outgassing of carbon transported from land to ocean, as done for the 616 

observation-based estimates of SOCEAN (see Appendix C.3). Furthermore, the inversions did 617 

not include a cement carbonation sink (see section 2.1) and therefore this GCB component 618 

is implicitly part of their total land sink estimate. In the numbers presented in this budget, 619 

each year’s global carbonation sink from cement was subtracted from each year’s estimated 620 

land sink in each inversion, distributed proportional to fossil fuel emissions per region 621 

(North-Tropics-South).  622 

The atmospheric inversions are evaluated using vertical profiles of atmospheric CO2 623 

concentrations (Fig. B4). More than 30 aircraft programs over the globe, either regular 624 

programs or repeated surveys over at least 9 months, have been used to assess model 625 

performance (with space-time observational coverage sparse in the SH and tropics, and 626 

denser in NH mid-latitudes; Table A6). The six models are compared to the independent 627 

aircraft CO2 measurements between 2 and 7 km above sea level between 2001 and 2020. 628 

Results are shown in Fig. B4 and discussed in Section 3.7. 629 

With a relatively small ensemble (N=6) of systems that moreover share some a-priori fluxes 630 

used with one another, or with the process-based models, it is difficult to justify using their 631 

mean and standard deviation as a metric for uncertainty across the ensemble. We therefore 632 

report their full range (min-max) without their mean. More details on the atmospheric 633 

inversions methodology can be found in Appendix C.5. 634 

2.7 Processes not included in the global carbon budget 635 

The contribution of anthropogenic CO and CH4 to the global carbon budget is not fully 636 

accounted for in Eq. (1) and is described in Appendix D1. The contributions of other 637 

carbonates to CO2 emissions is described in Appendix D2. The contribution of anthropogenic 638 

changes in river fluxes is conceptually included in Eq. (1) in SOCEAN and in SLAND, but it is not 639 
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represented in the process models used to quantify these fluxes. This effect is discussed in 640 

Appendix D3. Similarly, the loss of additional sink capacity from reduced forest cover is 641 

missing in the combination of approaches used here to estimate both land fluxes (ELUC and 642 

SLAND) and its potential effect is discussed and quantified in Appendix D4.  643 

 644 

3 Results 645 

For each component of the global carbon budget, we present results for three different time 646 

periods: the full historical period, from 1850 to 2020, the six decades in which we have 647 

atmospheric concentration records from Mauna Loa (1960-2020), a specific focus on last 648 

year (2020), and the projection for the current year (2021). Subsequently, we assess the 649 

combined constraints from the budget components (often referred to as a bottom-up 650 

budget) against the top-down constraints from inverse modelling of atmospheric 651 

observations. We do this for the global balance of the last decade, as well as for a regional 652 

breakdown of land and ocean sinks by broad latitude bands. 653 

3.1 Fossil CO2 Emissions 654 

3.1.1 Historical period 1850-2020 655 

Cumulative fossil CO2 emissions for 1850-2020 were 455 ± 25 GtC, including the cement 656 

carbonation sink (Fig. 3, Table 8) . 657 

In this period, 46% of fossil CO2 emissions came from coal, 35% from oil, 14% from natural 658 

gas, 3% from decomposition of carbonates, and 1% from flaring. 659 

In 1850, the UK stood for 62% of global fossil CO2 emissions. In 1891 the combined 660 

cumulative emissions of the current members of the European Union reached and 661 

subsequently surpassed the level of the UK. Since 1917 US cumulative emissions have been 662 

the largest. Over the entire period 1850-2020, US cumulative emissions amounted to 663 

110GtC (25% of world total) , the EU’s to 80 GtC (18%), and China’s to 60 GtC (14%). 664 

There are three additional global datasets that include all sources of fossil CO2 emissions: 665 

CDIAC-FF (Gilfillan and Marland, 2021), CEDS version v_2021_04_21 (Hoesly et al., 2018); 666 

O’Rourke et al., 2021) and PRIMAP-hist version 2.3.1 (Gütschow et al., 2016, 2021), although 667 

these datasets are not independent. CDIAC-FF has the lowest cumulative emissions over 668 

1750-2018 at 437 GtC, GCP has 443 GtC, CEDS 445 GtC, PRIMAP-hist TP 453 GtC, and 669 
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PRIMAP-hist CR 455 GtC. CDIAC-FF excludes emissions from lime production, while neither 670 

CDIAC-FF nor GCP explicitly include emissions from international bunker fuels prior to 1950. 671 

CEDS has higher emissions from international shipping in recent years, while PRIMAP-hist 672 

has higher fugitive emissions than the other datasets. However, in general these four 673 

datasets are in relative agreement as to total historical global emissions of fossil CO2. 674 

3.1.2 Recent period 1960-2020 675 

Global fossil CO2 emissions, EFOS (including the cement carbonation sink), have increased 676 

every decade from an average of 3.0 ± 0.2 GtC yr-1 for the decade of the 1960s to an average 677 

of 9.5 ± 0.5 GtC yr-1 during 2011-2020 (Table 6, Fig. 2 and Fig. 5). The growth rate in these 678 

emissions decreased between the 1960s and the 1990s, from 4.3% yr-1 in the 1960s (1960-679 

1969), 3.2% yr-1 in the 1970s (1970-1979), 1.6% yr-1 in the 1980s (1980-1989), to 0.9% yr-1 in 680 

the 1990s (1990-1999). After this period, the growth rate began increasing again in the 681 

2000s at an average growth rate of 3.0% yr-1, decreasing to 0.6% yr-1 for the last decade 682 

(2011-2020). China’s emissions increased by +1.0% yr-1 on average over the last 10 years 683 

dominating the global trend, followed by India’s emissions increase by +3.9% yr-1, while 684 

emissions decreased in EU27 by –1.9% yr-1, and in the USA by –1.1% yr-1. Fig.6 illustrates the 685 

spatial distribution of fossil fuel emissions for the 2011-2020 period. 686 

EFOS includes the uptake of CO2 by cement via carbonation which has increased with 687 

increasing stocks of cement products, from an average of 20 MtC yr-1 (0.02 GtC yr-1) in the 688 

1960s to an average of 200 MtC yr-1 (0.2 GtC yr-1) during 2011-2020 (Fig. 5).  689 

3.1.3 Final year 2020 690 

Global fossil CO2 emissions were  5.4% lower in 2020 than in 2019, because of the COVID-19 691 

pandemic, with a decline of  0.5 GtC to reach 9.5 ± 0.5 GtC (9.3 ± 0.5 GtC when including the 692 

cement carbonation sink) in 2020 (Fig. 5), distributed among coal (40%), oil (32%), natural 693 

gas (21%), cement (5%) and others (2%). Compared to the previous year, 2020 emissions 694 

from coal, oil and gas declined by 4.4%, 9.7% and 2.3% respectively, while emissions from 695 

cement increased by 0.8%. All growth rates presented are adjusted for the leap year, unless 696 

stated otherwise.  697 

In 2020, the largest absolute contributions to global fossil CO2 emissions were from China 698 

(31%), the USA (14%), the EU27 (7%), and India (7%). These four regions account for 59% of 699 
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global CO2 emissions, while the rest of the world contributed 41%, including international 700 

aviation and marine bunker fuels (2.9% of the total). Growth rates for these countries from 701 

2019 to 2020 were +1.4% (China), -10.6% (USA), –10.9% (EU27), and -7.3% (India), with -702 

7.0% for the rest of the world. The per-capita fossil CO2 emissions in 2020 were 1.2 tC 703 

person-1 yr-1 for the globe, and were 3.9 (USA), 2.0 (China), 1.6 (EU27) and 0.5 (India) tC 704 

person-1 yr-1 for the four highest emitting countries (Fig. 5). 705 

The COVID-19 induced decline in emissions of -5.4% in 2020 is close to the projected decline 706 

of -6.7%, which was the median of four approaches, published in Friedlingstein et al. (2020). 707 

Of the four approaches, the ‘GCP’ method was closest at -5.8%. That method was based on 708 

national emissions projections for China, the USA, the EU27, and India using reported 709 

monthly activity data when available and projections of gross domestic product corrected 710 

for trends in fossil fuel intensity (IFOS) for the rest of the world. Of the regions, the projection 711 

for the EU27 was least accurate, and the reasons for this are discussed by Andrew (2021).  712 

3.1.4 Year 2021 Projection 713 

Globally, we estimate that global fossil CO2 emissions will rebound 4.8% in 2021 (4.2% to 714 

5.4%) to 9.9 GtC (36.4 GtCO2), returning near their 2019 emission levels of 10.0 GtC (36.7 715 

GtCO2). Global increase in 2021 emissions per fuel types are +6.3% (range 5.5% to 7.0%) for 716 

coal, +4.0% (range 2.6% to 5.4%) for oil, +3.8% (range 2.8% to 4.8%) for natural gas, and 717 

+3.2% (range 1.7% to 4.6%) for cement. 718 

For China, projected fossil emissions in 2021 are expected to increase by 4.3% (range 3.0% 719 

to 5.4%) compared with 2020 emissions, bringing 2021 emissions for China around 3.0 GtC 720 

yr-1 (11.1 GtCO2 yr-1). Chinese emissions appear to have risen in both 2020 and 2021 despite 721 

the economic disruptions of COVID-19. Increases in fuel specific projections for China are 722 

+4.1% for coal, +4.4% for oil, +12.8% natural gas, and a decrease of 0.1% for cement. 723 

For the USA, the Energy Information Administration (EIA) emissions projection for 2021 724 

combined with cement clinker data from USGS gives an increase of 6.8% (range 6.6% to 725 

7.0%) compared to 2020, bringing USA 2021 emissions around 1.4 GtC yr-1 (5.0 GtCO2 yr-1). 726 

This is based on separate projections for coal +17.1%, oil +9.0%, natural gas -0.8%, and 727 

cement +0.3%. 728 
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For the European Union, our projection for 2021 is for an increase of 6.3% (range 4.3% to 729 

8.3%) over 2020, with 2021 emissions around 0.8 GtC yr-1 (2.8 GtCO2 yr-1). This is based on 730 

separate projections for coal of +14.6%, oil +3.7%, natural gas +4.6%, and cement 0.3%. 731 

For India, our projection for 2021 is an increase of 11.2% (range of 10.7% to 11.7%) over 732 

2020, with 2021 emissions around 0.7 GtC yr-1 (2.7 GtCO2 yr-1). This is based on separate 733 

projections for coal of +13.9%, oil +3.4%, natural gas +4.8%, and cement +21.6%. 734 

For the rest of the world, the expected growth rate for 2021 is 3.2% (range 2.0% to 4.3%). 735 

This is computed using the GDP projection for the world (excluding China, the USA, the EU, 736 

and India) of 4.4% made by the IMF (2022) and a decrease in IFOS of -1.7%yr-1, which is the 737 

average over 2011-2020. The uncertainty range is based on the standard deviation of the 738 

interannual variability in IFOS during 2011–2020 of 0.6%yr-1 and our estimates of uncertainty 739 

in the IMF’s GDP forecast of 0.6%. The methodology allows independent projections for 740 

coal, oil, natural gas, cement, and other components, which add to the total emissions in 741 

the rest of the world. The fuel specific projected 2021 growth rates for the rest of the world 742 

are: +3.2% (range 0.7% to 5.8%) for coal, +2.3% (-0.3% to +4.9%) for oil, +4.1% (2.6% to 743 

5.7%) for natural gas, +4.8% (+2.7% to +6.9%) for cement.  744 

Independently, the IEA has published two forecasts of global fossil energy CO2 emissions 745 

(i.e., a subset of fossil CO2 emissions), first in April (4.8%; IEA, 2021a) and so revised in 746 

October at 4% (IEA, 2021b). In March 2022 they also published a new, preliminary estimate 747 

of 6% growth (IEA, 2021a). Carbon Monitor produces estimates of global emissions with low 748 

temporal lag, and their estimates suggest that emissions were 5.1% higher than in 2020 749 

(Carbon Monitor, 2022). 750 

3.2 Emissions from Land Use Changes 751 

3.2.1 Historical period 1850-2020 752 

 Cumulative CO2 emissions from land-use changes (ELUC) for 1850-2020 were 200 ± 65 GtC 753 

(Table 8; Fig. 3; Fig. 13). The cumulative emissions from ELUC are particularly uncertain, with 754 

large spread among individual estimates of 140 GtC (updated H&N2017), 270 GtC (BLUE), 755 

and 195 GtC (OSCAR) for the three bookkeeping models and a similar wide estimate of 190 ± 756 

60 GtC for the DGVMs (all cumulative numbers are rounded to the nearest 5GtC). These 757 

estimates are broadly consistent with indirect constraints from vegetation biomass 758 
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observations, giving a cumulative source of 155 ± 50 GtC over the 1901-2012 period  (Li et 759 

al., 2017). However, given the large spread, a best estimate is difficult to ascertain.  760 

3.2.2 Recent period 1960-2020 761 

In contrast to growing fossil emissions, CO2 emissions from land-use, land-use change and 762 

forestry have remained relatively constant, at around 1.3 ± 0.7 GtC yr-1 over the 1970-1999 763 

period, and even show a slight decrease over the last 20 years, reaching 1.1 ± 0.7 GtC yr-1 for 764 

the 2011-2020 period (Table 6), but with large spread across estimates (Table 5, Fig. 7). 765 

Emissions are relatively constant in the DGVMs ensemble of models since the 1970s, with 766 

similar mean values until the 1990s as the bookkeeping mean and large model spread (Table 767 

5, Fig. 7). The DGVMs average grows larger than the bookkeeping average in the recent 768 

decades and shows no sign of decreasing emissions, which is, however, expected as DGVM-769 

based estimates include the loss of additional sink capacity, which grows with time, while 770 

the bookkeeping estimates do not (Appendix D4).  771 

ELUC is a net term of various gross fluxes, which comprise emissions and removals. Gross 772 

emissions are on average 2-4 times larger than the net ELUC emissions, and remained largely 773 

constant over the last 60 years, with a moderate increase from an average of 3.4 ± 0.9 GtC 774 

yr-1 for the decade of the 1960s to an average of 3.8 ± 0.6 GtC yr-1 during 2011-2020 (Fig.7, 775 

Table 5), showing the relevance of land management such as harvesting or rotational 776 

agriculture. Increases in gross removals, from 1.9 ± 0.4 GtC yr-1 for the 1960s to 2.7 ± 0.4 GtC 777 

yr-1 for 2011-2020, were larger than the increase in gross emissions. Since the processes 778 

behind gross removals, foremost forest regrowth and soil recovery, are all slow, while gross 779 

emissions include a large instantaneous component, short-term changes in land-use 780 

dynamics, such as a temporary decrease in deforestation, influences gross emissions 781 

dynamics more than gross removals dynamics. It is these relative changes to each other that 782 

explain the decrease in net ELUC emissions over the last two decades and the last few years. 783 

Gross fluxes differ more across the three bookkeeping estimates than net fluxes, which is 784 

expected due to different process representation; in particular, treatment of shifting 785 

cultivation, which increases both gross emissions and removals, differs across models. 786 

There is a decrease in net CO2 emissions from land-use change over the last decade (Fig. 7, 787 

Table 6), in contrast to earlier estimates of no clear trend across ELUC estimates 788 
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(Friedlingstein et al., 2020, Hong et al., 2021). The trend in the last decade is now about -4% 789 

per year, compared to the +1.8% per year reported by Friedlingstein et al. (2020). This 790 

decrease is principally attributable to changes in ELUC estimates from BLUE and OSCAR, 791 

which relate to changes in the underlying land-use forcing, LUH2 (Chini et al. 2021, Hurtt et 792 

al. 2020) based on HYDE3.3 (Klein Goldewijk et al., 2017a, b): HYDE3.3 now incorporates 793 

updated estimates of agricultural areas by the FAO and uses multi-annual land cover maps 794 

from satellite remote sensing (ESA CCI Land Cover) to constrain contemporary land cover 795 

patterns (see Appendix C.2.2 for details) . These changes lead to lower global ELUC estimates 796 

in the last two decades compared to earlier versions of the global carbon budget due most 797 

notably to lower emissions from cropland expansion, particularly in the tropical regions. 798 

Rosan et al. (2021) showed that for Brazil, the new HYDE3.3 version is closer to 799 

independent, regional estimates of land-use and land cover change (MapBiomas, 2021) with 800 

respect to spatial patterns, but it shows less land-use and land cover changes than these 801 

independent estimates, while HYDE3.2-based estimates had shown higher changes and 802 

lower emissions. The update in land-use forcing leads to a decrease in estimated emissions 803 

in Brazil across several models after the documented deforestation peak of 2003-2004 that 804 

preceded policies and monitoring systems decreasing deforestation rates (Rosan et al., 805 

2021). However, estimated emissions based on the new land-use forcing do not reflect the 806 

rise in Brazilian deforestation in the recent few years (Silva Junior, 2021), and associated 807 

increasing emissions from deforestation would have been missed here. The update in FAO 808 

agricultural areas in Brazil also implied that substantial interannual variability reported to 809 

earlier FAO assessment and captured by the HYDE3.2 version since 2000 was removed. Due 810 

to the asymmetry of (fast) decay (like clearing by fire) and (slower) regrowth, such reduced 811 

variability is expected to decrease annual emissions. Also, the approach by Houghton and 812 

Nassikas (2017) smooths land use area changes before calculating carbon fluxes by a 5-year 813 

running mean, hence the three emission estimates are in better agreement than in previous 814 

GCB estimates. However, differences still exist, which highlight the need for accurate 815 

knowledge of land-use transitions and their spatial and temporal variability. A further caveat 816 

is that global land-use change data for model input does not capture forest degradation, 817 

which often occurs on small scale or without forest cover changes easily detectable from 818 

remote sensing and poses a growing threat to forest area and carbon stocks that may 819 

surpass deforestation effects (e.g., Matricardi et al., 2020, Qin et al., 2021).  820 
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Overall, therefore, we assign low confidence to the change towards a decreasing trend of 821 

land-use emissions over the last two decades as seen compared to the estimate of the 822 

global carbon budget 2020 (Friedlingstein et al., 2020). Our approach aims at using the most 823 

up to date data and methods, such as accounting for revisions of living databases of 824 

country-level agricultural statistics from FAO or including satellite remote-sensing 825 

information for spatial allocation. While we start from a well-documented methodology to 826 

provide gridded land-use data (Chini et al., 2021), not all changes in individual components 827 

are always documented, complicating the explanation of changes from one GCB to the next. 828 

The rising number of pan-tropical or global estimates of carbon stock changes based on 829 

satellite remote sensing of carbon densities and forest cover changes (Fan  et al. 2019; Qin 830 

et al., 2021; Xu et al., 2021; Feng et al., 2022) may seem a promising path for independent 831 

evaluation of the land-use emissions term. However, comparison of satellite-derived fluxes 832 

to global model estimates is hampered for several reasons discussed by Pongratz et al. 833 

(2021). Most importantly, satellite-based estimates usually do not distinguish between 834 

anthropogenic drivers and natural forest cover losses (e.g., from drought or natural 835 

wildfires), which have also increased over time in some regions, including the tropics; 836 

ancillary information would be needed to attribute the observed signal of vegetation or 837 

carbon stock change to different drivers. Further, satellite-based estimates often only 838 

provide sub-component fluxes of ELUC, excluding soil or product pool changes. Since forest 839 

cover loss is better detectable from space than regrowth, satellite-based products often 840 

limit their estimates to emissions from forest loss, neglecting carbon uptake from regrowth 841 

of forests, as may occur following wood harvesting, abandonment, or natural disturbances; 842 

such products thus provide a subset of the gross emissions term (Fig. 7b) and cannot be 843 

compared to net emissions. Lastly, satellite-based fluxes typically quantify committed 844 

instead of actual emissions, i.e., legacy CO2 fluxes from potentially slow processes such as 845 

slash, soil carbon or product decay, or forest regrowth are not captured at the time they 846 

actually occur, but are attributed to the time of the land-use change event (Pongratz et al., 847 

2021). Using data on drivers of forest cover loss to isolate fluxes from agricultural 848 

expansion, and looking into gross emissions instead of the net land-use change flux, Feng et 849 

al. (2022) suggest a stronger increase in global gross emissions (though generally a smaller 850 

flux) than the bookkeeping models do (see gross fluxes in Fig. 7b). This is in line with Rosan 851 

et al. (2021) suggesting that the trend of net emissions in Brazil may be underestimated by 852 
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the updated land-use data (though patterns have improved). Further studies are needed to 853 

robustly estimate the trend of global net land-use emissions. Progress is also needed on 854 

accurate quantifications of land use dynamics, including less well observable management 855 

types such as shifting cultivation and wood harvesting, and their distinction from natural 856 

disturbances (Pongratz et al, 2021). 857 

Highest land-use emissions occur in the tropical regions of all three continents, including the 858 

Arc of Deforestation in the Amazon basin (Fig. 6b). This is related to massive expansion of 859 

cropland, particularly in the last few decades in Latin America, Southeast Asia, and sub-860 

Saharan Africa Emissions (Hong et al., 2021), to a substantial part for export (Pendrill et al., 861 

2019). Emission intensity is high in many tropical countries, particularly of Southeast Asia, 862 

due to high rates of land conversion in regions of carbon-dense and often still pristine, 863 

undegraded natural forests (Hong et al., 2021). Emissions are further increased by peat fires 864 

in equatorial Asia (GFED4s, van der Werf et al., 2017). Uptake due to land-use change 865 

occurs, particularly in Europe, partly related to expanding forest area as a consequence of 866 

the forest transition in the 19th and 20th century and subsequent regrowth of forest (Fig. 6b) 867 

(Mather 2001; McGrath et al., 2015). 868 

While the mentioned patterns are supported by independent literature and robust, we 869 

acknowledge that model spread is substantially larger on regional than global level, as has 870 

been shown for bookkeeping models (Bastos et al., 2021) as well as DGVMs (Obermeier et 871 

al., 2021). A detailed analysis of country-level or regional uncertainties globally is beyond 872 

the scope of this study. Assessments for individual regions will be performed as part of 873 

REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020) or already 874 

exist for selected regions (e.g., for Europe Petrescu et al., 2020, for Brazil Rosan et al., 2021). 875 

National GHG inventory data (NGHGI) under the LULUCF sector or data submitted by 876 

countries to FAOSTAT differ from the global models’ definition of ELUC we adopt here in that 877 

in the NGHGI reporting, the natural fluxes (SLAND) are counted towards ELUC when they occur 878 

on managed land (Grassi et al., 2018). In order to compare our results to the NGHGI 879 

approach, we perform a re-mapping of our ELUC estimate by including the SLAND over 880 

managed forest from the DGVMs simulations (following Grassi et al., 2021) to the 881 

bookkeeping ELUC estimate (see Appendix C.2.3). For the 2011-2020 period, we estimate 882 

that 1.5 GtC yr-1 of SLAND occurred on managed forests and is then reallocated to ELUC here, as 883 
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done in the NGHGI method. Doing so, our mean estimate of ELUC is reduced from a source of 884 

1.1 GtC to a sink of -0.4 GtC, very similar to the NGHGI estimate of -0.6 GtC (Table A.8).  885 

Though estimates between GHGI, FAOSTAT, individual process-based models and the 886 

mapped budget estimates still differ in value and need further analysis, the approach taken 887 

here provides a possibility to relate the global models’ and NGHGI approach to each other 888 

routinely and thus link the anthropogenic carbon budget estimates of land CO2 fluxes 889 

directly to the Global Stocktake, as part of UNFCCC Paris Agreement. 890 

3.2.3 Final year 2020 891 

The global CO2 emissions from land-use change are estimated as 0.9 ± 0.7 GtC in 2020, 0.2 892 

GtC lower than 2019, which had featured particularly large peat and tropical 893 

deforestation/degradation fires. The surge in deforestation fires in the Amazon, causing 894 

about 30% higher emissions from deforestation and degradation fires in 2019 over the 895 

previous decade, continued into 2020 (GFED4.1s, van der Werf et al., 2017). However, the 896 

unusually dry conditions for a non-El Niño year that occurred in Indonesia in 2019 and led to 897 

fire emissions from peat burning, deforestation and degradation in equatorial Asia to be 898 

about twice as large as the average over the previous decade (GFED4.1s, van der Werf et al., 899 

2017) ceased in 2020. However, confidence in the annual change remains low. While the 900 

mentioned fires are clearly attributable to land-use activity, foremost deforestation and 901 

peat burning, and may have been reinforced by dry weather conditions, as was the case in 902 

Indonesia in 2019, wildfires also occur naturally. In particular, the extreme fire events in 903 

recent years in Australia, Siberia or California were unrelated to land-use change and are 904 

thus not attributed to ELUC, but to the natural land sink and are discussed in Section 3.6.2. 905 

Land-use change and related emissions may have been affected by the COVID-19 pandemic 906 

(e.g. Poulter et al., 2021). Although emissions from tropical deforestation and degradation 907 

fires have been decreasing from 2019 to 2020 on the global scale, they increased in Latin 908 

America (GFED4s; van der Werf et al., 2017). During the period of the pandemic, 909 

environmental protection policies and their implementation may have been weakened in 910 

Brazil (Vale et al., 2021). In other countries, too, monitoring capacities and legal 911 

enforcement of measures to reduce tropical deforestation have been reduced due to 912 

budget restrictions of environmental agencies or impairments to ground-based monitoring 913 



34 
 

that prevents land grabs and tenure conflicts (Brancalion et al., 2020, Amador-Jiménez et 914 

al., 2020). Effects of the pandemic on trends in fire activity or forest cover changes are hard 915 

to separate from those of general political developments and environmental changes and 916 

the long-term consequences of disruptions in agricultural and forestry economic activities 917 

(e.g., Gruère and Brooks, 2020; Golar et al., 2020; Beckman and Countryman, 2021) remain 918 

to be seen.  919 

3.2.4 Year 2021 Projection 920 

With wet conditions in Indonesia and a below-average fire season in South America our 921 

preliminary estimate of ELUC for 2021 is substantially lower than the 2011-2020 average. By 922 

the end of September 2021 emissions from tropical deforestation and degradation fires 923 

were estimated to be 222 TgC, down from 347 TgC in 2019 and 288 in 2020 (315 TgC 1997-924 

2020 average). Peat fire emissions in Equatorial Asia were estimated to be 1 TgC, down from 925 

117 TgC in 2019 and 2 TgC in 2020 (74 TgC 1997-2020 average) (GFED4.1s, van der Werf et 926 

al., 2017). Based on the fire emissions until the end of September, we expect ELUC emissions 927 

of around 0.8 GtC in 2021. Note that although our extrapolation is based on tropical 928 

deforestation and degradation fires, degradation attributable to selective logging, edge-929 

effects or fragmentation will not be captured. 930 

3.3 Total anthropogenic emissions  931 

Cumulative anthropogenic CO2 emissions for 1850-2020 totalled 660 ± 65 GtC (2420 ± 240 932 

GtCO2), of which almost 70% (455 GtC) occurred since 1960 and more than 30% (205 GtC) 933 

since 2000 (Table 6 and 8). Total anthropogenic emissions more than doubled over the last 934 

60 years, from 4.6 ± 0.7 GtC yr-1 for the decade of the 1960s to an average of 10.6 ± 0.8 GtC 935 

yr-1 during 2011-2020.    936 

The total anthropogenic CO2 emissions from fossil plus land-use change amounted to 10.6 ± 937 

0.8 GtC (38.9 ± 2.9 GtCO2) for the 2011-2020 decade, reaching 10.2 ± 0.8 GtC (37.2 ± 2.9 938 

GtCO2) in 2020, while for 2021, we project global total anthropogenic CO2 emissions from 939 

fossil and land use changes to be around 10.7 GtC (39.3 GtCO2).  940 

During the historical period 1850-2020, 30% of historical emissions were from land use 941 

change and 70% from fossil emissions. However, fossil emissions have grown significantly 942 

since 1960 while land use changes have not, and consequently the contributions of land use 943 
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change to total anthropogenic emissions were smaller during recent periods (17% during 944 

the period 1960-2020 and 10% during 2011-2020).  945 

3.4 Atmospheric CO2 946 

3.4.1 Historical period 1850-2020 947 

Atmospheric CO2 concentration was approximately 277 parts per million (ppm) in 1750 948 

(Joos and Spahni, 2008), reaching 300ppm in the 1910s, 350ppm in the late 1980s, and 949 

reaching 412.44 ± 0.1 ppm in 2020 (Dlugokencky and Tans, 2022); Fig. 1). The mass of 950 

carbon in the atmosphere increased by 48% from 590 GtC in 1750 to 876 GtC in 2020. 951 

Current CO2 concentrations in the atmosphere are unprecedented in the last 2 million years 952 

and the current rate of atmospheric CO2 increase is at least 10 times faster than at any other 953 

time during the last 800,000 years (Canadell et al., 2021). 954 

3.4.2 Recent period 1960-2020 955 

The growth rate in atmospheric CO2 level increased from 1.7 ± 0.07 GtC yr-1 in the 1960s to 956 

5.1 ± 0.02 GtC yr-1 during 2011-2020 with important decadal variations (Table 6, Fig. 3 and 957 

Fig 4).  958 

During the last decade (2011-2020), the growth rate in atmospheric CO2 concentration 959 

continued to increase, albeit with large interannual variability (Fig. 4).  960 

The airborne fraction (AF), defined as the ratio of atmospheric CO2 growth rate to total 961 

anthropogenic emissions: 962 

𝐴𝐹 = 	𝐺)*"	/	(𝐸#$% + 𝐸&'()      (2) 963 

provides a diagnostic of the relative strength of the land and ocean carbon sinks in removing 964 

part of the anthropogenic CO2 perturbation. The evolution of AF over the last 60 years 965 

shows no significant trend, remaining nearly at around 45%, albeit showing a large 966 

interannual variability driven by the year-to-year variability in GATM (Fig. 8). The observed 967 

stability of the airborne fraction over the 1960-2020 period indicates that the ocean and 968 

land CO2 sinks have been removing on average about 55% of the anthropogenic emissions 969 

(see sections 3.5 and 3.6). 970 
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3.4.3 Final year 2020 971 

The growth rate in atmospheric CO2 concentration was 5.0 ± 0.2 GtC (2.37 ± 0.08 ppm) in 972 

2020 (Fig. 4; Dlugokencky and Tans, 2022), very close to the 2011-2020 average. The 2020 973 

decrease in EFOS and ELUC of about 0.7 GtC propagated to an atmospheric CO2 growth rate 974 

reduction of 0.38 GtC (0.18 ppm), given the significant interannual variability of the land 975 

carbon sink.  976 

3.4.4 Year 2021 Projection 977 

The 2021 growth in atmospheric CO2 concentration (GATM) is projected to be about 5.3 GtC 978 

(2.49 ppm) based on GLO observations until the end of December 2021, bringing the 979 

atmospheric CO2 concentration to an expected level of 414.67 ppm averaged over the year, 980 

50% over the pre-industrial level.  981 

3.5 Ocean Sink 982 

3.5.1 Historical period 1850-2020 983 

Cumulated since 1850, the ocean sink adds up to 170 ± 35 GtC, with two thirds of this 984 

amount being taken up by the global ocean since 1960. Over the historical period, the ocean 985 

sink increased in pace with the anthropogenic emissions exponential increase (Fig. 3b). 986 

Since 1850, the ocean has removed 26% of total anthropogenic emissions. 987 

3.5.2 Recent period 1960-2020 988 

The ocean CO2 sink increased from 1.1 ± 0.4 GtC yr-1 in the 1960s to 2.8 ± 0.4 GtC yr-1 during 989 

2011-2020 (Table 6), with interannual variations of the order of a few tenths of GtC yr-1 (Fig. 990 

9). The ocean-borne fraction (SOCEAN/(EFOS+ELUC) has been remarkably constant around 25% 991 

on average (Fig. 8). Variations around this mean illustrate decadal variability of the ocean 992 

carbon sink. So far, there is no indication of a decrease in the ocean-borne fraction from 993 

1960 to 2020. The increase of the ocean sink is primarily driven by the increased 994 

atmospheric CO2 concentration, with the strongest CO2 induced signal in the North Atlantic 995 

and the Southern Ocean (Fig. 10a). The effect of climate change is much weaker, reducing 996 

the ocean sink globally by 0.12 ± 0.07 GtC yr-1 or 5% (2011-2020, range -0.8 to -7.4%), and 997 

does not show clear spatial patterns across the GOBMs ensemble (Fig. 10b). This is the 998 
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combined effect of change and variability in all atmospheric forcing fields, previously 999 

attributed to wind and temperature changes in one model (LeQuéré et al., 2010). 1000 

The global net air-sea CO2 flux is a residual of large natural and anthropogenic CO2 fluxes 1001 

into and out of the ocean with distinct regional and seasonal variations (Fig. 6 and B1). 1002 

Natural fluxes dominate on regional scales, but largely cancel out when integrated globally 1003 

(Gruber et al., 2009). Mid-latitudes in all basins and the high-latitude North Atlantic 1004 

dominate the ocean CO2 uptake where low temperatures and high wind speeds facilitate 1005 

CO2 uptake at the surface (Takahashi et al., 2009). In these regions, formation of mode, 1006 

intermediate and deep-water masses transport anthropogenic carbon into the ocean 1007 

interior, thus allowing for continued CO2 uptake at the surface. Outgassing of natural CO2 1008 

occurs mostly in the tropics, especially in the equatorial upwelling region, and to a lesser 1009 

extent in the North Pacific and polar Southern Ocean, mirroring a well-established 1010 

understanding of regional patterns of air-sea CO2 exchange (e.g., Takahashi et al., 2009, 1011 

Gruber et al., 2009). These patterns are also noticeable in the Surface Ocean CO2 Atlas 1012 

(SOCAT) dataset, where an ocean fCO2 value above the atmospheric level indicates 1013 

outgassing (Fig. B1). This map further illustrates the data-sparsity in the Indian Ocean and 1014 

the southern hemisphere in general. 1015 

Interannual variability of the ocean carbon sink is driven by climate variability with a first-1016 

order effect from a stronger ocean sink during large El Niño events (e.g., 1997-1998) (Fig. 9; 1017 

Rödenbeck et al., 2014, Hauck et al., 2020). The GOBMs show the same patterns of decadal 1018 

variability as the mean of the fCO2-based data products, with a stagnation of the ocean sink 1019 

in the 1990s and a strengthening since the early 2000s (Fig. 9, Le Quéré et al., 2007; 1020 

Landschützer et al., 2015, 2016; DeVries et al., 2017; Hauck et al., 2020; McKinley et al., 1021 

2020). Different explanations have been proposed for this decadal variability, ranging from 1022 

the ocean’s response to changes in atmospheric wind and pressure systems (e.g., Le Quéré 1023 

et al., 2007, Keppler and Landschützer, 2019), including variations in upper ocean 1024 

overturning circulation (DeVries et al., 2017) to the eruption of Mount Pinatubo and its 1025 

effects on sea surface temperature and slowed atmospheric CO2 growth rate in the 1990s 1026 

(McKinley et al., 2020). The main origin of the decadal variability is a matter of debate with a 1027 

number of studies initially pointing to the Southern Ocean (see review in Canadell et al., 1028 
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2021), but also contributions from the North Atlantic and North Pacific (Landschützer et al., 1029 

2016, DeVries et al., 2019), or a global signal (McKinley et al., 2020) were proposed. 1030 

Although all individual GOBMs and data-products fall within the observational constraint, 1031 

the ensemble means of GOBMs, and data-products adjusted for the riverine flux diverge 1032 

over time with a mean offset increasing from 0.24 GtC yr-1 in the 1990s to 0.66 GtC yr-1 in 1033 

the decade 2011-2020 and reaching 1.1 GtC yr-1 in 2020. The SOCEAN trend diverges with a 1034 

factor two difference since 2002 (GOBMs: 0.3 ± 0.1 GtC yr-1 per decade, data-products: 0.7 ± 1035 

0.2 GtC yr-1 per decade, best estimate: 0.5 GtC yr-1 per decade) and with a factor of three 1036 

since 2010 (GOBMs: 0.3  ± 0.1 GtC yr-1 per decade, data-products: 0.9  ± 0.3 GtC yr-1 per 1037 

decade , best estimate: 0.6 GtC yr-1 per decade). The GOBMs estimate is lower than in the 1038 

previous global carbon budget (Friedlingstein et al., 2020), because one high-sink model was 1039 

not available. The effect of two models (CNRM, MOM6-COBALT) revising their estimates 1040 

downwards was largely balanced by two models revising their estimate upwards (FESOM-1041 

REcoM, PlankTOM).  1042 

The discrepancy between the two types of estimates stems mostly from a larger Southern 1043 

Ocean sink in the data-products prior to 2001, and from a larger SOCEAN trend in the northern 1044 

and southern extra-tropics since then (Fig. 12). Possible explanations for the discrepancy in 1045 

the Southern Ocean could be missing winter observations and data sparsity in general 1046 

(Bushinsky et al., 2019, Gloege et al., 2021), model biases (as indicated by the large model 1047 

spread in the South, Figure 12, and the larger model-data mismatch, Figure B2), or 1048 

uncertainties in the regional river flux adjustment (Hauck et al., 2020, Lacroix et al., 2020).  1049 

During 2010-2016, the ocean CO2 sink appears to have intensified in line with the expected 1050 

increase from atmospheric CO2 (McKinley et al., 2020). This effect is stronger in the fCO2-1051 

based data products (Fig. 9, GOBMs: +0.43 GtC yr-1, data-products: +0.56 GtC yr-1). The 1052 

reduction of -0.09 GtC yr-1 (range: -0.30 to +0.12 GtC yr-1) in the ocean CO2 sink in 2017 is 1053 

consistent with the return to normal conditions after the El Niño in 2015/16, which caused 1054 

an enhanced sink in previous years. After 2017, the GOBMs ensemble mean suggests the 1055 

ocean sink levelling off at about 2.5 GtC yr-1, whereas the data-products’ estimate increases 1056 

by 0.3 GtC yr-1 over the same period. 1057 
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3.5.3 Final year 2020 1058 

The estimated ocean CO2 sink was 3.0 ± 0.4 GtC in 2020. This is the average of GOBMs and 1059 

data-products, and is a small increase of 0.02 GtC compared to 2019, in line with the 1060 

competing effects from an expected sink strengthening from atmospheric CO2 growth and 1061 

expected sink weakening from La Niña conditions. There is, however, a substantial 1062 

difference between GOBMs and fCO2-based data-products in their mean 2020 SOCEAN 1063 

estimate (GOBMs: 2.5 GtC, data-products: 3.5 GtC). While the GOBMs simulate a stagnation 1064 

of the sink from 2019 to 2020 (-0.02 ±0.11 GtCGtC), the data-products suggest an increase 1065 

by 0.06 GtC, although not significant at the 1σ level (±0.13 GtC). Four models and four data 1066 

products show an increase of SOCEAN (GOBMs up to +0.18 GtC, data-product up to +0.21 1067 

GtC), while four models and three data products show no change or a decrease of SOCEAN 1068 

(GOBMs down to -0.12 GtC, data-products down to -0.13 GtC; Fig. 9). The data-products 1069 

have a larger uncertainty at the tails of the reconstructed time series (e.g., Watson et al., 1070 

2020). Specifically, the data-products’ estimate of the last year is regularly adjusted in the 1071 

following release owing to the tail effect and an incrementally increasing data availability 1072 

with 1-5 years lag (Figure 9 bottom).  1073 

3.5.4 Year 2021 Projection 1074 

Using a feed-forward neural network method (see section 2.4) we project an ocean sink of 1075 

2.9 GtC for 2021.  This is a reduction of the sink by 0.1 GtC relative to the 2020 value which 1076 

we attribute to La Niña conditions in January to May 2021 and projections of a re-1077 

emergence of La Niña later in the year.   1078 

3.5.5 Model Evaluation 1079 

The evaluation of the ocean estimates (Fig. B2) shows an RMSE from annually detrended 1080 

data of 1.3 to 2.8 µatm for the seven fCO2-based data products over the globe, relative to 1081 

the fCO2 observations from the SOCAT v2021 dataset for the period 1990-2020. The GOBMs 1082 

RMSEs are larger and range from 3.3 to 5.9 µatm. The RMSEs are generally larger at high 1083 

latitudes compared to the tropics, for both the data products and the GOBMs. The data 1084 

products have RMSEs of 1.3 to 3.6 µatm in the tropics, 1.3 to 2.7 µatm in the north, and 2.2 1085 

to 6.1 µatm in the south. Note that the data products are based on the SOCAT v2021 1086 

database, hence the latter are not independent dataset for the evaluation of the data 1087 
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products. The GOBMs RMSEs are more spread across regions, ranging from 2.7 to 4.3 µatm 1088 

in the tropics, 2.9 to 6.9 µatm in the North, and 6.4 to 9.8 µatm in the South. The higher 1089 

RMSEs occur in regions with stronger climate variability, such as the northern and southern 1090 

high latitudes (poleward of the subtropical gyres). The upper-range of the model RMSEs 1091 

have decreased somewhat relative to Friedlingstein et al. (2020), owing to one model with 1092 

upper-end RMSE not being represented this year, and the reduction of RMSE in one model 1093 

(MPIOM-HAMOCC6), presumably related to the inclusion of riverine carbon fluxes. 1094 

The additional simulation C allows to separate the steady-state anthropogenic carbon 1095 

component (sim C - sim B) and to compare the model flux and DIC inventory change directly 1096 

to the interior ocean estimate of Gruber et al (2019) without further assumptions. The 1097 

GOBMs ensemble average of steady-state anthropogenic carbon inventory change 1994-1098 

2007 amounts to 2.1 GtC yr-1, and is significantly lower than the 2.6 ± 0.3 GtC yr-1 estimated 1099 

by Gruber et al (2019). Only the three models with the highest sink estimate fall within the 1100 

range reported by Gruber et al. (2019). This suggests that most of the models 1101 

underestimates anthropogenic carbon uptake by the ocean likely due to biases in ocean 1102 

carbon transport and mixing from the surface mixed layer to the ocean interior.  1103 

The reported SOCEAN estimate from GOBMs and data-products is 2.1 ± 0.4 GtC yr-1 over the 1104 

period 1994 to 2007, which is in agreement with the ocean interior estimate of 2.2 ± 0.4 GtC 1105 

yr−1 when accounting for the climate effect on the natural CO2 flux of −0.4 ± 0.24 GtC yr−1 1106 

(Gruber et al., 2019) to match the definition of SOCEAN used here (Hauck et al., 2020). This 1107 

comparison depends critically on the estimate of the climate effect on the natural CO2 flux, 1108 

which is smaller from the GOBMs (section 3.5.2) than in Gruber et al. (2019). 1109 

3.6 Land Sink 1110 

3.6.1 Historical period 1850-2020 1111 

Cumulated since 1850, the terrestrial CO2 sink amounts to 195 ± 45 GtC, 30% of total 1112 

anthropogenic emissions. Over the historical period, the sink increased in pace with the 1113 

anthropogenic emissions exponential increase (Fig. 3b). 1114 

3.6.2 Recent period 1960-2020 1115 

The terrestrial CO2 sink increased from 1.2 ± 0.5 GtC yr-1 in the 1960s to 3.1 ± 0.6 GtC yr-1 1116 

during 2010-2019, with important interannual variations of up to 2 GtC yr-1 generally 1117 
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showing a decreased land sink during El Niño events (Fig. 7), responsible for the 1118 

corresponding enhanced growth rate in atmospheric CO2 concentration. The larger land CO2 1119 

sink during 2010-2019 compared to the 1960s is reproduced by all the DGVMs in response 1120 

to the combined atmospheric CO2 increase and the changes in climate, and consistent with 1121 

constraints from the other budget terms (Table 5).  1122 

Over the period 1960 to present the increase in the global terrestrial CO2 sink is largely 1123 

attributed to the CO2 fertilisation effect in the models (Prentice et al., 2001, Piao et al., 1124 

2009), directly stimulating plant photosynthesis and increased plant water use in water 1125 

limited systems, with a small negative contribution of climate change (Fig. 10). There is a 1126 

range of evidence to support a positive terrestrial carbon sink in response to increasing 1127 

atmospheric CO2, albeit with uncertain magnitude (Walker et al., 2021). As expected from 1128 

theory the greatest CO2 effect is simulated in the tropical forest regions, associated with 1129 

warm temperatures and long growing seasons (Hickler et al., 2008) (Fig. 10a). However, 1130 

evidence from tropical intact forest plots indicate an overall decline in the land sink across 1131 

Amazonia (1985-2011), attributed to enhanced mortality offsetting productivity gains 1132 

(Brienen et al., 2005, Hubau et al., 2020). During 2011-2020 the land sink is positive in all 1133 

regions (Fig. 6) with the exception of central and eastern Brazil, Southwest USA and 1134 

northern Mexico, Southeast Europe and Central Asia, South Africa, and eastern Australia, 1135 

where the negative effects of climate variability and change (i.e. reduced rainfall) 1136 

counterbalance CO2 effects. This is clearly visible on Figure 10 where the effects of CO2 (Fig. 1137 

10a) and climate (Fig. 10b) as simulated by the DGVMs are isolated. The negative effect of 1138 

climate is the strongest in most of South America, Central America, Southwest US and 1139 

Central Europe (Fig. 10b).  Globally, climate change reduces the land sink by 0.45 ± 0.39 GtC 1140 

yr-1 or 15% (2011-2020). 1141 

In the past years several regions experienced record-setting fire events. While global burned 1142 

area has declined over the past decades mostly due to declining fire activity in savannas 1143 

(Andela et al., 2017), forest fire emissions are rising and have the potential to counter the 1144 

negative fire trend in savannas (Zheng et al., 2021). Noteworthy events include the 2019-1145 

2020 Black Summer event in Australia (emissions of roughly 0.2 GtC; van der Velde et al., 1146 

2021) and Siberia in 2021 where emissions approached 0.4 GtC or three times the 1997-1147 

2020 average according to GFED4s. While other regions, including Western US and 1148 
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Mediterranean Europe, also experienced intense fire seasons in 2021 their emissions are 1149 

substantially lower. 1150 

Despite these regional negative effects of climate change on SLAND, the efficiency of land to 1151 

remove anthropogenic CO2 emissions has remained broadly constant over the last six 1152 

decades, with a land-borne fraction (SLAND/(EFOS+ELUC) of ~30% (Fig 8). 1153 

3.6.3 Final year 2020 1154 

The terrestrial CO2 sink from the DGVMs ensemble was 2.9 ± 1.0 GtC in 2020, slightly below 1155 

the decadal average of 3.1 GtC yr-1 (Fig. 4, Table 6). We note that the DGVMs estimate for 1156 

2020 is significantly larger than the 2.1 ± 0.9 GtC yr-1 estimate from the residual sink from 1157 

the global budget (EFOS+ELUC-GATM-SOCEAN) (Table 5).  1158 

3.6.4 Year 2021 Projection 1159 

Using a feed-forward neural network method (see section 2.5) we project a land sink of 3.3 1160 

GtC for 2021.  This is an increase of the land sink by 0.3 GtC relative to the 2020 value which 1161 

we attribute to La Niña conditions in 2021.  1162 

3.6.5 Model Evaluation 1163 

The evaluation of the DGVMs (Fig. B3) shows generally high skill scores across models for 1164 

runoff, and to a lesser extent for vegetation biomass, GPP, and ecosystem respiration (Fig. 1165 

B3, left panel). Skill score was lowest for leaf area index and net ecosystem exchange, with a 1166 

widest disparity among models for soil carbon. Further analysis of the results will be 1167 

provided separately, focusing on the strengths and weaknesses in the DGVMs ensemble and 1168 

its validity for use in the global carbon budget. 1169 

3.7 Partitioning the carbon sinks 1170 

3.7.1 Global sinks and spread of estimates 1171 

In the period 2011-2020, the bottom-up view of total global carbon sinks provided by the 1172 

GCB (SOCEAN + SLAND– ELUC) agrees closely with the top-down budget delivered by the 1173 

atmospheric inversions. Figure 11 shows both total sink estimates of the last decade split by 1174 

land and ocean, which match the difference between GATM and EFOS to within 0.06–0.17 GtC 1175 
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yr-1 for inverse models, and to 0.3 GtC yr-1 for the GCB mean. The latter represents the BIM 1176 

discussed in Section 3.8, which by design is minimal for the inverse models.  1177 

The distributions based on the individual models and data products reveal substantial 1178 

spread but converge near the decadal means quoted in Tables 5 and 6. Sink estimates for 1179 

SOCEAN and from inverse models are mostly non-Gaussian, while the ensemble of DGVMs 1180 

appears more normally distributed justifying the use of a multi-model mean and standard 1181 

deviation for their errors in the budget. Noteworthy is that the tails of the distributions 1182 

provided by the land and ocean bottom-up estimates would not agree with the global 1183 

constraint provided by the fossil fuel emissions and the observed atmospheric CO2 growth 1184 

rate (EFOS – GATM). This illustrates the power of the atmospheric joint constraint from GATM 1185 

and the global CO2 observation network it derives from.  1186 

3.7.2 Total atmosphere-to-land fluxes 1187 

The total atmosphere-to-land fluxes (SLAND – ELUC), calculated here as the difference between 1188 

SLAND from the DGVMs and ELUC from the bookkeeping models, amounts to a 1.9 ± 0.9 GtC yr-1189 
1 sink during 2011-2020 (Table 5). Estimates of total atmosphere-to-land fluxes (SLAND – ELUC) 1190 

from the DGVMs alone (1.6 ± 0.6 GtC yr-1) are consistent with this estimate and also with 1191 

the global carbon budget constraint (EFOS – GATM – SOCEAN, 1.7 ± 0.8 GtC yr-1 Table 5). 1192 

Consistent with the bookkeeping models estimates, the DGVM-based ELUC is substantially 1193 

lower than in Friedlingstein et al., (2020) due to the improved land cover forcing (see 1194 

section 3.2.2), increasing their total atmosphere-to-land fluxes and hence the consistency 1195 

with the budget constraint. For the last decade (2011-2020), the inversions estimate the net 1196 

atmosphere-to-land uptake to lie within a range of 1.3 to 2.0 GtC yr-1, consistent with the 1197 

GCB and DGVMs estimates of SLAND – ELUC (Figure 11, Figure 12 top row).  1198 

3.7.3 Total atmosphere-to-ocean fluxes 1199 

For the 2011-2020 period, the GOBMs (2.5 ± 0.6 GtC yr-1) produce a lower estimate for the 1200 

ocean sink than the fCO2-based data products (3.1 ± 0.5 GtC yr-1), which shows up in Figure 1201 

11 as a separate peak in the distribution from the GOBMs (triangle symbols pointing right) 1202 

and from the fCO2-based products (triangle symbols pointing left). Atmospheric inversions 1203 

(2.6 to 3.1 GtC yr-1) also suggest higher ocean uptake in the recent decade (Figure 11, Figure 1204 

12 top row). In interpreting these differences, we caution that the riverine transport of 1205 

carbon taken up on land and outgassing from the ocean is a substantial (0.6 GtC yr-1) and 1206 
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uncertain term that separates the various methods. A recent estimate of decadal ocean 1207 

uptake from observed O2/N2 ratios (Tohjima et al., 2019) also points towards a larger ocean 1208 

sink, albeit with large uncertainty (2012-2016: 3.1 ± 1.5 GtC yr-1).  1209 

3.7.4 Regional breakdown and interannual variability 1210 

Figure 12 also shows the latitudinal partitioning of the total atmosphere-to-surface fluxes 1211 

excluding fossil CO2 emissions (SOCEAN + SLAND – ELUC) according to the multi-model average 1212 

estimates from GOBMs and ocean fCO2-based products (SOCEAN) and DGVMs (SLAND – ELUC), 1213 

and from atmospheric inversions (SOCEAN and SLAND – ELUC).  1214 

3.7.4.1 North 1215 

Despite being one of the most densely observed and studied regions of our globe, annual 1216 

mean carbon sink estimates in the northern extra-tropics (north of 30°N) continue to differ 1217 

by about 0.5 GtC yr-1. The atmospheric inversions suggest an atmosphere-to-surface sink 1218 

(SOCEAN+ SLAND – ELUC) for 2011-2020 of 2.0 to 3.4 GtC yr-1, which is higher than the process 1219 

models’ estimate of 2.1 ± 0.5 GtC yr-1 (Fig. 12). The GOBMs (1.1 ± 0.2 GtC yr-1), fCO2-based 1220 

data products (1.3 ± 0.1 GtC yr-1), and inversion models (0.9 to 1.5 GtC yr-1) produce 1221 

consistent estimates of the ocean sink. Thus, the difference mainly arises from the total land 1222 

flux (SLAND – ELUC) estimate, which is 1.0 ± 0.4 GtC yr-1 in the DGVMs compared to 0.7 to 2.4 1223 

GtC yr-1 in the atmospheric inversions (Figure 12, second row). 1224 

Discrepancies in the northern land fluxes conforms with persistent issues surrounding the 1225 

quantification of the drivers of the global net land CO2 flux (Arneth et al., 2017; Huntzinger 1226 

et al., 2017) and the distribution of atmosphere-to-land fluxes between the tropics and high 1227 

northern latitudes (Baccini et al., 2017; Schimel et al., 2015; Stephens et al., 2007; Ciais et al. 1228 

2019; Gaubert et al,. 2019).  1229 

In the northern extratropics, the process models, inversions, and fCO2-based data products 1230 

consistently suggest that most of the variability stems from the land (Fig. 12). Inversions 1231 

generally estimate similar interannual variations (IAV) over land to DGVMs (0.28 – 0.47 vs 1232 

0.20 – 0.73 GtC yr−1, averaged over 1990-2020), and they have higher IAV in ocean fluxes 1233 

(0.03 – 0.19 GtC yr−1)  relative to GOBMs  (0.03 – 0.05 GtC yr−1, Fig. B2), and fCO2-based data 1234 

products (0.03 – 0.09 GtC yr−1).  1235 
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3.7.4.2 Tropics 1236 

In the tropics (30°S-30°N), both the atmospheric inversions and process models estimate a 1237 

total carbon balance (SOCEAN+SLAND-ELUC) that is close to neutral over the past decade. The 1238 

GOBMs (0.0 ± 0.3 GtC yr-1), fCO2-based data products (0.03 ± 0.2 GtC yr-1), and inversion 1239 

models (-0.2 to 0.2 GtC yr-1) all indicate an approximately neutral tropical ocean flux (see 1240 

Fig. B1 for spatial patterns). DGVMs indicate a net land sink (SLAND-ELUC) of 0.6 ± 0.3 GtC yr-1, 1241 

whereas the inversion models indicate a net land flux between -0.7 and 0.9 GtC yr-1, though 1242 

with high uncertainty (Figure 12, third row).   1243 

The tropical lands are the origin of most of the atmospheric CO2 interannual variability 1244 

(Ahlström et al., 2015), consistently among the process models and inversions (Fig. 12). The 1245 

interannual variability in the tropics is similar among the ocean data products (0.07 – 0.15 1246 

GtC yr−1) and the models (0.07 – 0.15 GtC yr−1, Fig. B2), which is the highest ocean sink 1247 

variability of all regions. The DGVMs and inversions indicate that atmosphere-to-land CO2 1248 

fluxes are more variable than atmosphere-to-ocean CO2 fluxes in the tropics, with 1249 

interannual variability of 0.4 to 1.2 and 0.6 to 1.1 GtC yr−1 respectively.  1250 

3.7.4.3 South 1251 

In the southern extra-tropics (south of 30°S), the atmospheric inversions suggest a total 1252 

atmosphere-to-surface sink (SOCEAN+SLAND-ELUC) for 2011-2020 of 1.6 to 1.9 GtC yr-1, slightly 1253 

higher than the process models’ estimate of 1.4 ± 0.3 GtC yr-1 (Fig. 12). An approximately 1254 

neutral total land flux (SLAND-ELUC) for the southern extra-tropics is estimated by both the 1255 

DGVMs (0.02 ± 0.05 GtC yr-1) and the inversion models (sink of -0.1 to 0.2 GtC yr-1). This 1256 

means nearly all carbon uptake is due to oceanic sinks south of 30°S.  The southern ocean 1257 

flux in the fCO2-based data products (1.7 ± 0.1 GtC yr-1 ) and inversion estimates (1.4 to 1.8 1258 

GtCyr-1) is higher than in the GOBMs (1.4 ± 0.3 GtC yr-1 ) (Figure 12, bottom row). This might 1259 

be explained by the data-products potentially underestimating the winter CO2 outgassing 1260 

south of the Polar Front (Bushinsky et al., 2019), by model biases, or by the uncertainty in 1261 

the regional distribution of the river flux adjustment (Aumont et al., 2001, Lacroix et al., 1262 

2020) applied to fCO2-based data products and inverse models to isolate the anthropogenic 1263 

SOCEAN flux. CO2 fluxes from this region are more sparsely sampled by all methods, especially 1264 

in wintertime (Fig. B1). 1265 
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The interannual variability in the southern extra-tropics is low because of the dominance of 1266 

ocean area with low variability compared to land areas. The split between land (SLAND-ELUC) 1267 

and ocean (SOCEAN) shows a substantial contribution to variability in the south coming from 1268 

the land, with no consistency between the DGVMs and the inversions or among inversions. 1269 

This is expected due to the difficulty of separating exactly the land and oceanic fluxes when 1270 

viewed from atmospheric observations alone. The SOCEAN interannual variability was found to 1271 

be higher in the fCO2-based data products (0.09 to 0.14 GtC yr−1) compared to GOBMs (0.04 1272 

to 0.06 GtC yr−1) in 1990-2020 (Fig. B2). Model subsampling experiments recently 1273 

illustrated that observation-based products may overestimate decadal variability in the 1274 

Southern Ocean carbon sink by 30% due to data sparsity, based on one data product with 1275 

the highest decadal variability (Gloege et al., 2021). 1276 

3.7.4.4 Tropical vs northern land uptake 1277 

A continuing conundrum is the partitioning of the global atmosphere-land flux between the 1278 

northern hemisphere land and the tropical land (Stephens et al., 2017; Pan et al., 2011; 1279 

Gaubert et al., 2019). It is of importance because each region has its own history of land-use 1280 

change, climate drivers, and impact of increasing atmospheric CO2 and nitrogen deposition. 1281 

Quantifying the magnitude of each sink is a prerequisite to understanding how each 1282 

individual driver impacts the tropical and mid/high-latitude carbon balance. 1283 

  We define the North-South (N-S) difference as net atmosphere-land flux north of 30N 1284 

minus the net atmosphere-land flux south of 30°N. For the inversions, the N-S difference 1285 

ranges from -0.1 GtC yr-1 to 2.9 GtC yr-1 across this year’s inversion ensemble with an equal 1286 

preference across models for either a small Northern land sink and a tropical land sink 1287 

(small N-S difference), a medium Northern land sink and a neutral tropical land flux 1288 

(medium N-S difference), or a large Northern land sink and a tropical land source (large N-S 1289 

difference).  1290 

In the ensemble of DGVMs the N-S difference is 0.5 ± 0.5 GtC yr-1, a much narrower range 1291 

than the one from inversions. Only three DGVMs have a N-S difference larger than 1.0 GtC 1292 

yr-1. The larger agreement across DGVMs than across inversions is to be expected as there is 1293 

no correlation between Northern and Tropical land sinks in the DGVMs as opposed to the 1294 

inversions where the sum of the two regions being well-constrained leads to an anti-1295 
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correlation between these two regions. The much smaller spread in the N-S difference 1296 

between the DGVMs could help to scrutinise the inverse models further. For example, a 1297 

large northern land sink and a tropical land source in an inversion would suggest a large 1298 

sensitivity to CO2 fertilisation (the dominant factor driving the land sinks) for Northern 1299 

ecosystems, which would be not mirrored by tropical ecosystems. Such a combination could 1300 

be hard to reconcile with the process understanding gained from the DGVMs ensembles and 1301 

independent measurements (e.g. Free Air CO2 Enrichment experiments). Such 1302 

investigations will be further pursued in the upcoming assessment from REgional Carbon 1303 

Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020). 1304 

3.8 Closing the Global Carbon Cycle 1305 

3.8.1 Partitioning of Cumulative Emissions and Sink Fluxes 1306 

The global carbon budget over the historical period (1850-2020) is shown in Fig. 3.  1307 

Emissions during the period 1850-2020 amounted to 660 ± 65 GtC and were partitioned 1308 

among the atmosphere (270 ± 5 GtC; 41%), ocean (170 ± 35 GtC; 26%), and the land (195 ± 1309 

45 GtC; 30%). The cumulative land sink is almost equal to the cumulative land-use emissions 1310 

(200 ± 65 GtC), making the global land nearly neutral over the whole 1850-2020 period.  1311 

The use of nearly independent estimates for the individual terms shows a cumulative 1312 

budget imbalance of 25 GtC (4%) during 1850-2020 (Fig. 3, Table 8), which, if correct, 1313 

suggests that emissions are slightly too high by the same proportion (4%) or that the 1314 

combined land and ocean sinks are slightly underestimated (by about 7%). The bulk of the 1315 

imbalance could originate from the estimation of large ELUC between the mid 1920s and the 1316 

mid 1960s which is unmatched by a growth in atmospheric CO2 concentration as recorded in 1317 

ice cores (Fig. 3). However, the known loss of additional sink capacity of 30-40 GtC (over the 1318 

1850-2020 period) due to reduced forest cover has not been accounted for in our method 1319 

and would further exacerbate the budget imbalance (Section 2.7.4).  1320 

For the more recent 1960-2020 period where direct atmospheric CO2 measurements are 1321 

available, 375 ± 20 GtC (82%) of the total emissions (EFOS + ELUC) were caused by fossil CO2 1322 

emissions, and 80 ± 45 GtC (18%) by land-use change (Table 8). The total emissions were 1323 

partitioned among the atmosphere (205 ± 5 GtC; 47%), ocean (115 ± 25 GtC; 25%), and the 1324 

land (135 ± 25 GtC; 30%), with a near zero unattributed budget imbalance. All components 1325 
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except land-use change emissions have significantly grown since 1960, with important 1326 

interannual variability in the growth rate in atmospheric CO2 concentration and in the land 1327 

CO2 sink (Fig. 4), and some decadal variability in all terms (Table 6). Differences with 1328 

previous budget releases are documented in Fig. B5.  1329 

The global carbon budget averaged over the last decade (2011-2020) is shown in Fig. 2, Fig. 1330 

13 (right panel) and Table 6. For this time period, 90% of the total emissions (EFOS + ELUC) 1331 

were from fossil CO2 emissions (EFOS), and 10% from land-use change (ELUC). The total 1332 

emissions were partitioned among the atmosphere (47%), ocean (26%) and land (29%), with 1333 

a near-zero unattributed budget imbalance (~3%). For single years, the budget imbalance 1334 

can be larger (Figure 4). For 2020, the combination of our sources and sinks estimates leads 1335 

to a BIM of -0.8 GtC, suggesting an underestimation of the anthropogenic sources 1336 

(potentially ELUC), and/or an overestimation of the combined land and ocean sinks 1337 

3.8.2 Carbon Budget Imbalance 1338 

The carbon budget imbalance (BIM; Eq. 1, Fig.4) quantifies the mismatch between the 1339 

estimated total emissions and the estimated changes in the atmosphere, land, and ocean 1340 

reservoirs. The mean budget imbalance from 1960 to 2020 is very small (average of 0.03 GtC 1341 

yr-1) and shows no trend over the full time series. The process models (GOBMs and DGVMs) 1342 

and data-products have been selected to match observational constraints in the 1990s, but 1343 

no further constraints have been applied to their representation of trend and variability. 1344 

Therefore, the near-zero mean and trend in the budget imbalance is seen as evidence of a 1345 

coherent community understanding of the emissions and their partitioning on those time 1346 

scales (Fig. 4). However, the budget imbalance shows substantial variability of the order of 1347 

±1 GtC yr-1, particularly over semi-decadal time scales, although most of the variability is 1348 

within the uncertainty of the estimates. The positive carbon imbalance during the 1960s, 1349 

and early 1990s, indicates that either the emissions were overestimated, or the sinks were 1350 

underestimated during these periods. The reverse is true for the 1970s, 1980s, and for the 1351 

2011-2020 period (Fig. 4, Table 6).  1352 

We cannot attribute the cause of the variability in the budget imbalance with our analysis, 1353 

we only note that the budget imbalance is unlikely to be explained by errors or biases in the 1354 

emissions alone because of its large semi-decadal variability component, a variability that is 1355 

untypical of emissions and has not changed in the past 60 years despite a near tripling in 1356 
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emissions (Fig. 4). Errors in SLAND and SOCEAN are more likely to be the main cause for the 1357 

budget imbalance. For example, underestimation of the SLAND by DGVMs has been reported 1358 

following the eruption of Mount Pinatubo in 1991 possibly due to missing responses to 1359 

changes in diffuse radiation (Mercado et al., 2009). Although in GCB2021 we have for the 1360 

first time accounted for aerosol effects on solar radiation quantity and quality (diffuse vs 1361 

direct), most DGVMs only used the former as input (i.e., total solar radiation). Thus, the 1362 

ensemble mean may not capture the full effects of volcanic eruptions, i.e. associated with 1363 

high light scattering sulphate aerosols, on the land carbon sink (O’Sullivan et al., 2021). 1364 

DGVMs are suspected to overestimate the land sink in response to the wet decade of the 1365 

1970s (Sitch et al., 2008). Quasi-decadal variability in the ocean sink has also been reported, 1366 

with all methods agreeing on a smaller than expected ocean CO2 sink in the 1990s and a 1367 

larger than expected sink in the 2000s (Fig. 9; Landschützer et al., 2016, DeVries et al., 2019, 1368 

Hauck et al., 2020, McKinley et al., 2020). Errors in sink estimates could also be driven by 1369 

errors in the climatic forcing data, particularly precipitation for SLAND and wind for SOCEAN.  1370 

The budget imbalance (BIM) was negative (-0.3 GtC yr-1) on average over 2011-2020, 1371 

although the BIM uncertainty is large (1.1 GtC yr-1 over the decade). Also, the BIM shows 1372 

substantial departure from zero on yearly time scales (Fig. 4), highlighting unresolved 1373 

variability of the carbon cycle, likely in the land sink (SLAND), given its large year to year 1374 

variability (Fig. 4e and 7).  1375 

Both the budget imbalance (BIM, Table 6) and the residual land sink from the global budget 1376 

(EFOS+ELUC-GATM-SOCEAN, Table 5) include an error term due to the inconsistencies that arises 1377 

from using ELUC from bookkeeping models, and SLAND from DGVMs, most notably the loss of 1378 

additional sink capacity (see section 2.7). Other differences include a better accounting of 1379 

land use changes practices and processes in bookkeeping models than in DGVMs, or the 1380 

bookkeeping models error of having present-day observed carbon densities fixed in the 1381 

past. That the budget imbalance shows no clear trend towards larger values over time is an 1382 

indication that these inconsistencies probably play a minor role compared to other errors in 1383 

SLAND or SOCEAN. 1384 

Although the budget imbalance is near zero for the recent decades, it could be due to 1385 

compensation of errors. We cannot exclude an overestimation of CO2 emissions, particularly 1386 

from land-use change, given their large uncertainty, as has been suggested elsewhere (Piao 1387 
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et al., 2018), combined with an underestimate of the sinks. A larger SLAND would reconcile 1388 

model results with inversion estimates for fluxes in the total land during the past decade 1389 

(Fig. 12; Table 5). Likewise, a larger SOCEAN is also possible given the higher estimates from 1390 

the data-products (see section 3.1.2, Fig. 9 and Fig. 12) and the recently suggested upward 1391 

correction of the ocean carbon sink (Watson et al., 2020, Fig. 9). If SOCEAN were to be based 1392 

on data-products alone, with all data-products including the Watson et al. (2020) 1393 

adjustment, this would result in a 2011-2020  SOCEAN of nearly 4 GtC yr-1, outside of the range 1394 

supported by the atmospheric inversions, with a negative BIM of more than 1 GtC yr-1 1395 

indicating that a closure of the budget could only be achieved with either anthropogenic 1396 

emissions being larger and/or the net land sink being substantially smaller than estimated 1397 

here. More integrated use of observations in the Global Carbon Budget, either on their own 1398 

or for further constraining model results, should help resolve some of the budget imbalance 1399 

(Peters et al., 2017).  1400 

4 Tracking progress towards mitigation targets  1401 

Fossil CO2 emissions growth peaked at +3% per year during the 2000s, driven by the rapid 1402 

growth in Chinese emissions. In the last decade, however, the growth rate for the preceding 1403 

10 years has slowly declined, reaching a low +0.4% per year from 2012-2021 (including the 1404 

2020 global decline and the expected 2021 emissions rebound). While this slowdown in 1405 

global fossil CO2 emissions growth is welcome, it is far from what is needed to be consistent 1406 

with the temperature goals of the Paris Agreement.  1407 

Since the 1990s, the average growth rate of fossil CO2 emissions has continuously declined 1408 

across the group of developed countries of the Organisation for Economic Co-operation and 1409 

Development (OECD), with emissions peaking in around 2005 and now declining at around 1410 

1% yr-1 (Le Quéré et al., 2021). In the decade 2010-2019, territorial fossil CO2 emissions 1411 

decreased significantly (at the 95% confidence level) in 23 countries whose economies grew 1412 

significantly (also at the 95% confidence level): Barbados, Belgium, Croatia, Czech Republic, 1413 

Denmark, Finland, France, Germany, Israel, Japan, Luxembourg, North Macedonia, Malta, 1414 

Mexico, Netherlands, Slovakia, Slovenia, Solomon Islands, Sweden, Switzerland, Tuvalu, 1415 

United Kingdom and the USA (updated from Le Quéré et al., 2019). Altogether, these 23 1416 

countries contribute to 2.5 GtC yr-1 over the last decade, about one quarter of world CO2 1417 

fossil emissions. Consumption-based emissions are also falling significantly in 15 of these 1418 
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countries (Belgium, Croatia, Czech Republic, Denmark, Finland, France, Germany, Israel, 1419 

Japan, Mexico, Netherlands, Slovenia, Sweden, United Kingdom, and the USA). Figure 14 1420 

shows that the emission declines in the USA and the EU27 are primarily driven by increased 1421 

decarbonisation (CO2 emissions per unit energy) in the last decade compared to the 1422 

previous, with smaller contributions in the EU27 from slightly weaker economic growth and 1423 

slightly larger declines in energy per GDP. These countries have stable or declining energy 1424 

use and so decarbonisation policies replace existing fossil fuel infrastructure (Le Quéré et al. 1425 

2019). 1426 

In contrast, fossil CO2 emissions continue to grow in non-OECD countries, although the 1427 

growth rate has slowed from over 5% yr-1 during the 2000s to around 2% yr-1 in the last 1428 

decade. A large part of this slowdown in non-OECD countries is due to China, which has 1429 

seen emissions growth declining from nearly 10% yr-1 in the 2000s to 2% yr-1 in the last 1430 

decade. Excluding China, non-OECD emissions grew at 3% yr-1 in the 2000s compared to 2% 1431 

yr-1 in the last decade. Figure 14 shows that compared to the previous decade, China has 1432 

had weaker economic growth in the last decade and a larger decarbonisation rate, with 1433 

more rapid declines in energy per GDP which are now back to levels during the 1990s. India 1434 

and the rest of the world have strong economic growth that is not compensated by 1435 

decarbonisation or declines in energy per GDP, implying fossil CO2 emissions continue to 1436 

grow. Despite the high deployment of renewables in some countries (e.g., India), fossil 1437 

energy sources continue to grow to meet growing energy demand (Le Quéré et al. 2019).  1438 

Globally, fossil CO2 emissions growth is slowing, and this is primarily due to the emergence 1439 

of climate policy and emission declines in OECD countries (Eskander and Fankhauser 2020). 1440 

At the aggregated global level, decarbonisation shows a strong and growing signal in the last 1441 

decade, with smaller contributions from lower economic growth and declines in energy per 1442 

GDP. Despite the slowing growth in global fossil CO2 emissions, emissions are still growing, 1443 

far from the reductions needed to meet the ambitious climate goals of the UNFCCC Paris 1444 

agreement. 1445 

We update the remaining carbon budget assessed by the IPCC AR6 (Canadell et al., 2021), 1446 

accounting for the 2020 and estimated 2021 emissions from fossil fuel combustion (EFOS) 1447 

and land use changes (ELUC). From January 2022, the remaining carbon (50% likelihood) for 1448 

limiting global warming to 1.5°C, 1.7°C and 2°C is estimated to amount to 120, 210, and 350 1449 
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GtC (420, 770, 1270 GtCO2). These numbers include an uncertainty based on model spread 1450 

(as in IPCC AR6), which is reflected through the percent likelihood of exceeding the given 1451 

temperature threshold. These remaining amounts correspond respectively to about 11, 20 1452 

and 32 years from the beginning of 2022, at the 2021 level of total CO2 emissions. Reaching 1453 

net zero CO2 emissions by 2050 entails cutting total anthropogenic CO2 emissions by about 1454 

0.4 GtC (1.4 GtCO2) each year on average, comparable to the decrease during 2020. 1455 

5 Discussion 1456 

Each year when the global carbon budget is published, each flux component is updated for 1457 

all previous years to consider corrections that are the result of further scrutiny and 1458 

verification of the underlying data in the primary input data sets. Annual estimates may be 1459 

updated with improvements in data quality and timeliness (e.g., to eliminate the need for 1460 

extrapolation of forcing data such as land-use). Of all terms in the global budget, only the 1461 

fossil CO2 emissions and the growth rate in atmospheric CO2 concentration are based 1462 

primarily on empirical inputs supporting annual estimates in this carbon budget. The carbon 1463 

budget imbalance, yet an imperfect measure, provides a strong indication of the limitations 1464 

in observations in understanding and representing processes in models, and/or in the 1465 

integration of the carbon budget components.  1466 

The persistent unexplained variability in the carbon budget imbalance limits our ability to 1467 

verify reported emissions (Peters et al., 2017) and suggests we do not yet have a complete 1468 

understanding of the underlying carbon cycle dynamics on annual to decadal timescales. 1469 

Resolving most of this unexplained variability should be possible through different and 1470 

complementary approaches. First, as intended with our annual updates, the imbalance as an 1471 

error term is reduced by improvements of individual components of the global carbon 1472 

budget that follow from improving the underlying data and statistics and by improving the 1473 

models through the resolution of some of the key uncertainties detailed in Table 9. Second, 1474 

additional clues to the origin and processes responsible for the variability in the budget 1475 

imbalance could be obtained through a closer scrutiny of carbon variability in light of other 1476 

Earth system data (e.g., heat balance, water balance), and the use of a wider range of 1477 

biogeochemical observations to better understand the land-ocean partitioning of the carbon 1478 

imbalance (e.g. oxygen, carbon isotopes). Finally, additional information could also be 1479 

obtained through higher resolution and process knowledge at the regional level, and 1480 
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through the introduction of inferred fluxes such as those based on satellite CO2 retrievals. 1481 

The limit of the resolution of the carbon budget imbalance is yet unclear, but most certainly 1482 

not yet reached given the possibilities for improvements that lie ahead. 1483 

Estimates of global fossil CO2 emissions from different datasets are in relatively good 1484 

agreement when the different system boundaries of these datasets are considered 1485 

(Andrew, 2020a). But while estimates of EFOS are derived from reported activity data 1486 

requiring much fewer complex transformations than some other components of the budget, 1487 

uncertainties remain, and one reason for the apparently low variation between datasets is 1488 

precisely the reliance on the same underlying reported energy data. The budget excludes 1489 

some sources of fossil CO2 emissions, which available evidence suggests are relatively small 1490 

(<1%). We have added emissions from lime production in China and the US, but these are 1491 

still absent in most other non-Annex I countries, and before 1990 in other Annex I countries. 1492 

Further changes to EFOS this year are documented by Andrew and Peters (2021). 1493 

Estimates of ELUC suffer from a range of intertwined issues, including the poor quality of 1494 

historical land-cover and land-use change maps, the rudimentary representation of 1495 

management processes in most models, and the confusion in methodologies and boundary 1496 

conditions used across methods (e.g., Arneth et al., 2017; Pongratz et al., 2014, see also 1497 

Section 2.7.4 on the loss of sink capacity; Bastos et al., 2021). Uncertainties in current and 1498 

historical carbon stocks in soils and vegetation also add uncertainty in the ELUC  estimates. 1499 

Unless a major effort to resolve these issues is made, little progress is expected in the 1500 

resolution of ELUC. This is particularly concerning given the growing importance of ELUC for 1501 

climate mitigation strategies, and the large issues in the quantification of the cumulative 1502 

emissions over the historical period that arise from large uncertainties in ELUC.  1503 

By adding the DGVMs estimates of CO2 fluxes due to environmental change from countries’ 1504 

managed forest areas (part of SLAND in this budget) to the budget ELUC estimate, we 1505 

successfully reconciled the large gap between our ELUC estimate and the land use flux from 1506 

NGHGIs using the approach described in Grassi et al. (2021). This latter estimate has been 1507 

used in the recent UNFCCC's Synthesis Report on Nationally Determined Contribution 1508 

(UNFCCC, 2021b) to enable the total national emission estimates to be comparable with 1509 

those of the IPCC. However, while Grassi et al. (2021) used only one DGVM, here 17 DGVMs 1510 

are used, thus providing a more robust value to be used as potential adjustment in the 1511 
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policy context, e.g., to help assessing the collective countries’ progress towards the goal of 1512 

the Paris Agreement and avoiding double-accounting for the sink in managed forests. In the 1513 

absence of this adjustment, collective progress would hence appear better than it is (Grassi 1514 

et al. 2021). 1515 

The comparison of GOBMs, data products and inversions highlights substantial discrepancy 1516 

in the Southern Ocean (Fig. 12, Hauck et al., 2020). The long-standing sparse data coverage 1517 

of fCO2 observations in the Southern compared to the Northern Hemisphere (e.g., Takahashi 1518 

et al., 2009) continues to exist (Bakker et al., 2016, 2021, Fig. B1) and to lead to substantially 1519 

higher uncertainty in the SOCEAN estimate for the Southern Hemisphere (Watson et al., 2020, 1520 

Gloege et al., 2021). This discrepancy, which also hampers model improvement, points to 1521 

the need for increased high-quality fCO2 observations especially in the Southern Ocean. At 1522 

the same time, model uncertainty is illustrated by the large spread of individual GOBM 1523 

estimates (indicated by shading in Fig. 12) and highlights the need for model improvement. 1524 

Further uncertainty stems from the regional distribution of the river flux adjustment term 1525 

being based on one model study yielding the largest riverine outgassing flux south of 20°S 1526 

(Aumont et al., 2001), with a recent study questioning this distribution (Lacroix et al., 2020). 1527 

The diverging trends in SOCEAN from different methods is a matter of concern, which is 1528 

unresolved. The assessment of the net land-atmosphere exchange from DGVMs and 1529 

atmospheric inversions also shows substantial discrepancy, particularly for the estimate of 1530 

the total land flux over the northern extra-tropic. This discrepancy highlights the difficulty to 1531 

quantify complex processes (CO2 fertilisation, nitrogen deposition and fertilisers, climate 1532 

change and variability, land management, etc.) that collectively determine the net land CO2 1533 

flux. Resolving the differences in the Northern Hemisphere land sink will require the 1534 

consideration and inclusion of larger volumes of observations.  1535 

We provide metrics for the evaluation of the ocean and land models and the atmospheric 1536 

inversions (Figs. B2 to B4). These metrics expand the use of observations in the global 1537 

carbon budget, helping 1) to support improvements in the ocean and land carbon models 1538 

that produce the sink estimates, and 2) to constrain the representation of key underlying 1539 

processes in the models and to allocate the regional partitioning of the CO2 fluxes. However, 1540 

GOBMs skills have changed little since the introduction of the ocean model evaluation. An 1541 

additional simulation this year allows for direct comparison with interior ocean 1542 
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anthropogenic carbon estimates and suggests that the models underestimate 1543 

anthropogenic carbon uptake and storage. This is an initial step towards the introduction of 1544 

a broader range of observations that we hope will support continued improvements in the 1545 

annual estimates of the global carbon budget. 1546 

We assessed before that a sustained decrease of –1% in global emissions could be detected 1547 

at the 66% likelihood level after a decade only (Peters et al., 2017). Similarly, a change in 1548 

behaviour of the land and/or ocean carbon sink would take as long to detect, and much 1549 

longer if it emerges more slowly. To continue reducing the carbon imbalance on annual to 1550 

decadal time scales, regionalising the carbon budget, and integrating multiple variables are 1551 

powerful ways to shorten the detection limit and ensure the research community can 1552 

rapidly identify issues of concern in the evolution of the global carbon cycle under the 1553 

current rapid and unprecedented changing environmental conditions.  1554 

6 Conclusions 1555 

The estimation of global CO2 emissions and sinks is a major effort by the carbon cycle 1556 

research community that requires a careful compilation and synthesis of measurements, 1557 

statistical estimates, and model results. The delivery of an annual carbon budget serves two 1558 

purposes. First, there is a large demand for up-to-date information on the state of the 1559 

anthropogenic perturbation of the climate system and its underpinning causes. A broad 1560 

stakeholder community relies on the data sets associated with the annual carbon budget 1561 

including scientists, policy makers, businesses, journalists, and non-governmental 1562 

organisations engaged in adapting to and mitigating human-driven climate change. Second, 1563 

over the last decades we have seen unprecedented changes in the human and biophysical 1564 

environments (e.g., changes in the growth of fossil fuel emissions, impact of COVID-19 1565 

pandemic, Earth’s warming, and strength of the carbon sinks), which call for frequent 1566 

assessments of the state of the planet, a better quantification of the causes of changes in 1567 

the contemporary global carbon cycle, and an improved capacity to anticipate its evolution 1568 

in the future. Building this scientific understanding to meet the extraordinary climate 1569 

mitigation challenge requires frequent, robust, transparent, and traceable data sets and 1570 

methods that can be scrutinised and replicated. This paper via ‘living data’ helps to keep 1571 

track of new budget updates. 1572 
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7 Data availability 1573 

The data presented here are made available in the belief that their wide dissemination will 1574 

lead to greater understanding and new scientific insights of how the carbon cycle works, 1575 

how humans are altering it, and how we can mitigate the resulting human-driven climate 1576 

change. Full contact details and information on how to cite the data shown here are given at 1577 

the top of each page in the accompanying database and summarised in Table 2. 1578 

The accompanying database includes two Excel files organised in the following 1579 

spreadsheets: 1580 

File Global_Carbon_Budget_2021v1.0.xlsx includes the following:  1581 

1. Summary 1582 

2. The global carbon budget (1959-2020); 1583 

3. The historical global carbon budget (1750-2020); 1584 

4. Global CO2 emissions from fossil fuels and cement production by fuel type, and the per-1585 

capita emissions (1959-2020); 1586 

5. CO2 emissions from land-use change from the individual methods and models (1959-1587 

2020); 1588 

6. Ocean CO2 sink from the individual ocean models and fCO2-based products (1959-1589 

2020); 1590 

7. Terrestrial CO2 sink from the DGVMs (1959-2020). 1591 

 1592 

File National_Carbon_Emissions_2021v1.0.xlsx includes the following:  1593 

1. Summary 1594 

2. Territorial country CO2 emissions from fossil CO2 emissions (1959-2020); 1595 

3. Consumption country CO2 emissions from fossil CO2 emissions and emissions transfer 1596 

from the international trade of goods and services (1990-2019) using CDIAC/UNFCCC 1597 

data as reference; 1598 

4. Emissions transfers (Consumption minus territorial emissions; 1990-2019); 1599 

5. Country definitions; 1600 

6. Details of disaggregated countries;  1601 

7. Details of aggregated countries. 1602 
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Both spreadsheets are published by the Integrated Carbon Observation System (ICOS) 1603 

Carbon Portal and are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 1604 

2021). National emissions data are also available from the Global Carbon Atlas 1605 

(http://www.globalcarbonatlas.org/, last access: 11 March 2022) and from Our World in 1606 

Data (https://ourworldindata.org/co2-emissions, last access: 11 March 2022).  1607 
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12 Tables 3164 

Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 × conversion). 
Unit 1 Unit 2 Conversion Source 
GtC (gigatonnes of 
carbon) ppm (parts per million) (a) 2.124 (b) Ballantyne et al. (2012) 

GtC (gigatonnes of 
carbon) PgC (petagrams of carbon) 1 SI unit conversion 

GtCO2 (gigatonnes of 
carbon dioxide) 

GtC (gigatonnes of 
carbon) 3.664 44.01/12.011 in mass 

equivalent 
GtC (gigatonnes of 
carbon) 

MtC (megatonnes of 
carbon) 1000 SI unit conversion 

(a) Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. ‘ppm’ is an 
abbreviation for micromole/mol, dry air. 

(b) The use of a factor of 2.124 assumes that all the atmosphere is well mixed within one year. In reality, only 
the troposphere is well mixed and the growth rate of CO2 concentration in the less well-mixed stratosphere is 

not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the 
growth rate of CO2 concentration in the stratosphere equals that of the troposphere on a yearly basis. 
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 3166 
Table 2. How to cite the individual 
components of the global carbon budget 
presented here.  
Component Primary reference 
Global fossil CO2 emissions (EFOS), total and by fuel 
type Andrew and Peters (2021) 

National territorial fossil CO2 emissions (EFOS) Gilfillan and Marland (2021), UNFCCC (2021a) 
National consumption-based fossil CO2 emissions 
(EFOS) by country (consumption) 

Peters et al. (2011b) updated as described in this 
paper 

Net land-use change flux (ELUC) This paper (see Table 4 for individual model 
references). 

Growth rate in atmospheric CO2 concentration 
(GATM) Dlugokencky and Tans (2022) 

Ocean and land CO2 sinks (SOCEAN and SLAND) This paper (see Table 4 for individual model 
references). 

3167 
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Table 3. Main methodological changes in the global carbon budget since 2017. Methodological changes introduced in one year 
are kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year. 
Table A7 lists methodological changes from the first global carbon budget publication up to 2016. 

Publication 
year 

Fossil fuel emissions LUC emissions Reservoirs Uncertainty & 
other changes 

Global Country 
(territorial)  Atmosphere Ocean Land  

2017 

Projection 
includes India-
specific data 

 

Average of two 
bookkeeping 

models; use of 
12 DGVMs 

 

Based on eight 
models that 
match the 

observed sink 
for the 1990s; 

no longer 
normalised 

Based on 15 
models that 

meet 
observation-
based criteria 
(see Sect. 2.5) 

Land multi-
model average 

now used in 
main carbon 
budget, with 
the carbon 
imbalance 
presented 
separately; 

new table of 
key 

uncertainties 

Le Quéré et al. 
(2018a) 
GCB2017 

2018 Revision in 
cement 

emissions; 
Projection 

includes EU-
specific data 

Aggregation of 
overseas 

territories into 
governing 
nations for 
total of 213 
countries a 

Average of two 
bookkeeping 

models; use of 
16 DGVMs 

Use of four 
atmospheric 

inversions 

Based on 
seven models 

Based on 16 
models; 
revised 

atmospheric 
forcing from 
CRUNCEP to 
CRU-JRA-55 

Introduction of 
metrics for 

evaluation of 
individual 

models using 
observations 

Le Quéré et al. 
(2018b) 
GCB2018 

2019 
Global 

emissions 
calculated as 

sum of all 
countries plus 

bunkers, 
rather than 

taken directly 
from CDIAC. 

 

Average of two 
bookkeeping 

models; use of 
15 DGVMs 

Use of three 
atmospheric 

inversions 

Based on nine 
models 

Based on 16 
models  Friedlingstein 

et al. (2019) 
GCB2019 

2020 

Cement 
carbonation 

now included 
in the EFOS 
estimate, 

reducing EFOS 
by about 

0.2GtC yr-1 for 
the last decade 

India's 
emissions from 
Andrew (2020: 

India); 
Corrections to 

Netherland 
Antilles and 
Aruba and 

Soviet 
emissions 

before 1950 as 
per Andrew 
(2020: CO2); 
China's coal 
emissions in 
2019 derived 

Average of 
three 

bookkeeping 
models; use of 

17 DGVMs. 
Estimate of 

gross land use 
sources and 

sinks provided 

Use of six 
atmospheric 

inversions 

Based on nine 
models. River 
flux revised 

and 
partitioned 

NH, Tropics, SH 

Based on 17 
models  Friedlingstein 

et al. (2020) 
GCB2020 
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from official 
statistics, 

emissions now 
shown for 

EU27 instead 
of 

EU28.Projectio
n for 2020 
based on 

assessment of 
four 

approaches. 

2021 

Projections are 
no longer an 

assessment of 
four 

approaches. 

Official data 
included for a 

number of 
additional 

countries, new 
estimates for 
South Korea, 

added 
emissions from 

lime 
production in 

China. 

ELUC estimate 
compared to 
the estimates 

adopted in 
national GHG 
inventories 

(NGHGI) 

 

Average of 
means of eight 

models and 
means of 

seven data-
products. 

Current year 
prediction of 

SOCEAN using 
a feed-forward 
neural network 

method 

Current year 
prediction of 

SLAND using a 
feed-forward 

neural network 
method 

 

Friedlingstein 
et al. (2021) 
GCB2021 (This 
study) 
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Table 4. References for the process models, fCO2-based ocean data products, and atmospheric inversions. All 
models and products are updated with new data to the end of year 2020, and the atmospheric forcing for the 
DGVMs has been updated as described in Section C.2.2. 

Model/data 
name Reference Change from Global Carbon Budget 2020 (Friedlingstein et al., 

2020) 

Bookkeeping models for land-use change emissions 

BLUE Hansis et al. (2015) No change to model, but simulations performed with updated 
LUH2 forcing. 

updated 
H&N2017 Houghton and Nassikas (2017) 

Adjustment to treatment of harvested wood products. Update 
to FRA2020 and 2021 FAOSTAT for forest cover and land-use 
areas. Forest loss in excess of increases in cropland and 
pastures represented an increase in shifting cultivation. 
Extratropical peatland drainage emissions added (based on Qiu 
et al., 2021). 

OSCAR Gasser et al. (2020) 

Update to OSCAR3.1.2, which provides finer resolution (96 
countries/regions). LUH2-GCB2019 input data replaced by 
LUH2-GCB2021. FRA2015 (Houghton & Nassikas, 2017) still 
used as a second driving dataset, with emissions from FRA2015 
extended to 2020. Constraining based on this year's budget 
data. 

Dynamic global vegetation models 

CABLE-POP Haverd et al. (2018) changes in parameterisation, minor bug fixes 

CLASSIC Melton et al. (2020) (a) Non-structural carbohydrates are now explicitly simulated. 

CLM5.0 Lawrence et al. (2019) No Change. 

DLEM Tian et al. (2015) (b) Updated algorithms for land use change processes. 

IBIS Yuan et al. (2014) (c) Several changes in parameterisation; Dynamic carbon 
allocation scheme. 

ISAM Meiyappan et al. (2015) (d) 
ISAM now accounting for vertically-resolved soil 
biogeochemistry (carbon and nitrogen) module (Shu et al., 
2020) 

ISBA-CTRIP Delire et al. (2020) (e) Updated spinup protocol + model name updated (SURFEXv8 in 
GCB2017) + inclusion of crop harvesting module 

JSBACH Reick et al. (2021) (f) Wood product pools per plant functional type. 

JULES-ES Wiltshire et al. (2021) (g) Version 1.1 Inclusion of interactive fire Burton et al., (2019) 

LPJ-GUESS Smith et al. (2014) (h) No code change. Using updated LUH2 and climate forcings. 

LPJ Poulter et al. (2011) (i) Updated soil data from FAO to HWSD v2.0 
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LPX-Bern Lienert and Joos (2018) No Change. 

OCN Zaehle and Friend (2010) (j) No change (uses r294). 

ORCHIDEEv3 Vuichard et al. (2019) (k) Updated growth respiration scheme (revision 7267) 

SDGVM Walker et al. (2017) (l) 

No changes from version used in Friedlingstein et al. (2019), 
except for properly switching from grasslands to pasture in the 
blending of the ESA data with LUH2; this change affects mostly 
the semi-arid lands. 

VISIT Kato et al. (2013) (m) Minor bug fix on CH4 emissions of recent few years. 

YIBs Yue and Unger (2015) 
Inclusion of nutrient limit with down regulation approach of 
Arora et al. (2009) 

Global ocean biogeochemistry models 

NEMO-
PlankTOM12 

Wright et al. (2021) (n) Updated biochemical model to include 12 functional types. 
Change to spin-up, now using a looped 1990. 

MICOM-HAMOCC 
(NorESM-OCv1.2) Schwinger et al. (2016) No change 

MPIOM-
HAMOCC6 

Lacroix et al. (2021) Added riverine fluxes; cmip6 model version including 
modifications and bug-fixes in HAMOCC and MPIOM 

NEMO3.6-
PISCESv2-gas 
(CNRM) 

Berthet et al. (2019) (o) 
small bug fixes; updated model-spin-up (new forcings); atm 
forcing is now JRA55-Do including 2020 year and varying 
riverine freshwater inputs 

FESOM-2.1-
REcoM2 Hauck et al. (2020) (p) 

Updated physical model version FESOM2.1, and including 2nd 
zooplankton and 2nd detritus group. Used new atmospheric 
CO2 time series provided by GCB 

MOM6-COBALT 
(Princeton) 

Liao et al. (2020) 

Adjustment of the piston velocity prefactor (0.337 cph/m2/s2 
to 0.251 cph/m2/s2). MOM6 update from GitHub version 
b748b1b (2018-10-03) to version 69a096b (2021-02-24). 
Updated model spin-up and simulation using JRA55-do v1.5. 
Used new atmospheric CO2 time series provided by GCB. 

CESM-ETHZ Doney et al. (2009) No change in the model. Used new atmospheric CO2 time 
series provided by GCB 

NEMO-PISCES 
(IPSL) Aumont et al. (2015) 

No change 

ocean fCO2-based data products 

Landschützer 
(MPI-SOMFFN) Landschützer et al. (2016) 

update to SOCATv2021 measurements and time period 1982-
2020; The estimate now covers the full open ocean and coastal 
domain as well as the Arctic Ocean extension described in 
Landschützer et al. (2020) 

Rödenbeck (Jena-
MLS) 

Rödenbeck et al. (2014) 

update to SOCATv2021 measurements, time period extended 
to 1957-2020, involvement of a multi-linear regression for 
extrapolation (combined with an explicitly interannual 
correction), use of OCIM (deVries, 2014) as decadal prior, 
carbonate chemistry parameterization now time-dependent, 
grid resolution increased to 2.5*2 degrees, adjustable degrees 
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of freedom now also covering shallow areas and Arctic, some 
numerical revisions 

CMEMS-LSCE-
FFNNv2 Chau et al. (2021) 

Update to SOCATv2021 measurements and time period 1985-
2020. The CMEMS-LSCE-FFNNv2 product now covers both the 
open ocean and coastal regions (see in Chau et al. 2021 for 
model description and evaluation). 

CSIR-ML6 Gregor et al. (2019) Updated to SOCATv2021. Reconstruction now spans the period 
1985 - 2020 and includes updates using the SeaFlux protocols 
(Fay et al., 2021b) 

Watson et al 

Watson et al. (2020) 

Updated to SOCAT v2021. A monthly climatology of the skin 
temperature deviation as calculated for years 2003-2011 is now 
used in place of a single global average figure. SOM calculation 
updated to treat the Arctic as a separate biome. 

NIES-NN Zeng et al. (2014) New this year 

JMA-MLR Iida et al. (2021) New this year 

OS-ETHZ-GRaCER Gregor and Gruber (2021) New this year 

Atmospheric inversions 

CAMS Chevallier et al. (2005) (q) No change. 

CarbonTracker 
Europe (CTE) van der Laan-Luijkx et al. (2017) No change. 

Jena CarboScope Rödenbeck et al. (2018) (r) No change. 

UoE in-situ Feng et al., (2016) (s) Fossil fuels now from GCP-GridFEDv2021.2 

NISMON-CO2 Niwa et al., (2017) (t) Some inversion parameters were changed. 

CMS-Flux Liu et al., (2021) New this year 

(a) see also Asaadi et al. (2018). 

(b) see also Tian et al. (2011) 

(c) the dynamic carbon allocation scheme was presented by Xia et al. (2015) 

(d) see also Jain et al. (2013). Soil biogeochemistry is updated based on Shu et al. (2020) 

(e) see also Decharme et al. (2019) and Seferian et al. (2019) 

(f) Mauritsen et al. (2019) 

(g) see also Sellar et al. (2019) and Burton et al., (2019). JULES-ES is the Earth System configuration of the Joint UK 
Land Environment Simulator as used in the UK Earth System Model (UKESM). 
(h) to account for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF 
from CRUJRA, the photosynthesis scaling parameter αa was modified (-15%) to yield similar results. 
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(i) compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-
site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100 
% of harvested grass enters the litter pool. 

(j) see also Zaehle et al. (2011). 

(k) see also Zaehle and Friend (2010) and Krinner et al. (2005) 

(l) see also Woodward and Lomas (2004) 

(m) see also Ito and Inatomi (2012). 

(n) see also Buitenhuis et al. (2013) 

(o) see also Séférian et al. (2019) 

(p) see also Schourup-Kristensen et al (2014) 

(q) see also Remaud (2018) 

(r) see also Rödenbeck et al. (2003) 

(s) see also Feng et al. (2009) and Palmer et al. (2019) 

(t) see also Niwa et al. (2020) 
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the 
DGVMs and inverse estimates for different periods, the last decade, and the last year available. All values 
are in GtCyr−1. The DGVM uncertainties represent ±1σ of the decadal or annual (for 2020 only) estimates 
from the individual DGVMs: for the inverse models the range of available results is given. All values are 
rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.
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Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods, and 
last year available. All values are in GtC yr-1, and uncertainties are reported as ±1σ. Fossil CO2 emissions 
include cement carbonation. The table also shows the budget imbalance (BIM), which provides a measure of 
the discrepancies among the nearly independent estimates and has an uncertainty exceeding ± 1 GtC yr-1. A 
positive imbalance means the emissions are overestimated and/or the sinks are too small. All values are 
rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero. 
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Table 7. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the 
estimate available using actual data, and the ‘Projected’ values refers to estimates made before the end of the 
year for each publication. Projections based on a different method from that described here during 2008-2014 are 
available in Le Quéré et al., (2016). All values are adjusted for leap years. 
 World China USA EU28 (h) India Rest of World 

 Project
ed Actual 

Projec
ted 

Actual 
Projec
ted 

Actual 
Projec
ted 

Actual 
Projec
ted 

Actual 
Projec
ted 

Actual 

2015 
(a) 

–0.6% 
0.06% 

–3.9% 
–0.7% 

–1.5% 
–2.5% – – – – 

1.2% 
1.2% (–1.6 to 

0.5) 
(–4.6 to 

–1.1) 
(–5.5 to 

0.3) 
(–0.2 to 

2.6) 

2016 
(b) 

–0.2% 
0.20% 

–0.5% 
–0.3% 

–1.7% 
–2.1% – – – – 

1.0% 
1.3% (–1.0 to 

+1.8) 
(–3.8 to 

+1.3) 
(–4.0 to 

+0.6) 
(–0.4 to 

+2.5) 

2017 (c) 
2.0% 

1.6% 
3.5% 

1.5% 
–0.4% 

–0.5% – – 
2.00% 

3.9% 
1.6% 

1.9% (+0.8 to 
+3.0) 

(+0.7 to 
+5.4) 

(–2.7 to 
+1.0) 

(+0.2 to 
+3.8) 

(0.0 to 
+3.2) 

2018 
(d) 

2.7% 
2.1% 

4.7% 
2.3% 

2.5% 
2.8% 

-0.7% 
-2.1% 

6.3% 
8.0% 

1.8% 
1.7% (+1.8 to 

+3.7) 
(+2.0 to 

+7.4) 
(+0.5 to 

+4.5) 
(-2.6 to 
+1.3) 

(+4.3 to 
+8.3) 

(+0.5 to 
+3.0) 

2019 
(e) 

0.5% 

0.1% 

2.6% 

2.2% 

-2.4% 

-2.6% 

-1.7% 

-4.3% 

1.8% 

1.0% 

0.5% 

0.5% (-0.3 to 
+1.4) 

(+0.7 to 
+4.4) 

(-4.7 to 
-0.1) 

(-5.1% 
to 

+1.8%) 

(-0.7 to 
+3.7) 

(-0.8 to 
+1.8) 

2020 (f) 
-6.7% 

-5.4% 
-1.7% 

1.4% 
-12.2% 

-10.6% 

-11.3% 
(EU27) -10.9% 

-9.1% 
-7.3% 

-7.4% 
-7.0% 

      

2021 
(g) 

4.8% 

 

4.3% 

 

6.8% 

 

6.3% 

 

11.2% 

 

3.2% 

 (4.2% 
to 

5.4%) 

(3.0% 
to 

5.4%) 

(6.6% 
to 

7.0%) 

(4.3% 
to 

8.3%) 

(10.7% 
to 

11.7%) 

(2.0% 
to 

4.3%) 
(a) Jackson et al. (2016) and Le Quéré et al. (2015a). (b) Le Quéré et al. (2016). (c) Le Quéré et al. (2018a). (d) Le 
Quéré et al. (2018b). (e) Friedlingstein et al., (2019), (f) Friedlingstein et al., (2020), (g) This study (median of four 
reported estimates, Section 3.4.1.2) 
(h) EU28 until 2019, EU27 from 2020 
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Table 8. Cumulative CO2 for different time periods in gigatonnes of carbon (GtC). All uncertainties are reported as 
±1σ. Fossil CO2 emissions include cement carbonation. The budget imbalance (BIM) provides a measure of the 
discrepancies among the nearly independent estimates. All values are rounded to the nearest 5 GtC and therefore 
columns do not necessarily add to zero. 
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Table 9. Major known sources of uncertainties in each component of the Global Carbon Budget, defined as input 
data or processes that have a demonstrated effect of at least ±0.3 GtC yr-1. 
Source of 
uncertainty 

Time scale 
(years) Location Status Evidence 

Fossil CO2 emissions (EFOS; Section 2.1) 

energy statistics annual to 
decadal 

global, but 
mainly China & 

major 
developing 
countries 

see Sect. 2.1 (Korsbakken et al., 2016, Guan et al., 2012) 

carbon content 
of coal 

annual to 
decadal 

global, but 
mainly China & 

major 
developing 
countries 

see Sect. 2.1 (Liu et al., 2015) 

system 
boundary 

annual to 
decadal all countries see Sect. 2.1 (Andrew, 2020) 

Net land-use change flux (ELUC; section 2.2) 
land-cover and 
land-use change 
statistics 

continuous 
global; in 
particular 

tropics 
see Sect. 2.2 (Houghton et al., 2012; Gasser et al., 2020) 

sub-grid-scale 
transitions 

annual to 
decadal global see Table A1 (Wilkenskjeld et al., 2014) 

vegetation 
biomass 

annual to 
decadal 

global; in 
particular 

tropics 
see Table A1 (Houghton et al., 2012) 

forest 
degradation 
(fire, selective 
logging) 

annual to 
decadal tropics  (Aragão et al., 2018; Qin et al., 2020) 

wood and crop 
harvest 

annual to 
decadal global; SE Asia see Table A1 (Arneth et al., 2017, Erb et al., 2018) 

peat burning (a) multi-decadal 
trend global see Table A1 (van der Werf et al., 2010, 2017) 

loss of 
additional sink 
capacity 

multi-decadal 
trend global 

not included; 
see Appendix 

D1.4 

(Pongratz et al, 2014, Gasser et al, 2020; 
Obermeier et al., 2021) 

Atmospheric growth rate (GATM; section 2.3) no demonstrated uncertainties larger than ±0.3 GtC yr-1 (b) 

Ocean sink (SOCEAN; section 2.4) 
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sparsity in 
surface fCO2 
observations 

mean, decadal 
variability and 

trend 

global, in 
particular 
southern 

hemisphere 

see Sect 3.5.2 (Gloege et al., 2021, Denvil-Sommer et al., 
2021, Bushinsky et al., 2019) 

riverine carbon 
outgassing and 
its 
anthropogenic 
perturbation 

annual to 
decadal 

global, in 
particular 

partitioning 
between 

Tropics and 
South 

see Sect. 2.4 
(anthropogenic 
perturbations 
not included) 

(Aumont et al., 2001, Resplandy et al., 2018, 
Lacroix et al., 2020) 

interior ocean 
anthropogenic 
carbon storage 

annual to 
decadal global see Sect 3.5.5 (Gruber et al., 2019) 

near-surface 
temperature 
and salinity 
gradients 

mean on all 
time-scales global see Sect. 3.8.2 (Watson et al., 2020) 

Land sink (SLAND; section 2.5) 

strength of CO2 
fertilisation 

multi-decadal 
trend global see Sect. 2.5 (Wenzel et al., 2016; Walker et al., 2021) 

response to 
variability in 
temperature 
and rainfall annual to 

decadal 

global; in 
particular 

tropics 
see Sect. 2.5 

(Cox et al., 2013; Jung et al., 2017; Humphrey 
et al., 2018; 2021) 

nutrient 
limitation and 
supply 

tree mortality annual 
global in 

particular 
tropics 

see Sect. 2.5 (Hubau et al., 2021; Brienen et al., 2020) 

response to 
diffuse radiation annual global see Sect. 2.5 (Mercado et al., 2009; O'Sullivan et al., 2021) 

a As result of interactions between land-use and climate 

b The uncertainties in GATM have been estimated as ±0.2 GtC yr-1, although the conversion of the growth rate into a 
global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that have 
not yet been quantified. 
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13 Figures and Captions 

 
13.1 Figure 1. Surface average atmospheric CO2 concentration (ppm). Since 1980, monthly data 

are from NOAA/ESRL (Dlugokencky and Tans, 2022) and are based on an average of direct 

atmospheric CO2 measurements from multiple stations in the marine boundary layer 

(Masarie and Tans, 1995). The 1958-1979 monthly data are from the Scripps Institution of 

Oceanography, based on an average of direct atmospheric CO2 measurements from the 

Mauna Loa and South Pole stations (Keeling et al., 1976). To account for the difference of 

mean CO2 and seasonality between the NOAA/ESRL and the Scripps station networks used 

here, the Scripps surface average (from two stations) was de-seasonalised and adjusted to 

match the NOAA/ESRL surface average (from multiple stations) by adding the mean 

difference of 0.667 ppm, calculated here from overlapping data during 1980-2012.  
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13.2 Figure 2. Schematic representation of the overall perturbation of the global carbon cycle 

caused by anthropogenic activities, averaged globally for the decade 2011-2020. See 

legends for the corresponding arrows and units. The uncertainty in the atmospheric CO2 

growth rate is very small (±0.02 GtC yr-1) and is neglected for the figure. The 

anthropogenic perturbation occurs on top of an active carbon cycle, with fluxes and stocks 

represented in the background and taken from Canadell et al. (2021) for all numbers, 

except for the carbon stocks in coasts which is from a literature review of coastal marine 

sediments (Price and Warren, 2016).  

 



129 
 

13.3  
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13.4 Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a 

function of time, for fossil CO2 emissions (EFOS, including a small sink from cement 

carbonation; grey) and emissions from land-use change (ELUC; brown), as well as their 

partitioning among the atmosphere (GATM; cyan), ocean (SOCEAN; blue), and land (SLAND; 

green). Panel (a) shows annual estimates of each flux and panel (b) the cumulative flux (the 

sum of all prior annual fluxes) since the year 1850. The partitioning is based on nearly 

independent estimates from observations (for GATM) and from process model ensembles 

constrained by data (for SOCEAN and SLAND) and does not exactly add up to the sum of the 

emissions, resulting in a budget imbalance (BIM) which is represented by the difference 

between the bottom red line (mirroring total emissions) and the sum of carbon fluxes in the 

ocean, land, and atmosphere reservoirs. All data are in GtC yr-1 (panel a) and GtC (panel b). 

The EFOS estimates are primarily from (Gilfillan and Marland, 2021), with uncertainty of 

about ±5% (±1σ). The ELUC estimates are from three bookkeeping models (Table 4) with 

uncertainties of about ±0.7 GtC yr-1. The GATM estimates prior to 1959 are from Joos and 

Spahni (2008) with uncertainties equivalent to about ±0.1-0.15 GtC yr-1 and from 

Dlugokencky and Tans (2022) since 1959 with uncertainties of about +-0.07 GtC yr-1 during 

1959-1979 and ±0.02 GtC yr-1 since 1980. The SOCEAN estimate is the average from Khatiwala 

et al. (2013) and DeVries (2014) with uncertainty of about ±30% prior to 1959, and the 

average of an ensemble of models and an ensemble of fCO2 data products (Table 4) with 

uncertainties of about ±0.4 GtC yr-1 since 1959. The SLAND estimate is the average of an 

ensemble of models (Table 4) with uncertainties of about ±1 GtC yr-1. See the text for more 

details of each component and their uncertainties.  
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13.5 Figure 4. Components of the global carbon budget and their uncertainties as a function of 

time, presented individually for (a) fossil CO2 emissions (EFOS), (b) growth rate in atmospheric 

CO2 concentration (GATM), (c) emissions from land-use change (ELUC), (d) the land CO2 sink 

(SLAND), (e) the ocean CO2 sink (SOCEAN), (f) the budget imbalance that is not accounted for by 

the other terms. Positive values of SLAND and SOCEAN represent a flux from the atmosphere to 

land or the ocean. All data are in GtC yr-1 with the uncertainty bounds representing ±1 

standard deviation in shaded colour. Data sources are as in Fig. 3. The red dots indicate our 

projections for the year 2021 and the red error bars the uncertainty in the projections (see 

methods).  
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13.6 
Figure 5. Fossil CO2 emissions for (a) the globe, including an uncertainty of ± 5% (grey 

shading) and a projection through the year 2021 (red dot and uncertainty range), (b) 

territorial (solid lines) and consumption (dashed lines) emissions for the top three country 

emitters (USA, China, India) and for the European Union (EU27), (c) global emissions by fuel 

type, including coal, oil, gas, and cement, and cement minus cement carbonation (dashed), 

and (d) per-capita emissions the world and for the large emitters as in panel (b).  Territorial 

emissions are primarily from Gilfillan and Marland (2021) except national data for the USA 

and EU27 for 1990-2018, which are reported by the countries to the UNFCCC as detailed in 

the text; consumption-based emissions are updated from Peters et al. (2011b). See Section 

2.1 and Appendix C.1 for details of the calculations and data sources.  
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13.7  

13.8 Figure 6. The 2011-2020 decadal mean components of the global carbon budget, presented 

for (a) fossil CO2 emissions (EFOS), (b) land-use change emissions (ELUC), (c) the ocean CO2 sink 

(SOCEAN), and (d) the land CO2 sink (SLAND). Positive values for EFOS and ELUC represent a flux to 

the atmosphere, whereas positive values of SOCEAN and SLAND represent a flux from the 

atmosphere to the ocean or the land. In all panels, yellow/red (green/blue) colours 

represent a flux from (into) the land/ocean to (from) the atmosphere. All units are in kgC m-2 

yr-1. Note the different scales in each panel. EFOS data shown is from GCP-GridFEDv2021.2. 

ELUC data shown is only from BLUE as the updated H&N2017 and OSCAR do not resolve 

gridded fluxes. SOCEAN data shown is the average of GOBMs and data-products means, using 

GOBMs simulation A, no adjustment for bias and drift applied to the gridded fields (see 

Sections  2.4). SLAND data shown is the average of DGVMs for simulation S2 (see Sections  

2.5). 
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13.9 
Figure 7. CO2 exchanges between the atmosphere and the terrestrial biosphere as used in 

the global carbon budget (black with ±1σ uncertainty in grey shading in all panels). (a) CO2 

emissions from land-use change (ELUC) with estimates from the three bookkeeping models 

(yellow lines) and DGVMs models (green) shown individually, with DGVMs ensemble means 

(dark green). The dashed line identifies the pre-satellite period before the inclusion of 

peatland burning. (b) CO2 gross sinks (positive, from regrowth after agricultural 

abandonment and wood harvesting) and gross sources (negative, from decaying material 

left dead on site, products after clearing of natural vegetation for agricultural purposes, 

wood harvesting, and for BLUE, degradation from primary to secondary land through usage 

of natural vegetation as rangeland, and also from emissions from peat drainage and peat 

burning) from the three bookkeeping models (yellow lines). The sum of the gross sinks and 

sources is ELUC shown in panel(a). (c) Land CO2 sink (SLAND) with individual DGVMs estimates 
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(green). (d) Total atmosphere-land CO2 fluxes (SLAND – ELUC), with individual DGVMs (green) 

and their multi-model mean (dark green).   
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13.10  
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13.11 Figure 8. The partitioning of total anthropogenic CO2 emissions (EFOS + ELUC) across (a) the 

atmosphere (airborne fraction), (b) land (land-borne fraction), and (c) ocean (ocean-borne 

fraction). Black lines represent the central estimate, and the coloured shading represents 

the uncertainty. The grey dashed lines represent the long-term average of the airborne 

(44%), land-borne (28%) and ocean-borne (24%) fractions during 1959-2020. 
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13.12  

13.13 Figure 9. Comparison of the anthropogenic atmosphere-ocean CO2 flux showing the budget 

values of SOCEAN (black; with the uncertainty in grey shading), individual ocean models (teal), 

and the ocean fCO2-based data products (cyan; with Watson et al. (2020) in dashed line as 

not used for ensemble mean). The fCO2-based data products were adjusted for the pre-

industrial ocean source of CO2 from river input to the ocean, by subtracting a source of 0.61 

GtC yr-1 to make them comparable to SOCEAN (see Section 2.4). Bar-plot in the lower right 

illustrates the number of fCO2 observations in the SOCAT v2021 database (Bakker et al., 

2021). Grey bars indicate the number of data points in SOCAT v2020, and coloured bars the 

newly added observations in v2021. 
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13.14 Figure 10. Attribution of the atmosphere-ocean (SOCEAN) and atmosphere-land (SLAND) CO2 

fluxes to (a) increasing atmospheric CO2 concentrations and (b) changes in climate, averaged 

over the previous decade 2011-2020. All data shown is from the processed-based GOBMs 

and DGVMs. The sum of ocean CO2 and climate effects will not equal the ocean sink shown 

in Figure 6 which includes the fCO2-based data products. See Appendix C.3.2 and C.4.1 for 

attribution methodology. Units are in kgC m-2 yr-1 (note the non-linear colour scale). 
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13.15 Figure 11. The 2011-2020 decadal mean net atmosphere-ocean and atmosphere-land fluxes 

derived from the ocean models and fCO2 products (y-axis, right and left pointing blue 

triangles respectively), and from the DGVMs (x-axis, green symbols), and the same fluxes 

estimated from the six inversions (purple symbols on secondary x- and y-axis). The grey 

central point is the mean (±1σ) of SOCEAN and (SLAND – ELUC) as assessed in this budget. The 

shaded distributions show the density of the ensemble of individual estimates. The grey 

diagonal band represents the fossil fuel emissions minus the atmospheric growth rate from 

this budget (EFOS – GATM). Note that positive values are CO2 sinks.  
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13.16 
Figure 12. CO2 fluxes between the atmosphere and the Earth’s surface separated between 

land and oceans, globally and in three latitude bands.  The ocean flux is SOCEAN and the land 

flux is the net atmosphere-land fluxes from the DGVMs. The latitude bands are (top row) 

global, (2nd row) north (>30°N), (3rd row) tropics (30°S-30°N), and (bottom row) south 

(<30°S), and over ocean (left column), land (middle column), and total (right column). 

Estimates are shown for: process-based models (DGVMs for land, GOBMs for oceans); 

inversion models (land and ocean); and fCO2-based data products (ocean only). Positive 

values indicate a flux from the atmosphere to the land or the ocean. Mean estimates from 
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the combination of the process models for the land and oceans are shown (black line) with 

±1 standard deviation (1σ) of the model ensemble (grey shading). For the total uncertainty 

in the process-based estimate of the total sink, uncertainties are summed in quadrature. 

Mean estimates from the atmospheric inversions are shown (purple lines) with their full 

spread (purple shading). Mean estimates from the fCO2-based data products are shown for 

the ocean domain (light blue lines) with their ±1σ spread (light blue shading). The global 

SOCEAN (upper left) and the sum of SOCEAN in all three regions represents the anthropogenic 

atmosphere-to-ocean flux based on the assumption that the preindustrial ocean sink was 0 

GtC yr-1 when riverine fluxes are not considered. This assumption does not hold at the 

regional level, where preindustrial fluxes can be significantly different from zero. Hence, the 

regional panels for SOCEAN represent a combination of natural and anthropogenic fluxes. Bias-

correction and area-weighting were only applied to global SOCEAN; hence the sum of the 

regions is slightly different from the global estimate (<0.06 GtC yr-1). 
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13.17 Figure 13. Cumulative changes over the 1850-2020 period (left) and average fluxes 

over the 2011-2020 period (right) for the anthropogenic perturbation of the global carbon 

cycle. See the caption of Figure 3 for key information and the methods in text for full 

details. 
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13.18 Figure 14. Kaya decomposition of the main drivers of fossil CO2 emissions, considering 

population, GDP per person, Energy per GDP, and CO2 emissions per energy, for China (top 

left), USA (top right), EU27 (middle left), India (middle right), Rest of the World (bottom left), 

and World (bottom right). Black dots are the annual fossil CO2 emissions growth rate, 

coloured bars are the contributions from the different drivers. A general trend is that 

population and GDP growth put upward pressure on emissions, while energy per GDP and 

more recently CO2 emissions per energy put downward pressure on emissions. The changes 

during 2020 led to a stark contrast to previous years, with different drivers in each region. 
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14 Appendix A. Supplementary Tables 

Table A1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4 
for model references. All models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation 
activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study. 

 

Bookkeeping 
Models DGVMs 

H&N BLUE OSCA
R 

CA
BLE

-
PO
P 

CLA
SSI
C 

CL
M5.

0 

DLE
M IBIS ISA

M 

ISB
A-

CTR
IP(h

) 

JSB
AC
H 

JUL
ES-
ES 

LPJ-
GU
ESS 

LPJ 

LPX
-

Ber
n 

OC
Nv2 

OR
CHI
DEE
v3 

SD
GV
M 

VISI
T 

YIB
s 

Processes relevant for ELUC 

Wood harvest and forest 
degradation (a) 

yes yes yes yes no yes yes yes yes no yes no yes yes 
no 
(d) 

yes yes no yes no 

Shifting cultivation / Subgrid 
scale transitions 

no 
(b) 

yes 
yes 

yes no yes no no no no yes no yes yes 
no 
(d) 

no no no yes no 

Cropland harvest (removed, R, 
or added to litter, L) 

yes 
(R) 
(z) 

yes 
(R) 
(z) 

yes 
(R) 

yes 
(R) 

yes 
(L) 

yes 
(R) 

yes 
yes 
(R) 

yes 
yes 
(R+
L) 

yes 
(R+
L) 

yes 
(R) 

yes 
(R) 

yes 
(L) 

yes 
(R) 

yes 
(R+
L) 

yes 
(R) 

yes 
(R) 

yse 
(R) 

yes 
(L) 

Peat fires yes yes yes no no yes no no no no no no no no no no no no no no 

fire as a management tool 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no no no no no no no no no no no no no no no no no 

N fertilisation 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no no yes yes no yes no no 
yes
(k) 

yes no yes yes yes no no no 

tillage 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no 
yes 
(g) 

no no no no no no no yes no no no 
yes 
(g) 

no no no 

irrigation 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no no yes yes no yes no no no yes no no no no no no no 

wetland drainage 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no no no no no yes no no no no no no no no no no no 

erosion 
yes 
(z) 

yes 
(z) 

yes 
(j) 

no no no yes no no no no no no no no no no no yes no 

peat drainage yes yes 
yes 

no no no no no no no no no no no no no no no no no 

Grazing and mowing Harvest 
(removed, r, or added to litter, 
l) 

yes 
(r) 
(z) 

yes 
(r) (z) 

yes 
(r) 

yes 
(r) 

no no no no 
yes 
(l) 

no 
yes 
(l) 

no 
yes 
(r) 

yes 
(l) 

no 
yes 
(r+l

) 
no no no no 

Processes also relevant for SLAND (in addition to CO2 fertilisation and climate) 

Fire simulation and/or 
suppression 

N.A. N.A. N.A. no yes yes no yes no yes yes yes yes yes yes no no yes yes no 

Carbon-nitrogen interactions, 
including N deposition 

N.A. N.A. N.A. yes 
no 
(f) 

yes yes no yes 
no 
(e) 

yes yes yes no yes yes yes 
yes 
(c) 

no 
no 
(f) 
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Table A2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of 
SOCEAN. See Table 4 for model references. 

 

NEMO-
PlankTOM1

2 

NEMO-
PISCES 
(IPSL) 

MICOM-
HAMOCC 

(NorESM1-
OCv1.2) 

MPIOM-
HAMOCC6 

FESOM-2.1-
REcoM2 

NEMO3.6-
PISCESv2-

gas (CNRM) 

MOM6-
COBALT 

(Princeton) 
CESM-ETHZ 

SPIN-UP procedure 

Initialisation of 
carbon chemistry 

GLODAPv1 
corrected for 
anthropogeni
c carbon 
from Sabine 
et al. (2004) 

GLODAPv2 GLODAP v1 
(preindustrial 
DIC) 

initialization 
from 
previous 
model 
simulations 

GLODAPv2 
alkalinity and 
preindustrial 
DIC 

GLODAPv2 GLODAPv2 
for Alkalinity 
and DIC. 
DIC is 
corrected to 
1959 level 
for 
simulation A 
and C and 
corrected to 
pre-industrial 
level for 
simulation B 
using 
Khatiwala et 
al. (2009, 
2013) 

GLODAPv2 
preindustrial 

Preindustrial spin-
up prior to 1850? 
If yes, how long? 

spin-up 
1750-1947 

spin-up 
starting in 
1836 with 3 
loops of 
JRA55 

1000 year 
spin up 

yes, ~2000 
years 

50 years long spin-up 
(> 1000 
years) 

Other 
biogeochemi
cal tracers 
are initialized 
from a 
GFDL-
ESM2M 
spin-up (> 
1000 years) 

spinup 1655-
1849 

atmospheric 
forcing for pre-
industrial spin-up 

looping 
NCEP year 
1990 

JRA55 CORE-I 
(normal 
year) forcing 

spinup with 
omip 
climatology 
to reach 
steady state 
with the 
rivers 

JRA55-do 
v.1.5.0 
repeated 
year 1961 

JRA55-do GFDL-
ESM2M 
internal 
forcing 

COREv2 
forcing until 
1835, three 
cycles of 
conditions 
from 1949-
2009. from 
1835-1850: 
JRA forcing 

atmospheric 
forcing for 
historical spin-up 
1850-1958 for 
simulation A 

1750-1947: 
looping 
NCEP year 
1990; 1948-
2020: NCEP 

1836-1958 : 
looping full 
JRA55 
reanalysis 

CORE-I 
(normal 
year) forcing; 
from 1948 
onwards 
NCEP-R1 
with CORE-II 
corrections 

NCEP 6 
hourly cyclic 
forcing (10 
years 
starting from 
1948) with 
co2 at 278 
ppm and 
rivers 

JRA55-do-
v1.5.0 
repeated 
year 1961 

JRA55-do 
cycling year 
1958 

JRA55-do-
v1.5 repeat 
year 1959 
(71 years) 

JRA55 
version 1.3, 
repeat cycle 
between 
1958-2018. 

atmospheric CO2 
for historical spin-
up 1850-1958 for 
simulation A 

provided by 
the GCP; 
converted to 
pCO2 
temperature 
formulation 
(Sarmiento 
et al., 1992), 
monthly 

xCO2 as 
provided by 
the GCB, 
global mean, 
annual 
resolution, 
converted to 
pCO2 with 
sea-level 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
sea level 
pressure and 
water vapor 
correction 

provided by 
the GCB 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure, 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
constant 
sea-level 
pressure and 
water vapour 

xCO2 at year 
1959 level 
(315 ppm), 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure, 

xCO2 as 
provided by 
the GCB 
(new version 
2021), 
converted to 
pCO2 with 
atmospheric 
pressure, 
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resolution pressure and 
water vapour 
pressure 

global mean, 
monthly 
resolution 

pressure, 
global mean, 
yearly 
resolution 

global mean, 
yearly 
resolution 

and locally 
determined 
water vapour 
pressure 
from SST 
and SSS 
(100% 
saturation) 

atmospheric 
forcing for control 
spin-up 1850-
1958 for 
simulation B 

1750-2020: 
looping 
NCEP 1990 

1836-1958 : 
looping full 
JRA55 
reanalysis 

CORE-I 
(normal 
year) forcing 

NCEP 1957 
fixed forcing, 
co2=278 and 
rivers 

JRA55-do-
v1.5.0 repeat 
year 1961 

JRA55-do 
cycling year 
1958 

JRA55-do-
v1.5 repeat 
year 1959 
(71 years) 

normal year 
forcing 
created from 
JRA-55 
version 1.3, 
NYF = 
climatology 
with 
anomalies 
from the year 
2001 

atmospheric CO2 
for control spin-up 
1850-1958 for 
simulation B 

constant 
278ppm; 
converted to 
pCO2 
temperature 
formulation 
(Sarmiento 
et al., 1992), 
monthly 
resolution 

xCO2 of 
286.46ppm, 
converted to 
pCO2 with 
constant 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 of 278 
ppm, 
converted to 
pCO2 with 
seal level 
pressure and 
water vapor 
correction 

278, no 
conversion, 
assuming 
constant 
standard sea 
level 
pressure 

xCO2 of 
278ppm, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 of 
286.46ppm, 
converted to 
pCO2 with 
constant 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 of 
278ppm, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 as 
provided by 
the GCB for 
1850, 
converted to 
pCO2 with 
atmospheric 
pressure, 
and locally 
determined 
water vapour 
pressure 
from SST 
and SSS 
(100% 
saturation) 

simulation A 

Atmospheric 
forcing for 
simulation A 

NCEP JRA55-v1.4 
then 1.5 for 
2020. 

NCEP-R1 
with CORE-II 
corrections 

till1948: 
continue 
from 
A_spinup 
with cyclic 
NCEP 
forcing 
(1948+10) 
and 
increasing 
CO2 => 
GCBA-1777-
1948 
-1948-2020 : 
with transient 
NCEP 
forcing and 
transient 
monthly CO2 

JRA55-do-
v1.5.0 

JRA55-do JRA55-do-
v1.5.0 1959-
2019 and 
JRA55-do-
v1.5.0.1b for 
2020 

JRA-55 
version 1.3 

atmospheric CO2 
for simulation A 

provided by 
the GCP; 
converted to 
pCO2 
temperature 
formulation 
(Sarmiento 
et al., 1992), 
monthly 
resolution 

xCO2 as 
provided by 
the GCB, 
global mean, 
annual 
resolution, 
converted to 
pCO2 with 
sea-level 
pressure and 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
sea level 
pressure and 
water vapor 
correction 

 xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure, 
global mean, 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
constant 
sea-level 
pressure and 
water vapour 
pressure, 

xCO2 as 
provided by 
the GCB, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure, 
global mean, 

xCO2 as 
provided by 
the GCB 
(new version 
2021), 
converted to 
pCO2 with 
atmospheric 
pressure, 
and locally 
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water vapour 
pressure 

monthly 
resolution 

global mean, 
yearly 
resolution 

yearly 
resolution 

determined 
water vapour 
pressure 
from SST 
and SSS 
(100% 
saturation) 

simulation B 

Atmospheric 
forcing for 
simulation B 

NCEP 1990 N/A CORE-I 
(normal 
year) forcing 

1948-2020: 
continue with 
B_spinup 
with fixed 
NCEP 
forcing 1957, 
co2=278 and 
rivers 

JRA55-do-
v1.5.0 repeat 
year 1961 

JRA55-do 
cycling year 
1958 

JRA55-do-
v1.5.0 repeat 
year 1959 

normal year 
forcing 
created from 
JRA-55 
version 1.3, 
NYF = 
climatology 
with 
anomalies 
from the year 
2001 

atmospheric CO2 
for simulation B 

constant 
278ppm; 
converted to 
pCO2 
temperature 
formulation 
(Sarmiento 
et al., 1992), 
monthly 
resolution 

N/A xCO2 of 278 
ppm, 
converted to 
pCO2 with 
sea level 
pressure and 
water vapor 
correction 

 xCO2 of 
278ppm, 
converted to 
pCO2with 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 of 
286.46ppm, 
converted to 
pCO2 with 
constant 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 of 
278ppm, 
converted to 
pCO2 with 
sea-level 
pressure and 
water vapour 
pressure 

xCO2 as 
provided by 
the GCB for 
1850, 
converted to 
pCO2 with 
atmospheric 
pressure, 
and locally 
determined 
water vapour 
pressure 
from SST 
and SSS 
(100% 
saturation) 

model specifics 

Physical ocean 
model 

NEMOv3.6-
ORCA2 

NEMOv3.6-
eORCA1L75 

MICOM 
(NorESM1-
OCv1.2) 

MPIOM FESOM-2.1 NEMOv3.6-
GELATOv6-
eORCA1L75 

MOM6-SIS2 CESMv1.3 
(ocean 
model based 
on POP2) 

Biogeochemistry 
model 

PlankTOM12 PISCESv2 HAMOCC 
(NorESM1-
OCv1.2) 

HAMOCC6 REcoM-2-M PISCESv2-
gas 

COBALTv2 BEC 
(modified & 
extended) 

Horizontal 
resolution 

2o lon, 0.3 to 
1.5o lat 

1° lon, 0.3 to 
1° lat 

1° lon, 0.17 
to 0.25 lat 
(nominally 
1°) 

1.5◦ unstructured 
multi-
resolution 
mesh. 
CORE-
mesh, with 
20-120 km 
resolution. 
Highest 
resolution 
north of 50N, 
intermediate 
in the 
equatorial 
belt and 
Southern 
Ocean, 
lowest in the 
subtropical 
gyres 

1° lon, 0.3 to 
1° lat 

0.5° lon, 0.25 
to 0.5° lat 

Lon: 1.125°, 
Lat varying 
from 0.53° in 
the 
extratropics 
to 0.27° near 
the equator 



150 
 

Vertical resolution 31 levels 75 levels, 1m 
at the 
surface 

51 isopycnic 
layers + 2 
layers 
representing 
a bulk mixed 
layer 

40 levels, 
layer 
thickness 
increase with 
depth 

46 levels, 10 
m spacing in 
the top 100 
m 

75 levels, 1m 
at surface 

75 levels 
hybrid 
coordinates, 
2 m at 
surface 

60 levels (z-
coordinates) 

Total ocean area 
on native grid 
(km2) 

3.6080E+08 3.6270E+08 3.6006E+08 3.6598E+08 3.6475E+08 3.6270E+14 3.6110E+08 3.5926E+08 

Ocean area on 
native grid (km2) - 
NORTH 

6.2646E+07  6.2049E+07 6.4440E+07  6.3971E+13   

Ocean area on 
native grid (km2) - 
TROPICS 

1.1051E+08  1.9037E+08 1.9248E+08  1.9025E+14   

Ocean area on 
native grid (km2) - 
SOUTH 

1.8766E+08  1.0765E+08 1.0986E+08  1.0848E+14   

gas-exchange 
parameterization 

Quadratic 
exchange 
formulation 
(function of T 
+ 0.3*U^2)* 
(Sc/660)^-
0.5) ; 
Wanninkhof 
(1992, 
Equation 8); 
Sweeney et 
al. (2007) 

see Orr et al. 
(2017): kw 
parameterize
d from 
Wanninkhof 
(1992), with 
kw = a* 
(Sc/660)^-
0.5) *u2*(1-
f_ice) with a 
from 
Wanninkhof 
(2014) 

see Orr et al. 
(2017): kw 
parameterize
d from 
Wanninkhof 
(1992), with 
kw = a* 
(Sc/660)^-
0.5) *u2*(1-
f_ice) with 
a=0.337 
following the 
OCMIP2 
protocols 

Gas transfer 
velocity 
formulation 
and 
parameter 
setup of 
Wanninkhof 
(2014), 
including 
updated 
Schmidt 
number 
parameteriza
tions for CO2 
to comply 
with OMIP 
protocol (Orr 
et al., 2017) 

see Orr et al. 
(2017): kw 
parameterize
d from 
Wanninkhof 
(1992), with 
kw = a* 
(Sc/660)^-
0.5) *u2*(1-
f_ice) with a 
from 
Wanninkhof 
(2014) 

see Orr et al. 
(2017): kw 
parameterize
d from 
Wanninkhof 
(1992), with 
kw = a* 
(Sc/660)^-
0.5) *u2*(1-
f_ice) with a 
from 
Wanninkhof 
(2014) 

see Orr et al. 
(2017): kw 
parameterize
d from 
Wanninkhof 
(1992), with 
kw = a* 
(Sc/660)^-
0.5) *u2*(1-
f_ice) with a 
from 
Wanninkhof 
(2014) 

Gas 
exchange is 
parameterize
d using the 
Wanninkhof 
(1992) 
quadratic 
windspeed 
dependency 
formulation, 
but with the 
coefficient 
scaled down 
to reflect the 
recent 14C 
inventories. 
Concretely, 
we used a 
coefficent a 
of 0:31 cm 
hr-1 s2 m-2 
to read kw = 
0:31 ws^2  
(1-fice)  
(Sc=660)^{-
1/2} 

time-step 96 mins 45 min 3200 sec 60 mins 45 min 15min 30 min 3757 sec 

output frequency Monthly monthly monthly/daily monthly monthly monthly monthly monthly 

CO2 chemistry 
routines 

Following 
Broecker et 
al. (1982) 

mocsy Following 
Dickson et 
al. (2007) 

as in Ilyina et 
al. (2013) 
adapted to 
comply with 
OMIP 
protocol (Orr 
et al., 2017). 

mocsy mocsy mocsy OCMIP2 (Orr 
et al., 2017) 

river carbon input 
(PgC/yr) 

60.24 
Tmol/yr; 
0.723 PgC/yr 

0.61 PgC y-1 0 0.77 PgC/yr 0 ~0.611 PgC 
y-1 

~0.15 PgC y-
1 

0.33 Pg C yr-
1 

burial/net flux into 
the sediment 
(PgC/yr) 

0.723 PgC/yr 0.59 GtC y-1 around 0.54 around 0.44 
PgC/yr 

0 ~0.656 GtC 
y-1 

~0.18 PgC y-
1 

0.21 Pg C yr-
1 
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Table A3: Description of ocean data-products used for assessment of SOCEAN. See Table 4 for references. 

 
Jena-MLS MPI-SOMFFN CMEMS-LSCE-

FFNN 
CSIR-ML6 Watson et al NIES-NN JMA-MLR OS-ETHZ-GRaCER 

Method Spatio-
temporal 
interpolation 
(update of 
Rödenbeck 
et al., 2013, 
version 
oc_v2021). 
Specifically, 
the sea-air 
CO2 fluxes 
and the 
pCO2 field 
are 
numerically 
linked to 
each other 
and to the 
spatio-
temporal 
field of 
ocean-
internal 
carbon 
sources/sinks 
through 
process 
parametrizati
ons, and the 
ocean-
internal 
sources/sink 
field is then 
fit to the 
SOCATv2021 
pCO2 data 
(Bakker et 
al., 2021). 
The fit 
includes a 
multi-linear 
regression 
against 
environment
al drivers to 
bridge data 
gaps, and 
interannually 
explicit 
corrections 
to represent 
the data 
signals more 
completely. 

2-step neural 
network 
method where 
in a first step 
the global 
ocean is 
clustered into 
16 
biogeochemica
l provinces 
(one stand 
alone province 
for the Arctic 
Ocean - see 
Landschützer 
et al 2020) 
using a self-
organizing map 
(SOM). In a 
second step, 
the non-linear 
relationship 
between 
available pCO2 
measurements 
from the 
SOCAT 
database 
(Bakker et al 
2016) and 
environmental 
predictor data 
(SST, SSS, MLD, 
CHL-a, 
atmospheric 
CO2 - 
references see 
Landschützer 
et al 2016) are 
established 
using a feed-
forward neural 
network (FFN) 
for each 
province 
separately. The 
established 
relationship is 
then used to 
fill the existing 
data gaps (see 
Landschützer 
et al. 2013, 
2016). 

An ensemble 
of neural 
network 
models trained 
on 100 
subsampled 
datasets from 
the Surface 
Ocean CO2 
Atlas v2021 
(SOCATv2021, 
Bakker et al. 
2021) . Like the 
original data, 
subsamples 
are distributed 
after 
interpolation 
on 1x1 grid 
cells along ship 
tracks. Sea 
surface 
salinity, 
temperature, 
sea surface 
height, mixed 
layer depth, 
atmospheric 
CO2 mole 
fraction, 
chlorophyll-a, 
pCO2 
climatology, 
latitude and 
longitude are 
used as 
predictors. The 
models are 
used to 
reconstruct 
sea surface 
pCO2 and 
convert to air-
sea CO2 fluxes 
(see the 
proposed 
ensemble-
based 
approach and 
analysis in 
Chau et al. 
2020, 2021). 

An ensemble 
average of six 
machine 
learning 
estimates of 
surface ocean 
pCO2 using the 
approach 
described in 
Gregor et al. 
(2019) with 
the updated 
product using 
SOCAT v2021 
(Bakker et al., 
2016). All 
ensemble 
members use a 
cluster-
regression 
approach. Two 
different 
cluster 
configurations 
are used: (1) 
based on K-
means 
clustering; (2) 
Fay and 
McKinley 
(2014) 's CO2 
biomes. Three 
regression 
algorithms are 
used: (1) 
gradient 
boosted 
decision trees; 
(2) feed-
forward neural 
network; (3) 
support vector 
regression. The 
product of the 
cluster 
configurations 
and the 
regression 
algorithms 
results in an 
ensemble with 
six members., 
hence the 
CSIR-ML6. 

Derived from 
the 
SOCAT(v2021) 
pCO2 
database, but 
corrected to 
the subskin 
temperature 
of the ocean as 
measured by 
satellite, using 
the 
methodology 
described by 
Goddijn-
Murphy et al. 
(2015). A 
correction to 
the flux 
calculation is 
also applied 
for the cool 
and salty 
surface skin. In 
other respects 
the product 
uses 
interpolation 
of the data 
using the two 
step neural 
network based 
on MPI-
SOMFFN :in 
the first step 
the ocean is 
divided into a 
monthly 
climatology of 
16 
biogeochemica
l provinces 
using a SOM, 
In the second 
step a feed-
forward neural 
network 
establishes 
non-linear 
relationships 
between pCO2 
and SST, SSS, 
mixed layer 
depth(MLD) 
and 
atmospheric 
xCO2 in each 

A feed forward 
neural network 
model was 
used to 
reconstruct 
monthly global 
surface ocean 
CO2 
concentrations 
1x1 degree 
meshes and 
estimate air-
sea CO2 fluxes. 
The target 
variable is the 
per cruise 
weighted fCO2 
mean of 
SOCAT 2021. 
Feature 
variables 
include sea 
surface 
temperature 
(SST), salinity, 
chlorophyll-a, 
mixed layer 
depth, and the 
monthly 
nomaly of SST. 
See Zeng et al. 
(2014) 

Fields of total 
alkalinity (TA) 
were 
estimated by 
using a 
multiple linear 
regressions 
(MLR) method 
based on 
GLODAPv2.202
1 and satellite 
observation 
data. 
TA = f(SSDH, 
SSS) 
SOCATv2021 
fCO2 data 
were 
converted to 
total dissolved 
inorganic 
carbon (DIC) 
concentrations 
in combination 
with the TA, 
and then fields 
of DIC were 
estimated by 
using a MLR 
method based 
on the DIC and 
satellite 
observation 
data. 
DIC = f(SSDH, 
SST, SSS, 
log(Chl), 
log(MLD), 
time) 

OceanSODA-
ETHZ's 
Geospatial 
Random 
Cluster 
Ensemble 
Regression is a 
two-step 
cluster-
regression 
approach, 
where multiple 
clustering 
instances with 
slight 
variations are 
run to create 
an ensemble 
of estimates 
(n_membersd=
16). We use K-
means 
clustering 
(n_clusters=21
) for the 
clustering step 
and a 
combination of 
Gradient 
boosted trees 
(n_members=8
) and Feed-
forward 
neural-
networks 
(n_members=8
) to estimate 
SOCAT v2021 
fCO2. 
Clustering is 
performed on 
the following 
variables: 
SOCOM_pCO2
_climatology, 
SST_clim, 
MLD_clim, 
CHL_clim. 
Regression is 
performed on 
the following 
variables: 
xCO2atm, SST, 
SST_anomaly, 
SSS, CHL, MLD, 
u10_wind, 
v10_wind, sea-
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of the 16 
provinces. 
Further 
description in 
Watson et al. 
(2020). 

ice changes, 
SSH (note that 
the latter two 
variables are 
an update 
from Gregor 
and Gruber, 
2021). 

Gas-exchange 
parameterizati
on 

Quadratic 
exchange 
formulation 
(k*U^2* 
(Sc/660)^-
0.5) 
(Wanninkhof
, 1992) with 
the transfer 
coefficient k 
scaled to 
match a 
global mean 
transfer rate 
of 16.5 
cm/hr by 
Naegler 
(2009) 

Quadratic 
exchange 
formulation 
(k*U^2* 
(Sc/660)^-0.5) 
(Wanninkhof, 
1992) with the 
transfer 
coefficient k 
scaled to 
match a global 
mean transfer 
rate of 16.5 
cm/hr 
(calculated 
myself over 
the full period 
1982-2020) 

Quadratic 
exchange 
formulation 
(k*U^2* 
(Sc/660)^-0.5) 
(Wanninkhof., 
2014) with the 
transfer 
coefficient k 
scaled to 
match a global 
mean transfer 
rate of 16.5 
cm/hr 
(Naegler, 
2009). 

Quadratic 
formulation kw 
= a *U10^2 * 
(Sc/660)^0.5 
().  We use 
scaled kw for 
ERA5 
reanalysis 
wind data, 
which is scaled 
globally to 16.5 
cm/hr (after 
Naegler 2009) 
like in Fay and 
Gregor et al. 
(2021) 
https://doi.org
/10.5194/essd-
2021-16 

Nightingale et 
al. (2000) 
formulation : 
K=((Sc/600)^-
0.5)*(0.333*U 
+0.222*U^2) 

Kw=0.251*Wn
d*Wnd/sqrt(Sc
/660.0) 
(Wanninkhof, 
2014) 

Quadratic 
exchange 
formulation 
(k*U^2* 
(Sc/660)^-0.5) 
(Wanninkhof., 
2014) with the 
transfer 
coefficient k 
scaled to 
match a global 
mean transfer 
rate of 16.5 
cm/hr 
(Naegler, 
2009) under 
fitted to the 
JRA55 wind 
field. 

Quadratic 
formulation of 
bulk air-sea 
CO2 flux: 
kw = a * U10^2 
* (Sc/660)^0.5 
We use 
individually 
scaled kw's for 
JRA55, ERA5, 
and NCEP-R1, 
which are all 
scaled globally 
to 16.5 cm/hr 
(after Naegler, 
2009). See Fay 
and Gregor et 
al. (2021) 

Wind product JMA55-do 
reanalysis 

ERA 5 ERA5 ERA5 CCMP wind 
product, 0.25 x 
0.25 degrees x 
6-hourly, from 
which we 
calculate mean 
and mean 
square winds 
over 1 x 1 
degree and 1 
month 
intervals. 
CCMP product 
does not cover 
years 1985-
1987, for 
which we use a 
monthly 
climatology 
calculated as 
the means of 
1988-1991. 

ERA5 JRA55 JRA55, ERA5, 
NCEP1 

Spatial 
resolution 

2.5 degrees 
longitude * 2 
degrees 
latitude 

1x1 degree 1x1 degree 1 x 1 1 x 1 degree 1x1 degree 1x1 degree 1x1 degree 
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Temporal 
resolution 

daily monthly monthly monthly monthly monthly monthly monthly 

Atmospheric 
CO2 

Spatially and 
temporally 
varying field 
based on 
atmospheric 
CO2 data 
from 169 
stations 
(Jena 
CarboScope 
atmospheric 
inversion 
sEXTALL_v20
21) 

atmospheric 
pCO2_wet 
calculated 
from the 
NOAA ESRL 
marine 
boundary layer 
xCO2 and the 
NCEP sea level 
pressure with 
the moisture 
correction by 
Dickson et al 
2007 (details 
and references 
can be 
obtained from 
Appendix A3 in 
Landschützer 
et al 2013) 

Spatially and 
monthly 
varying fields 
of atmospheric 
pCO2 
computed 
from CO2 mole 
fraction ( 
Chevallier, 
2013; CO2 
atmospheric 
inversion from 
the Copernicus 
Atmosphere 
Monitoring 
Service ), and 
atmospheric 
dry-air 
pressure which 
is derived from 
monthly 
surface 
pressure 
(ERA5) and 
water vapour 
pressure fitted 
by Weiss and 
Price (1980) 

The NOAA's 
marine 
boundary layer 
product for the 
mole fraction 
of carbon 
dioxide (xCO2) 
is linearly 
interpolated 
onto a 1°x1° 
grid and 
resampled 
from weekly to 
monthly. 
Basically, xCO2 
is multiplied by 
ERA5 mean sea 
level pressure 
(MSLP), and a 
water vapour 
pressure 
correction is 
applied to 
MSLP using the 
equation from 
Dickson et al. 
(2007). This 
results in 
monthly 1°x 1° 
atmospheric 
pCO2. 

Atmospheric 
pCO2 (wet) 
calculated 
from NOAA 
marine 
boundary layer 
XCO2 and 
NCEP sea level 
pressure, with 
pH2O 
calculated 
from Cooper et 
al. (1998). 
(2019 XCO2 
marine 
boundary 
values were 
not available 
at submission 
so we used 
preliminary 
values, 
estimated 
from 2018 
values and 
increase at 
Mauna Loa.) 

NOAA 
Greenhouse 
Gas Marine 
Boundary 
Layer 
Reference. 
https://gml.no
aa.gov/ccgg/m
bl/mbl.html 

Atmospheric 
xCO2 fields of 
JMA-GSAM 
inversion 
model (Maki et 
al. 2010; 
Nakamura et 
al. 2015) were 
used. They 
were 
converted to 
pCO2 by using 
JRA55 sea level 
pressure. xCO2 
fields in 2020 
were not 
available at 
this stage, and 
we use 
observation 
data of 
obspack_co2_
1_NRT_v6.1.1_
2021-05-17 (Di 
Sarra et al. 
2021) to 
estimate the 
increase from 
2019 to 2020. 

NOAA's marine 
boundary layer 
product for 
xCO2 is linearly 
interpolated 
onto a 1x1 
degree grid 
and resampled 
from weekly to 
monthly. xCO2 
is multiplied by 
ERA5 mean sea 
level pressure, 
where the 
latter 
corrected for 
water vapour 
pressure using 
Dickson et al. 
(2007). This 
results in 
monthly 1x1 
degree 
pCO2atm. 

Total ocean 
area on native 
grid (km2) 

3.63E+08 3.63E+08 3.46E+08 3.48E+08 3.51E+08 3.28E+08 
(3.23E+08 to 
3.35E+08, 
depending on 
ice cover) 

3.05E+08 
(2.98E+08 to 
3.15E+08, 
depending on 
ice cover) 

3.55E+08 

method to 
extend product 
to full global 
ocean 
coverage 

 Arctic and 
marginal seas 
added 
following 
Landschützer 
et al. (2020). 
previously 
applied coastal 
cut (1degree 
off coast) was 
dropped 

    We used the 
same method 
as Fay et al. 
(2021a) 

Method has 
near full 
coverage 

Ocean area on 
native grid 
(km2) - NORTH 

  5.4545E+07 5.0528E+07 5.0700E+07  3.90E+07 
(3.75E+07 to 
4.09E+07, 
depending on 
ice cover) 

5.9771E+07 

Ocean area on 
native grid 
(km2) - 
TROPICS 

  1.8875E+08 1.8933E+08 1.9230E+08  1.74E+08 1.8779E+08 
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Ocean area on 
native grid 
(km2) - SOUTH 

  1.0241E+08 1.0767E+08 1.0868E+08  9.20E+07 
(8.47E+07 to 
1.02E+08, 
depending on 
ice cover) 

1.0705E+08 
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Table A4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric 
inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial fluxes. Hence they need to be 
adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle 
before they can be compared with SOCEAN and SLAND from process models. See Table 4 for references. 

 

CarbonTracker 
Europe (CTE) 

Jena CarboScope Copernicus 
Atmosphere 

Monitoring Service 
(CAMS) 

UoE CMS-Flux NISMON-CO2 

Version number CTE2021 sEXTocNEET_v20
21 v20r2 in-situ  v2021.1 

Observations       
Atmospheric observations Hourly 

resolution (well-
mixed 
conditions) 
obspack 
GLOBALVIEWplu
s v6.1 and 
NRT_v6.1.1 (a) 

Flasks and hourly 
from various 
institutions 
(outliers 
removed by 2-
sigma criterion) 

Hourly resolution 
(well-mixed 
conditions) obspack 
GLOBALVIEWplus 
v6.1 and 
NRT_v6.1.1 (a), 
WDCGG, RAMCES 
and ICOS ATC 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIEWpl
us v6.1 and 
NRT_v6.1.1 (a) 

ACOS-GOSAT v9 (6) 
retrievals between 
July 2009 and Dec 
2014 and OCO-2 b10 
(7) retrievals 
between Jan 2015 to 
Dec 2015. In 
addition, surface 
flask observations 
from remote sites 
were also 
assimilated from 
GLOBALVIEWplus 
v6.1 and NRT_v6.1.1 
. 

Hourly resolution 
(well-mixed 
conditions) obspack 
GLOBALVIEWplus v6.1 
and NRT_v6.1.1 (a) 

Period covered 2001-2020 1957-2020 1979-2021 2001-2020 2010-2020 1990-2020 
Prior fluxes       
Biosphere and fires SIBCASA 

biosphere (b) 
with 2019-2020 
climatological, 
GFAS fires 

No prior ORCHIDEE 
(climatological), 
GFEDv4.1s 

CASA v1.0, 
climatology 
after 2016 & 
GFED4.0 

yearly repeating 
CARDAMOM 
biosphere+fires 

VISIT & GFEDv4.1s 

Ocean oc_v2020 
(Rodenbeck et 
al., 2014), with 
updates, For 
2020: 
climatology 
based on years 
2015-2019 

oc_v2021 
(Rödenbeck et 
al., 2014) with 
updates 

CMEMS Copernicus 
ocean fluxes 
(Denvil-Sommer et 
al., 2019), with 
updates 

Takahashi 
climatology 

MOM6 JMA global ocean 
mapping (Iida et al., 
2015) 

Fossil fuels GCP-
GridFEDv2021.1 
(Jones et al., 
2021b) for 
2000-2018, 
GCP-
GridFEDv2021.2 
for 2019+2020 
(c) 

GCP-
GridFEDv2021.2 
(Jones et al., 
2021b) (c) 

GCP-
GridFEDv2021.2 
(Jones et al., 2021b) 
(c) 

GCP-
GridFEDv2021.2 
(Jones et al., 
2021b) (c) 

GCP-GridFEDv2021.2 
(Jones et al., 2021b) 
(c) 

GCP-GridFEDv2021.2 
(Jones et al., 2021b) 
(c) 

Transport and optimization       
Transport model TM5 TM3 LMDZ v6 GEOS-CHEM GEOS-CHEM NICAM-TM 

Weather forcing ECMWF NCEP ECMWF MERRA2 MERRA-2 JRA55 
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Horizontal Resolution Global: 3° x 2°, 
Europe: 1° x 1°, 
North America: 
1° x 1° 

Global: 4° x 5° Global: 3.75° x 
1.875° 

Global: 4° x 5° Global: 4° x 5° isocahedral grid: 
~225km 

Optimization Ensemble 
Kalman filter 

Conjugate 
gradient (re-
ortho-
normalization) 
(d) 

Variational Ensemble 
Kalman filter 

Variational Variational 

(a) (Cox et al., 2021; Di Sarra et al., 2021) 
(b) (van der Velde et al., 2014) 
(c) GCP-GridFEDv2021.2 (Jones et al., 2021b) is an update through the year 2020 of the GCP-GridFED dataset presented by Jones et al. (2021a). 
(d) ocean prior not optimised 
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Table A5 Attribution of fCO2 measurements for the year 2020 included in SOCATv2021 (Bakker et al., 2016, 2021) 
to inform ocean fCO2-based data products. 

Platform name Regions 
No. of 

measurements 
Principal Investigators 

No. of data 
sets 

Platform type 

1 degree North Atlantic, Coastal 8,652 Gutekunst, S. 2 Ship 

Allure of the Seas 
North Atlantic, Tropical Atlantic, 
Coastal 

19,321 Wanninkhof, R.; Pierrot, D. 8 Ship 

Atlantic Explorer North Atlantic 15,665 Bates, N. 11 Ship 

Atlantic Sail North Atlantic, Coastal 25,082 Steinhoff, T.; Körtzinger, A. 6 Ship 

Aurora Australis Southern Ocean 14,316 Tilbrook, B. 1 Ship 

Bjarni 
Saemundsson 

Coastal 3,269 Benoit-Cattin A.; Ólafsdóttir, S. R. 1 Ship 

BlueFin 
North Pacific, Tropical Pacific, 
Coastal 

76,505 Alin, S. R.; Feely, R. A. 12 Ship 

Cap San Lorenzo Tropical Atlantic, Coastal 12,417 Lefèvre, N. 2 Ship 

Celtic Explorer North Atlantic, Coastal 18,617 Cronin, M. 6 Ship 

Colibri 
North Atlantic, Tropical Atlantic, 
Coastal 

13,402 Lefèvre, N. 2 Ship 

Equinox North Atlantic, Coastal 25,052 Wanninkhof, R.; Pierrot, D. 11 Ship 

F. G. Walton Smith Coastal 10,460 
Rodriguez, C.; Millero, F. J.; Pierrot, D.; 
Wanninkhof, R. 

6 Ship 

Finnmaid Coastal 253,894 Rehder, G.; Glockzin, M. 11 Ship 

Flora Tropical Pacific 4,099 Wanninkhof, R.; Pierrot, D. 2 Ship 

G.O. Sars Arctic, North Atlantic, Coastal 75,833 Skjelvan, I. 7 Ship 

GAKOA_149W_60
N 

Coastal 68 Cross, J. N.; Monacci, N. M. 3 Mooring 

Gulf Challenger Coastal 2,717 Salisbury, J.; Vandemark, D.; Hunt, C. 3 Ship 

Healy Arctic, North Pacific, Coastal 16,943 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 

4 Ship 

Henry B. Bigelow North Atlantic, Coastal 14,436 Wanninkhof, R.; Pierrot, D. 4 Ship 

Heron Island Coastal 768 Tilbrook B. 1 Mooring 

James Clark Ross Southern Ocean 2,000 Kitidis, V. 1 Ship 

James Cook 
North Atlantic, Tropical Atlantic, 
Coastal 

46,710 Theetaert, H. 1 Ship 

KC_BUOY Coastal 1,983 Evans, W. 1 Mooring 

Laurence M. Gould Southern Ocean 25,414 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 

4 Ship 

Maria. S. Merian Tropical Atlantic, Coastal 35,806 Ritschel, M. 1 Ship 

Marion Dufresne Southern Ocean, Indian 4,709 Lo Monaco, C.; Metzl, N. 1 Ship 

Nathaniel B. 
Palmer 

Southern Ocean, Tropical Pacific 34,357 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 

3 Ship 

New Century 2 
North Pacific, Tropical Pacific, 
Tropical Atlantic, North Atlantic, 
Coastal 

27,793 Nakaoka, S.-I. 14 Ship 

Nuka Arctica North Atlantic, Coastal 26,576 Becker, M.; Olsen, A. 6 Ship 

Oscar Dyson Arctic, North Pacific, Coastal 28,196 Alin, S. R.; Feely, R. A. 6 Ship 

Quadra Island 
Field Station 

Coastal 78,098 Evans, W. 1 Mooring 

Ronald H. Brown 
Southern Ocean, Tropical Atlantic, 
North Atlantic, Coastal 

51,611 Wanninkhof, R.; Pierrot, D. 6 Ship 
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Saildrone1030 
North Atlantic, Tropical Atlantic, 
Coastal 

4,080 
Skjelvan, I.; Fiedler, B.; Pfeil, B.; Jones, 
S. D. 

1 Saildrone 

Sea Explorer 
Southern Ocean, Tropical Atlantic, 
North Atlantic, Coastal 

89,896 Landschützer, P.; Tanhua, T. 6 Ship 

Sikuliaq Arctic, North Pacific, Coastal 36,278 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 

10 Ship 

Simon Stevin Coastal 16,448 Gkritzalis, T. 4 Ship 

Soyo Maru Coastal 46,280 Ono, T. 2 Ship 

Tangaroa Southern Ocean, Tropical Pacific 121,135 Currie, K. I. 13 Ship 

TAO110W_0N Tropical Pacific 1,518 Sutton, A. J. 3 Mooring 

Tavastland Coastal 4,214 Willstrand Wranne, A., Steinhoff, T. 5 Ship 

Thomas G. 
Thompson 

Southern Ocean, Tropical Atlantic 1,317 Alin, S. R.; Feely, R. A. 1 Ship 

Trans Carrier Coastal 24,135 Omar, A. M. 13 Ship 

Trans Future 5 Southern Ocean, Coastal 16,404 Nakaoka, S.-I.; Nojiri, Y. 15 Ship 

Wakataka Maru North Pacific, Coastal 101,327 Tadokoro, K.; Ono, T. 7 Ship 
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Table A6. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration Project 
(CGADIP; Cox et al., 2021) that contribute to the evaluation of the atmospheric inversions (Figure B4). 
Site 
code 

Measurement program name in 
Obspack Specific doi Data providers used in 

2021 

AAO 
Airborne Aerosol Observatory, Bondville, 
Illinois  Sweeney, C.; Dlugokencky, E.J. 

yes 

ACG 
Alaska Coast Guard  

Sweeney, C.; McKain, K.; Karion, A.; 
Dlugokencky, E.J. yes 

ACT 
Atmospheric Carbon and Transport - 
America  

Sweeney, C.; Dlugokencky, E.J.; Baier, B; 
Montzka, S.; Davis, K. yes 

ALF 
Alta Floresta  Gatti, L.V.; Gloor, E.; Miller, J.B.; 

yes 

AOA 

Aircraft Observation of Atmospheric trace 
gases by JMA  ghg_obs@met.kishou.go.jp 

yes 

BGI Bradgate, Iowa  Sweeney, C.; Dlugokencky, E.J. yes 

BNE Beaver Crossing, Nebraska  Sweeney, C.; Dlugokencky, E.J. yes 

BRZ Berezorechka, Russia  Sasakama, N.; Machida, T. yes 

CAR Briggsdale, Colorado  Sweeney, C.; Dlugokencky, E.J. yes 

CMA 
Cape May, New Jersey  Sweeney, C.; Dlugokencky, E.J. 

yes 

CON 

CONTRAIL (Comprehensive Observation 
Network for TRace gases by AIrLiner) 

http://dx.doi.org/10.17595/201
80208.001 

Machida, T.; Matsueda, H.; Sawa, Y. Niwa, Y. 
yes 

CRV 
Carbon in Arctic Reservoirs Vulnerability 
Experiment (CARVE)  

Sweeney, C.; Karion, A.; Miller, J.B.; Miller, C.E.; 
Dlugokencky, E.J. yes 

DND Dahlen, North Dakota  Sweeney, C.; Dlugokencky, E.J. yes 

ESP Estevan Point, British Columbia  Sweeney, C.; Dlugokencky, E.J. yes 

ETL East Trout Lake, Saskatchewan  Sweeney, C.; Dlugokencky, E.J. yes 

FWI Fairchild, Wisconsin  Sweeney, C.; Dlugokencky, E.J. yes 

GSFC 
NASA Goddard Space Flight Center Aircraft 
Campaign  Kawa, S.R.; Abshire, J.B.; Riris, H. yes 

HAA Molokai Island, Hawaii  Sweeney, C.; Dlugokencky, E.J. yes 

HFM Harvard University Aircraft Campaign  Wofsy, S.C. yes 

HIL 
Homer, Illinois  Sweeney, C.; Dlugokencky, E.J. 

yes 

HIP 
HIPPO (HIAPER Pole-to-Pole Observations) 

https://doi.org/10.3334/CDIAC/
HIPPO_010 

Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; Hintsa, 
E.J.; Moore, F. yes 

IAGOS
-
CARIBI
C 

In-service Aircraft for a Global Observing 
System  

Obersteiner, F.; Boenisch., H; Gehrlein, T.; Zahn, 
A.; Schuck, T. 

yes 

INX 
INFLUX (Indianapolis Flux Experiment)  

Sweeney, C.; Dlugokencky, E.J.; Shepson, P.B.; 
Turnbull, J. yes 

LEF Park Falls, Wisconsin  Sweeney, C.; Dlugokencky, E.J. yes 

NHA Offshore Portsmouth, New Hampshire (Isles  Sweeney, C.; Dlugokencky, E.J. yes 
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of Shoals) 

OIL Oglesby, Illinois  Sweeney, C.; Dlugokencky, E.J. yes 

PFA Poker Flat, Alaska  Sweeney, C.; Dlugokencky, E.J. yes 

RBA-B Rio Branco  Gatti, L.V.; Gloor, E.; Miller, J.B. yes 

RTA Rarotonga  Sweeney, C.; Dlugokencky, E.J. yes 

SCA Charleston, South Carolina  Sweeney, C.; Dlugokencky, E.J. yes 

SGP Southern Great Plains, Oklahoma  Sweeney, C.; Dlugokencky, E.J.; Biraud, S. yes 

TAB Tabatinga  Gatti, L.V.; Gloor, E.; Miller, J.B. yes 

TGC Offshore Corpus Christi, Texas  Sweeney, C.; Dlugokencky, E.J. yes 

THD Trinidad Head, California  Sweeney, C.; Dlugokencky, E.J. yes 

WBI West Branch, Iowa  Sweeney, C.; Dlugokencky, E.J. yes 
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Table A7. Main methodological changes in the global carbon budget since first publication. Methodological 
changes introduced in one year are kept for the following years unless noted. Empty cells mean there were 
no methodological changes introduced that year. 

Publication 
year 

Fossil fuel emissions LUC 
emissions Reservoirs 

Uncertainty 
& other 
changes Global Country 

(territorial) 
Country 

(consumption)  Atmosphere Ocean Land 

2006 (a)  Split in 
regions 

      

2007 (b)    ELUC based 
on FAO-FRA 
2005; 
constant 
ELUC for 2006 

1959-1979 
data from 
Mauna Loa; 
data after 
1980 from 
global 
average 

Based on one 
ocean model 
tuned to 
reproduced 
observed 
1990s sink 

 ±1σ provided 
for all 
components 

2008 (c)    Constant 
ELUC for 2007 

    

2009 (d)  Split 
between 
Annex B and 
non-Annex B 

Results from 
an 
independent 
study 
discussed 

Fire-based 
emission 
anomalies 
used for 
2006-2008 

 Based on four 
ocean models 
normalised to 
observations 
with constant 
delta 

First use of 
five DGVMs 
to compare 
with budget 
residual 

 

2010 (e) Projection for 
current year 
based on GDP 

Emissions for 
top emitters 

 ELUC updated 
with FAO-FRA 
2010 

    

2011 (f)   Split between 
Annex B and 
non-Annex B 

     

2012 (g)  129 
countries 
from 1959 

129 countries 
and regions 
from 1990-
2010 based on 
GTAP8.0 

ELUC for 
1997-2011 
includes 
interannual 
anomalies 
from fire-
based 
emissions 

All years from 
global 
average 

Based on 5 
ocean models 
normalised to 
observations 
with ratio 

Ten DGVMs 
available for 
SLAND; First 
use of four 
models to 
compare with 
ELUC 

 

2013 (h)  250 
countriesb 

134 countries 
and regions 
1990-2011 
based on 
GTAP8.1, with 
detailed 
estimates for 
years 1997, 
2001, 2004, 
and 2007 

ELUC for 2012 
estimated 
from 2001-
2010 average 

 Based on six 
models 
compared 
with two 
data-products 
to year 2011 

Coordinated 
DGVM 
experiments 
for SLAND 
and ELUC 

Confidence 
levels; 
cumulative 
emissions; 
budget from 
1750 

2014 (i) Three years 
of BP data 

Three years 
of BP data 

Extended to 
2012 with 
updated GDP 
data 

ELUC for 
1997-2013 
includes 
interannual 
anomalies 
from fire-
based 
emissions 

 Based on 
seven models 

Based on ten 
models 

Inclusion of 
breakdown of 
the sinks in 
three latitude 
bands and 
comparison 
with three 
atmospheric 
inversions 
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2015 (j) Projection for 
current year 
based Jan-
Aug data 

National 
emissions 
from 
UNFCCC 
extended to 
2014 also 
provided 

Detailed 
estimates 
introduced for 
2011 based on 
GTAP9 

  Based on 
eight models 

Based on ten 
models with 
assessment of 
minimum 
realism 

The decadal 
uncertainty 
for the DGVM 
ensemble 
mean now 
uses ±1σ of 
the decadal 
spread across 
models 

2016 (k) Two years of 
BP data 

Added three 
small 
countries; 
China’s 
emissions 
from 1990 
from BP data 
(this release 
only) 

 Preliminary 
ELUC using 
FRA-2015 
shown for 
comparison; 
use of five 
DGVMs 

 Based on 
seven models 

Based on 
fourteen 
models 

Discussion of 
projection for 
full budget 
for current 
year 

a Raupach et al. (2007) 
b Canadell et al. (2007) 
c GCP (2008) 
d Le Quéré et al. (2009) 
e Friedlingstein et al. (2010) 
f Peters et al. (2012b) 
g Le Quéré et al. (2013), Peters et al. (2013) 
h Le Quéré et al. (2014) 
i Le Quéré et al. (2015a) 
j Le Quéré et al. (2015b) 
k Le Quéré et al. (2016) 
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Table A8: Mapping of global carbon cycle models' land flux definitions to the definition of the 
LULUCF net flux used in national reporting to UNFCCC. Non-intact lands are used here as 
proxy for "managed lands" in the country reporting 
   2001-2010 2011-2020 
ELUC from bookkeeping 
estimates (from Tab. 5)   1.21 1.13 

SLAND 

Total (from Tab. 5) from DGVMs -2.54 -3.06 

on non-forest lands from DGVMs -0.90 -1.14 

on non-intact forest from DGVMs -1.27 -1.50 

on intact land (intact forest only 
for DGVMs) 

from DGVMs -0.37 -0.42 

from ORCHIDEE-MICT -1.29 -1.47 

 
   

SLAND on non-intact 
lands plus ELUC 

 
from DGVMs and bookkeeping 
ELUC -0.06 -0.37 

 from ORCHIDEE-MICT 
1.00 

0.61 

National greenhouse gas 
inventories (LULUCF)   -0.43 -0.57 

FAOSTAT (LULUCF)   0.39 0.20 
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Table A9. Funding supporting the production of the various components of the global carbon budget in 
addition to the authors’ supporting institutions (see also acknowledgements). 
Funder and grant number (where relevant) Author Initials 
Australia, Integrated Marine Observing System (IMOS) BT 

Australian National Environment Science Program (NESP) JGC 

Belgium, FWO (Flanders Research Foundation, contract IRI I001019N) TG 

BNP Paribas Foundation through Climate & Biodiversity initiative, philanthropic grant for 
developments of the Global Carbon Atlas PC 

Canada, Tula Foundation WE 

China, National Natural Science Foundation (grant no. 41975155) XY 

Commonwealth Scientific and Industrial Organization (CSIRO) - Climate Science Centre JGC, JK 
EC Copernicus Atmosphere Monitoring Service implemented by ECMWF on behalf of the 
European Commission FC 

EC Copernicus Marine Environment Monitoring Service implemented by Mercator Ocean TTTC 

EC H2020 (4C; grant no 821003) 
PF, RMA, SS, GPP, PC, JIK, TI, LB, PL, LG, 
SL, NG 

EC H2020 (CHE; grant no 776186) MWJ 

EC H2020 (CoCO2: grant no. 958927) RMA, GPP 

EC H2020 (COMFORT: grant no. 820989) DCEB, LG 

EC H2020 (CONSTRAIN: grant no 820829) RS, PMF, TG 

EC H2020 (CRESCENDO: grant no. 641816) RS, EJ AJPS, TI 

EC H2020 (ESM2025 – Earth System Models for the Future; grant agreement No 101003536). RS, TG, TI, LB, BD 

EC H2020 (EuroSea: grant no. 862626) SDJ 

EC H2020 (JERICO-S3: grant no. 871153) GR 

EC H2020 (QUINCY; grant no 647204) SZ 

EC H2020 (RINGO: grant no. 730944) DCEB 

EC H2020 (VERIFY: grant no. 776810) MWJ, RMA, GPP, PC, JIK, NV, GG 

Efg International TT 

EFG International TT 
European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 655 
(ESRIN/4000123002/18/I-NB) PF, SS, PC 

European Space Agency OceanSODA project (grant no. 4000112091/14/I-LG) LG 

France, ICOS (Integrated Carbon Observation System) France NL 

France, Institut de Recherche pour le Développement (IRD) NL 
Germany, Blue Ocean and Federal Ministry of Education (BONUS INTEGRAL; Grant No. 
03F0773A) GR 

Germany, Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy – EXC 
2037 ‘Climate, Climatic Change, and Society’ – Project Number: 390683824 TI 

Germany, Federal Ministry for Education and Research (BMBF) GR 

Germany, GEOMAR Helmholtz Centre for Ocean Research SKL 
Germany, German Federal Ministry of Education and Research under project "DArgo2025" 
(03F0857C) AK 

Germany, Helmholtz Association ATMO programme PA 

Germany, Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the 
Earth System (MarESys), grant number VH-NG-1301 JH, OG 

Germany, ICOS (Integrated Carbon Observation System) Germany GR, NL 

Hapag-Lloyd TT 
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Ireland, Marine Institute MC 

Japan, Environment Research and Technology Development Fund of the Ministry of the 
Environment (JPMEERF21S20810) YN 
Japan, Global Environmental Research Coordination System, Ministry of the Environment (grant 
number E1751) SN, TO, CW 

Kuehne + Nagel International AG TT 

Mediterranean Shipping Company (MSc) TT 

Monaco, Fondation Prince Albert II de Monaco TT 

Monaco, Yacht Club de Monaco TT 

NASA Interdisciplinary Research in Earth Science Program. BP 

Netherlands Organization for Scientific Research (NWO; grant no. SH-312, 17616) WP 

New Zealand, NIWA MBIE Core funding KIC 

Norway, Norwegian Research Council (grant no. 270061) JS 

Norway, Research Council of Norway, ICOS (Integrated Carbon Observation System) Norway 
and OTC (Ocean Thematic Centre) (grant no. 245927) SKL, MB, SDJ 

PEAK6 Investments SKL 

Saildrone Inc. SKL 

South Africa, Department of Science and Innovation LD 

South Africa, National Science Foundation LD 

Swiss National Science Foundation (grant no. 200020_172476) SL 

UK Royal Society (grant no. RP\R1\191063) CLQ 

UK, CLASS ERC funding TG 

UK, National Centre for Atmospheric Science (NCAS) PCM 

UK, Natural Environment Research Council (SONATA: grant no. NE/P021417/1) DW 

UK, Natural Environmental Research Council (NE/R016518/1) LF 

UK, Newton Fund, Met Office Climate Science for Service Partnership Brazil (CSSP Brazil) AJWi 

UK, Royal Society: The European Space Agency OCEANFLUX projects AJWa 

UK, University of Reading Research Endowment Trust Fund PCM 
USA, Department of Commerce, Office of Oceanic and Atmospheric Research (OAR)'s / National 
Oceanic and Atmospheric Administration (NOAA)'s Global Ocean Monitoring and Observation 
Program (GOMO) DRM, CS, DP, RW, SRA, RAF, AJS, NRB 

USA, Department of Commerce, Office of Oceanic and Atmospheric Research (OAR)'s / National 
Oceanic and Atmospheric Administration (NOAA)'s Ocean Acidification Program DP, RW, SRA, RAF, AJS 

USA, Department of Energy, Office of Science and BER prg. (grant no. DE-SC000 0016323) AKJ 

USA, Department of Energy, SciDac (DESC0012972) GCH, LPC 
USA, NASA Carbon Monitoring System probram and OCO Science team program 
(80NM0018F0583) . JL 

USA, NASA Interdisciplinary Research in Earth Science (IDS) (80NSSC17K0348) GCH, LPC 

USA, National Science Foundation (grant number 1903722) HT 

USA, National Science Foundation (grant number PLR 1543457) DRM, CS 

USA, Princeton University Environmental Institute and the NASA OCO2 science team, grant 
number 80NSSC18K0893. LR 

Computing resources 
bwHPC, High Performance Computing Network of the State of Baden-Württemberg, Germany PA 

Cheyenne supercomputer, Computational and Information Systems Laboratory (CISL) at 
National Center for Atmospheric Research (NCAR) DK 

Deutsches Klimarechenzentrum (allocation bm0891) JEMSN, JP 

HPC cluster Aether at the University of Bremen, financed by DFG within the 
scope of the Excellence Initiative ITL, WP 
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MRI (FUJITSU Server PRIMERGY CX2550M5) YN 

NIES (SX-Aurora) YN 

NIES supercomputer system EK 

supercomputer 'Gadi' of the National Computational Infrastructure (NCI), Australia JK 

Supercomputing time was provided by the Météo-France/DSI supercomputing center. RS, BD 

TGCC under allocation 2019-A0070102201 made by GENCI FC 

UEA High Performance Computing Cluster, UK MWJ, CLQ, DRW 

UNINETT Sigma2, National Infrastructure for High Performance Computing and Data Storage in 
Norway (NN2980K/NS2980K) JS 
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15 Appendix B. Supplementary Figures 

 

Figure B1. Ensemble mean air-sea CO2 flux from a) global ocean biogeochemistry models and b) 

fCO2 based data products, averaged over 2011-2020 period (kgC m-2 yr-1). Positive numbers 

indicate a flux into the ocean. c) gridded SOCAT v2021 fCO2 measurements, averaged over the 

2011-2020 period (µatm). In (a) model simulation A is shown. The data-products represent the 

contemporary flux, i.e. including outgassing of riverine carbon, which is estimated to amount to 

0.615 GtC yr-1 globally. 
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Figure B2. Evaluation of the GOBMs and data products using the root mean squared error (RMSE) 

for the period 1990 to 2020, between the individual surface ocean fCO2 mapping schemes and the 

SOCAT v2021 database. The y-axis shows the amplitude of the interannual variability (A-IAV, taken 

as the standard deviation of a detrended time series calculated as a 12-months running mean over 

the monthly flux time series, Rödenbeck et al., 2015). Results are presented for the globe, north 

(>30°N), tropics (30°S-30°N), and south (<30°S) for the GOBMs (see legend circles) and for the 

fCO2-based data products (star symbols). The fCO2-based data products use the SOCAT database 

and therefore are not independent from the data (see section 2.4.1).  
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Figure B3. Evaluation of the DGVMs using the International Land Model Benchmarking system 

(ILAMB; Collier et al., 2018) (left) absolute skill scores and (right) skill scores relative to other 

models. The benchmarking is done with observations for vegetation biomass (Saatchi et al., 2011; 

and GlobalCarbon unpublished data; Avitabile et al., 2016), GPP (Jung et al., 2010; Lasslop et al., 

2010), leaf area index (De Kauwe et al., 2011; Myneni et al., 1997), net ecosystem exchange (Jung 

et al., 2010;Lasslop et al., 2010), ecosystem respiration (Jung et al., 2010;Lasslop et al., 2010), soil 

carbon (Hugelius et al., 2013;Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 

2011), and runoff (Dai and Trenberth, 2002). For each model-observation comparison a series of 

error metrics are calculated, scores are then calculated as an exponential function of each error 

metric, finally for each variable the multiple scores from different metrics and observational data 

sets are combined to give the overall variable scores shown in the left panel. Overall variable 

scores increase from 0 to 1 with improvements in model performance. The set of error metrics 

vary with data set and can include metrics based on the period mean, bias, root mean squared 

error, spatial distribution, interannual variability and seasonal cycle. The relative skill score shown 

in the right panel is a Z-score, which indicates in units of standard deviation the model scores 

relative to the multi-model mean score for a given variable. Grey boxes represent missing model 

data. 
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Figure B4. Evaluation of the atmospheric inversion products. The mean of the model minus 

observations is shown for four latitude bands in three periods: (left) 2001-2010, (centre) 2011-

2020, (right) 2001-2020. The six models are compared to independent CO2 measurements made 

onboard aircraft over many places of the world between 2 and 7 km above sea level. Aircraft 

measurements archived in the Cooperative Global Atmospheric Data Integration Project (CGADIP; 

Cox et al., 2021) from sites, campaigns or programs that cover at least 9 months between 2001 

and 2020 and that have not been assimilated, have been used to compute the biases of the 

differences in four 45° latitude bins. Land and ocean data are used without distinction, and 

observation density varies strongly with latitude and time as seen on the lower panels.  
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Figure B5. Comparison of the estimates of each component of the global carbon budget in this 

study (black line) with the estimates released annually by the GCP since 2006. Grey shading shows 

the uncertainty bounds representing ±1 standard deviation of the current global carbon budget, 

based on the uncertainty assessments described in Appendix C. CO2 emissions from (a) fossil CO2 

emissions (EFOS), and (b) land-use change (ELUC), as well as their partitioning among (c) the 

atmosphere (GATM), (d) the land (SLAND), and (e) the ocean (SOCEAN). See legend for the 

corresponding years, and Tables 3 and A7 for references. The budget year corresponds to the year 

when the budget was first released. All values are in GtC yr-1.   
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Figure B6. Changes in the HYDE/LUH2 land-use forcing from last year’s global carbon budget 

(Friedlingstein et al., 2020, in blue) to this year (orange). Shown are year-to-year changes in 

cropland area (middle panel) and pasture area (bottom panel). To illustrate the relevance of the 

update in the land-use forcing to the recent trends in ELUC, the top panel shows the land-use 

emission estimate from the bookkeeping model BLUE (original model output, i.e. excluding peat 

fire and drainage emissions). 
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17 Appendix C. Extended Methodology 

17.1 Appendix C.1 Methodology Fossil Fuel CO2 emissions (EFOS) 

17.1.1 C.1.1 Cement carbonation 

From the moment it is created, cement begins to absorb CO2 from the atmosphere, a process 

known as ‘cement carbonation’. We estimate this CO2 sink, as the average of two studies in the 

literature (Cao et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et 

al. (2016), with different parameterisations and input data, with the estimate of Guo and 

colleagues being a revision of Xi et al (2016). The trends of the two studies are very similar. 

Modelling cement carbonation requires estimation of a large number of parameters, including the 

different types of cement material in different countries, the lifetime of the structures before 

demolition, of cement waste after demolition, and the volumetric properties of structures, among 

others (Xi et al., 2016). Lifetime is an important parameter because demolition results in the 

exposure of new surfaces to the carbonation process. The main reasons for differences between 

the two studies appear to be the assumed lifetimes of cement structures and the geographic 

resolution, but the uncertainty bounds of the two studies overlap. In the present budget, we 

include the cement carbonation carbon sink in the fossil CO2 emission component (EFOS). 

17.1.2 C.1.2 Emissions embodied in goods and services 

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and 

removals taking place within national territory and offshore areas over which the country has 

jurisdiction’ (Rypdal et al., 2006), and are called territorial emission inventories. Consumption-

based emission inventories allocate emissions to products that are consumed within a country, 

and are conceptually calculated as the territorial emissions minus the ‘embodied’ territorial 

emissions to produce exported products plus the emissions in other countries to produce 

imported products (Consumption = Territorial – Exports + Imports). Consumption-based emission 

attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-

based emissions that can be used to understand emission drivers (Hertwich and Peters, 2009) and 

quantify emission transfers by the trade of products between countries (Peters et al., 2011b). The 

consumption-based emissions have the same global total, but reflect the trade-driven movement 

of emissions across the Earth's surface in response to human activities. We estimate consumption-
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based emissions from 1990-2018 by enumerating the global supply chain using a global model of 

the economic relationships between economic sectors within and between every country (Andrew 

and Peters, 2013; Peters et al., 2011a). Our analysis is based on the economic and trade data from 

the Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed 

estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, and 2011 

(GTAP9.2), covering 57 sectors and 141 countries and regions. The detailed results are then 

extended into an annual time series from 1990 to the latest year of the Gross Domestic Product 

(GDP) data (2018 in this budget), using GDP data by expenditure in current exchange rate of US 

dollars (USD; from the UN National Accounts main Aggregrates database; UN, 2021) and time 

series of trade data from GTAP (based on the methodology in Peters et al., 2011a). We estimate 

the sector-level CO2 emissions using the GTAP data and methodology, include the flaring and 

cement emissions from CDIAC, and then scale the national totals (excluding bunker fuels) to 

match the emission estimates from the carbon budget. We do not provide a separate uncertainty 

estimate for the consumption-based emissions, but based on model comparisons and sensitivity 

analysis, they are unlikely to be significantly different than for the territorial emission estimates 

(Peters et al., 2012a). 

17.1.3 C.1.3 Uncertainty assessment for EFOS 

We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the 

published ±10 % at ±2σ to the use of ±1σ bounds reported here; Andres et al., 2012). This is 

consistent with a more detailed analysis of uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at 

the high-end of the range of ±5-10% at ±2σ reported by (Ballantyne et al., 2015). This includes an 

assessment of uncertainties in the amounts of fuel consumed, the carbon and heat contents of 

fuels, and the combustion efficiency. While we consider a fixed uncertainty of ±5% for all years, 

the uncertainty as a percentage of emissions is growing with time because of the larger share of 

global emissions from emerging economies and developing countries (Marland et al., 2009). 

Generally, emissions from mature economies with good statistical processes have an uncertainty 

of only a few per cent (Marland, 2008), while emissions from strongly developing economies such 

as China have uncertainties of around ±10% (for ±1σ; Gregg et al., 2008; Andres et al., 2014). 

Uncertainties of emissions are likely to be mainly systematic errors related to underlying biases of 

energy statistics and to the accounting method used by each country.  
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17.1.4 C.1.4 Growth rate in emissions 

We report the annual growth rate in emissions for adjacent years (in percent per year) by 

calculating the difference between the two years and then normalising to the emissions in the first 

year: (EFOS(t0+1)-EFOS(t0))/EFOS(t0)×100%. We apply a leap-year adjustment where relevant to 

ensure valid interpretations of annual growth rates. This affects the growth rate by about 0.3% yr-

1 (1/366) and causes calculated growth rates to go up approximately 0.3% if the first year is a leap 

year and down 0.3% if the second year is a leap year. 

The relative growth rate of EFOS over time periods of greater than one year can be rewritten using 

its logarithm equivalent as follows: 

.
+!"#

/+!"#
/0

= /(23+!"#)	
/0

         (2) 

Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by 

fitting a linear trend to ln(EFOS) in Eq. (2), reported in percent per year. 

17.1.5 C.1.5 Emissions projection for 2021 

To gain insight on emission trends for 2021, we provide an assessment of global fossil CO2 

emissions, EFOS, by combining individual assessments of emissions for China, USA, the EU, and 

India (the four countries/regions with the largest emissions), and the rest of the world. We 

provide full year estimates for two datasets: IEA (2021b) and our own analysis. This approach 

differs from last year where we used four independent estimates including our own, because of 

the unique circumstances related to the COVID-19 pandemic. This year’s analysis is more in line 

with earlier budgets.  

Previous editions of the Global Carbon Budget (GCB) have estimated year to date (YTD) emissions, 

and performed projections, using sub-annual energy consumption data from a variety of sources 

depending on the country or region. The YTD estimates have then been projected to the full year 

using specific methods for each country or region. The methods described in detail below. 

China: We use the growth in total fossil CO2 emissions in 2021 reported by the National Bureau of 

Statistics (NBS) in their 2022 Statistical Communique (NBS, 2022). This report includes growth 

rates of energy consumption for coal, oil, and natural gas as well as the growth in cement 

production, which are used to determine the changes in emissions from these four categories. 
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USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their 

Short-Term Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year 

projection (EIA, 2022). The STEO also includes a near-term forecast based on an energy 

forecasting model which is updated monthly (last update with preliminary data through 

September 2021), and takes into account expected temperatures, household expenditures by fuel 

type, energy markets, policies, and other effects. We combine this with our estimate of emissions 

from cement production using the monthly U.S. cement clinker production data from USGS for 

January-June 2021, assuming changes in cement production over the first part of the year apply 

throughout the year. 

India:  We use monthly emissions estimates for India updated from Andrew (2020b) through 

August 2021. These estimates are derived from many official monthly energy and other activity 

data sources to produce direct estimates of national CO2 emissions, without the use of proxies. 

Emissions from coal are then extended to September using a regression relationship based on 

power generated from coal, coal dispatches by Coal India Ltd., the composite PMI, time, and days 

per month. For the last 3-4 months of the year, each series is extrapolated assuming typical 

trends. 

EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from 

monthly energy data reported by Eurostat. Some data gaps are filled using data from the Joint 

Organisations Data Initiative (JODI, 2022). Sub-annual cement production data are limited, but 

data for Germany and Poland, the two largest producers, suggest a small decline. For fossil fuels 

this provides estimates through July. We extend coal emissions through September using a 

regression model built from generation of power from hard coal, power from brown coal, total 

power generation, and the number of working days in Germany and Poland, the two biggest coal 

consumers in the EU. These are then extended through the end of the year assuming typical 

trends. We extend oil emissions by building a regression model between our monthly CO2 

estimates and oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook 

(October edition), and then using this model with EIA’s monthly forecasts. For natural gas, the 

strong seasonal signal allows the use of the bias-adjusted Holt-Winters exponential smoothing 

method (Chatfield, 1978). 

Rest of the world: We use the close relationship between the growth in GDP and the growth in 

emissions (Raupach et al., 2007) to project emissions for the current year. This is based on a 
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simplified Kaya Identity, whereby EFOS (GtC yr-1) is decomposed by the product of GDP (USD yr-1) 

and the fossil fuel carbon intensity of the economy (IFOS; GtC USD-1) as follows: 

𝐸#$% = 𝐺𝐷𝑃	 × 𝐼#$%         (3) 

Taking a time derivative of Equation (3) and rearranging gives: 
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where the left-hand term is the relative growth rate of EFOS, and the right-hand terms are the 

relative growth rates of GDP and IFOS, respectively, which can simply be added linearly to give the 

overall growth rate.  

The IFOS is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy 

Agency (IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund 

(IMF) growth rates through 2020 (IMF, 2022). Interannual variability in IFOS is the largest source of 

uncertainty in the GDP-based emissions projections. We thus use the standard deviation of the 

annual IFOS for the period 2009-2019 as a measure of uncertainty, reflecting a ±1σ as in the rest of 

the carbon budget. 

World: The global total is the sum of each of the countries and regions. 

 

17.2 Appendix C.2 Methodology CO2 emissions from land-use, land-use change and forestry 
(ELUC) 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change 

emissions in the rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and 

forest degradation (including harvest activity), shifting cultivation (cycle of cutting forest for 

agriculture, then abandoning), and regrowth of forests following wood harvest or abandonment 

of agriculture. Emissions from peat burning and drainage are added from external datasets (see 

section C.2.1 below). Only some land-management activities are included in our land-use change 

emissions estimates (Table A1). Some of these activities lead to emissions of CO2 to the 

atmosphere, while others lead to CO2 sinks. ELUC is the net sum of emissions and removals due to 

all anthropogenic activities considered. Our annual estimate for 1960-2020 is provided as the 

average of results from three bookkeeping approaches (Section C.2.1 below): an estimate using 

the Bookkeeping of Land Use Emissions model (Hansis et al., 2015; hereafter BLUE) and one using 
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the compact Earth system model OSCAR (Gasser et al., 2020), both BLUE and OSCAR being 

updated here to new land-use forcing covering the time period until 2020, and an updated version 

of the estimate published by Houghton and Nassikas (2017) (hereafter updated H&N2017). All 

three data sets are then extrapolated to provide a projection for 2021 (Section C.2.5 below). In 

addition, we use results from Dynamic Global Vegetation Models (DGVMs; see Section 2.5 and 

Table 4) to help quantify the uncertainty in ELUC (Section C.2.4), and thus better characterise our 

understanding. Note that in this budget, we use the scientific ELUC  definition, which counts fluxes 

due to environmental changes on managed land towards SLAND, as opposed to the national 

greenhouse gas inventories under the UNFCCC, which include them in ELUC and thus often report 

smaller land-use emissions (Grassi et al., 2018; Petrescu et al., 2020). However, we provide a 

methodology of mapping of the two approaches to each other further below (Section C.2.3). 

17.2.1 C.2.1 Bookkeeping models 

Land-use change CO2 emissions and uptake fluxes are calculated by three bookkeeping models. 

These are based on the original bookkeeping approach of Houghton (2003) that keeps track of the 

carbon stored in vegetation and soils before and after a land-use change (transitions between 

various natural vegetation types, croplands, and pastures). Literature-based response curves 

describe decay of vegetation and soil carbon, including transfer to product pools of different 

lifetimes, as well as carbon uptake due to regrowth. In addition, the bookkeeping models 

represent long-term degradation of primary forest as lowered standing vegetation and soil carbon 

stocks in secondary forests, and include forest management practices such as wood harvests.  

BLUE and the updated H&N2017 exclude land ecosystems’ transient response to changes in 

climate, atmospheric CO2 and other environmental factors, and base the carbon densities on 

contemporary data from literature and inventory data. Since carbon densities thus remain fixed 

over time, the additional sink capacity that ecosystems provide in response to CO2-fertilisation 

and some other environmental changes is not captured by these models (Pongratz et al., 2014). 

On the contrary, OSCAR includes this transient response, and it follows a theoretical framework 

(Gasser and Ciais, 2013) that allows separating bookkeeping land-use emissions and the loss of 

additional sink capacity. Only the former is included here, while the latter is discussed in Appendix 

D4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of land-

use change for BLUE, regional-/ mostly country-level for the updated H&N2017 and OSCAR), (2) 

processes represented (see Table A1), and (3) carbon densities assigned to vegetation and soil of 
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each vegetation type (literature-based for the updated H&N2017 and BLUE, calibrated to DGVMs 

for OSCAR). A notable difference between models exists with respect to the treatment of shifting 

cultivation. The update of H&N2017 changed the approach over the earlier H&N2017 version: 

H&N2017 had assumed the "excess loss" of tropical forests (i.e., when FRA indicated a forest loss 

larger than the increase in agricultural areas from FAO) resulted from converting forests to 

croplands at the same time older croplands were abandoned. Those abandoned croplands began 

to recover to forests after 15 years. The updated H&N2017 now assumes that forest loss in excess 

of increases in cropland and pastures represented an increase in shifting cultivation. When the 

excess loss of forests was negative, it was assumed that shifting cultivation was returned to forest. 

Historical areas in shifting cultivation were extrapolated taking into account country-based 

estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al., 

2017). In contrast, the BLUE and OSCAR models include sub-grid-scale transitions between all 

vegetation types. Furthermore, the updated H&N2017 assume conversion of natural grasslands to 

pasture, while BLUE and OSCAR allocate pasture proportionally on all natural vegetation that 

exists in a grid-cell. This is one reason for generally higher emissions in BLUE and OSCAR. 

Bookkeeping models do not directly capture carbon emissions from peat fires, which can create 

large emissions and interannual variability due to synergies of land-use and climate variability in 

Southeast Asia, particularly during El-Niño events, nor emissions from the organic layers of 

drained peat soils. To correct for this, the updated H&N2017 includes carbon emissions from 

burning and draining of peatlands in Indonesia, Malaysia, and Papua New Guinea (based on the 

Global Fire Emission Database (GFED4s; van der Werf et al., 2017) for fire and Hooijer et al. for 

drainage. Further, estimates of carbon losses from peatlands in extra-tropical regions are added 

from Qiu et al. (2021). We add GFED4s peat fire emissions to BLUE and OSCAR output as well as 

the global FAO peat drainage emissions 1990-2018 from croplands and grasslands (Conchedda 

and Tubiello, 2020), keeping post-2018 emissions constant. We linearly increase tropical drainage 

emissions from 0 in 1980, consistent with H&N2017’s assumption, and keep emissions from the 

often old drained areas of the extra-tropics constant pre-1990. This adds 9.0 GtC for FAO 

compared to 5.6 GtC for Hooijer et al. (2010). Peat fires add another 2.0 GtC over the same 

period.   

The three bookkeeping estimates used in this study differ with respect to the land-use change 

data used to drive the models. The updated H&N2017 base their estimates directly on the Forest 
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Resource Assessment of the FAO which provides statistics on forest-area change and management 

at intervals of five years currently updated until 2020 (FAO, 2020). The data is based on country 

reporting to FAO and may include remote-sensing information in more recent assessments. 

Changes in land-use other than forests are based on annual, national changes in cropland and 

pasture areas reported by FAO (FAOSTAT, 2021). On the other hand, BLUE uses the harmonised 

land-use change data LUH2-GCB2021 covering the entire 850-2020 period (an update to the 

previously released LUH2 v2h dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used 

as input to the DGVMs (Section C.2.2). It describes land-use change, also based on the FAO data as 

described in Section C.2.2 as well as the HYDE3.3 dataset (Klein Goldewijk et al., 2017a, 2017b), 

but provided at a quarter-degree spatial resolution, considering sub-grid-scale transitions 

between primary forest, secondary forest, primary non-forest, secondary non-forest, cropland, 

pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2021 provides 

a distinction between rangelands and pasture, based on inputs from HYDE. To constrain the 

models’ interpretation on whether rangeland implies the original natural vegetation to be 

transformed to grassland or not (e.g., browsing on shrubland), a forest mask was provided with 

LUH2-GCB2021; forest is assumed to be transformed to grasslands, while other natural vegetation 

remains (in case of secondary vegetation) or is degraded from primary to secondary vegetation 

(Ma et al., 2020). This is implemented in BLUE. OSCAR was run with both LUH2-GCB2021 and 

FAO/FRA (as used by Houghton and Nassikas, 2017), where emissions from the latter were 

extended beyond 2015 with constant 2011–2015 average values. The best-guess OSCAR estimate 

used in our study is a combination of results for LUH2-GCB2021 and FAO/FRA land-use data and a 

large number of perturbed parameter simulations weighted against an observational constraint. 

All three bookkeeping estimates were extended from 2020 to provide a projection for 2021 by 

adding the annual change in emissions from tropical deforestation and degradation and peat 

burning and drainage to the respective model’s estimate for 2020 (van der Werf et al., 2017, 

Conchedda & Tubiello, 2020).  

For ELUC from 1850 onwards we average the estimates from BLUE, the updated H&N2017 and 

OSCAR. For the cumulative numbers starting 1750 an average of four earlier publications is added 

(30 ± 20 PgC 1750-1850, rounded to nearest 5; Le Quéré et al., 2016). 

We provide estimates of the gross land use change fluxes from which the reported net land-use 

change flux, ELUC, is derived as a sum. Gross fluxes are derived internally by the three bookkeeping 
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models: Gross emissions stem from decaying material left dead on site and from products after 

clearing of natural vegetation for agricultural purposes, wood harvesting, emissions from peat 

drainage and peat burning, and, for BLUE, additionally from degradation from primary to 

secondary land through usage of natural vegetation as rangeland. Gross removals stem from 

regrowth after agricultural abandonment and wood harvesting. Gross fluxes for the updated 

H&N2017 2016-2020 and for the 2021 projection of all three models were based on a regression 

of gross sources (including peat emissions) to net emissions for recent years.  

Due to an artefact in the HYDE3.3 dataset expressed as an abrupt shift in the pattern of 

pastures/rangelands in 1960, the year 1960 exhibits much larger gross transitions between natural 

vegetation and pastures/rangelands than prior and subsequent years. Although these gross 

transitions cancel in terms of net area changes  causing large abrupt transitions, an unrealistic 

peak in emissions occurs around 1960 in BLUE and OSCAR. To correct for this, we replace the 

estimates for 1959-1961 by the average of 1958 and 1962 in each BLUE and OSCAR. Abrupt 

transitions will immediately influence gross emissions, which have a larger instantaneous 

component. Processes with longer timescales, such as slow legacy emissions and regrowth, are 

inseparable from the carbon dynamics due to subsequent land-use change events. We therefore 

do not adjust gross removals, but only gross emissions to match the corrected net flux. Since 

DGVMs estimates are only used for an uncertainty range of ELUC, which is independent of land-use 

changes, no correction is applied to the DGVMs data. 

17.2.2 C.2.2 Dynamic Global Vegetation Models (DGVMs) 

Land-use change CO2 emissions have also been estimated using an ensemble of 17 DGVMs 

simulations. The DGVMs account for deforestation and regrowth, the most important components 

of ELUC, but they do not represent all processes resulting directly from human activities on land 

(Table A1). All DGVMs represent processes of vegetation growth and mortality, as well as 

decomposition of dead organic matter associated with natural cycles, and include the vegetation 

and soil carbon response to increasing atmospheric CO2 concentration and to climate variability 

and change. Most models explicitly simulate the coupling of carbon and nitrogen cycles and 

account for atmospheric N deposition and N fertilisers (Table A1). The DGVMs are independent 

from the other budget terms except for their use of atmospheric CO2 concentration to calculate 

the fertilisation effect of CO2 on plant photosynthesis.  



182 
 

DGVMs that do not simulate subgrid scale transitions (i.e., net land-use emissions; see Table A1) 

used the HYDE land-use change data set (Klein Goldewijk et al., 2017a, 2017b), which provides 

annual (1700-2019), half-degree, fractional data on cropland and pasture. The data are based on 

the available annual FAO statistics of change in agricultural land area available until 2015. The new 

HYDE3.3 cropland/grazing land dataset which now in addition to FAO country-level statistics is 

constrained spatially based on multi-year satellite land cover maps from ESA CCI LC. Data from 

HYDE3.3 is based on a FAO which includes yearly data from 1961 up to and including the year 

2017. After the year 2017 HYDE extrapolates the cropland, pasture, and urban data linearly based 

on the trend over the previous 5 years, to generate data until the year 2020. HYDE also uses 

satellite imagery from ESA-CCI from 1992 – 2018 for more detailed yearly allocation of cropland 

and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. 

The 2018 map is also used for the 2019-2020 period. The original 300 metre resolution data from 

ESA was aggregated to a 5 arc minute resolution according to the classification scheme as 

described in Klein Goldewijk et al (2017a). DGVMs that simulate subgrid scale transitions (i.e., 

gross land-use emissions; see Table A1) also use the LUH2-GCB2021 data set, an update of the 

more comprehensive harmonised land-use data set (Hurtt et al., 2020), that further includes 

fractional data on primary and secondary forest vegetation, as well as all underlying transitions 

between land-use states (850-2020; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table A1). 

This new data set is of quarter degree fractional areas of land-use states and all transitions 

between those states, including a new wood harvest reconstruction, new representation of 

shifting cultivation, crop rotations, management information including irrigation and fertiliser 

application. The land-use states include five different crop types in addition to the pasture-

rangeland split discussed before. Wood harvest patterns are constrained with Landsat-based tree 

cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2021 over last year’s version (LUH2-

GCB2020) are using the most recent HYDE/FAO release (covering the time period up to 2021 

included). We also use the most recent FAO wood harvest data for all years from 1961 to 2019. 

After the year 2019 we extrapolated the wood harvest data until the year 2020. The HYDE3.3 

population data is also used to extend the wood harvest time series back in time. Other wood 

harvest inputs (for years prior to 1961) remain the same in LUH2. With the switch from HYDE3.2 

to HYDE3.3 changes in the land-use forcing compared to the version used in the GCB2020 

(Friedlingstein et al., 2020) are pronounced. They are thus compared in Fig. 6B and their relevance 

for land-use emissions discussed in Section 3.4.2. DGVMs implement land-use change differently 
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(e.g., an increased cropland fraction in a grid cell can either be at the expense of grassland or 

shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural 

land differ between models). Similarly, model-specific assumptions are applied to convert 

deforested biomass or deforested area, and other forest product pools into carbon, and different 

choices are made regarding the allocation of rangelands as natural vegetation or pastures. 

The difference between two DGVMs simulations (See Section C4.1 below), one forced with 

historical changes in land-use and a second with time-invariant pre-industrial land cover and pre-

industrial wood harvest rates, allows quantification of the dynamic evolution of vegetation 

biomass and soil carbon pools in response to land-use change in each model (ELUC). Using the 

difference between these two DGVMs simulations to diagnose ELUC means the DGVMs account for 

the loss of additional sink capacity (around 0.4 ± 0.3 GtC yr-1; see Section 2.7.4, Appendix D4), 

while the bookkeeping models do not. 

As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive 

ELUC during the 1990s, as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al., 

2013).  All DGVMs met this criterion, although one model was not included in the ELUC estimate 

from DGVMs as it exhibited a spurious response to the transient land cover change forcing after 

its initial spin-up.  

17.2.3 C.2.3 Mapping of national GHG inventory data to ELUC 

An approach was implemented to reconcile the large gap between ELUC from bookkeeping 

models and land use, land-use change and forestry (LULUCF) from national GHG Inventories 

(NGHGI) (see Tab. A8). This gap is due to different approaches to calculating “anthropogenic” CO2 

fluxes related to land-use change and land management (Grassi et al. 2018). In particular, the land 

sinks due to environmental change on managed lands are treated as non-anthropogenic in the 

global carbon budget, while they are generally considered as anthropogenic in NGHGIs (“indirect 

anthropogenic fluxes”; Eggleston et al., 2006). Building on previous studies (Grassi et al. 2021), the 

approach implemented here adds the DGVMs estimates of CO2 fluxes due to environmental 

change from countries’ managed forest area (part of the SLAND) to the original ELUC flux. This sum is 

expected to be conceptually more comparable to LULUCF than simply ELUC. 

ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To 

determine SLAND on managed forest, the following steps were taken: Spatially gridded data of 
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“natural” forest NBP (SLAND i.e., due to environmental change and excluding land use change 

fluxes) were obtained with S2 runs from DGVMs up to 2019 from the TRENDY v9 dataset. Results 

were first masked with the Hansen forest map (Hansen et al. 2013), with a 20% tree cover and 

following the FAO definition of forest (isolated pixels with maximum connectivity less than 0.5 ha 

are excluded), and then further masked with the “intact” forest map for the year 2013, i.e. forest 

areas characterised by no remotely detected signs of human activity (Potapov et al. 2017). This 

way, we obtained the SLAND in “intact” and “non-intact” forest area, which previous studies (Grassi 

et al. 2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest 

area in the NGHGI. Note that only 4 models (CABLE-POP, CLASSIC, YIBs and ORCHIDEE-CNP) had 

forest NBP at grid cell level. Two models (OCN and ISBA-CTRIP) provided forest NEP and simulated 

disturbances at pixel level that were used as basis, in addition to forest cover fraction, to estimate 

forest NBP. For the other DGVMs, when a grid cell had forest, all the NBP was allocated to forest.  

LULUCF data from NGHGIs are from Grassi et al. (2021) until 2017, updated until 2019 for UNFCCC 

Annex I countries. For non-Annex I countries, the years 2018 and 2019 were assumed to be equal 

to the average 2013-2017. This data includes all CO2 fluxes from land considered managed, which 

in principle encompasses all land uses (forest land, cropland, grassland, wetlands, settlements, 

and other land), changes among them, emissions from organic soils and from fires. In practice, 

although almost all Annex I countries report all land uses, many non-Annex I countries report only 

on deforestation and forest land, and only few countries report on other land uses. In most cases, 

NGHGI include most of the natural response to recent environmental change, because they use 

direct observations (e.g., national forest inventories) that do not allow separating direct and 

indirect anthropogenic effects (Eggleston et al., 2006). 

To provide additional, largely independent assessments of fluxes on unmanaged vs managed 

lands, we include a DGVM that allows diagnosing fluxes from unmanaged vs managed lands by 

tracking vegetation cohorts of different ages separately. This model, ORCHIDEE-MICT (Yue et al., 

2018), was run using the same LUH2 forcing as the DGVMs used in this budget (Section 2.5) and 

the bookkeeping models BLUE and OSCAR (Section 2.2). Old-aged forest was classified as primary 

forest after a certain threshold of carbon density was reached again, and the model-internal 

distinction between primary and secondary forest used as proxies for unmanaged vs managed 

forests; agricultural lands are added to the latter to arrive at total managed land. 
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Tab. A8 shows the resulting mapping of global carbon cycle models' land flux definitions to that of 

the NGHGI (discussed in Section 3.2.2). ORCHIDEE-MICT estimates for SLAND on intact forests are 

expected to be higher than based on DGVMs in combination with the NGHGI 

managed/unmanaged forest data because the unmanaged forest area, with about 27 mio km2, is 

estimated to be substantially larger by ORCHIDEE-MICT than, with less than 10 mio km2, by the 

NGHGI, while managed forest area is estimated to be smaller (22 compared to 32 mio km2). 

Related to this, SLAND on non-intact lands plus ELUC is a larger source estimated by ORCHIDEE-MICT 

compared to NGHGI. We also show as comparison FAOSTAT emissions totals (FAO, 2021), which 

include emissions from net forest conversion and fluxes on forest land (Tubiello et al., 2021) as 

well as CO2 emissions from peat drainage and peat fires. 

17.2.4 C.2.4 Uncertainty assessment for ELUC 

Differences between the bookkeeping models and DGVMs models originate from three main 

sources: the different methodologies, which among others lead to inclusion of the loss of 

additional sink capacity in DGVMs (see Appendix D1.4), the underlying land-use/land cover data 

set, and the different processes represented (Table A1). We examine the results from the DGVMs 

models and of the bookkeeping method and use the resulting variations as a way to characterise 

the uncertainty in ELUC. 

Despite these differences, the ELUC estimate from the DGVMs multi-model mean is consistent with 

the average of the emissions from the bookkeeping models (Table 5). However there are large 

differences among individual DGVMs (standard deviation at around 0.5 GtC yr-1; Table 5), between 

the bookkeeping estimates (average difference 1850-2020 BLUE-updated H&N2017 of 0.8 GtC yr-1, 

BLUE-OSCAR of 0.4 GtC yr-1, OSCAR-updated H&N2017 of 0.3 GtC yr-1), and between the updated 

estimate of H&N2017 and its previous model version (Houghton et al., 2012). A factorial analysis 

of differences between BLUE and H&N2017 attributed them particularly to differences in carbon 

densities between natural and managed vegetation or primary and secondary vegetation (Bastos 

et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as 

applied (in updated versions) also in the current study (Gasser et al., 2020). 

The uncertainty in ELUC of ±0.7 GtC yr-1 reflects our best value judgement that there is at least 68% 

chance (±1σ) that the true land-use change emission lies within the given range, for the range of 

processes considered here. Prior to the year 1959, the uncertainty in ELUC was taken from the 
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standard deviation of the DGVMs. We assign low confidence to the annual estimates of ELUC 

because of the inconsistencies among estimates and of the difficulties to quantify some of the 

processes in DGVMs.  

17.2.5 C.2.5 Emissions projections for ELUC 

We project the 2021 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting 

from their estimates for 2020 assuming unaltered peat drainage, which has low interannual 

variability, and the highly variable emissions from peat fires, tropical deforestation and 

degradation as estimated using active fire data (MCD14ML; Giglio et al., 2016). Those latter scale 

almost linearly with GFED over large areas (van der Werf et al., 2017), and thus allows for tracking 

fire emissions in deforestation and tropical peat zones in near-real time.  

17.3 Appendix C.3 Methodology Ocean CO2 sink 

17.3.1 C.3.1 Observation-based estimates 

We primarily use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 

0.7 GtC yr-1 for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs 

provide a realistic assessment of SOCEAN.  This is based on indirect observations with seven 

different methodologies and their uncertainties, using the methods that are deemed most reliable 

for the assessment of this quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based 

estimates use the ocean/land CO2 sink partitioning from observed atmospheric CO2 and O2/N2 

concentration trends (Manning and Keeling, 2006; Keeling and Manning, 2014), an oceanic 

inversion method constrained by ocean biogeochemistry data (Mikaloff Fletcher et al., 2006), and 

a method based on penetration time scale for chlorofluorocarbons (McNeil et al., 2003). The IPCC 

estimate of 2.2 GtC yr-1 for the 1990s is consistent with a range of methods (Wanninkhof et al., 

2013). We refrain from using the IPCC estimates for the 2000s (2.3 ± 0.7 GtC yr-1), and the period 

2002-2011 (2.4  ± 0.7 GtC yr-1, Ciais et al., 2013) as these are based on trends derived mainly from 

models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 

(Canadell et al., 2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) 

and ocean sink estimate from atmospheric CO2 and O2/N2 (Tohjima et al., 2019) which are used 

for model evaluation and discussion, respectively. 

We also use eight estimates of the ocean CO2 sink and its variability based on surface ocean fCO2 

maps obtained by the interpolation of surface ocean fCO2 measurements from 1990 onwards due 
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to severe restriction in data availability prior to 1990 (Figure 9).  These estimates differ in many 

respects: they use different maps of surface fCO2, different atmospheric CO2 concentrations, wind 

products and different gas-exchange formulations as specified in Table A3. We refer to them as 

fCO2-based flux estimates. The measurements underlying the surface fCO2 maps are from the 

Surface Ocean CO2 Atlas version 2021 (SOCATv2021; Bakker et al., 2021), which is an update of 

version 3 (Bakker et al., 2016) and contains quality-controlled data through 2020 (see data 

attribution Table A5). Each of the estimates uses a different method to then map the SOCAT 

v2021 data to the global ocean. The methods include a data-driven diagnostic method (Rödenbeck 

et al., 2013; referred to here as Jena-MLS), three neural network models (Landschützer et al., 

2014; referred to as MPI-SOMFFN; Chau et al., 2021; Copernicus Marine Environment Monitoring 

Service, referred to here as CMEMS-LSCE-FFNN; and Zeng et al., 2014; referred to as NIES-FNN), 

two cluster regression approaches (Gregor et al., 2019; referred to here as CSIR-ML6; and Gregor 

and Gruber, 2021, referred to as OS-ETHZ-GRaCER), and a multi-linear regression method (Iida et 

al., 2021; referred to as JMA-MLR). The ensemble mean of the fCO2-based flux estimates is 

calculated from these seven mapping methods. Further, we show the flux estimate of Watson et 

al. (2020) who also use the MPI-SOMFFN method to map the adjusted fCO2 data to the globe, but 

resulting in a substantially larger ocean sink estimate, owing to a number of adjustments they 

applied to the surface ocean fCO2 data and the gas-exchange parameterization. Concretely, these 

authors adjusted the SOCAT fCO2 downward to account for differences in temperature between 

the depth of the ship intake and the relevant depth right near the surface, and included a further 

adjustment to account for the cool surface skin temperature effect. The Watson et al. flux 

estimate hence differs from the others by their choice of adjusting the flux to a cool, salty ocean 

surface skin. Watson et al. (2020) showed that this temperature adjustment leads to an upward 

correction of the ocean carbon sink, up to 0.9 GtC yr-1, that, if correct, should be applied to all 

fCO2-based flux estimates. So far, this adjustment is based on a single line of evidence and hence 

associated with low confidence until further evidence is available.  The Watson et al flux estimate 

presented here is therefore not included in the ensemble mean of the fCO2-based flux estimates. 

This choice will be re-evaluated in upcoming budgets based on further lines of evidence.  

The CO2 flux from each fCO2-based product is either already at or above 98% areal coverage (Jena-

MLS, OS-ETHZ-GRaCER), filled by the data-provider (using Fay et al., 2021a, method for JMA-MLR; 

and Landschützer et al., 2020, methodology for MPI-SOMFFN) or scaled for the remaining 
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products by the ratio of the total ocean area covered by the respective product to the total ocean 

area (361.9e6 km2) from ETOPO1 (Amante and Eakins, 2009; Eakins and Sharman, 2010). In 

products where the covered area varies with time (e.g., CMEMS-LSCE-FFNN) we use the maximum 

area coverage. The lowest coverage is 93% (NIES-NN), resulting in a maximum adjustment factor 

of 1.08 (Table A3, Hauck et al., 2020). 

We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries 

(2014), to estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two 

approaches assume constant ocean circulation and biological fluxes, with SOCEAN estimated as a 

response in the change in atmospheric CO2 concentration calibrated to observations. The 

uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is taken directly from the IPCC’s 

review of the literature (Rhein et al., 2013), or about ±30% for the annual values (Khatiwala et al., 

2009). 

17.3.2 C.3.2 Global Ocean Biogeochemistry Models (GOBMs) 

The ocean CO2 sink for 1959-2019 is estimated using eight GOBMs (Table A2). The GOBMs 

represent the physical, chemical, and biological processes that influence the surface ocean 

concentration of CO2 and thus the air-sea CO2 flux. The GOBMs are forced by meteorological 

reanalysis and atmospheric CO2 concentration data available for the entire time period. They 

mostly differ in the source of the atmospheric forcing data (meteorological reanalysis), spin up 

strategies, and in their horizontal and vertical resolutions (Table A2). All GOBMs except one 

(CESM-ETHZ) do not include the effects of anthropogenic changes in nutrient supply (Duce et al., 

2008). They also do not include the perturbation associated with changes in riverine organic 

carbon (see Section 2.7.3).  

Three sets of simulations were performed with each of the GOBMs. Simulation A applied historical 

changes in climate and atmospheric CO2 concentration. Simulation B is a control simulation with 

constant atmospheric forcing (normal year or repeated year forcing) and constant pre-industrial 

atmospheric CO2 concentration. Simulation C is forced with historical changes in atmospheric CO2 

concentration, but repeated year or normal year atmospheric climate forcing. To derive SOCEAN 

from the model simulations, we subtracted the annual time series of the control simulation B from 

the annual time series of simulation A. Assuming that drift and bias are the same in simulations A 

and B, we thereby correct for any model drift. Further, this difference also removes the natural 
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steady state flux (assumed to be 0 GtC yr-1 globally without rivers) which is often a major source of 

biases. Simulation B of IPSL had to be treated differently as it was forced with constant 

atmospheric CO2 but observed historical changes in climate. For IPSL, we fitted a linear trend to 

the simulation B and subtracted this linear trend from simulation A. This approach assures that 

the interannual variability is not removed from IPSL simulation A. 

The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr-1 

and 0.26 GtC yr-1, with six models having positive biases, and one model having essentially no bias 

(NorESM). The remaining model (MPI) uses riverine input and therefore simulates outgassing in 

simulation B, i.e., a seemingly negative bias. By subtracting simulation B, also the ocean carbon 

sink of the MPI model follows the definition of SOCEAN. This correction reduces the model mean 

ocean carbon sink by 0.03 GtC yr-1 in the 1990s. The ocean models cover 99% to 101% of the total 

ocean area, so that area-scaling is not necessary. 

17.3.3 C.3.3 GOBM evaluation and uncertainty assessment for SOCEAN 

The ocean CO2 sink for all GOBMs and the ensemble mean falls within 90% confidence of the 

observed range, or 1.5 to 2.9 GtC yr-1 for the 1990s (Ciais et al., 2013) after applying adjustments. 

An exception is the MPI model, which simulates a low ocean carbon sink of 1.38 GtC yr-1 for the 

1990s in simulation A owing to the inclusion of riverine carbon flux. After adjusting to the GCB’s 

definition of SOCEAN by subtracting simulation B, the MPI model falls into the observed range with 

an estimated sink of 1.69 GtC yr-1.  

The GOBMs and data products have been further evaluated using the fugacity of sea surface CO2 

(fCO2) from the SOCAT v2021 database (Bakker et al., 2016, 2021). We focused this evaluation on 

the root mean squared error (RMSE) between observed and modelled fCO2 and on a measure of 

the amplitude of the interannual variability of the flux (modified after Rödenbeck et al., 2015).  

The RMSE is calculated from detrended, annually and regionally averaged time series calculated 

from GOBMs and data-product fCO2 subsampled to open ocean (water depth > 400 m) SOCAT 

sampling points to measure the misfit between large-scale signals (Hauck et al., 2020) The 

amplitude of the SOCEAN interannual variability (A-IAV) is calculated as the temporal standard 

deviation of the detrended CO2 flux time series (Rödenbeck et al., 2015, Hauck et al., 2020). These 

metrics are chosen because RMSE is the most direct measure of data-model mismatch and the A-
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IAV is a direct measure of the variability of SOCEAN on interannual timescales. We apply these 

metrics globally and by latitude bands. Results are shown in Fig. B2 and discussed in Section 3.5.5.  

We quantify the 1-σ uncertainty around the mean ocean sink of anthropogenic CO2 by assessing 

random and systematic uncertainties for the GOBMs and data-products. The random 

uncertainties are taken from the ensemble standard deviation (0.3 GtC yr-1 for GOBMs, 0.3  GtC yr-

1 for data-products). We derive the GOBMs systematic uncertainty by the deviation of the DIC 

inventory change 1994-2007 from the Gruber et al (2019) estimate (0.5 GtC yr-1) and suggest 

these are related to physical transport (mixing, advection) into the ocean interior. For the data-

products, we consider systematic uncertainties stemming from uncertainty in fCO2 observations 

(0.2  GtC yr-1 , Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2  GtC yr-1 , 

Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr-1 ,  Fay et 

al., 2021a), river flux adjustment (0.2  GtC yr-1 , Jacobson et al., 2007; Resplandy et al., 2018), and 

fCO2 mapping (0.2  GtC yr-1 , Landschützer et al., 2014). Combining these uncertainties as their 

squared sums, we assign an uncertainty of ± 0.6 GtC yr-1 to the GOBMs ensemble mean and an 

uncertainty of  ± 0.5 GtC yr-1
 to the data-product ensemble mean. These uncertainties are 

propagated as σ(SOCEAN) = (1/22 * 0.62 + 1/22 * 0.52)1/2 GtC yr-1 and result in an ± 0.4 GtC yr-1 

uncertainty around the best estimate of SOCEAN.  

We examine the consistency between the variability of the model-based and the fCO2-based data 

products to assess confidence in SOCEAN. The interannual variability of the ocean fluxes (quantified 

as A-IAV, the standard deviation after detrending, Figure B2) of the seven fCO2-based data 

products plus the Watson et al. (2020) product for 1990-2020, ranges from 0.16 to 0.26 GtC yr-1 

with the lower estimates by the three ensemble methods (CSIR-ML6, CMEMS-LSCE-FFNN, OS-

ETHZ-GRaCER). The inter-annual variability in the GOBMs ranges between 0.10 and 0.19 GtC yr-1, 

hence there is overlap with the lower A-IAV estimates of three data-products. 

Individual estimates (both GOBMs and data products) generally produce a higher ocean CO2 sink 

during strong El Niño events. There is emerging agreement between GOBMs and data-products on 

the patterns of decadal variability of SOCEAN with a global stagnation in the 1990s and an extra-

tropical strengthening in the 2000s (McKinley et al., 2020, Hauck et al., 2020). The central 

estimates of the annual flux from the GOBMs and the fCO2-based data products have a correlation 

r of 0.94 (1990-2020). The agreement between the models and the data products reflects some 
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consistency in their representation of underlying variability since there is little overlap in their 

methodology or use of observations.  

 

17.4 Appendix C.4 Methodology Land CO2 sink 

17.4.1 C.4.1 DGVM simulations 

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) 

and 6 hourly Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both 

providing observation-based temperature, precipitation, and incoming surface radiation on a 

0.5°x0.5° grid and updated to 2020 (Harris et al., 2014, 2020). The combination of CRU monthly 

data with 6 hourly forcing from JRA-55 (Kobayashi et al., 2015) is performed with methodology 

used in previous years (Viovy, 2016) adapted to the specifics of the JRA-55 data.  

New to this budget is the revision of incoming short-wave radiation fields to take into account 

aerosol impacts and the division of total radiation into direct and diffuse components as 

summarised below. 

The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface 

shortwave fluxes over the period 1901-2020. Radiative transfer calculations are based on 

monthly-averaged distributions of tropospheric and stratospheric aerosol optical depth, and 6-

hourly distributions of cloud fraction. Methods follow those described in the Methods section of 

Mercado et al. (2009), but with updated input datasets. 

The time series of speciated tropospheric aerosol optical depth is taken from the historical and 

RCP8.5 simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases 

in HadGEM2-ES, tropospheric aerosol optical depths are scaled over the whole period to match 

the global and monthly averages obtained over the period 2003-2020 by the CAMS Reanalysis of 

atmospheric composition (Inness et al., 2019), which assimilates satellite retrievals of aerosol 

optical depth. 

The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) 

climatology, which has been updated to 2012. Years 2013-2020 are assumed to be background 

years so replicate the background year 2010. That assumption is supported by the Global Space-

based Stratospheric Aerosol Climatology time series (1979-2016; Thomason et al., 2018). The time 

series of cloud fraction is obtained by scaling the 6-hourly distributions simulated in the Japanese 
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Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud cover in the CRU TS 

v4.03 dataset (Harris et al., 2021). Surface radiative fluxes account for aerosol-radiation 

interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions 

from tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert 

interactions with clouds.  

The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative 

effects of aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors 

derived from HadGEM2-ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric 

constituents other than aerosols and clouds are set to a constant standard mid-latitude summer 

atmosphere, but their variations do not affect the diffuse fraction of surface shortwave fluxes. 

In summary, the DGVMs forcing data include time dependent gridded climate forcing, global 

atmospheric CO2 (Dlugokencky and Tans, 2022), gridded land cover changes (see Appendix C.2.2), 

and gridded nitrogen deposition and fertilisers (see Table A1 for specific models details).  

Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control 

simulation which uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles 

early 20th century (1901-1920) climate and applies a time-invariant pre-industrial land cover 

distribution and pre-industrial wood harvest rates. Simulation 1 (S1) differs from S0 by applying 

historical changes in atmospheric CO2 concentration and N inputs. Simulation 2 (S2) applies 

historical changes in atmospheric CO2 concentration, N inputs, and climate, while applying time-

invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. Simulation 3 

(S3) applies historical changes in atmospheric CO2 concentration, N inputs, climate, and land 

cover distribution and wood harvest rates.  

S2 is used to estimate the land sink component of the global carbon budget (SLAND). S3 is used to 

estimate the total land flux but is not used in the global carbon budget. We further separate SLAND 

into contributions from CO2 (=S1-S0) and climate (=S2-S1-S0).   

17.4.2 C.4.2 DGVM evaluation and uncertainty assessment for SLAND 

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) 

steady state after spin up, (2) global net land flux (SLAND – ELUC) that is an atmosphere-to-land 

carbon flux over the 1990s ranging between -0.3 and 2.3 GtC yr-1, within 90% confidence of 

constraints by global atmospheric and oceanic observations (Keeling and Manning, 2014; 
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Wanninkhof et al., 2013), and (3) global ELUC that is a carbon source to the atmosphere over the 

1990s, as already mentioned in section C.2.2. All 17 DGVMs meet these three criteria.  

In addition, the DGVMs results are also evaluated using the International Land Model 

Benchmarking system (ILAMB; Collier et al., 2018). This evaluation is provided here to document, 

encourage and support model improvements through time. ILAMB variables cover key processes 

that are relevant for the quantification of SLAND and resulting aggregated outcomes. The selected 

variables are vegetation biomass, gross primary productivity, leaf area index, net ecosystem 

exchange, ecosystem respiration, evapotranspiration, soil carbon, and runoff (see Fig. B3 for the 

results and for the list of observed databases). Results are shown in Fig. B3 and discussed in 

Section 3.6.5. 

For the uncertainty for SLAND, we use the standard deviation of the annual CO2 sink across the 

DGVMs, averaging to about ± 0.6 GtC yr-1 for the period 1959 to 2019. We attach a medium 

confidence level to the annual land CO2 sink and its uncertainty because the estimates from the 

residual budget and averaged DGVMs match well within their respective uncertainties (Table 5). 

17.5 Appendix C.5 Methodology Atmospheric Inversions 

Six atmospheric inversions (details of each in Table A4) were used to infer the spatio-temporal 

distribution of the CO2 flux exchanged between the atmosphere and the land or oceans. These 

inversions are based on Bayesian inversion principles with prior information on fluxes and their 

uncertainties. They use very similar sets of surface measurements of CO2 time series (or subsets 

thereof) from various flask and in situ networks. One inversion system also used satellite xCO2 

retrievals from GOSAT and OCO-2.  

Each inversion system uses different methodologies and input data but is rooted in Bayesian 

inversion principles. These differences mainly concern the selection of atmospheric CO2 data and 

prior fluxes, as well as the spatial resolution, assumed correlation structures, and mathematical 

approach of the models. Each system uses a different transport model, which was demonstrated 

to be a driving factor behind differences in atmospheric inversion-based flux estimates, and 

specifically their distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019). 

The inversion systems prescribe same global fossil fuel emissions for EFOS; specifically, the GCP’s 

Gridded Fossil Emissions Dataset version 2021 (GCP-GridFEDv2021.2; Jones et al., 2021b), which is 

an update through 2020 of the first version of GCP-GridFED presented by Jones et al. (2021a). 
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GCP-GridFEDv2021.2 scales gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-

Maenhout et al., 2019) within national territories to match national emissions estimates provided 

by the GCP for the years 1959-2020, which were compiled following the methodology described in 

Appendix C.1 based on all information available on 31st July 2021 (R. Andrew, pers. comm.). 

Typically, the GCP-GridFED adopts the seasonal variation in emissions (the monthly distribution of 

annual emissions) from EDGAR and applies small corrections based on heating or cooling degree 

days to account for the effects of inter-annual climate variability on the seasonality emissions 

(Jones et al., 2021a). However, strategies taken to deal with the COVID-19 pandemic during 2020 

mean that the seasonality of emissions diverged substantially in 2020 from a typical year. To 

account for this change, GCP-GridFEDv2021.2 adopts the national seasonality in emissions from 

Carbon Monitor (Liu et al., 2020a,b) during the years 2019-2020 (Jones et al. 2021b).  

The consistent use of GCP-GridFEDv2021.2 for EFOS ensures a close alignment with the estimate of 

EFOS used in this budget assessment, enhancing the comparability of the inversion-based estimate 

with the flux estimates deriving from DGVMs, GOBMs and fCO2-based methods. To account for 

small differences in regridding, and the use of a slightly earlier file version (GCP-GridFEDv2021.1) 

for 2000-2018 in CarbonTracker Europe, small fossil fuel corrections were applied to all inverse 

models to make the estimated uptake of atmospheric CO2 fully consistent. Finally, we note that 

GCP-GridFEDv2021.2 includes emissions from cement production, but it does not include the 

cement carbonation CO2 sink (Xi et al., 2016; Cao et al., 2020; Guo et al. 2021) that is applied to 

the GCB estimate of EFOS in Table 6.  

The land and ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation 

and natural pre-industrial CO2 fluxes. On annual time scales, natural pre-industrial fluxes are 

primarily land CO2 sinks and ocean CO2 sources corresponding to carbon taken up on land, 

transported by rivers from land to ocean, and outgassed by the ocean. These pre-industrial land 

CO2 sinks are thus compensated over the globe by ocean CO2 sources corresponding to the 

outgassing of riverine carbon inputs to the ocean, using the exact same numbers and distribution 

as described for the oceans in Section 2.4. To facilitate the comparison, we adjusted the inverse 

estimates of the land and ocean fluxes per latitude band with these numbers to produce historical 

perturbation CO2 fluxes from inversions. Finally, for the presentation of the comparison in Figure 

11 we modified the FF-corrected and riverine-adjusted land sinks from the inversions further, by 

removing a 0.2 GtCyr-1 CO2 sink that is ascribed to cement carbonation in the GCB, rather than to 
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terrestrial ecosystems. The latter is not applied in the inversion products released through GCB or 

the original data portals of these products. 

All participating atmospheric inversions are checked for consistency with the annual global growth 

rate, as both are derived from the global surface network of atmospheric CO2 observations. In this 

exercise, we use the conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to 

mole fractions, as suggested by Prather (2012). This number is specifically suited for the 

comparison to surface observations that do not respond uniformly, nor immediately, to each 

year’s summed sources and sinks. This factor is therefore slightly smaller than the GCB conversion 

factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions agree with the 

growth rate with biases between 0.03-0.08 ppm (0.06-0.17 GtCyr-1) on the decadal average. 

The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 

concentrations (Fig. B4). More than 30 aircraft programs over the globe, either regular programs 

or repeated surveys over at least 9 months, have been used in order to draw a robust picture of 

the model performance (with space-time data coverage irregular and denser in the 0-45°N 

latitude band; Table A6). The six models are compared to the independent aircraft CO2 

measurements between 2 and 7 km above sea level between 2001 and 2020. Results are shown in 

Fig. B4, where the inversions generally match the atmospheric mole fractions to within 0.6 ppm at 

all latitudes, except for CT Europe in 2010-2020 over the more sparsely sampled southern 

hemisphere. 

18 Appendix D Processes not included in the global carbon budget  

18.1 Appendix D.1 Contribution of anthropogenic CO and CH4 to the global carbon budget 

Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical 

oxidation of reactive carbon-containing gases from sources other than the combustion of fossil 

fuels, such as: (1) cement process emissions, since these do not come from combustion of fossil 

fuels, (2) the oxidation of fossil fuels, (3) the assumption of immediate oxidation of vented 

methane in oil production. However, it omits any other anthropogenic carbon-containing gases 

that are eventually oxidised in the atmosphere, such as anthropogenic emissions of CO and CH4. 

An attempt is made in this section to estimate their magnitude and identify the sources of 

uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning and 

deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the global 
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(anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below). 

These emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere. 

In our estimate of EFOS we assumed (Section 2.1.1) that all the fuel burned is emitted as CO2, thus 

CO anthropogenic emissions associated with incomplete fossil fuel combustion and its 

atmospheric oxidation into CO2 within a few months are already counted implicitly in EFOS and 

should not be counted twice (same for ELUC and anthropogenic CO emissions by deforestation 

fires). Anthropogenic emissions of fossil CH4 are however not included in EFOS, because these 

fugitive emissions are not included in the fuel inventories. Yet they contribute to the annual CO2 

growth rate after CH4 gets oxidized into CO2. Emissions of fossil CH4 represent 30% of total 

anthropogenic CH4 emissions (Saunois et al. 2020; their top-down estimate is used because it is 

consistent with the observed CH4 growth rate), that is 0.083 GtC yr-1 for the decade 2008-2017. 

Assuming steady state, an amount equal to this fossil CH4 emission is all converted to CO2 by OH 

oxidation, and thus explain 0.083 GtC yr-1 of the global CO2 growth rate with an uncertainty range 

of 0.061 to 0.098 GtC yr-1  taken from the min-max of top-down estimates in Saunois et al. (2020). 

If this min-max range is assumed to be 2 σ because Saunois et al. (2020) did not account for the 

internal uncertainty of their min and max top-down estimates, it translates into a 1-σ uncertainty 

of 0.019 GtC yr-1. 

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, 

wetlands, ruminants, or permafrost changes are similarly assumed to have a small effect on the 

CO2 growth rate. The CH4 and CO emissions and sinks are published and analysed separately in the 

Global Methane Budget and Global Carbon Monoxide Budget publications, which follow a similar 

approach to that presented here (Saunois et al., 2020; Zheng et al., 2019).  

18.2 Appendix D.2 Contribution of other carbonates to CO2 emissions 

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of 

fossil carbonates (carbon sources) other than cement production is not systematically included in 

estimates of EFOS, except at the national level where they are accounted for in the UNFCCC 

national inventories. The missing processes include CO2 emissions associated with the calcination 

of lime and limestone outside cement production. Carbonates are also used in various industries, 

including in iron and steel manufacture and in agriculture. They are found naturally in some coals. 

CO2 emissions from fossil carbonates other than cement are estimated to amount to about 1% of 
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EFOS (Crippa et al., 2019), though some of these carbonate emissions are included in our estimates 

(e.g., via UNFCCC inventories).  

18.3 Appendix D.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum 

The approach used to determine the global carbon budget refers to the mean, variations, and 

trends in the perturbation of CO2 in the atmosphere, referenced to the pre-industrial era. Carbon 

is continuously displaced from the land to the ocean through the land-ocean aquatic continuum 

(LOAC) comprising freshwaters, estuaries, and coastal areas (Bauer et al., 2013; Regnier et al., 

2013). A substantial fraction of this lateral carbon flux is entirely ‘natural’ and is thus a steady 

state component of the pre-industrial carbon cycle. We account for this pre-industrial flux where 

appropriate in our study (see Appendix C.3). However, changes in environmental conditions and 

land-use change have caused an increase in the lateral transport of carbon into the LOAC – a 

perturbation that is relevant for the global carbon budget presented here.  

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance 

for the anthropogenic CO2 budget. First, the anthropogenic perturbation of the LOAC has 

increased the organic carbon export from terrestrial ecosystems to the hydrosphere by as much as 

1.0 ± 0.5 GtC yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. 

Second, this exported anthropogenic carbon is partly respired through the LOAC, partly 

sequestered in sediments along the LOAC and to a lesser extent, transferred to the open ocean 

where it may accumulate or be outgassed. The increase in storage of land-derived organic carbon 

in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et 

al. (2013) at 0.65 ± 0.35GtC yr-1. The inclusion of LOAC related anthropogenic CO2 fluxes should 

affect estimates of SLAND and SOCEAN in Eq. (1) but does not affect the other terms. Representation 

of the anthropogenic perturbation of LOAC CO2 fluxes is however not included in the GOBMs and 

DGVMs used in our global carbon budget analysis presented here. 

18.4 Appendix D.4 Loss of additional land sink capacity 

Historical land-cover change was dominated by transitions from vegetation types that can provide 

a large carbon sink per area unit (typically, forests) to others less efficient in removing CO2 from 

the atmosphere (typically, croplands). The resultant decrease in land sink, called the ‘loss of 

additional sink capacity’, can be calculated as the difference between the actual land sink under 

changing land-cover and the counterfactual land sink under pre-industrial land-cover. This term is 
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not accounted for in our global carbon budget estimate. Here, we provide a quantitative estimate 

of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et al. (2019) 

performed additional simulations with and without land-use change under cycled pre-industrial 

environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 ± 0.3 GtC 

yr-1 on average over 2009-2018 and 42 ± 16 GtC accumulated between 1850 and 2018 (Obermeier 

et al., 2021). OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional 

sink capacity of 0.7 ± 0.6 GtC yr-1 and 31 ± 23 GtC for the same time period (Gasser et al., 2020). 

Since the DGVM-based ELUC estimates are only used to quantify the uncertainty around the 

bookkeeping models' ELUC, we do not add the loss of additional sink capacity to the bookkeeping 

estimate. 


