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Abstract

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their
redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing
climate is critical to better understand the global carbon cycle, support the development of
climate policies, and project future climate change. Here we describe and synthesise data
sets and methodology to quantify the five major components of the global carbon budget
and their uncertainties. Fossil CO2 emissions (Eros) are based on energy statistics and
cement production data, while emissions from land-use change (E.uc), mainly deforestation,
are based on land-use and land-use change data and bookkeeping models. Atmospheric CO;
concentration is measured directly, and its growth rate (Garm) is computed from the annual
changes in concentration. The ocean CO; sink (Socean) is estimated with global ocean
biogeochemistry models and observation-based data-products. The terrestrial CO; sink
(Stanp) is estimated with dynamic global vegetation models. The resulting carbon budget
imbalance (Biv), the difference between the estimated total emissions and the estimated

changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data
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and understanding of the contemporary carbon cycle. All uncertainties are reported as +10.
For the first time, an approach is shown to reconcile the difference in our ELuc estimate with
the one from national greenhouse gases inventories, supporting the assessment of
collective countries’ climate progress.

For the year 2020, Eros declined by 5.4% relative to 2019, with fossil emissions at 9.5 + 0.5
GtCyr'(9.3 + 0.5 GtC yr! when the cement carbonation sink is included), ELyc was 0.9 + 0.7
GtC yr?, for a total anthropogenic CO; emission of 10.2 + 0.8 GtC yr* (37.4 + 2.9 GtCO»).
Also, for 2020, Gatm was 5.0 £ 0.2 GtC yr! (2.4 + 0.1 ppm yr?), Socean was 3.0 + 0.4 GtC yr?
and Sianp was 2.9 + 1 GtC yr?, with a Biw of -0.8 GtC yr’. The global atmospheric CO;
concentration averaged over 2020 reached 412.45 + 0.1 ppm. Preliminary data for 2021,
suggest a rebound in Eros relative to 2020 of +4.8% (4.2% to 5.4%) globally.

Overall, the mean and trend in the components of the global carbon budget are consistently
estimated over the period 1959-2020, but discrepancies of up to 1 GtC yr? persist for the
representation of annual to semi-decadal variability in CO; fluxes. Comparison of estimates
from multiple approaches and observations shows: (1) a persistent large uncertainty in the
estimate of land-use changes emissions, (2) a low agreement between the different
methods on the magnitude of the land CO; flux in the northern extra-tropics, and (3) a
discrepancy between the different methods on the strength of the ocean sink over the last
decade. This living data update documents changes in the methods and data sets used in
this new global carbon budget and the progress in understanding of the global carbon cycle
compared with previous publications of this data set (Friedlingstein et al., 2020;
Friedlingstein et al., 2019; Le Quéré et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013).
The data presented in this work are available at https://doi.org/10.18160/gcp-2021

(Friedlingstein et al., 2021).
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Executive Summary

Global fossil CO2 emissions (excluding cement carbonation) in 2021 are returning towards
their 2019 levels after decreasing [5.4%] in 2020. The 2020 decrease was 0.52 GtC yr! (1.9
GtCO; yrt), bringing 2020 emissions to 9.5 + 0.5 GtC yr? (34.8 + 1.8 GtCO, yr!), comparable
to the emissions level of 2012. Preliminary estimates based on data available in March 2022
suggest fossil CO; emissions rebounded 4.8% in 2021 (4.2% to 5.4%), bringing emissions at
9.9 GtC yr? (36.4 GtCO, yrl), back to about the same level as in 2019 (10.0 + 0.5 GtC yr?,
36.7 + 1.8 GtCO; yrt). Emissions from coal and gas in 2021 are expected to have rebounded
above 2019 levels, while emissions from oil were still below their 2019 level. Emissions are
expected to have been 5.7% higher in 2021 than in 2019 in China, reaching 3.0 GtC (11.1
GtCO3) and also higher in India with a 3.2% increase in 2021 relative to 2019, reaching 0.74
GtC (2.7 GtCOs3). In contrast, projected 2021 emissions in the United States (1.4 GtC, 5.0
GtCO;), European Union (0.8 GtC, 2.8 GtCO,), and the rest of the world (4.0 GtC, 14.8 GtCO,
in aggregate) remained respectively 4.5%, 5.3%, and 4.0% below their 2019 levels. These
changes in 2021 emissions reflect the stringency of the COVID-19 confinement levels in

2020 and the pre-covid background trends in emissions in these countries.

Fossil CO2 emissions significantly decreased in 23 countries during the decade 2010-2019.
Altogether, these 23 countries contribute to about 2.5 GtC yrfossil fuel CO, emissions over

the last decade, only about one quarter of world CO; fossil emissions.

Global CO; emissions from land-use, land-use change, and forestry (LUC) converge based
on revised data of land-use change and show a small decrease over the past two decades.
Near constant gross emissions estimated at 3.8 + 0.6 GtC yr in the 2011-2020 decade are
only partly offset by growing carbon removals on managed land of 2.7 + 0.4 GtC yr?,
resulting in the net emissions in managed land of 1.1 + 0.7 GtC yr? (4.1 + 2.6 GtCO2 yr).
These net emissions decreased by 0.2 GtC in 2020 compared to 2019 levels, with large
uncertainty. Preliminary estimates for emissions in 2021 suggest a 0.1 GtC decrease for
2021, giving net emissions of 0.8 GtC yr! (2.9 GtCO2 yr!). The small decrease in net LUC
emissions amidst large uncertainty prohibits robust conclusions concerning trend changes of
total anthropogenic emissions. For the first time, we link the global carbon budget models'

estimates to the official country reporting of national greenhouse gases inventories. While
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the global carbon budget distinguishes anthropogenic from natural drivers of land carbon
fluxes, country reporting is area-based and attributes part of the natural terrestrial sink on
managed land to the land-use sector. Accounting for this redistribution, the two approaches

are shown to be consistent with each other.

The remaining carbon budget for a 50% likelihood to limit global warming to 1.5°C, 1.7°C
and 2°C has respectively reduced to 120 GtC (420 GtCO:), 210 GtC (770 GtCO;) and 350 GtC
(1270 GtCO,) from the beginning of 2022, equivalent to 11, 20 and 32 years, assuming
2021 emissions levels. Total anthropogenic emissions were 10.4 GtC yr! (38.0 GtCO; yr-1) in
2020, with a preliminary estimate of 10.7 GtC yr* (39.3 GtCO2 yr!) for 2021. The remaining
carbon budget to keep global temperatures below these climate targets has shrunk by 21
GtC (77 GtCO,) since the release of the IPCC AR6 Working Group 1 assessment. Reaching
zero CO; emissions by 2050 entails cutting total anthropogenic CO; emissions by about 0.4
GtC (1.4 GtCO,) each year on average, comparable to the decrease during 2020, highlighting

the scale of the action needed.

The concentration of CO; in the atmosphere is set to reach 414.7 ppm in 2021, 50% above
pre-industrial levels. The atmospheric CO> growth was 5.1 + 0.02 GtC yr ! during the decade
2011-2020 (47% of total CO; emissions) with a preliminary 2021 growth rate estimate of
around 5 GtC yr?,

The ocean CO; sink resumed a more rapid growth in the past decade after low or no
growth during the 1991-2002 period. However, the growth of the ocean CO; sink in the
past decade has an uncertainty of a factor of three, with estimates based on data products
and estimates based on models showing an ocean sink increase of 0.9 GtC yr! and 0.3 GtC
yrisince 2010, respectively. The discrepancy in the trend originates from all latitudes but is
largest in the Southern Ocean. The ocean CO> sink was 2.8 + 0.4 GtC yr! during the decade
2011-2020 (26% of total CO; emissions), with a preliminary 2021 estimate of around 2.9 GtC

yri.

The land CO; sink continued to increase during the 2011-2020 period primarily in response
to increased atmospheric CO,, albeit with large interannual variability. The land CO; sink
was 3.1 + 0.6 GtC yr! during the 2011-2020 decade (29% of total CO, emissions), 0.5 GtC yr*

larger than during the previous decade (2000-2009), with a preliminary 2021 estimate of

7



149  around 3.3 GtC yr. Year to year variability in the land sink is about 1 GtC yr, making small
150 annual changes in anthropogenic emissions hard to detect in global atmospheric CO;

151 concentration.
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1 Introduction

The concentration of carbon dioxide (CO;) in the atmosphere has increased from
approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of
the Industrial Era, to 412.4 + 0.1 ppm in 2020 (Dlugokencky and Tans, 2022); Fig. 1). The
atmospheric CO; increase above pre-industrial levels was, initially, primarily caused by the
release of carbon to the atmosphere from deforestation and other land-use change
activities (Canadell et al., 2021). While emissions from fossil fuels started before the
Industrial Era, they became the dominant source of anthropogenic emissions to the
atmosphere from around 1950 and their relative share has continued to increase until
present. Anthropogenic emissions occur on top of an active natural carbon cycle that
circulates carbon between the reservoirs of the atmosphere, ocean, and terrestrial
biosphere on time scales from sub-daily to millennia, while exchanges with geologic

reservoirs occur at longer timescales (Archer et al., 2009).

The global carbon budget (GCB) presented here refers to the mean, variations, and trends in
the perturbation of CO; in the environment, referenced to the beginning of the Industrial
Era (defined here as 1750). This paper describes the components of the global carbon cycle
over the historical period with a stronger focus on the recent period (since 1958, onset of
atmospheric CO2 measurements), the last decade (2011-2020), the last year (2020) and the
current year (2021). We quantify the input of CO; to the atmosphere by emissions from
human activities, the growth rate of atmospheric CO, concentration, and the resulting
changes in the storage of carbon in the land and ocean reservoirs in response to increasing
atmospheric CO; levels, climate change and variability, and other anthropogenic and natural
changes (Fig. 2). An understanding of this perturbation budget over time and the underlying
variability and trends of the natural carbon cycle is necessary to understand the response of
natural sinks to changes in climate, CO; and land-use change drivers, and to quantify

emissions compatible with a given climate stabilisation target.

The components of the CO; budget that are reported annually in this paper include separate
and independent estimates for the CO, emissions from (1) fossil fuel combustion and
oxidation from all energy and industrial processes; also including cement production and
carbonation (Eros; GtC yr') and (2) the emissions resulting from deliberate human activities

on land, including those leading to land-use change (ELuc; GtC yr?); and their partitioning

9
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among (3) the growth rate of atmospheric CO, concentration (Garm; GtC yr!), and the
uptake of CO; (the ‘CO; sinks’) in (4) the ocean (Socean; GtC yr?) and (5) on land (Sianp; GtC
yr'1). The CO; sinks as defined here conceptually include the response of the land (including
inland waters and estuaries) and ocean (including coasts and territorial seas) to elevated
CO2 and changes in climate and other environmental conditions, although in practice not all
processes are fully accounted for (see Section 2.7). Global emissions and their partitioning
among the atmosphere, ocean and land are in reality in balance. Due to the combination of
imperfect spatial and/or temporal data coverage, errors in each estimate, and smaller terms
not included in our budget estimate (discussed in Section 2.7), the independent estimates
(1) to (5) above do not necessarily add up to zero. We therefore (a) additionally assess a set
of global atmospheric inverse model results that by design close the global carbon balance
(see Section 2.6), and (b) estimate a budget imbalance (Bim), which is a measure of the
mismatch between the estimated emissions and the estimated changes in the atmosphere,

land and ocean, as follows:

BIM = EFOS + ELUC - (GATM + SOCEAN + SLAND) (1)

Gatm is usually reported in ppm yr?, which we convert to units of carbon mass per year, GtC
yrl, using 1 ppm = 2.124 GtC (Ballantyne et al., 2012; Table 1). All quantities are presented
in units of gigatonnes of carbon (GtC, 10% gC), which is the same as petagrams of carbon
(PgC; Table 1). Units of gigatonnes of CO; (or billion tonnes of CO,) used in policy are equal

to 3.664 multiplied by the value in units of GtC.

We also include a quantification of Eros by country, computed with both territorial and
consumption-based accounting (see Section 2), and discuss missing terms from sources

other than the combustion of fossil fuels (see Section 2.7).

The global CO; budget has been assessed by the Intergovernmental Panel on Climate
Change (IPCC) in all assessment reports (Prentice et al., 2001; Schimel et al., 1995; Watson
et al., 1990; Denman et al., 2007; Ciais et al., 2013; Canadell et al., 2021), and by others (e.g.
Ballantyne et al., 2012). The Global Carbon Project (GCP, www.globalcarbonproject.org, last
access: 11 March 2022) has coordinated this cooperative community effort for the annual
publication of global carbon budgets for the year 2005 (Raupach et al., 2007; including fossil
emissions only), year 2006 (Canadell et al., 2007), year 2007 (GCP, 2008), year 2008 (Le
Quéré et al., 2009), year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b),
10
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year 2012 (Le Quéré et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al., 2014), year
2014 (Le Quéré et al., 2015a; Friedlingstein et al., 2014), year 2015 (Jackson et al., 2016; Le
Quéré et al., 2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le Quéré et al., 20183;
Peters et al., 2017), year 2018 (Le Quéré et al., 2018b; Jackson et al., 2018) year 2019
(Friedlingstein et al., 2019; Jackson et al., 2019; Peters et al., 2020) and more recently the
year 2020 (Friedlingstein et al., 2020; Le Quéré et al., 2021) . Each of these papers updated

previous estimates with the latest available information for the entire time series.

We adopt a range of +1 standard deviation (o) to report the uncertainties in our estimates,
representing a likelihood of 68% that the true value will be within the provided range if the
errors have a Gaussian distribution, and no bias is assumed. This choice reflects the difficulty
of characterising the uncertainty in the CO; fluxes between the atmosphere and the ocean
and land reservoirs individually, particularly on an annual basis, as well as the difficulty of
updating the CO; emissions from land-use change. A likelihood of 68% provides an
indication of our current capability to quantify each term and its uncertainty given the
available information. The uncertainties reported here combine statistical analysis of the
underlying data, assessments of uncertainties in the generation of the data sets, and expert
judgement of the likelihood of results lying outside this range. The limitations of current
information are discussed in the paper and have been examined in detail elsewhere
(Ballantyne et al., 2015; Zscheischler et al., 2017). We also use a qualitative assessment of
confidence level to characterise the annual estimates from each term based on the type,
amount, quality, and consistency of the evidence as defined by the IPCC (Stocker et al.,

2013).

This paper provides a detailed description of the data sets and methodology used to
compute the global carbon budget estimates for the industrial period, from 1750 to 2020,
and in more detail for the period since 1959. It also provides decadal averages starting in
1960 including the most recent decade (2011-2020), results for the year 2020, and a
projection for the year 2021. Finally, it provides cumulative emissions from fossil fuels and
land-use change since the year 1750, the pre-industrial period; and since the year 1850, the
reference year for historical simulations in IPCC AR6 (Eyring et al., 2016). This paper is
updated every year using the format of ‘living data’ to keep a record of budget versions and

the changes in new data, revision of data, and changes in methodology that lead to changes

11
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in estimates of the carbon budget. Additional materials associated with the release of each
new version will be posted at the Global Carbon Project (GCP) website
(http://www.globalcarbonproject.org/carbonbudget, last access: 11 March 2022), with fossil
fuel emissions also available through the Global Carbon Atlas
(http://www.globalcarbonatlas.org, last access: 11 March 2022). With this approach, we aim
to provide the highest transparency and traceability in the reporting of CO;, the key driver

of climate change.

2 Methods

Multiple organisations and research groups around the world generated the original
measurements and data used to complete the global carbon budget. The effort presented
here is thus mainly one of synthesis, where results from individual groups are collated,
analysed, and evaluated for consistency. We facilitate access to original data with the
understanding that primary data sets will be referenced in future work (see Table 2 for how
to cite the data sets). Descriptions of the measurements, models, and methodologies follow

below, and detailed descriptions of each component are provided elsewhere.

This is the 16th version of the global carbon budget and the tenth revised version in the
format of a living data update in Earth System Science Data. It builds on the latest published
global carbon budget of Friedlingstein et al. (2020). The main changes are: the inclusion of
(1) data to year 2020 and a projection for the global carbon budget for year 2021; (2) a Kaya
analysis to identify the driving factors behind the recent trends in fossil fuel emissions
(changes in population, GDP per person, energy use per GDP, and CO; emissions per unit
energy), (3) an estimate of the ocean sink from models and data-products combined, (4) an
assessment of the relative contributions of increased atmospheric CO; and climate change
in driving the land and ocean sinks, and (5) an assessment of the current trends in
anthropogenic emissions and implications for the remaining carbon budget for specific
climate targets. The main methodological differences between recent annual carbon
budgets (2016-2020) are summarised in Table 3 and previous changes since 2006 are

provided in Table A7.
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2.1 Fossil CO; emissions (Eros)
2.1.1 Historical period 1850-2020

The estimates of global and national fossil CO, emissions (Eros) include the oxidation of fossil
fuels through both combustion (e.g., transport, heating) and chemical oxidation (e.g. carbon
anode decomposition in aluminium refining) activities, and the decomposition of carbonates
in industrial processes (e.g. the production of cement). We also include CO; uptake from the
cement carbonation process. Several emissions sources are not estimated or not fully
covered: coverage of emissions from lime production are not global, and decomposition of
carbonates in glass and ceramic production are included only for the “Annex 1” countries of
the United Nations Framework Convention on Climate Change (UNFCCC) for lack of activity
data. These omissions are considered to be minor. Short-cycle carbon emissions - for
example from combustion of biomass - are not included here but are accounted for in the
CO; emissions from land use (see section 2.2).

Our estimates of fossil CO, emissions are derived using the standard approach of activity
data and emission factors, relying on data collection by many other parties. Our goal is to
produce the best estimate of this flux, and we therefore use a prioritisation framework to
combine data from different sources that have used different methods, while being careful
to avoid double counting and undercounting of emissions sources. The CDIAC-FF emissions
dataset, derived largely from UN energy data, forms the foundation, and we extend
emissions to year Y-1 using energy growth rates reported by BP. We then proceed to replace
estimates using data from what we consider to be superior sources, for example Annex 1
countries’ official submissions to the UNFCCC. All data points are potentially subject to
revision, not just the latest year. For full details see Andrew and Peters (2021).

Other estimates of global fossil CO, emissions exist, and these are compared by Andrew
(2020a). The most common reason for differences in estimates of global fossil CO, emissions
is a difference in which emissions sources are included in the datasets. Datasets such as
those published by BP energy company, the US Energy Information Administration, and the
International Energy Agency’s ‘CO, emissions from fuel combustion’ are all generally limited
to emissions from combustion of fossil fuels. In contrast, datasets such as PRIMAP-hist,
CEDS, EDGAR, and GCP’s dataset aim to include all sources of fossil CO2 emissions. See

Andrew (2020a) for detailed comparisons and discussion.
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Cement absorbs CO; from the atmosphere over its lifetime, a process known as ‘cement
carbonation’. We estimate this CO; sink as the average of two studies in the literature (Cao
et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et al.
(2016), with different parameterisations and input data. Since carbonation is a function of
both current and previous cement production, we extend these estimates by one year to
2020 by using the growth rate derived from the smoothed cement emissions (10-year
smoothing) fitted to the carbonation data.

We use the Kaya Identity for a simple decomposition of CO, emissions into the key drivers
(Raupach et al., 2007). While there are variations (Peters et al 2017), we focus here on a
decomposition of CO; emissions into population, GDP per person, energy use per GDP, and
CO2 emissions per energy. Multiplying these individual components together returns the
CO; emissions. Using the decomposition, it is possible to attribute the change in CO;
emissions to the change in each of the drivers. This method gives a first order understanding

of what causes CO; emissions to change each year.

2.1.2 2021 projection

We provide a projection of global CO, emissions in 2021 by combining separate projections
for China, USA, EU, India, and for all other countries combined. The methods are different
for each of these. For China we combine monthly fossil fuel production data from the
National Bureau of Statistics, import/export data from the Customs Administration, and
monthly coal consumption estimates from SX Coal (2021), giving us partial data for the
growth rates to date of natural gas, petroleum, and cement, and of the consumption itself
for raw coal. We then use a regression model to project full-year emissions based on
historical observations. For the USA our projection is taken directly from the Energy
Information Administration’s (EIA) Short-Term Energy Outlook (EIA, 2022), combined with
the year-to-date growth rate of cement production. For the EU we use monthly energy data
from Eurostat to derive estimates of monthly CO, emissions through July, with coal
emissions extended first through September using a statistical relationship with reported
electricity generation from coal and other factors, then through December assuming normal
seasonal patterns. EU emissions from natural gas - a strongly seasonal cycle - are extended
through December using bias-adjusted Holt-Winters exponential smoothing (Chatfield,

1978). EU emissions from oil are derived using the EIA’s projection of oil consumption for
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Europe. EU cement emissions are based on available year-to-date data from two of the
largest producers, Germany and Poland. India’s projected emissions are derived from
estimates through August (September for coal) using the methods of Andrew (2020b) and
extrapolated assuming normal seasonal patterns. Emissions for the rest of the world are
derived using projected growth in economic production from the IMF (2022) combined with
extrapolated changes in emissions intensity of economic production. More details on the

Eros methodology and its 2021 projection can be found in Appendix C.1.

2.2 CO2 emissions from land-use, land-use change and forestry (Eruc)

The net CO; flux from land-use, land-use change and forestry (ELuc, called land-use change
emissions in the rest of the text) includes CO; fluxes from deforestation, afforestation,
logging and forest degradation (including harvest activity), shifting cultivation (cycle of
cutting forest for agriculture, then abandoning), and regrowth of forests following wood
harvest or abandonment of agriculture. Emissions from peat burning and drainage are
added from external datasets.

Three bookkeeping approaches (updated estimates each of BLUE (Hansis et al., 2015),
OSCAR (Gasser et al., 2020), and H&N2017 (Houghton and Nassikas, 2017)) were used to
quantify gross sources and sinks and the resulting net E.uc. Uncertainty estimates were
derived from the Dynamic Global vegetation Models (DGVMs) ensemble for the time period
prior to 1960, using for the recent decades an uncertainty range of +0.7 GtC yr-1, which is a
semi-quantitative measure for annual and decadal emissions and reflects our best value
judgement that there is at least 68% chance (+10) that the true land-use change emission
lies within the given range, for the range of processes considered here. This uncertainty
range had been increased from 0.5 GtC yr-1 after new bookkeeping models were included
that indicated a larger spread than assumed before (Le Quéré et al., 2018). Projections for
2021 are based on fire activity from tropical deforestation and degradation as well as

emissions from peat fires and drainage.

Our Ewuc estimates follow the definition of global carbon cycle models of CO; fluxes related
to land-use and land management and differ from IPCC definitions adopted in National GHG
Inventories (NGHGI) for reporting under the UNFCCC, which additionally generally include,

through adoption of the IPCC so-called managed land proxy approach, the terrestrial fluxes

15



366
367
368
369
370
371
372
373
374
375

376

377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

occurring on land defined by countries as managed. This partly includes fluxes due to
environmental change (e.g. atmospheric CO; increase), which are part of Sianp in our
definition. This causes the global emission estimates to be smaller for NGHGI than for the
global carbon budget definition (Grassi et al., 2018). The same is the case for the Food
Agriculture Organization (FAO) estimates of carbon fluxes on forest land, which include,
compared to Sianp, both anthropogenic and natural sources on managed land (Tubiello et
al., 2021). Using the approach outlined in Grassi et al. (2021), here we map as additional
information the two definitions to each other, to provide a comparison of the
anthropogenic carbon budget to the official country reporting to the climate convention.

More details on the E.uc methodology can be found in Appendix C.2.

2.3 Growth rate in atmospheric CO2 concentration (Garm)
2.3.1 Historical period

The rate of growth of the atmospheric CO; concentration is provided for years 1959-2020 by
the US National Oceanic and Atmospheric Administration Earth System Research Laboratory
(NOAA/ESRL; Dlugokencky and Tans, 2022), which is updated from Ballantyne et al. (2012)
and includes recent revisions to the calibration scale of atmospheric CO, measurements
(Hall et al., 2021). For the 1959-1979 period, the global growth rate is based on
measurements of atmospheric CO, concentration averaged from the Mauna Loa and South
Pole stations, as observed by the CO, Program at Scripps Institution of Oceanography
(Keeling et al., 1976). For the 1980-2020 time period, the global growth rate is based on the
average of multiple stations selected from the marine boundary layer sites with well-mixed
background air (Ballantyne et al., 2012), after fitting each station with a smoothed curve as
a function of time, and averaging by latitude band (Masarie and Tans, 1995). The annual
growth rate is estimated by Dlugokencky and Tans (2022) from atmospheric CO;
concentration by taking the average of the most recent December-January months
corrected for the average seasonal cycle and subtracting this same average one year earlier.
The growth rate in units of ppm yrtis converted to units of GtC yr* by multiplying by a
factor of 2.124 GtC per ppm, assuming instantaneous mixing of CO; throughout the

atmosphere (Ballantyne et al., 2012).
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Starting in 2020, NOAA/ESRL now provides estimates of atmospheric CO2 concentrations
with respect to a new calibration scale, referred to as WMO-C02-X2019, in line with the
recommendation of the World Meteorological Organization (WMO) Global Atmosphere
Watch (GAW) community (Hall et al., 2021). The WMO-C02-X2019 scale improves upon the
earlier WMO-C02-X2007 scale by including a broader set of standards, which contain CO3 in
a wider range of concentrations that span the range 250-800 ppm (versus 250-520 ppm for
WMO-C02-X2007). In addition, NOAA/ESRL made two minor corrections to the analytical
procedure used to quantify CO, concentrations, fixing an error in the second virial
coefficient of CO, and accounting for loss of a small amount of CO; to materials in the
manometer during the measurement process. The difference in concentrations measured
using WMO-C02-X2019 versus WMO-C02-X2007 is ~+0.18 ppm at 400 ppm and the
observational record of atmospheric CO; concentrations have been revised accordingly. The
revisions have been applied retrospectively in all cases where the calibrations were
performed by NOAA/ESRL, thus affecting measurements made by members of the WMO-
GAW programme and other regionally coordinated programmes (e.g., Integrated Carbon
Observing System, ICOS). Changes to the CO, concentrations measured across these
networks propagate to the global mean CO;, concentrations. Comparing the estimates of
Gatm made by Dlugokencky and Tans (2020), used in the Global Carbon Budget 2020
(Friedlingstein et al., 2020), with updated estimates from Dlugokencky and Tans (2022),
used here, we find that Gatm reduced on average by -0.06 GtC yr* during 2010-2019 and by -
0.01 GtC yr! during 1959-2019 due to the new calibration. These changes are well within
the uncertainty ranges reported below. Hence the change in analytical procedures made by

NOAA/ESRL has a negligible impact on the atmospheric growth rate Gatm.

The uncertainty around the atmospheric growth rate is due to four main factors. First, the
long-term reproducibility of reference gas standards (around 0.03 ppm for 1o from the
1980s; Dlugokencky and Tans, 2022). Second, small unexplained systematic analytical errors
that may have a duration of several months to two years come and go. They have been
simulated by randomising both the duration and the magnitude (determined from the
existing evidence) in a Monte Carlo procedure. Third, the network composition of the
marine boundary layer with some sites coming or going, gaps in the time series at each site,

etc (Dlugokencky and Tans, 2022). The latter uncertainty was estimated by NOAA/ESRL with

17



426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

445
446
447

448
449
450
451
452
453
454
455

a Monte Carlo method by constructing 100 "alternative" networks (Masarie and Tans, 1995;
NOAA/ESRL, 2019). The second and third uncertainties, summed in quadrature, add up to
0.085 ppm on average (Dlugokencky and Tans, 2022). Fourth, the uncertainty associated
with using the average CO, concentration from a surface network to approximate the true
atmospheric average CO; concentration (mass-weighted, in 3 dimensions) as needed to
assess the total atmospheric CO; burden. In reality, CO; variations measured at the stations
will not exactly track changes in total atmospheric burden, with offsets in magnitude and
phasing due to vertical and horizontal mixing. This effect must be very small on decadal and
longer time scales, when the atmosphere can be considered well mixed. Preliminary
estimates suggest this effect would increase the annual uncertainty, but a full analysis is not
yet available. We therefore maintain an uncertainty around the annual growth rate based
on the multiple stations data set ranges between 0.11 and 0.72 GtC yr, with a mean of 0.61
GtC yr for 1959-1979 and 0.17 GtC yr* for 1980-2020, when a larger set of stations were
available as provided by Dlugokencky and Tans (2022) but recognise further exploration of
this uncertainty is required. At this time, we estimate the uncertainty of the decadal
averaged growth rate after 1980 at 0.02 GtC yr! based on the calibration and the annual
growth rate uncertainty but stretched over a 10-year interval. For years prior to 1980, we
estimate the decadal averaged uncertainty to be 0.07 GtC yr'! based on a factor

proportional to the annual uncertainty prior and after 1980 (0.02 * [0.61/0.17] GtC yr?).

We assign a high confidence to the annual estimates of Gatm because they are based on
direct measurements from multiple and consistent instruments and stations distributed

around the world (Ballantyne et al., 2012; Hall et al., 2021).

To estimate the total carbon accumulated in the atmosphere since 1750 or 1850, we use an
atmospheric CO; concentration of 277 + 3 ppm or 286 + 3 ppm, respectively, based on a
cubic spline fit to ice core data (Joos and Spahni, 2008). For the construction of the
cumulative budget shown in Figure 3, we use the fitted estimates of CO; concentration from
Joos and Spahni (2008) to estimate the annual atmospheric growth rate using the
conversion factors shown in Table 1. The uncertainty of +3 ppm (converted to +10) is taken
directly from the IPCC’s AR5 assessment (Ciais et al., 2013). Typical uncertainties in the

growth rate in atmospheric CO, concentration from ice core data are equivalent to £0.1-
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0.15 GtC yr? as evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-

year intervals over the period from 1850 to 1960 (Bruno and Joos, 1997).

2.3.2 2021 projection

We provide an assessment of Gatm for 2021 based on the monthly calculated global
atmospheric CO; concentration (GLO) through August (Dlugokencky and Tans, 2022), and
bias-adjusted Holt—Winters exponential smoothing with additive seasonality (Chatfield,
1978) to project to January 2022. Additional analysis suggests that the first half of the year
(the boreal winter-spring-summer transition) shows more interannual variability than the
second half of the year (the boreal summer-autumn-winter transition), so that the exact
projection method applied to the second half of the year has a relatively smaller impact on
the projection of the full year. Uncertainty is estimated from past variability using the

standard deviation of the last 5 years' monthly growth rates.

2.4 Ocean CO; sink

The reported estimate of the global ocean anthropogenic CO; sink Socean is derived as the
average of two estimates. The first estimate is derived as the mean over an ensemble of
eight global ocean biogeochemistry models (GOBMs, Table 4 and Table A2). The second
estimate is obtained as the mean over an ensemble of seven observation-based data-
products (Table 4 and Table A3). An eighth product (Watson et al., 2020) is shown, but is not
included in the ensemble average as it differs from the other products by adjusting the flux
to a cool, salty ocean surface skin (see Appendix C.3.1 for a discussion of the Watson
product). The GOBMs simulate both the natural and anthropogenic CO; cycles in the ocean.
They constrain the anthropogenic air-sea CO; flux (the dominant component of Socean) by
the transport of carbon into the ocean interior, which is also the controlling factor of
present-day ocean carbon uptake in the real world. They cover the full globe and all seasons
and were recently evaluated against surface ocean carbon observations, suggesting they are
suitable to estimate the annual ocean carbon sink (Hauck et al., 2020). The data-products
are tightly linked to observations of fCO; (fugacity of CO,, which equals pCO. corrected for
the non-ideal behaviour of the gas; Pfeil et al., 2013), which carry imprints of temporal and
spatial variability, but are also sensitive to uncertainties in gas-exchange parameterizations

and data-sparsity. Their asset is the assessment of interannual and spatial variability (Hauck
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et al., 2020). We further use two diagnostic ocean models to estimate Socean over the

industrial era (1781-1958).

The global fCO,-based flux estimates were adjusted to remove the pre-industrial ocean
source of CO; to the atmosphere of 0.61 GtC yr from river input to the ocean (the average
of 0.45 + 0.18 GtC yr! by Jacobson et al. (2007) and 0.78 + 0.41 GtC yr'! by Resplandy et al.,
2018), to satisfy our definition of Socean (Hauck et al., 2020). The river flux adjustment was
distributed over the latitudinal bands using the regional distribution of Aumont et al. (2001;
North: 0.16 GtC yr?, Tropics: 0.15 GtC yr, South: 0.30 GtC yr?), acknowledging that the
boundaries of Aumont et al (2001; namely 20°S and 20°N) are not consistent with the
boundaries otherwise used in the GCB (30°S and 30°N). A recent modelling study (Lacroix et
al., 2020) suggests that more of the riverine outgassing is located in the tropics than in the
Southern Ocean; and hence this regional distribution is associated with a major uncertainty.
Anthropogenic perturbations of river carbon and nutrient transport to the ocean are not
considered (see section 2.7).

We derive Socean from GOBMs by using a simulation (sim A) with historical forcing of climate
and atmospheric CO,, accounting for model biases and drift from a control simulation (sim
B) with constant atmospheric CO, and normal year climate forcing. A third simulation (sim
C) with historical atmospheric CO; increase and normal year climate forcing is used to
attribute the ocean sink to CO; (sim C minus sim B) and climate (sim A minus sim C) effects.
Data-products are adjusted to represent the full ocean area by a simple scaling approach
when coverage is below 98%. GOBMs and data-products fall within the observational
constraints over the 1990s (2.2 + 0.7 GtC yr!, Ciais et al., 2013) after applying adjustments .
We assign an uncertainty of + 0.4 GtC yr to the ocean sink based on a combination of
random (ensemble standard deviation) and systematic uncertainties (GOBMs bias in
anthropogenic carbon accumulation, previously reported uncertainties in fCO;-based data-
products; see section C.3.3). We assess a medium confidence level to the annual ocean CO;
sink and its uncertainty because it is based on multiple lines of evidence, it is consistent with
ocean interior carbon estimates (Gruber et al., 2019, see section 3.5.5) and the results are
consistent in that the interannual variability in the GOBMs and data-based estimates are all
generally small compared to the variability in the growth rate of atmospheric CO;

concentration. We refrain from assigning a high confidence because of the systematic
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deviation between the GOBM and data-product trends since around 2002. More details on
the Socean methodology can be found in Appendix C.3.

The ocean CO; sink forecast for the year 2021 is based on the annual historical and
estimated 2021 atmospheric CO, concentration (Dlugokencky and Tans 2021), historical and
estimated 2021 annual global fossil fuel emissions from this year’s carbon budget, and the
spring (March, April, May) Oceanic Nino Index (ONI) index (NCEP, 2022). Using a non-linear
regression approach, i.e., a feed-forward neural network, atmospheric CO,, the ONI index
and the fossil fuel emissions are used as training data to best match the annual ocean CO;
sink (i.e. combined Socean estimate from GOBMs and data products) from 1959 through
2020 from this year’s carbon budget. Using this relationship, the 2021 Socean can then be
estimated from the projected 2021 input data using the non-linear relationship established
during the network training. To avoid overfitting, the neural network was trained with a
variable number of hidden neurons (varying between 2-5) and 20% of the randomly
selected training data were withheld for independent internal testing. Based on the best
output performance (tested using the 20% withheld input data), the best performing
number of neurons was selected. In a second step, we trained the network 10 times using
the best number of neurons identified in step 1 and different sets of randomly selected
training data. The mean of the 10 trainings is considered our best forecast, whereas the
standard deviation of the 10 ensembles provides a first order estimate of the forecast
uncertainty. This uncertainty is then combined with the Socean uncertainty (0.4 GtC yr!) to

estimate the overall uncertainty of the 2021 prediction.

2.5 Terrestrial CO; sink

The terrestrial land sink (Sianp) is thought to be due to the combined effects of fertilisation
by rising atmospheric CO, and N inputs on plant growth, as well as the effects of climate
change such as the lengthening of the growing season in northern temperate and boreal
areas. Sianp does not include land sinks directly resulting from land-use and land-use change
(e.g., regrowth of vegetation) as these are part of the land-use flux (ELuc), although system
boundaries make it difficult to attribute exactly CO; fluxes on land between Siano and Eruc
(Erb et al., 2013).

Sianp is estimated from the multi-model mean of 17 DGVMs (Table Al). As described in

Appendix C.4, DGVMs simulations include all climate variability and CO; effects over land,

21



548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

565

566
567
568
569
570
571
572
573
574
575
576
577
578

with 12 DGVMs also including the effect of N inputs. The DGVMs estimate of Sianp does not
include the export of carbon to aquatic systems or its historical perturbation, which is
discussed in Appendix D3. See Appendix C.4 for DGVMs evaluation and uncertainty
assessment for Sianp, using the International Land Model Benchmarking system (ILAMB;
Collier et al., 2018). More details on the Siano methodology can be found in Appendix C.4.
Like the ocean forecast, the land CO; sink (Stanp) forecast is based on the annual historical
and estimated 2021 atmospheric CO, concentration (Dlugokencky and Tans 2021), historical
and estimated 2021 annual global fossil fuel emissions from this year’s carbon budget, and
the summer (June, July, August) ONI index (NCEP, 2021). All training data are again used to
best match Siano from 1959 through 2020 from this year’s carbon budget using a feed-
forward neural network. To avoid overfitting, the neural network was trained with a variable
number of hidden neurons (varying between 2-15), larger than for Socean prediction due to
the stronger land carbon interannual variability. As done for Socean, a pre-training selects the
optimal number of hidden neurons based on 20% withheld input data, and in a second step,
an ensemble of 10 forecasts is produced to provide the mean forecast plus uncertainty. This
uncertainty is then combined with the Sianp uncertainty for 2020 (1.0 GtC yr!) to estimate

the overall uncertainty of the 2021 prediction.

2.6 The atmospheric perspective

The world-wide network of in-situ atmospheric measurements and satellite derived
atmospheric CO, column (xCO;) observations put a strong constraint on changes in the
atmospheric abundance of CO.. This is true globally (hence our large confidence in Garwm),
but also regionally in regions with sufficient observational density found mostly in the extra-
tropics. This allows atmospheric inversion methods to constrain the magnitude and location
of the combined total surface CO, fluxes from all sources, including fossil and land-use
change emissions and land and ocean CO; fluxes. The inversions assume Eros to be well
known, and they solve for the spatial and temporal distribution of land and ocean fluxes
from the residual gradients of CO, between stations that are not explained by fossil fuel
emissions. By design, such systems thus close the carbon balance (Bim = 0) and thus provide
an additional perspective on the independent estimates of the ocean and land fluxes.

This year’s release includes six inversion systems that are described in Table A4. Each system

is rooted in Bayesian inversion principles but uses slightly different methodologies. These
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differences concern the selection of atmospheric CO, data and the choice of a-priori fluxes
to refine with these datas. They also differ in spatial and temporal resolution, assumed
correlation structures, and mathematical approach of the models (see references in Table
A4 for details). Importantly, the systems use a variety of transport models, which was
demonstrated to be a driving factor behind differences in atmospheric inversion-based flux
estimates, and specifically their distribution across latitudinal bands (Gaubert et al., 2019;
Schuh et al., 2019). Multiple inversion systems (UoE, CTE, and CAMS) were previously tested
with satellite xCO> retrievals from GOSAT or OCO-2 measurements, but their results at the
larger scales (as discussed in this work) did not deviate substantially from their in-situ
counterparts and are therefore not separately included. One inversion this year (CMS-Flux)
used ACOS-GOSAT v9 retrievals between July 2009 and Dec 2014 and OCO-2 b10 retrievals
between Jan 2015 to Dec 2015, in addition to the in-situ observational CO, mole fraction

records.

The original products delivered by the inverse modellers were modified to facilitate the
comparison to the other elements of the budget, specifically on 3 accounts: (1) global total
fossil fuel emissions, (2) riverine CO; transport, and (3) cement carbonation CO; uptake.
Details are given below. We note that with these adjustments the inverse results no longer
represent the net atmosphere-surface exchange over land/ocean areas as sensed by
atmospheric observations. Instead for land, they become the net uptake of CO; by
vegetation and soils that is not exported by fluvial systems, similar to the DGVMs estimates.
For oceans, they become the net uptake of anthropogenic CO,, similar to the GOBMs

estimates.

The inversion systems prescribe global fossil fuel emissions based on the GCP’s Gridded
Fossil Emissions Dataset version 2021.2 (GCP-GridFEDv2021.2; Jones et al., 2021b), which is
an update to 2019 of the first version of GCP-GridFED presented by Jones et al. (2021a).
GCP-GridFEDv2021.2 scales gridded estimates of CO; emissions from EDGARv4.3.2
(Janssens-Maenhout et al., 2019) within national territories to match national emissions
estimates provided by the GCB for the years 1959-2020, which were compiled following the
methodology described in Section 2.1 with all datasets available on August 14th 2021 (R.
Andrew, pers. comm.). Small differences between the systems due to for instance regridding

to the transport model resolution are corrected for in the latitudinal partitioning we
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present, to ensure agreement with the estimate of Eros in this budget. We also note that the
ocean fluxes used as prior by 5 out of 6 inversions are part of the suite of the ocean process
model or fCO2 data products listed in Section 2.4. Although these fluxes are further adjusted
by the atmospheric inversions, it makes the inversion estimates of the ocean fluxes not

completely independent of Socean assessed here.

To facilitate comparisons to the independent Socean and Sianp, we used the same corrections
for transport and outgassing of carbon transported from land to ocean, as done for the
observation-based estimates of Socean (see Appendix C.3). Furthermore, the inversions did
not include a cement carbonation sink (see section 2.1) and therefore this GCB component
is implicitly part of their total land sink estimate. In the numbers presented in this budget,
each year’s global carbonation sink from cement was subtracted from each year’s estimated
land sink in each inversion, distributed proportional to fossil fuel emissions per region

(North-Tropics-South).

The atmospheric inversions are evaluated using vertical profiles of atmospheric CO;
concentrations (Fig. B4). More than 30 aircraft programs over the globe, either regular
programs or repeated surveys over at least 9 months, have been used to assess model
performance (with space-time observational coverage sparse in the SH and tropics, and
denser in NH mid-latitudes; Table A6). The six models are compared to the independent
aircraft CO, measurements between 2 and 7 km above sea level between 2001 and 2020.

Results are shown in Fig. B4 and discussed in Section 3.7.

With a relatively small ensemble (N=6) of systems that moreover share some a-priori fluxes

used with one another, or with the process-based models, it is difficult to justify using their

mean and standard deviation as a metric for uncertainty across the ensemble. We therefore
report their full range (min-max) without their mean. More details on the atmospheric

inversions methodology can be found in Appendix C.5.

2.7 Processes not included in the global carbon budget

The contribution of anthropogenic CO and CHa to the global carbon budget is not fully
accounted for in Eq. (1) and is described in Appendix D1. The contributions of other
carbonates to CO, emissions is described in Appendix D2. The contribution of anthropogenic

changes in river fluxes is conceptually included in Eq. (1) in Socean and in Sianp, but it is not
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represented in the process models used to quantify these fluxes. This effect is discussed in
Appendix D3. Similarly, the loss of additional sink capacity from reduced forest cover is
missing in the combination of approaches used here to estimate both land fluxes (E.uc and

Sianp) and its potential effect is discussed and quantified in Appendix D4.

3 Results

For each component of the global carbon budget, we present results for three different time
periods: the full historical period, from 1850 to 2020, the six decades in which we have
atmospheric concentration records from Mauna Loa (1960-2020), a specific focus on last
year (2020), and the projection for the current year (2021). Subsequently, we assess the
combined constraints from the budget components (often referred to as a bottom-up
budget) against the top-down constraints from inverse modelling of atmospheric
observations. We do this for the global balance of the last decade, as well as for a regional

breakdown of land and ocean sinks by broad latitude bands.

3.1 Fossil CO; Emissions
3.1.1 Historical period 1850-2020

Cumulative fossil CO; emissions for 1850-2020 were 455 + 25 GtC, including the cement
carbonation sink (Fig. 3, Table 8) .

In this period, 46% of fossil CO, emissions came from coal, 35% from oil, 14% from natural
gas, 3% from decomposition of carbonates, and 1% from flaring.

In 1850, the UK stood for 62% of global fossil CO, emissions. In 1891 the combined
cumulative emissions of the current members of the European Union reached and
subsequently surpassed the level of the UK. Since 1917 US cumulative emissions have been
the largest. Over the entire period 1850-2020, US cumulative emissions amounted to
110GtC (25% of world total) , the EU’s to 80 GtC (18%), and China’s to 60 GtC (14%).

There are three additional global datasets that include all sources of fossil CO, emissions:
CDIAC-FF (Gilfillan and Marland, 2021), CEDS version v_2021 04 21 (Hoesly et al., 2018);
O’Rourke et al., 2021) and PRIMAP-hist version 2.3.1 (Gltschow et al., 2016, 2021), although
these datasets are not independent. CDIAC-FF has the lowest cumulative emissions over

1750-2018 at 437 GtC, GCP has 443 GtC, CEDS 445 GtC, PRIMAP-hist TP 453 GtC, and
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PRIMAP-hist CR 455 GtC. CDIAC-FF excludes emissions from lime production, while neither
CDIAC-FF nor GCP explicitly include emissions from international bunker fuels prior to 1950.
CEDS has higher emissions from international shipping in recent years, while PRIMAP-hist
has higher fugitive emissions than the other datasets. However, in general these four

datasets are in relative agreement as to total historical global emissions of fossil CO,.

3.1.2 Recent period 1960-2020

Global fossil CO, emissions, Eros (including the cement carbonation sink), have increased
every decade from an average of 3.0 + 0.2 GtC yr! for the decade of the 1960s to an average
of 9.5 + 0.5 GtC yr! during 2011-2020 (Table 6, Fig. 2 and Fig. 5). The growth rate in these
emissions decreased between the 1960s and the 1990s, from 4.3% yr in the 1960s (1960-
1969), 3.2% yrt in the 1970s (1970-1979), 1.6% yr! in the 1980s (1980-1989), to 0.9% yr'in
the 1990s (1990-1999). After this period, the growth rate began increasing again in the
2000s at an average growth rate of 3.0% yr?, decreasing to 0.6% yr* for the last decade
(2011-2020). China’s emissions increased by +1.0% yr! on average over the last 10 years
dominating the global trend, followed by India’s emissions increase by +3.9% yr*, while
emissions decreased in EU27 by —1.9% yr?, and in the USA by —1.1% yr'. Fig.6 illustrates the

spatial distribution of fossil fuel emissions for the 2011-2020 period.

Eros includes the uptake of CO, by cement via carbonation which has increased with
increasing stocks of cement products, from an average of 20 MtC yr* (0.02 GtC yr') in the

1960s to an average of 200 MtC yr?* (0.2 GtC yr!) during 2011-2020 (Fig. 5).

3.1.3 Final year 2020

Global fossil CO; emissions were 5.4% lower in 2020 than in 2019, because of the COVID-19
pandemic, with a decline of 0.5 GtC to reach 9.5 + 0.5 GtC (9.3 + 0.5 GtC when including the
cement carbonation sink) in 2020 (Fig. 5), distributed among coal (40%), oil (32%), natural
gas (21%), cement (5%) and others (2%). Compared to the previous year, 2020 emissions
from coal, oil and gas declined by 4.4%, 9.7% and 2.3% respectively, while emissions from
cement increased by 0.8%. All growth rates presented are adjusted for the leap year, unless

stated otherwise.

In 2020, the largest absolute contributions to global fossil CO, emissions were from China
(31%), the USA (14%), the EU27 (7%), and India (7%). These four regions account for 59% of
26
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global CO; emissions, while the rest of the world contributed 41%, including international
aviation and marine bunker fuels (2.9% of the total). Growth rates for these countries from
2019 to 2020 were +1.4% (China), -10.6% (USA), —10.9% (EU27), and -7.3% (India), with -
7.0% for the rest of the world. The per-capita fossil CO, emissions in 2020 were 1.2 tC
person! yr for the globe, and were 3.9 (USA), 2.0 (China), 1.6 (EU27) and 0.5 (India) tC

persont yr for the four highest emitting countries (Fig. 5).

The COVID-19 induced decline in emissions of -5.4% in 2020 is close to the projected decline
of -6.7%, which was the median of four approaches, published in Friedlingstein et al. (2020).
Of the four approaches, the ‘GCP’ method was closest at -5.8%. That method was based on
national emissions projections for China, the USA, the EU27, and India using reported
monthly activity data when available and projections of gross domestic product corrected
for trends in fossil fuel intensity (lros) for the rest of the world. Of the regions, the projection

for the EU27 was least accurate, and the reasons for this are discussed by Andrew (2021).

3.1.4 Year 2021 Projection

Globally, we estimate that global fossil CO, emissions will rebound 4.8% in 2021 (4.2% to
5.4%) to 9.9 GtC (36.4 GtCO;), returning near their 2019 emission levels of 10.0 GtC (36.7
GtCOy). Global increase in 2021 emissions per fuel types are +6.3% (range 5.5% to 7.0%) for
coal, +4.0% (range 2.6% to 5.4%) for oil, +3.8% (range 2.8% to 4.8%) for natural gas, and
+3.2% (range 1.7% to 4.6%) for cement.

For China, projected fossil emissions in 2021 are expected to increase by 4.3% (range 3.0%
to 5.4%) compared with 2020 emissions, bringing 2021 emissions for China around 3.0 GtC
yr!(11.1 GtCO; yrl). Chinese emissions appear to have risen in both 2020 and 2021 despite
the economic disruptions of COVID-19. Increases in fuel specific projections for China are

+4.1% for coal, +4.4% for oil, +12.8% natural gas, and a decrease of 0.1% for cement.

For the USA, the Energy Information Administration (EIA) emissions projection for 2021
combined with cement clinker data from USGS gives an increase of 6.8% (range 6.6% to
7.0%) compared to 2020, bringing USA 2021 emissions around 1.4 GtC yr* (5.0 GtCO, yr?).
This is based on separate projections for coal +17.1%, oil +9.0%, natural gas -0.8%, and

cement +0.3%.
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For the European Union, our projection for 2021 is for an increase of 6.3% (range 4.3% to
8.3%) over 2020, with 2021 emissions around 0.8 GtC yr? (2.8 GtCO, yr?). This is based on

separate projections for coal of +14.6%, oil +3.7%, natural gas +4.6%, and cement 0.3%.

For India, our projection for 2021 is an increase of 11.2% (range of 10.7% to 11.7%) over
2020, with 2021 emissions around 0.7 GtC yr! (2.7 GtCO> yr2). This is based on separate

projections for coal of +13.9%, oil +3.4%, natural gas +4.8%, and cement +21.6%.

For the rest of the world, the expected growth rate for 2021 is 3.2% (range 2.0% to 4.3%).
This is computed using the GDP projection for the world (excluding China, the USA, the EU,
and India) of 4.4% made by the IMF (2022) and a decrease in Iros of -1.7%yr?, which is the
average over 2011-2020. The uncertainty range is based on the standard deviation of the
interannual variability in Iros during 2011-2020 of 0.6%yr* and our estimates of uncertainty
in the IMF’s GDP forecast of 0.6%. The methodology allows independent projections for
coal, oil, natural gas, cement, and other components, which add to the total emissions in
the rest of the world. The fuel specific projected 2021 growth rates for the rest of the world
are: +3.2% (range 0.7% to 5.8%) for coal, +2.3% (-0.3% to +4.9%) for oil, +4.1% (2.6% to
5.7%) for natural gas, +4.8% (+2.7% to +6.9%) for cement.

Independently, the IEA has published two forecasts of global fossil energy CO; emissions
(i.e., a subset of fossil CO2 emissions), first in April (4.8%; IEA, 2021a) and so revised in
October at 4% (IEA, 2021b). In March 2022 they also published a new, preliminary estimate
of 6% growth (IEA, 2021a). Carbon Monitor produces estimates of global emissions with low
temporal lag, and their estimates suggest that emissions were 5.1% higher than in 2020

(Carbon Monitor, 2022).

3.2 Emissions from Land Use Changes
3.2.1 Historical period 1850-2020

Cumulative CO; emissions from land-use changes (ELuc) for 1850-2020 were 200 * 65 GtC
(Table 8; Fig. 3; Fig. 13). The cumulative emissions from E yc are particularly uncertain, with
large spread among individual estimates of 140 GtC (updated H&N2017), 270 GtC (BLUE),
and 195 GtC (OSCAR) for the three bookkeeping models and a similar wide estimate of 190 +
60 GtC for the DGVMs (all cumulative numbers are rounded to the nearest 5GtC). These

estimates are broadly consistent with indirect constraints from vegetation biomass
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observations, giving a cumulative source of 155 * 50 GtC over the 1901-2012 period (Li et

al., 2017). However, given the large spread, a best estimate is difficult to ascertain.

3.2.2 Recent period 1960-2020

In contrast to growing fossil emissions, CO, emissions from land-use, land-use change and
forestry have remained relatively constant, at around 1.3 + 0.7 GtC yr* over the 1970-1999
period, and even show a slight decrease over the last 20 years, reaching 1.1 + 0.7 GtC yr* for
the 2011-2020 period (Table 6), but with large spread across estimates (Table 5, Fig. 7).
Emissions are relatively constant in the DGVMs ensemble of models since the 1970s, with
similar mean values until the 1990s as the bookkeeping mean and large model spread (Table
5, Fig. 7). The DGVMs average grows larger than the bookkeeping average in the recent
decades and shows no sign of decreasing emissions, which is, however, expected as DGVM-
based estimates include the loss of additional sink capacity, which grows with time, while

the bookkeeping estimates do not (Appendix D4).

ELuc is a net term of various gross fluxes, which comprise emissions and removals. Gross
emissions are on average 2-4 times larger than the net E.yc emissions, and remained largely
constant over the last 60 years, with a moderate increase from an average of 3.4 + 0.9 GtC
yr'! for the decade of the 1960s to an average of 3.8 + 0.6 GtC yr* during 2011-2020 (Fig.7,
Table 5), showing the relevance of land management such as harvesting or rotational
agriculture. Increases in gross removals, from 1.9 + 0.4 GtC yr* for the 1960s to 2.7 + 0.4 GtC
yr' for 2011-2020, were larger than the increase in gross emissions. Since the processes
behind gross removals, foremost forest regrowth and soil recovery, are all slow, while gross
emissions include a large instantaneous component, short-term changes in land-use
dynamics, such as a temporary decrease in deforestation, influences gross emissions
dynamics more than gross removals dynamics. It is these relative changes to each other that
explain the decrease in net ELyc emissions over the last two decades and the last few years.
Gross fluxes differ more across the three bookkeeping estimates than net fluxes, which is
expected due to different process representation; in particular, treatment of shifting

cultivation, which increases both gross emissions and removals, differs across models.

There is a decrease in net CO; emissions from land-use change over the last decade (Fig. 7,

Table 6), in contrast to earlier estimates of no clear trend across Euc estimates
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(Friedlingstein et al., 2020, Hong et al., 2021). The trend in the last decade is now about -4%
per year, compared to the +1.8% per year reported by Friedlingstein et al. (2020). This
decrease is principally attributable to changes in ELyc estimates from BLUE and OSCAR,
which relate to changes in the underlying land-use forcing, LUH2 (Chini et al. 2021, Hurtt et
al. 2020) based on HYDE3.3 (Klein Goldewijk et al., 2017a, b): HYDE3.3 now incorporates
updated estimates of agricultural areas by the FAO and uses multi-annual land cover maps
from satellite remote sensing (ESA CCl Land Cover) to constrain contemporary land cover
patterns (see Appendix C.2.2 for details) . These changes lead to lower global Euc estimates
in the last two decades compared to earlier versions of the global carbon budget due most
notably to lower emissions from cropland expansion, particularly in the tropical regions.
Rosan et al. (2021) showed that for Brazil, the new HYDE3.3 version is closer to
independent, regional estimates of land-use and land cover change (MapBiomas, 2021) with
respect to spatial patterns, but it shows less land-use and land cover changes than these
independent estimates, while HYDE3.2-based estimates had shown higher changes and
lower emissions. The update in land-use forcing leads to a decrease in estimated emissions
in Brazil across several models after the documented deforestation peak of 2003-2004 that
preceded policies and monitoring systems decreasing deforestation rates (Rosan et al.,
2021). However, estimated emissions based on the new land-use forcing do not reflect the
rise in Brazilian deforestation in the recent few years (Silva Junior, 2021), and associated
increasing emissions from deforestation would have been missed here. The update in FAO
agricultural areas in Brazil also implied that substantial interannual variability reported to
earlier FAO assessment and captured by the HYDE3.2 version since 2000 was removed. Due
to the asymmetry of (fast) decay (like clearing by fire) and (slower) regrowth, such reduced
variability is expected to decrease annual emissions. Also, the approach by Houghton and
Nassikas (2017) smooths land use area changes before calculating carbon fluxes by a 5-year
running mean, hence the three emission estimates are in better agreement than in previous
GCB estimates. However, differences still exist, which highlight the need for accurate
knowledge of land-use transitions and their spatial and temporal variability. A further caveat
is that global land-use change data for model input does not capture forest degradation,
which often occurs on small scale or without forest cover changes easily detectable from
remote sensing and poses a growing threat to forest area and carbon stocks that may

surpass deforestation effects (e.g., Matricardi et al., 2020, Qin et al., 2021).
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Overall, therefore, we assign low confidence to the change towards a decreasing trend of
land-use emissions over the last two decades as seen compared to the estimate of the
global carbon budget 2020 (Friedlingstein et al., 2020). Our approach aims at using the most
up to date data and methods, such as accounting for revisions of living databases of
country-level agricultural statistics from FAO or including satellite remote-sensing
information for spatial allocation. While we start from a well-documented methodology to
provide gridded land-use data (Chini et al., 2021), not all changes in individual components
are always documented, complicating the explanation of changes from one GCB to the next.
The rising number of pan-tropical or global estimates of carbon stock changes based on
satellite remote sensing of carbon densities and forest cover changes (Fan et al. 2019; Qin
et al., 2021; Xu et al., 2021; Feng et al., 2022) may seem a promising path for independent
evaluation of the land-use emissions term. However, comparison of satellite-derived fluxes
to global model estimates is hampered for several reasons discussed by Pongratz et al.
(2021). Most importantly, satellite-based estimates usually do not distinguish between
anthropogenic drivers and natural forest cover losses (e.g., from drought or natural
wildfires), which have also increased over time in some regions, including the tropics;
ancillary information would be needed to attribute the observed signal of vegetation or
carbon stock change to different drivers. Further, satellite-based estimates often only
provide sub-component fluxes of Eruc, excluding soil or product pool changes. Since forest
cover loss is better detectable from space than regrowth, satellite-based products often
limit their estimates to emissions from forest loss, neglecting carbon uptake from regrowth
of forests, as may occur following wood harvesting, abandonment, or natural disturbances;
such products thus provide a subset of the gross emissions term (Fig. 7b) and cannot be
compared to net emissions. Lastly, satellite-based fluxes typically quantify committed
instead of actual emissions, i.e., legacy CO; fluxes from potentially slow processes such as
slash, soil carbon or product decay, or forest regrowth are not captured at the time they
actually occur, but are attributed to the time of the land-use change event (Pongratz et al.,
2021). Using data on drivers of forest cover loss to isolate fluxes from agricultural
expansion, and looking into gross emissions instead of the net land-use change flux, Feng et
al. (2022) suggest a stronger increase in global gross emissions (though generally a smaller
flux) than the bookkeeping models do (see gross fluxes in Fig. 7b). This is in line with Rosan

et al. (2021) suggesting that the trend of net emissions in Brazil may be underestimated by
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the updated land-use data (though patterns have improved). Further studies are needed to
robustly estimate the trend of global net land-use emissions. Progressis also needed on
accurate quantifications of land use dynamics, including less well observable management
types such as shifting cultivation and wood harvesting, and their distinction from natural

disturbances (Pongratz et al, 2021).

Highest land-use emissions occur in the tropical regions of all three continents, including the
Arc of Deforestation in the Amazon basin (Fig. 6b). This is related to massive expansion of
cropland, particularly in the last few decades in Latin America, Southeast Asia, and sub-
Saharan Africa Emissions (Hong et al., 2021), to a substantial part for export (Pendrill et al.,
2019). Emission intensity is high in many tropical countries, particularly of Southeast Asia,
due to high rates of land conversion in regions of carbon-dense and often still pristine,
undegraded natural forests (Hong et al., 2021). Emissions are further increased by peat fires
in equatorial Asia (GFED4s, van der Werf et al., 2017). Uptake due to land-use change
occurs, particularly in Europe, partly related to expanding forest area as a consequence of
the forest transition in the 19t and 20™ century and subsequent regrowth of forest (Fig. 6b)

(Mather 2001; McGrath et al., 2015).

While the mentioned patterns are supported by independent literature and robust, we
acknowledge that model spread is substantially larger on regional than global level, as has
been shown for bookkeeping models (Bastos et al., 2021) as well as DGVMs (Obermeier et
al., 2021). A detailed analysis of country-level or regional uncertainties globally is beyond
the scope of this study. Assessments for individual regions will be performed as part of
REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020) or already

exist for selected regions (e.g., for Europe Petrescu et al., 2020, for Brazil Rosan et al., 2021).

National GHG inventory data (NGHGI) under the LULUCF sector or data submitted by
countries to FAOSTAT differ from the global models’ definition of E.uc we adopt here in that
in the NGHGI reporting, the natural fluxes (Scano) are counted towards E.uc when they occur
on managed land (Grassi et al., 2018). In order to compare our results to the NGHGI
approach, we perform a re-mapping of our E yc estimate by including the Sianp over
managed forest from the DGVMs simulations (following Grassi et al., 2021) to the
bookkeeping ELuc estimate (see Appendix C.2.3). For the 2011-2020 period, we estimate

that 1.5 GtC yr of Sianp occurred on managed forests and is then reallocated to Eiuc here, as
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done in the NGHGI method. Doing so, our mean estimate of Euc is reduced from a source of

1.1 GtC to a sink of -0.4 GtC, very similar to the NGHGI estimate of -0.6 GtC (Table A.8).

Though estimates between GHGI, FAOSTAT, individual process-based models and the
mapped budget estimates still differ in value and need further analysis, the approach taken
here provides a possibility to relate the global models’ and NGHGI approach to each other
routinely and thus link the anthropogenic carbon budget estimates of land CO; fluxes

directly to the Global Stocktake, as part of UNFCCC Paris Agreement.

3.2.3 Final year 2020

The global CO; emissions from land-use change are estimated as 0.9 + 0.7 GtC in 2020, 0.2
GtC lower than 2019, which had featured particularly large peat and tropical
deforestation/degradation fires. The surge in deforestation fires in the Amazon, causing
about 30% higher emissions from deforestation and degradation fires in 2019 over the
previous decade, continued into 2020 (GFEDA4.1s, van der Werf et al., 2017). However, the
unusually dry conditions for a non-El Nifio year that occurred in Indonesia in 2019 and led to
fire emissions from peat burning, deforestation and degradation in equatorial Asia to be
about twice as large as the average over the previous decade (GFED4.1s, van der Werf et al.,
2017) ceased in 2020. However, confidence in the annual change remains low. While the
mentioned fires are clearly attributable to land-use activity, foremost deforestation and
peat burning, and may have been reinforced by dry weather conditions, as was the case in
Indonesia in 2019, wildfires also occur naturally. In particular, the extreme fire events in
recent years in Australia, Siberia or California were unrelated to land-use change and are

thus not attributed to ELuc, but to the natural land sink and are discussed in Section 3.6.2.

Land-use change and related emissions may have been affected by the COVID-19 pandemic
(e.g. Poulter et al., 2021). Although emissions from tropical deforestation and degradation
fires have been decreasing from 2019 to 2020 on the global scale, they increased in Latin
America (GFED4s; van der Werf et al., 2017). During the period of the pandemic,
environmental protection policies and their implementation may have been weakened in
Brazil (Vale et al., 2021). In other countries, too, monitoring capacities and legal
enforcement of measures to reduce tropical deforestation have been reduced due to

budget restrictions of environmental agencies or impairments to ground-based monitoring
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that prevents land grabs and tenure conflicts (Brancalion et al., 2020, Amador-Jiménez et
al., 2020). Effects of the pandemic on trends in fire activity or forest cover changes are hard
to separate from those of general political developments and environmental changes and
the long-term consequences of disruptions in agricultural and forestry economic activities
(e.g., Gruére and Brooks, 2020; Golar et al., 2020; Beckman and Countryman, 2021) remain

to be seen.

3.2.4 Year 2021 Projection

With wet conditions in Indonesia and a below-average fire season in South America our
preliminary estimate of E.yc for 2021 is substantially lower than the 2011-2020 average. By
the end of September 2021 emissions from tropical deforestation and degradation fires
were estimated to be 222 TgC, down from 347 TgC in 2019 and 288 in 2020 (315 TgC 1997-
2020 average). Peat fire emissions in Equatorial Asia were estimated to be 1 TgC, down from
117 TgCin 2019 and 2 TgCin 2020 (74 TgC 1997-2020 average) (GFEDA4.1s, van der Werf et
al., 2017). Based on the fire emissions until the end of September, we expect E,uc emissions
of around 0.8 GtC in 2021. Note that although our extrapolation is based on tropical
deforestation and degradation fires, degradation attributable to selective logging, edge-

effects or fragmentation will not be captured.

3.3 Total anthropogenic emissions

Cumulative anthropogenic CO; emissions for 1850-2020 totalled 660 + 65 GtC (2420 + 240
GtCOz), of which almost 70% (455 GtC) occurred since 1960 and more than 30% (205 GtC)
since 2000 (Table 6 and 8). Total anthropogenic emissions more than doubled over the last
60 years, from 4.6 + 0.7 GtC yr* for the decade of the 1960s to an average of 10.6 + 0.8 GtC
yr during 2011-2020.

The total anthropogenic CO, emissions from fossil plus land-use change amounted to 10.6 +
0.8 GtC (38.9 + 2.9 GtCO;) for the 2011-2020 decade, reaching 10.2 + 0.8 GtC (37.2 £ 2.9
GtCO3) in 2020, while for 2021, we project global total anthropogenic CO; emissions from
fossil and land use changes to be around 10.7 GtC (39.3 GtCO3).

During the historical period 1850-2020, 30% of historical emissions were from land use
change and 70% from fossil emissions. However, fossil emissions have grown significantly

since 1960 while land use changes have not, and consequently the contributions of land use
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change to total anthropogenic emissions were smaller during recent periods (17% during

the period 1960-2020 and 10% during 2011-2020).

34 Atmospheric CO>
3.4.1 Historical period 1850-2020

Atmospheric CO; concentration was approximately 277 parts per million (ppm) in 1750
(Joos and Spahni, 2008), reaching 300ppm in the 1910s, 350ppm in the late 1980s, and
reaching 412.44 + 0.1 ppm in 2020 (Dlugokencky and Tans, 2022); Fig. 1). The mass of
carbon in the atmosphere increased by 48% from 590 GtC in 1750 to 876 GtC in 2020.
Current CO; concentrations in the atmosphere are unprecedented in the last 2 million years
and the current rate of atmospheric CO; increase is at least 10 times faster than at any other

time during the last 800,000 years (Canadell et al., 2021).

3.4.2 Recent period 1960-2020

The growth rate in atmospheric CO; level increased from 1.7 + 0.07 GtC yr'! in the 1960s to
5.1 +0.02 GtC yr! during 2011-2020 with important decadal variations (Table 6, Fig. 3 and
Fig 4).

During the last decade (2011-2020), the growth rate in atmospheric CO, concentration

continued to increase, albeit with large interannual variability (Fig. 4).

The airborne fraction (AF), defined as the ratio of atmospheric CO, growth rate to total

anthropogenic emissions:

AF = Gury / (Eros + ELyc) (2)

provides a diagnostic of the relative strength of the land and ocean carbon sinks in removing
part of the anthropogenic CO; perturbation. The evolution of AF over the last 60 years
shows no significant trend, remaining nearly at around 45%, albeit showing a large
interannual variability driven by the year-to-year variability in Garm (Fig. 8). The observed
stability of the airborne fraction over the 1960-2020 period indicates that the ocean and
land CO; sinks have been removing on average about 55% of the anthropogenic emissions

(see sections 3.5 and 3.6).
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3.4.3 Final year 2020

The growth rate in atmospheric CO, concentration was 5.0 £ 0.2 GtC (2.37 £ 0.08 ppm) in

2020 (Fig. 4; Dlugokencky and Tans, 2022), very close to the 2011-2020 average. The 2020
decrease in Eros and ELuc of about 0.7 GtC propagated to an atmospheric CO, growth rate

reduction of 0.38 GtC (0.18 ppm), given the significant interannual variability of the land

carbon sink.

3.4.4 Year 2021 Projection

The 2021 growth in atmospheric CO; concentration (Garm) is projected to be about 5.3 GtC
(2.49 ppm) based on GLO observations until the end of December 2021, bringing the
atmospheric CO; concentration to an expected level of 414.67 ppm averaged over the year,

50% over the pre-industrial level.

3.5 Ocean Sink
3.5.1 Historical period 1850-2020

Cumulated since 1850, the ocean sink adds up to 170 + 35 GtC, with two thirds of this
amount being taken up by the global ocean since 1960. Over the historical period, the ocean
sink increased in pace with the anthropogenic emissions exponential increase (Fig. 3b).

Since 1850, the ocean has removed 26% of total anthropogenic emissions.

3.5.2 Recent period 1960-2020

The ocean CO; sink increased from 1.1 + 0.4 GtC yr! in the 1960s to 2.8 + 0.4 GtC yr* during
2011-2020 (Table 6), with interannual variations of the order of a few tenths of GtC yr* (Fig.
9). The ocean-borne fraction (Socean/(Eros+ELuc) has been remarkably constant around 25%
on average (Fig. 8). Variations around this mean illustrate decadal variability of the ocean
carbon sink. So far, there is no indication of a decrease in the ocean-borne fraction from
1960 to 2020. The increase of the ocean sink is primarily driven by the increased
atmospheric COz concentration, with the strongest CO; induced signal in the North Atlantic
and the Southern Ocean (Fig. 10a). The effect of climate change is much weaker, reducing
the ocean sink globally by 0.12 + 0.07 GtC yr* or 5% (2011-2020, range -0.8 to -7.4%), and

does not show clear spatial patterns across the GOBMs ensemble (Fig. 10b). This is the
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combined effect of change and variability in all atmospheric forcing fields, previously

attributed to wind and temperature changes in one model (LeQuéré et al., 2010).

The global net air-sea CO; flux is a residual of large natural and anthropogenic CO; fluxes
into and out of the ocean with distinct regional and seasonal variations (Fig. 6 and B1).
Natural fluxes dominate on regional scales, but largely cancel out when integrated globally
(Gruber et al., 2009). Mid-latitudes in all basins and the high-latitude North Atlantic
dominate the ocean CO; uptake where low temperatures and high wind speeds facilitate
CO; uptake at the surface (Takahashi et al., 2009). In these regions, formation of mode,
intermediate and deep-water masses transport anthropogenic carbon into the ocean
interior, thus allowing for continued CO; uptake at the surface. Outgassing of natural CO>
occurs mostly in the tropics, especially in the equatorial upwelling region, and to a lesser
extent in the North Pacific and polar Southern Ocean, mirroring a well-established
understanding of regional patterns of air-sea CO, exchange (e.g., Takahashi et al., 2009,
Gruber et al., 2009). These patterns are also noticeable in the Surface Ocean CO2 Atlas
(SOCAT) dataset, where an ocean fCO; value above the atmospheric level indicates
outgassing (Fig. B1). This map further illustrates the data-sparsity in the Indian Ocean and

the southern hemisphere in general.

Interannual variability of the ocean carbon sink is driven by climate variability with a first-
order effect from a stronger ocean sink during large El Nifio events (e.g., 1997-1998) (Fig. 9;
Rodenbeck et al., 2014, Hauck et al., 2020). The GOBMs show the same patterns of decadal
variability as the mean of the fCO,-based data products, with a stagnation of the ocean sink
in the 1990s and a strengthening since the early 2000s (Fig. 9, Le Quéré et al., 2007;
Landschiitzer et al., 2015, 2016; DeVries et al., 2017; Hauck et al., 2020; McKinley et al.,
2020). Different explanations have been proposed for this decadal variability, ranging from
the ocean’s response to changes in atmospheric wind and pressure systems (e.g., Le Quéré
et al., 2007, Keppler and Landschitzer, 2019), including variations in upper ocean
overturning circulation (DeVries et al., 2017) to the eruption of Mount Pinatubo and its
effects on sea surface temperature and slowed atmospheric CO; growth rate in the 1990s
(McKinley et al., 2020). The main origin of the decadal variability is a matter of debate with a

number of studies initially pointing to the Southern Ocean (see review in Canadell et al.,
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2021), but also contributions from the North Atlantic and North Pacific (Landschiitzer et al.,

2016, DeVries et al., 2019), or a global signal (McKinley et al., 2020) were proposed.

Although all individual GOBMs and data-products fall within the observational constraint,
the ensemble means of GOBMs, and data-products adjusted for the riverine flux diverge
over time with a mean offset increasing from 0.24 GtC yr! in the 1990s to 0.66 GtC yr? in
the decade 2011-2020 and reaching 1.1 GtC yr'tin 2020. The Socean trend diverges with a
factor two difference since 2002 (GOBMs: 0.3 + 0.1 GtC yr per decade, data-products: 0.7 +
0.2 GtC yr! per decade, best estimate: 0.5 GtC yr per decade) and with a factor of three
since 2010 (GOBMs: 0.3 + 0.1 GtC yr per decade, data-products: 0.9 + 0.3 GtC yr'per
decade, best estimate: 0.6 GtC yr per decade). The GOBMs estimate is lower than in the
previous global carbon budget (Friedlingstein et al., 2020), because one high-sink model was
not available. The effect of two models (CNRM, MOMG6-COBALT) revising their estimates
downwards was largely balanced by two models revising their estimate upwards (FESOM-

REcoM, PlankTOM).

The discrepancy between the two types of estimates stems mostly from a larger Southern
Ocean sink in the data-products prior to 2001, and from a larger Socean trend in the northern
and southern extra-tropics since then (Fig. 12). Possible explanations for the discrepancy in
the Southern Ocean could be missing winter observations and data sparsity in general
(Bushinsky et al., 2019, Gloege et al., 2021), model biases (as indicated by the large model
spread in the South, Figure 12, and the larger model-data mismatch, Figure B2), or

uncertainties in the regional river flux adjustment (Hauck et al., 2020, Lacroix et al., 2020).

During 2010-2016, the ocean CO; sink appears to have intensified in line with the expected
increase from atmospheric CO, (McKinley et al., 2020). This effect is stronger in the fCO,-
based data products (Fig. 9, GOBMs: +0.43 GtC yr?, data-products: +0.56 GtC yr?). The
reduction of -0.09 GtC yr! (range: -0.30 to +0.12 GtC yr) in the ocean CO; sink in 2017 is
consistent with the return to normal conditions after the El Nifio in 2015/16, which caused
an enhanced sink in previous years. After 2017, the GOBMs ensemble mean suggests the
ocean sink levelling off at about 2.5 GtC yr, whereas the data-products’ estimate increases

by 0.3 GtC yr! over the same period.
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3.5.3 Final year 2020

The estimated ocean CO; sink was 3.0 + 0.4 GtC in 2020. This is the average of GOBMs and
data-products, and is a small increase of 0.02 GtC compared to 2019, in line with the
competing effects from an expected sink strengthening from atmospheric CO; growth and
expected sink weakening from La Nifia conditions. There is, however, a substantial
difference between GOBMs and fCO;-based data-products in their mean 2020 Socean
estimate (GOBMs: 2.5 GtC, data-products: 3.5 GtC). While the GOBMs simulate a stagnation
of the sink from 2019 to 2020 (-0.02 +0.11 GtCGtC), the data-products suggest an increase
by 0.06 GtC, although not significant at the 1o level (+0.13 GtC). Four models and four data
products show an increase of Socean (GOBMs up to +0.18 GtC, data-product up to +0.21
GtC), while four models and three data products show no change or a decrease of Socean
(GOBMs down to -0.12 GtC, data-products down to -0.13 GtC; Fig. 9). The data-products
have a larger uncertainty at the tails of the reconstructed time series (e.g., Watson et al.,
2020). Specifically, the data-products’ estimate of the last year is regularly adjusted in the
following release owing to the tail effect and an incrementally increasing data availability

with 1-5 years lag (Figure 9 bottom).

3.5.4 Year 2021 Projection

Using a feed-forward neural network method (see section 2.4) we project an ocean sink of
2.9 GtC for 2021. This is a reduction of the sink by 0.1 GtC relative to the 2020 value which
we attribute to La Nifia conditions in January to May 2021 and projections of a re-

emergence of La Nifia later in the year.

3.5.5 Model Evaluation

The evaluation of the ocean estimates (Fig. B2) shows an RMSE from annually detrended
data of 1.3 to 2.8 patm for the seven fCO,-based data products over the globe, relative to
the fCO, observations from the SOCAT v2021 dataset for the period 1990-2020. The GOBMs
RMSEs are larger and range from 3.3 to 5.9 patm. The RMSEs are generally larger at high
latitudes compared to the tropics, for both the data products and the GOBMs. The data
products have RMSEs of 1.3 to 3.6 patm in the tropics, 1.3 to 2.7 patm in the north, and 2.2
to 6.1 patm in the south. Note that the data products are based on the SOCAT v2021

database, hence the latter are not independent dataset for the evaluation of the data
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products. The GOBMs RMSEs are more spread across regions, ranging from 2.7 to 4.3 patm
in the tropics, 2.9 to 6.9 patm in the North, and 6.4 to 9.8 patm in the South. The higher
RMSEs occur in regions with stronger climate variability, such as the northern and southern
high latitudes (poleward of the subtropical gyres). The upper-range of the model RMSEs
have decreased somewhat relative to Friedlingstein et al. (2020), owing to one model with
upper-end RMSE not being represented this year, and the reduction of RMSE in one model
(MPIOM-HAMOCCS®), presumably related to the inclusion of riverine carbon fluxes.

The additional simulation C allows to separate the steady-state anthropogenic carbon
component (sim C - sim B) and to compare the model flux and DIC inventory change directly
to the interior ocean estimate of Gruber et al (2019) without further assumptions. The
GOBMs ensemble average of steady-state anthropogenic carbon inventory change 1994-
2007 amounts to 2.1 GtC yr?, and is significantly lower than the 2.6 + 0.3 GtC yr! estimated
by Gruber et al (2019). Only the three models with the highest sink estimate fall within the
range reported by Gruber et al. (2019). This suggests that most of the models
underestimates anthropogenic carbon uptake by the ocean likely due to biases in ocean
carbon transport and mixing from the surface mixed layer to the ocean interior.

The reported Socean estimate from GOBMs and data-products is 2.1 + 0.4 GtC yr over the
period 1994 to 2007, which is in agreement with the ocean interior estimate of 2.2 + 0.4 GtC
yrlwhen accounting for the climate effect on the natural CO; flux of -0.4 + 0.24 GtC yr*
(Gruber et al., 2019) to match the definition of Socean used here (Hauck et al., 2020). This
comparison depends critically on the estimate of the climate effect on the natural CO; flux,

which is smaller from the GOBMs (section 3.5.2) than in Gruber et al. (2019).

3.6 Land Sink

3.6.1 Historical period 1850-2020

Cumulated since 1850, the terrestrial CO; sink amounts to 195 + 45 GtC, 30% of total
anthropogenic emissions. Over the historical period, the sink increased in pace with the

anthropogenic emissions exponential increase (Fig. 3b).

3.6.2 Recent period 1960-2020

The terrestrial CO; sink increased from 1.2 + 0.5 GtC yr! in the 1960s to 3.1 + 0.6 GtC yr?!
during 2010-2019, with important interannual variations of up to 2 GtC yr* generally
40



1118 showing a decreased land sink during El Nifio events (Fig. 7), responsible for the

1119  corresponding enhanced growth rate in atmospheric CO; concentration. The larger land CO;
1120  sink during 2010-2019 compared to the 1960s is reproduced by all the DGVMs in response
1121  to the combined atmospheric CO; increase and the changes in climate, and consistent with

1122  constraints from the other budget terms (Table 5).

1123  Over the period 1960 to present the increase in the global terrestrial CO; sink is largely
1124  attributed to the CO; fertilisation effect in the models (Prentice et al., 2001, Piao et al.,
1125  2009), directly stimulating plant photosynthesis and increased plant water use in water
1126 limited systems, with a small negative contribution of climate change (Fig. 10). There is a
1127  range of evidence to support a positive terrestrial carbon sink in response to increasing
1128  atmospheric CO;, albeit with uncertain magnitude (Walker et al., 2021). As expected from
1129  theory the greatest CO; effect is simulated in the tropical forest regions, associated with
1130 warm temperatures and long growing seasons (Hickler et al., 2008) (Fig. 10a). However,
1131  evidence from tropical intact forest plots indicate an overall decline in the land sink across
1132  Amazonia (1985-2011), attributed to enhanced mortality offsetting productivity gains

1133  (Brienen et al., 2005, Hubau et al., 2020). During 2011-2020 the land sink is positive in all
1134  regions (Fig. 6) with the exception of central and eastern Brazil, Southwest USA and

1135 northern Mexico, Southeast Europe and Central Asia, South Africa, and eastern Australia,
1136  where the negative effects of climate variability and change (i.e. reduced rainfall)

1137  counterbalance CO; effects. This is clearly visible on Figure 10 where the effects of CO; (Fig.
1138  10a) and climate (Fig. 10b) as simulated by the DGVMs are isolated. The negative effect of
1139  climate is the strongest in most of South America, Central America, Southwest US and

1140 Central Europe (Fig. 10b). Globally, climate change reduces the land sink by 0.45 + 0.39 GtC
1141  yrlor 15% (2011-2020).

1142  In the past years several regions experienced record-setting fire events. While global burned
1143  area has declined over the past decades mostly due to declining fire activity in savannas
1144  (Andela et al., 2017), forest fire emissions are rising and have the potential to counter the
1145  negative fire trend in savannas (Zheng et al., 2021). Noteworthy events include the 2019-
1146 2020 Black Summer event in Australia (emissions of roughly 0.2 GtC; van der Velde et al.,
1147  2021) and Siberia in 2021 where emissions approached 0.4 GtC or three times the 1997-

1148 2020 average according to GFED4s. While other regions, including Western US and
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Mediterranean Europe, also experienced intense fire seasons in 2021 their emissions are

substantially lower.

Despite these regional negative effects of climate change on Sianp, the efficiency of land to
remove anthropogenic CO; emissions has remained broadly constant over the last six

decades, with a land-borne fraction (Stano/(Eros+ELuc) of ~30% (Fig 8).

3.6.3 Final year 2020

The terrestrial CO; sink from the DGVMs ensemble was 2.9 + 1.0 GtC in 2020, slightly below
the decadal average of 3.1 GtC yr! (Fig. 4, Table 6). We note that the DGVMs estimate for
2020 is significantly larger than the 2.1 + 0.9 GtC yr! estimate from the residual sink from
the global budget (Eros+ELuc-Gatm-Socean) (Table 5).

3.6.4 Year 2021 Projection

Using a feed-forward neural network method (see section 2.5) we project a land sink of 3.3
GtC for 2021. This is an increase of the land sink by 0.3 GtC relative to the 2020 value which

we attribute to La Nifa conditions in 2021.

3.6.5 Model Evaluation

The evaluation of the DGVMs (Fig. B3) shows generally high skill scores across models for
runoff, and to a lesser extent for vegetation biomass, GPP, and ecosystem respiration (Fig.
B3, left panel). Skill score was lowest for leaf area index and net ecosystem exchange, with a
widest disparity among models for soil carbon. Further analysis of the results will be
provided separately, focusing on the strengths and weaknesses in the DGVMs ensemble and

its validity for use in the global carbon budget.

3.7 Partitioning the carbon sinks
3.7.1 Global sinks and spread of estimates

In the period 2011-2020, the bottom-up view of total global carbon sinks provided by the
GCB (Socean + Stano— Eruc) agrees closely with the top-down budget delivered by the
atmospheric inversions. Figure 11 shows both total sink estimates of the last decade split by

land and ocean, which match the difference between Garm and Efos to within 0.06—0.17 GtC
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yr'! for inverse models, and to 0.3 GtC yr* for the GCB mean. The latter represents the By
discussed in Section 3.8, which by design is minimal for the inverse models.

The distributions based on the individual models and data products reveal substantial
spread but converge near the decadal means quoted in Tables 5 and 6. Sink estimates for
Socean and from inverse models are mostly non-Gaussian, while the ensemble of DGVMs
appears more normally distributed justifying the use of a multi-model mean and standard
deviation for their errors in the budget. Noteworthy is that the tails of the distributions
provided by the land and ocean bottom-up estimates would not agree with the global
constraint provided by the fossil fuel emissions and the observed atmospheric CO, growth
rate (Eros— Gatm). This illustrates the power of the atmospheric joint constraint from Gamm

and the global CO; observation network it derives from.

3.7.2 Total atmosphere-to-land fluxes

The total atmosphere-to-land fluxes (Siano — Evuc), calculated here as the difference between
Siano from the DGVMs and Euc from the bookkeeping models, amounts toa 1.9 £ 0.9 GtC yr
L sink during 2011-2020 (Table 5). Estimates of total atmosphere-to-land fluxes (Siano — Evuc)
from the DGVM s alone (1.6 + 0.6 GtC yr!) are consistent with this estimate and also with
the global carbon budget constraint (Eros— Gatm — Socean, 1.7 + 0.8 GtC yr* Table 5).
Consistent with the bookkeeping models estimates, the DGVM-based E yc is substantially
lower than in Friedlingstein et al., (2020) due to the improved land cover forcing (see
section 3.2.2), increasing their total atmosphere-to-land fluxes and hence the consistency
with the budget constraint. For the last decade (2011-2020), the inversions estimate the net
atmosphere-to-land uptake to lie within a range of 1.3 to 2.0 GtC yr?, consistent with the
GCB and DGVMs estimates of Siano — Eruc (Figure 11, Figure 12 top row).

3.7.3 Total atmosphere-to-ocean fluxes

For the 2011-2020 period, the GOBMs (2.5 + 0.6 GtC yr!) produce a lower estimate for the
ocean sink than the fCO»-based data products (3.1 + 0.5 GtC yr?), which shows up in Figure
11 as a separate peak in the distribution from the GOBMs (triangle symbols pointing right)
and from the fCO;-based products (triangle symbols pointing left). Atmospheric inversions
(2.6 to 3.1 GtC yr!) also suggest higher ocean uptake in the recent decade (Figure 11, Figure
12 top row). In interpreting these differences, we caution that the riverine transport of

carbon taken up on land and outgassing from the ocean is a substantial (0.6 GtC yr?) and
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uncertain term that separates the various methods. A recent estimate of decadal ocean
uptake from observed 0,/N; ratios (Tohjima et al., 2019) also points towards a larger ocean

sink, albeit with large uncertainty (2012-2016: 3.1 + 1.5 GtC yr?).

3.7.4 Regional breakdown and interannual variability

Figure 12 also shows the latitudinal partitioning of the total atmosphere-to-surface fluxes
excluding fossil CO, emissions (Socean + Stanp — Eruc) according to the multi-model average
estimates from GOBMs and ocean fCO;-based products (Socean) and DGVMs (Siano — Eruc),

and from atmospheric inversions (Socean and Siano — Evruc).

3.7.4.1 North

Despite being one of the most densely observed and studied regions of our globe, annual
mean carbon sink estimates in the northern extra-tropics (north of 30°N) continue to differ
by about 0.5 GtC yr'. The atmospheric inversions suggest an atmosphere-to-surface sink
(Socean+ Stanp — Eruc) for 2011-2020 of 2.0 to 3.4 GtC yr?, which is higher than the process
models’ estimate of 2.1 + 0.5 GtC yr* (Fig. 12). The GOBMs (1.1 + 0.2 GtC yr'), fCO»-based
data products (1.3 + 0.1 GtC yr!), and inversion models (0.9 to 1.5 GtC yr') produce
consistent estimates of the ocean sink. Thus, the difference mainly arises from the total land
flux (Stanp— Eruc) estimate, which is 1.0 + 0.4 GtC yr'! in the DGVMs compared to 0.7 to 2.4

GtC yr!in the atmospheric inversions (Figure 12, second row).

Discrepancies in the northern land fluxes conforms with persistent issues surrounding the
quantification of the drivers of the global net land CO; flux (Arneth et al., 2017; Huntzinger
et al., 2017) and the distribution of atmosphere-to-land fluxes between the tropics and high
northern latitudes (Baccini et al., 2017; Schimel et al., 2015; Stephens et al., 2007; Ciais et al.
2019; Gaubert et al,. 2019).

In the northern extratropics, the process models, inversions, and fCO,-based data products
consistently suggest that most of the variability stems from the land (Fig. 12). Inversions
generally estimate similar interannual variations (IAV) over land to DGVMs (0.28 — 0.47 vs
0.20 - 0.73 GtC yr%, averaged over 1990-2020), and they have higher IAV in ocean fluxes
(0.03 -0.19 GtC yr!) relative to GOBMs (0.03 —0.05 GtC yr%, Fig. B2), and fCO,-based data
products (0.03 — 0.09 GtC yr™).
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3.7.4.2 Tropics

In the tropics (30°S-30°N), both the atmospheric inversions and process models estimate a
total carbon balance (Socean+Siano-Eruc) that is close to neutral over the past decade. The
GOBMs (0.0 + 0.3 GtC yr!), fCO,-based data products (0.03 + 0.2 GtC yr?), and inversion
models (-0.2 to 0.2 GtC yr!) all indicate an approximately neutral tropical ocean flux (see
Fig. B1 for spatial patterns). DGVMs indicate a net land sink (Sianp-Eruc) of 0.6 + 0.3 GtC yr?,
whereas the inversion models indicate a net land flux between -0.7 and 0.9 GtC yr?, though

with high uncertainty (Figure 12, third row).

The tropical lands are the origin of most of the atmospheric CO; interannual variability
(Ahlstrom et al., 2015), consistently among the process models and inversions (Fig. 12). The
interannual variability in the tropics is similar among the ocean data products (0.07 — 0.15
GtC yr-1) and the models (0.07 — 0.15 GtC yr™%, Fig. B2), which is the highest ocean sink
variability of all regions. The DGVMs and inversions indicate that atmosphere-to-land CO;
fluxes are more variable than atmosphere-to-ocean CO; fluxes in the tropics, with

interannual variability of 0.4 to 1.2 and 0.6 to 1.1 GtC yr ! respectively.

3.7.4.3 South

In the southern extra-tropics (south of 30°S), the atmospheric inversions suggest a total
atmosphere-to-surface sink (Socean+Siano-Eruc) for 2011-2020 of 1.6 to 1.9 GtC yr?, slightly
higher than the process models’ estimate of 1.4 + 0.3 GtC yr! (Fig. 12). An approximately
neutral total land flux (Siano-Eruc) for the southern extra-tropics is estimated by both the
DGVMs (0.02 + 0.05 GtC yrt) and the inversion models (sink of -0.1 to 0.2 GtC yr?). This
means nearly all carbon uptake is due to oceanic sinks south of 30°S. The southern ocean
flux in the fCO»-based data products (1.7 + 0.1 GtC yr! ) and inversion estimates (1.4 to 1.8
GtCyr-1) is higher than in the GOBMs (1.4 + 0.3 GtC yr! ) (Figure 12, bottom row). This might
be explained by the data-products potentially underestimating the winter CO, outgassing
south of the Polar Front (Bushinsky et al., 2019), by model biases, or by the uncertainty in
the regional distribution of the river flux adjustment (Aumont et al., 2001, Lacroix et al.,
2020) applied to fCO,-based data products and inverse models to isolate the anthropogenic
Socean flux. CO; fluxes from this region are more sparsely sampled by all methods, especially

in wintertime (Fig. B1).
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The interannual variability in the southern extra-tropics is low because of the dominance of
ocean area with low variability compared to land areas. The split between land (Stanp-ELuc)
and ocean (Socean) shows a substantial contribution to variability in the south coming from
the land, with no consistency between the DGVMs and the inversions or among inversions.
This is expected due to the difficulty of separating exactly the land and oceanic fluxes when
viewed from atmospheric observations alone. The Socean interannual variability was found to
be higher in the fCO,-based data products (0.09 to 0.14 GtC yr-1) compared to GOBMs (0.04
10 0.06 GtC yr-1) in 1990-2020 (Fig. B2). Model subsampling experiments recently
illustrated that observation-based products may overestimate decadal variability in the
Southern Ocean carbon sink by 30% due to data sparsity, based on one data product with

the highest decadal variability (Gloege et al., 2021).
3.7.4.4 Tropical vs northern land uptake

A continuing conundrum is the partitioning of the global atmosphere-land flux between the
northern hemisphere land and the tropical land (Stephens et al., 2017; Pan et al., 2011;
Gaubert et al., 2019). It is of importance because each region has its own history of land-use
change, climate drivers, and impact of increasing atmospheric CO; and nitrogen deposition.
Quantifying the magnitude of each sink is a prerequisite to understanding how each

individual driver impacts the tropical and mid/high-latitude carbon balance.

We define the North-South (N-S) difference as net atmosphere-land flux north of 30N
minus the net atmosphere-land flux south of 30°N. For the inversions, the N-S difference
ranges from -0.1 GtC yr'* to 2.9 GtC yr! across this year’s inversion ensemble with an equal
preference across models for either a small Northern land sink and a tropical land sink
(small N-S difference), a medium Northern land sink and a neutral tropical land flux
(medium N-S difference), or a large Northern land sink and a tropical land source (large N-S

difference).

In the ensemble of DGVMs the N-S difference is 0.5 + 0.5 GtC yr'> a much narrower range
than the one from inversions. Only three DGVMs have a N-S difference larger than 1.0 GtC
yr'l. The larger agreement across DGVMs than across inversions is to be expected as there is
no correlation between Northern and Tropical land sinks in the DGVMs as opposed to the

inversions where the sum of the two regions being well-constrained leads to an anti-
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correlation between these two regions. The much smaller spread in the N-S difference
between the DGVMs could help to scrutinise the inverse models further. For example, a
large northern land sink and a tropical land source in an inversion would suggest a large
sensitivity to CO; fertilisation (the dominant factor driving the land sinks) for Northern
ecosystems, which would be not mirrored by tropical ecosystems. Such a combination could
be hard to reconcile with the process understanding gained from the DGVMs ensembles and
independent measurements (e.g. Free Air CO2 Enrichment experiments). Such
investigations will be further pursued in the upcoming assessment from REgional Carbon

Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020).

3.8 Closing the Global Carbon Cycle
3.8.1 Partitioning of Cumulative Emissions and Sink Fluxes
The global carbon budget over the historical period (1850-2020) is shown in Fig. 3.

Emissions during the period 1850-2020 amounted to 660 + 65 GtC and were partitioned
among the atmosphere (270 + 5 GtC; 41%), ocean (170 + 35 GtC; 26%), and the land (195 +
45 GtC; 30%). The cumulative land sink is almost equal to the cumulative land-use emissions

(200 + 65 GtC), making the global land nearly neutral over the whole 1850-2020 period.

The use of nearly independent estimates for the individual terms shows a cumulative
budget imbalance of 25 GtC (4%) during 1850-2020 (Fig. 3, Table 8), which, if correct,
suggests that emissions are slightly too high by the same proportion (4%) or that the
combined land and ocean sinks are slightly underestimated (by about 7%). The bulk of the
imbalance could originate from the estimation of large E.uc between the mid 1920s and the
mid 1960s which is unmatched by a growth in atmospheric CO, concentration as recorded in
ice cores (Fig. 3). However, the known loss of additional sink capacity of 30-40 GtC (over the
1850-2020 period) due to reduced forest cover has not been accounted for in our method

and would further exacerbate the budget imbalance (Section 2.7.4).

For the more recent 1960-2020 period where direct atmospheric CO; measurements are
available, 375 + 20 GtC (82%) of the total emissions (Eros + ELuc) were caused by fossil CO3
emissions, and 80 + 45 GtC (18%) by land-use change (Table 8). The total emissions were
partitioned among the atmosphere (205 + 5 GtC; 47%), ocean (115 + 25 GtC; 25%), and the

land (135 * 25 GtC; 30%), with a near zero unattributed budget imbalance. All components
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except land-use change emissions have significantly grown since 1960, with important
interannual variability in the growth rate in atmospheric CO, concentration and in the land
CO; sink (Fig. 4), and some decadal variability in all terms (Table 6). Differences with

previous budget releases are documented in Fig. B5.

The global carbon budget averaged over the last decade (2011-2020) is shown in Fig. 2, Fig.
13 (right panel) and Table 6. For this time period, 90% of the total emissions (Eros+ Evuc)
were from fossil CO; emissions (Eros), and 10% from land-use change (Euc). The total
emissions were partitioned among the atmosphere (47%), ocean (26%) and land (29%), with
a near-zero unattributed budget imbalance (~3%). For single years, the budget imbalance
can be larger (Figure 4). For 2020, the combination of our sources and sinks estimates leads
to a Bim of -0.8 GtC, suggesting an underestimation of the anthropogenic sources

(potentially Eiuc), and/or an overestimation of the combined land and ocean sinks

3.8.2 Carbon Budget Imbalance

The carbon budget imbalance (Biv; Eq. 1, Fig.4) quantifies the mismatch between the
estimated total emissions and the estimated changes in the atmosphere, land, and ocean
reservoirs. The mean budget imbalance from 1960 to 2020 is very small (average of 0.03 GtC
yr't) and shows no trend over the full time series. The process models (GOBMs and DGVMs)
and data-products have been selected to match observational constraints in the 1990s, but
no further constraints have been applied to their representation of trend and variability.
Therefore, the near-zero mean and trend in the budget imbalance is seen as evidence of a
coherent community understanding of the emissions and their partitioning on those time
scales (Fig. 4). However, the budget imbalance shows substantial variability of the order of
+1 GtC yr, particularly over semi-decadal time scales, although most of the variability is
within the uncertainty of the estimates. The positive carbon imbalance during the 1960s,
and early 1990s, indicates that either the emissions were overestimated, or the sinks were
underestimated during these periods. The reverse is true for the 1970s, 1980s, and for the
2011-2020 period (Fig. 4, Table 6).

We cannot attribute the cause of the variability in the budget imbalance with our analysis,
we only note that the budget imbalance is unlikely to be explained by errors or biases in the
emissions alone because of its large semi-decadal variability component, a variability that is
untypical of emissions and has not changed in the past 60 years despite a near tripling in
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emissions (Fig. 4). Errors in Sianp and Socean are more likely to be the main cause for the
budget imbalance. For example, underestimation of the Siano by DGVMs has been reported
following the eruption of Mount Pinatubo in 1991 possibly due to missing responses to
changes in diffuse radiation (Mercado et al., 2009). Although in GCB2021 we have for the
first time accounted for aerosol effects on solar radiation quantity and quality (diffuse vs
direct), most DGVMs only used the former as input (i.e., total solar radiation). Thus, the
ensemble mean may not capture the full effects of volcanic eruptions, i.e. associated with
high light scattering sulphate aerosols, on the land carbon sink (O’Sullivan et al., 2021).
DGVMs are suspected to overestimate the land sink in response to the wet decade of the
1970s (Sitch et al., 2008). Quasi-decadal variability in the ocean sink has also been reported,
with all methods agreeing on a smaller than expected ocean CO; sink in the 1990s and a
larger than expected sink in the 2000s (Fig. 9; Landschitzer et al., 2016, DeVries et al., 2019,
Hauck et al., 2020, McKinley et al., 2020). Errors in sink estimates could also be driven by
errors in the climatic forcing data, particularly precipitation for Siano and wind for Socean.
The budget imbalance (Bim) was negative (-0.3 GtC yr'') on average over 2011-2020,
although the By uncertainty is large (1.1 GtC yr! over the decade). Also, the By shows
substantial departure from zero on yearly time scales (Fig. 4), highlighting unresolved
variability of the carbon cycle, likely in the land sink (Stanp), given its large year to year

variability (Fig. 4e and 7).

Both the budget imbalance (Bim, Table 6) and the residual land sink from the global budget
(Eros+ELuc-Gatm-Socean, Table 5) include an error term due to the inconsistencies that arises
from using Eruc from bookkeeping models, and Siano from DGVMs, most notably the loss of
additional sink capacity (see section 2.7). Other differences include a better accounting of
land use changes practices and processes in bookkeeping models than in DGVMs, or the
bookkeeping models error of having present-day observed carbon densities fixed in the
past. That the budget imbalance shows no clear trend towards larger values over time is an
indication that these inconsistencies probably play a minor role compared to other errors in
SLaND OF Socean.

Although the budget imbalance is near zero for the recent decades, it could be due to
compensation of errors. We cannot exclude an overestimation of CO, emissions, particularly

from land-use change, given their large uncertainty, as has been suggested elsewhere (Piao
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et al., 2018), combined with an underestimate of the sinks. A larger Siano would reconcile
model results with inversion estimates for fluxes in the total land during the past decade
(Fig. 12; Table 5). Likewise, a larger Socean is also possible given the higher estimates from
the data-products (see section 3.1.2, Fig. 9 and Fig. 12) and the recently suggested upward
correction of the ocean carbon sink (Watson et al., 2020, Fig. 9). If Socean Were to be based
on data-products alone, with all data-products including the Watson et al. (2020)
adjustment, this would result in a 2011-2020 Socean of nearly 4 GtC yr, outside of the range
supported by the atmospheric inversions, with a negative Biy of more than 1 GtC yr*
indicating that a closure of the budget could only be achieved with either anthropogenic
emissions being larger and/or the net land sink being substantially smaller than estimated
here. More integrated use of observations in the Global Carbon Budget, either on their own
or for further constraining model results, should help resolve some of the budget imbalance

(Peters et al., 2017).

4 Tracking progress towards mitigation targets

Fossil CO2 emissions growth peaked at +3% per year during the 2000s, driven by the rapid
growth in Chinese emissions. In the last decade, however, the growth rate for the preceding
10 years has slowly declined, reaching a low +0.4% per year from 2012-2021 (including the
2020 global decline and the expected 2021 emissions rebound). While this slowdown in
global fossil CO, emissions growth is welcome, it is far from what is needed to be consistent

with the temperature goals of the Paris Agreement.

Since the 1990s, the average growth rate of fossil CO, emissions has continuously declined
across the group of developed countries of the Organisation for Economic Co-operation and
Development (OECD), with emissions peaking in around 2005 and now declining at around
1% yr! (Le Quéré et al., 2021). In the decade 2010-2019, territorial fossil CO, emissions
decreased significantly (at the 95% confidence level) in 23 countries whose economies grew
significantly (also at the 95% confidence level): Barbados, Belgium, Croatia, Czech Republic,
Denmark, Finland, France, Germany, Israel, Japan, Luxembourg, North Macedonia, Malta,
Mexico, Netherlands, Slovakia, Slovenia, Solomon Islands, Sweden, Switzerland, Tuvalu,
United Kingdom and the USA (updated from Le Quéré et al., 2019). Altogether, these 23
countries contribute to 2.5 GtC yr! over the last decade, about one quarter of world CO>
fossil emissions. Consumption-based emissions are also falling significantly in 15 of these
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countries (Belgium, Croatia, Czech Republic, Denmark, Finland, France, Germany, Israel,
Japan, Mexico, Netherlands, Slovenia, Sweden, United Kingdom, and the USA). Figure 14
shows that the emission declines in the USA and the EU27 are primarily driven by increased
decarbonisation (CO2 emissions per unit energy) in the last decade compared to the
previous, with smaller contributions in the EU27 from slightly weaker economic growth and
slightly larger declines in energy per GDP. These countries have stable or declining energy
use and so decarbonisation policies replace existing fossil fuel infrastructure (Le Quéré et al.

2019).

In contrast, fossil CO, emissions continue to grow in non-OECD countries, although the
growth rate has slowed from over 5% yr* during the 2000s to around 2% yr! in the last
decade. A large part of this slowdown in non-OECD countries is due to China, which has
seen emissions growth declining from nearly 10% yr! in the 2000s to 2% yr! in the last
decade. Excluding China, non-OECD emissions grew at 3% yr! in the 2000s compared to 2%
yrlin the last decade. Figure 14 shows that compared to the previous decade, China has
had weaker economic growth in the last decade and a larger decarbonisation rate, with
more rapid declines in energy per GDP which are now back to levels during the 1990s. India
and the rest of the world have strong economic growth that is not compensated by
decarbonisation or declines in energy per GDP, implying fossil CO, emissions continue to
grow. Despite the high deployment of renewables in some countries (e.g., India), fossil

energy sources continue to grow to meet growing energy demand (Le Quéré et al. 2019).

Globally, fossil CO, emissions growth is slowing, and this is primarily due to the emergence
of climate policy and emission declines in OECD countries (Eskander and Fankhauser 2020).
At the aggregated global level, decarbonisation shows a strong and growing signal in the last
decade, with smaller contributions from lower economic growth and declines in energy per
GDP. Despite the slowing growth in global fossil CO, emissions, emissions are still growing,
far from the reductions needed to meet the ambitious climate goals of the UNFCCC Paris

agreement.

We update the remaining carbon budget assessed by the IPCC AR6 (Canadell et al., 2021),
accounting for the 2020 and estimated 2021 emissions from fossil fuel combustion (Eros)
and land use changes (ELuc). From January 2022, the remaining carbon (50% likelihood) for

limiting global warming to 1.5°C, 1.7°C and 2°C is estimated to amount to 120, 210, and 350
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GtC (420, 770, 1270 GtCOy). These numbers include an uncertainty based on model spread
(as in IPCC AR6), which is reflected through the percent likelihood of exceeding the given
temperature threshold. These remaining amounts correspond respectively to about 11, 20
and 32 years from the beginning of 2022, at the 2021 level of total CO, emissions. Reaching
net zero CO; emissions by 2050 entails cutting total anthropogenic CO, emissions by about

0.4 GtC (1.4 GtCO,) each year on average, comparable to the decrease during 2020.

5 Discussion

Each year when the global carbon budget is published, each flux component is updated for
all previous years to consider corrections that are the result of further scrutiny and
verification of the underlying data in the primary input data sets. Annual estimates may be
updated with improvements in data quality and timeliness (e.g., to eliminate the need for
extrapolation of forcing data such as land-use). Of all terms in the global budget, only the
fossil CO, emissions and the growth rate in atmospheric CO; concentration are based
primarily on empirical inputs supporting annual estimates in this carbon budget. The carbon
budget imbalance, yet an imperfect measure, provides a strong indication of the limitations
in observations in understanding and representing processes in models, and/or in the

integration of the carbon budget components.

The persistent unexplained variability in the carbon budget imbalance limits our ability to
verify reported emissions (Peters et al., 2017) and suggests we do not yet have a complete
understanding of the underlying carbon cycle dynamics on annual to decadal timescales.
Resolving most of this unexplained variability should be possible through different and
complementary approaches. First, as intended with our annual updates, the imbalance as an
error term is reduced by improvements of individual components of the global carbon
budget that follow from improving the underlying data and statistics and by improving the
models through the resolution of some of the key uncertainties detailed in Table 9. Second,
additional clues to the origin and processes responsible for the variability in the budget
imbalance could be obtained through a closer scrutiny of carbon variability in light of other
Earth system data (e.g., heat balance, water balance), and the use of a wider range of
biogeochemical observations to better understand the land-ocean partitioning of the carbon
imbalance (e.g. oxygen, carbon isotopes). Finally, additional information could also be
obtained through higher resolution and process knowledge at the regional level, and
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through the introduction of inferred fluxes such as those based on satellite CO; retrievals.
The limit of the resolution of the carbon budget imbalance is yet unclear, but most certainly

not yet reached given the possibilities for improvements that lie ahead.

Estimates of global fossil CO; emissions from different datasets are in relatively good
agreement when the different system boundaries of these datasets are considered
(Andrew, 2020a). But while estimates of Eros are derived from reported activity data
requiring much fewer complex transformations than some other components of the budget,
uncertainties remain, and one reason for the apparently low variation between datasets is
precisely the reliance on the same underlying reported energy data. The budget excludes
some sources of fossil CO, emissions, which available evidence suggests are relatively small
(<1%). We have added emissions from lime production in China and the US, but these are
still absent in most other non-Annex | countries, and before 1990 in other Annex | countries.

Further changes to Eros this year are documented by Andrew and Peters (2021).

Estimates of Eiuc suffer from a range of intertwined issues, including the poor quality of
historical land-cover and land-use change maps, the rudimentary representation of
management processes in most models, and the confusion in methodologies and boundary
conditions used across methods (e.g., Arneth et al., 2017; Pongratz et al., 2014, see also
Section 2.7.4 on the loss of sink capacity; Bastos et al., 2021). Uncertainties in current and
historical carbon stocks in soils and vegetation also add uncertainty in the E,yc estimates.
Unless a major effort to resolve these issues is made, little progress is expected in the
resolution of Eruc. This is particularly concerning given the growing importance of E.uc for
climate mitigation strategies, and the large issues in the quantification of the cumulative

emissions over the historical period that arise from large uncertainties in ELuc.

By adding the DGVMs estimates of CO; fluxes due to environmental change from countries’
managed forest areas (part of Sianp in this budget) to the budget Eiuc estimate, we
successfully reconciled the large gap between our Eyc estimate and the land use flux from
NGHGIs using the approach described in Grassi et al. (2021). This latter estimate has been
used in the recent UNFCCC's Synthesis Report on Nationally Determined Contribution
(UNFCCC, 2021b) to enable the total national emission estimates to be comparable with
those of the IPCC. However, while Grassi et al. (2021) used only one DGVM, here 17 DGVMs

are used, thus providing a more robust value to be used as potential adjustment in the
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policy context, e.g., to help assessing the collective countries’ progress towards the goal of
the Paris Agreement and avoiding double-accounting for the sink in managed forests. In the
absence of this adjustment, collective progress would hence appear better than it is (Grassi

et al. 2021).

The comparison of GOBMs, data products and inversions highlights substantial discrepancy
in the Southern Ocean (Fig. 12, Hauck et al., 2020). The long-standing sparse data coverage
of fCO; observations in the Southern compared to the Northern Hemisphere (e.g., Takahashi
et al., 2009) continues to exist (Bakker et al., 2016, 2021, Fig. B1) and to lead to substantially
higher uncertainty in the Socean estimate for the Southern Hemisphere (Watson et al., 2020,
Gloege et al., 2021). This discrepancy, which also hampers model improvement, points to
the need for increased high-quality fCO, observations especially in the Southern Ocean. At
the same time, model uncertainty is illustrated by the large spread of individual GOBM
estimates (indicated by shading in Fig. 12) and highlights the need for model improvement.
Further uncertainty stems from the regional distribution of the river flux adjustment term
being based on one model study yielding the largest riverine outgassing flux south of 20°S
(Aumont et al., 2001), with a recent study questioning this distribution (Lacroix et al., 2020).
The diverging trends in Socean from different methods is a matter of concern, which is
unresolved. The assessment of the net land-atmosphere exchange from DGVMs and
atmospheric inversions also shows substantial discrepancy, particularly for the estimate of
the total land flux over the northern extra-tropic. This discrepancy highlights the difficulty to
quantify complex processes (CO: fertilisation, nitrogen deposition and fertilisers, climate
change and variability, land management, etc.) that collectively determine the net land CO;
flux. Resolving the differences in the Northern Hemisphere land sink will require the

consideration and inclusion of larger volumes of observations.

We provide metrics for the evaluation of the ocean and land models and the atmospheric
inversions (Figs. B2 to B4). These metrics expand the use of observations in the global
carbon budget, helping 1) to support improvements in the ocean and land carbon models
that produce the sink estimates, and 2) to constrain the representation of key underlying
processes in the models and to allocate the regional partitioning of the CO; fluxes. However,
GOBMs skills have changed little since the introduction of the ocean model evaluation. An

additional simulation this year allows for direct comparison with interior ocean
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anthropogenic carbon estimates and suggests that the models underestimate
anthropogenic carbon uptake and storage. This is an initial step towards the introduction of
a broader range of observations that we hope will support continued improvements in the

annual estimates of the global carbon budget.

We assessed before that a sustained decrease of —1% in global emissions could be detected
at the 66% likelihood level after a decade only (Peters et al., 2017). Similarly, a change in
behaviour of the land and/or ocean carbon sink would take as long to detect, and much
longer if it emerges more slowly. To continue reducing the carbon imbalance on annual to
decadal time scales, regionalising the carbon budget, and integrating multiple variables are
powerful ways to shorten the detection limit and ensure the research community can
rapidly identify issues of concern in the evolution of the global carbon cycle under the

current rapid and unprecedented changing environmental conditions.

6 Conclusions

The estimation of global CO; emissions and sinks is a major effort by the carbon cycle
research community that requires a careful compilation and synthesis of measurements,
statistical estimates, and model results. The delivery of an annual carbon budget serves two
purposes. First, there is a large demand for up-to-date information on the state of the
anthropogenic perturbation of the climate system and its underpinning causes. A broad
stakeholder community relies on the data sets associated with the annual carbon budget
including scientists, policy makers, businesses, journalists, and non-governmental
organisations engaged in adapting to and mitigating human-driven climate change. Second,
over the last decades we have seen unprecedented changes in the human and biophysical
environments (e.g., changes in the growth of fossil fuel emissions, impact of COVID-19
pandemic, Earth’s warming, and strength of the carbon sinks), which call for frequent
assessments of the state of the planet, a better quantification of the causes of changes in
the contemporary global carbon cycle, and an improved capacity to anticipate its evolution
in the future. Building this scientific understanding to meet the extraordinary climate
mitigation challenge requires frequent, robust, transparent, and traceable data sets and
methods that can be scrutinised and replicated. This paper via ‘living data’ helps to keep

track of new budget updates.
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1573 7 Data availability

1574  The data presented here are made available in the belief that their wide dissemination will
1575 lead to greater understanding and new scientific insights of how the carbon cycle works,
1576  how humans are altering it, and how we can mitigate the resulting human-driven climate
1577  change. Full contact details and information on how to cite the data shown here are given at

1578 the top of each page in the accompanying database and summarised in Table 2.

1579  The accompanying database includes two Excel files organised in the following

1580  spreadsheets:

1581  File Global _Carbon_Budget 2021v1.0.xlsx includes the following:

1582 1. Summary

1583 2. The global carbon budget (1959-2020);

1584 3. The historical global carbon budget (1750-2020);

1585 4. Global CO; emissions from fossil fuels and cement production by fuel type, and the per-
1586 capita emissions (1959-2020);

1587 5. CO; emissions from land-use change from the individual methods and models (1959-
1588 2020);

1589 6. Ocean CO; sink from the individual ocean models and fCO;-based products (1959-
1590 2020);

1591 7. Terrestrial CO; sink from the DGVMs (1959-2020).
1592

1593 File National_Carbon_Emissions_2021v1.0.xlsx includes the following:

1594 1. Summary
1595 2. Territorial country CO; emissions from fossil CO, emissions (1959-2020);

1596 3. Consumption country CO; emissions from fossil CO, emissions and emissions transfer

1597 from the international trade of goods and services (1990-2019) using CDIAC/UNFCCC
1598 data as reference;

1599 4. Emissions transfers (Consumption minus territorial emissions; 1990-2019);

1600 5. Country definitions;

1601 6. Details of disaggregated countries;

1602 7. Details of aggregated countries.
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Both spreadsheets are published by the Integrated Carbon Observation System (ICOS)
Carbon Portal and are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al.,

2021). National emissions data are also available from the Global Carbon Atlas
(http://www.globalcarbonatlas.org/, last access: 11 March 2022) and from Our World in

Data (https://ourworldindata.org/co2-emissions, last access: 11 March 2022).
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3164 12 Tables

Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 x conversion).

Unit 1 Unit 2 Conversion Source
GtC (gigatonnes of

(&g ppm (parts per million) (a) 2.124 (b) Ballantyne et al. (2012)
carbon)
GtC (gigatonnes of

(6 PgC (petagrams of carbon) 1 Sl unit conversion
carbon)
GtCO2 (gigatonnes of GtC (gigatonnes of 3.664 44,01/12.011 in mass
carbon dioxide) carbon) ' equivalent
GtC (gigatonnes of MtC (megatonnes of . .

1000 SI unit conversion

carbon) carbon)

(a) Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. ‘ppm’ is an
abbreviation for micromole/mol, dry air.

(b) The use of a factor of 2.124 assumes that all the atmosphere is well mixed within one year. In reality, only
the troposphere is well mixed and the growth rate of CO2 concentration in the less well-mixed stratosphere is
not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the
growth rate of CO2 concentration in the stratosphere equals that of the troposphere on a yearly basis.
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Table 2. How to cite the individual
components of the global carbon budget
presented here.

Component

Primary reference

Global fossil CO2 emissions (EFOS), total and by fuel
type

Andrew and Peters (2021)

National territorial fossil CO2 emissions (EFOS)

National consumption-based fossil CO2 emissions
(EFOS) by country (consumption)

Gilfillan and Marland (2021), UNFCCC (2021a)
Peters et al. (2011b) updated as described in this
paper

Net land-use change flux (ELUC)

This paper (see Table 4 for individual model
references).

Growth rate in atmospheric CO2 concentration
(GATM)

Dlugokencky and Tans (2022)

Ocean and land CO2 sinks (SOCEAN and SLAND)

This paper (see Table 4 for individual model
references).
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Table 3. Main methodological changes in the global carbon budget since 2017. Methodological changes introduced in one year
are kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year.

Table A7 lists methodological changes from the first global carbon budget publication up to 2016.

Uncertainty &

Fossil fuel emissions LUC emissions Reservoirs
Publication other changes
year Country
Global o Atmosphere Ocean Land
(territorial)
Land multi-
2017 model average
. now used in
Based on eight .
Based on 15 main carbon
models that .
L Average of two models that budget, with
Projection . match the
includes Indi bookkeeping b dsink meet the carbon
Ard includes India- observed sin
Le Queré et al. - models; use of observation- imbalance
(2018a) specific data for the 1990s; .
12 DGVMs no longer based criteria presented
GCB2017 g (see Sect. 2.5) = separately;
normalised
new table of
key
uncertainties
L Aggregation of Based on 16 .
2018 Revision in Introduction of
overseas models; .
cement L Average of two . metrics for
o territories into . Use of four revised .
emissions; overnin bookkeeping atmospheric Based on atmospheric evaluation of
Ard verni i i
Le Queréetal.  pryiaction 8 , | models; use of ) p' seven models ) i individual
(2018b) ) nations for inversions forcing from .
includes EU- 16 DGVMs models using
GCB2018 . total of 213 CRUNCEP to X
specific data . observations
countries a CRU-JRA-55
Global
2019 emissions
calculated as
Average of two
sum of all . Use of three .
countries plus bookkeeping atmospheric Based on nine  Based on 16
adli ; untri u i
Friedlingstein b nkerf models; use of o ers'ons models models
u 3 inversi
etal. (2019) 15 DGVMs
GCB2019 rather than
taken directly
from CDIAC.
India's
2020 emissions from
Andrew (2020:
India);
Cement . Average of
. Corrections to
carbonation three .
. Netherland . Based on nine
now included . bookkeeping .
. Antilles and . models. River
in the EFOS models; use of Use of six .
. Aruba and . flux revised Based on 17
o . estimate, . 17 DGVMs. atmospheric
Friedlingstein . Soviet . . . and models
reducing EFOS L Estimate of inversions .
et al. (2020) by about emissions land partitioned
abou ross land use
GCB2020 v before 1950 as 8 NH, Tropics, SH
0.2GtC yr-1 for And sources and
er Andrew
the last decade " sinks provided
(2020: CO2);
China's coal
emissions in
2019 derived
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from official
statistics,
emissions now

shown for
EU27 instead
of
EU28.Projectio
n for 2020
based on
assessment of
four
approaches.
Official data Average of
2021 included for a means of eight
number of . models and
. ELUC estimate
L additional means of Current year
Projections are . compared to .
countries, new . seven data- prediction of
no longer an . the estimates .
estimates for . products. SLAND using a
- . assessment of adopted in
Friedlingstein four South Korea, national GHG Currentyear = feed-forward
u i
etal. (2021) N added ) tor prediction of | neural network
. approaches. inventories
GCB2021 (This  2PP emissions from SOCEAN using method
. (NGHGI)
study) lime a feed-forward
production in neural network
China.

method
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Table 4. References for the process models, fCO2-based ocean data products, and atmospheric inversions. All

models and products are updated with new data to the end of year 2020, and the atmospheric forcing for the
DGVMs has been updated as described in Section C.2.2.

Model/data
name

Reference

Change from Global Carbon Budget 2020 (Friedlingstein et al.,
2020)

Bookkeeping models for land-use change emissions

BLUE

updated
H&N2017

OSCAR

Hansis et al. (2015)

Houghton and Nassikas (2017)

Gasser et al. (2020)

No change to model, but simulations performed with updated
LUH2 forcing.

Adjustment to treatment of harvested wood products. Update
to FRA2020 and 2021 FAOSTAT for forest cover and land-use
areas. Forest loss in excess of increases in cropland and
pastures represented an increase in shifting cultivation.
Extratropical peatland drainage emissions added (based on Qiu
etal, 2021).

Update to OSCAR3.1.2, which provides finer resolution (96
countries/regions). LUH2-GCB2019 input data replaced by
LUH2-GCB2021. FRA2015 (Houghton & Nassikas, 2017) still
used as a second driving dataset, with emissions from FRA2015
extended to 2020. Constraining based on this year's budget
data.

Dynamic global vegetation models

CABLE-POP

CLASSIC

CLM5.0

DLEM

IBIS

ISAM

ISBA-CTRIP

JSBACH

JULES-ES

LPJ-GUESS

LPJ

Haverd et al. (2018)
Melton et al. (2020) (a)
Lawrence et al. (2019)
Tian et al. (2015) (b)

Yuan et al. (2014) (c)

Meiyappan et al. (2015) (d)

Delire et al. (2020) (e)
Reick et al. (2021) (f)
Wiltshire et al. (2021) (g)
Smith et al. (2014) (h)

Poulter et al. (2011) (i)

changes in parameterisation, minor bug fixes
Non-structural carbohydrates are now explicitly simulated.
No Change.

Updated algorithms for land use change processes.

Several changes in parameterisation; Dynamic carbon
allocation scheme.

ISAM now accounting for vertically-resolved soil
biogeochemistry (carbon and nitrogen) module (Shu et al.,
2020)

Updated spinup protocol + model name updated (SURFEXv8 in
GCB2017) + inclusion of crop harvesting module

Wood product pools per plant functional type.
Version 1.1 Inclusion of interactive fire Burton et al., (2019)
No code change. Using updated LUH2 and climate forcings.

Updated soil data from FAO to HWSD v2.0

117



LPX-Bern Lienert and Joos (2018)
OCN Zaehle and Friend (2010) (j)
ORCHIDEEV3 Vuichard et al. (2019) (k)
SDGVM Walker et al. (2017) (1)
VISIT Kato et al. (2013) (m)

YIBs Yue and Unger (2015)

No Change.
No change (uses r294).

Updated growth respiration scheme (revision 7267)

No changes from version used in Friedlingstein et al. (2019),
except for properly switching from grasslands to pasture in the
blending of the ESA data with LUH2; this change affects mostly
the semi-arid lands.

Minor bug fix on CH4 emissions of recent few years.

Inclusion of nutrient limit with down regulation approach of
Arora et al. (2009)

Global ocean biogeochemistry models

NEMO- Wright et al. (2021) (n)
PlankTOM12
MICOM-HAMOCC .

Schwinger et al. (2016)
(NoreESM-0Cv1.2)
MPIOM-
HAMOCC6
NEMO3.6-
PISCESv2-gas

(CNRM)

Lacroix et al. (2021)

Berthet et al. (2019) (o)

FESOM-2.1-

Hauck et al. (2020
REcoM2 auck etal. (2020) (p)

MOMG6-COBALT
(Princeton)

Liao et al. (2020)

CESM-ETHZ Doney et al. (2009)
NEMO-PISCES

Aumont et al. (2015)
(IPSL)

Updated biochemical model to include 12 functional types.
Change to spin-up, now using a looped 1990.

No change

Added riverine fluxes; cmip6 model version including
modifications and bug-fixes in HAMOCC and MPIOM

small bug fixes; updated model-spin-up (new forcings); atm
forcing is now JRA55-Do including 2020 year and varying
riverine freshwater inputs

Updated physical model version FESOM2.1, and including 2nd
zooplankton and 2nd detritus group. Used new atmospheric
CO2 time series provided by GCB

Adjustment of the piston velocity prefactor (0.337 cph/m2/s2
to 0.251 cph/m2/s2). MOMG6 update from GitHub version
b748b1b (2018-10-03) to version 69a096b (2021-02-24).
Updated model spin-up and simulation using JRA55-do v1.5.
Used new atmospheric CO2 time series provided by GCB.

No change in the model. Used new atmospheric CO2 time
series provided by GCB

No change

ocean fCO2-based data products

Landschiitzer

Landschitzer et al. (2016)
(MPI-SOMFFN)

Rodenbeck (Jena-
MLS)

Roédenbeck et al. (2014)

update to SOCATv2021 measurements and time period 1982-
2020; The estimate now covers the full open ocean and coastal
domain as well as the Arctic Ocean extension described in
Landschitzer et al. (2020)

update to SOCATv2021 measurements, time period extended
to 1957-2020, involvement of a multi-linear regression for
extrapolation (combined with an explicitly interannual
correction), use of OCIM (deVries, 2014) as decadal prior,
carbonate chemistry parameterization now time-dependent,
grid resolution increased to 2.5*2 degrees, adjustable degrees
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CMEMS-LSCE-
FFNNv2
CSIR-ML6

Watson et al

NIES-NN

JMA-MLR

OS-ETHZ-GRaCER Gregor and Gruber (2021)

Chau et al. (2021)
Gregor et al. (2019)

Watson et al. (2020)

Zeng et al. (2014)

lida et al. (2021)

of freedom now also covering shallow areas and Arctic, some
numerical revisions

Update to SOCATv2021 measurements and time period 1985-
2020. The CMEMS-LSCE-FFNNv2 product now covers both the
open ocean and coastal regions (see in Chau et al. 2021 for
model description and evaluation).

Updated to SOCATv2021. Reconstruction now spans the period
1985 - 2020 and includes updates using the SeaFlux protocols
(Fay et al., 2021b)

Updated to SOCAT v2021. A monthly climatology of the skin
temperature deviation as calculated for years 2003-2011 is now
used in place of a single global average figure. SOM calculation
updated to treat the Arctic as a separate biome.

New this year

New this year

New this year

Atmospheric inversions

CAMS

CarbonTracker
Europe (CTE)

Jena CarboScope

UoE in-situ

NISMON-CO2

CMS-Flux

Chevallier et al. (2005) (q)

van der Laan-Luijkx et al. (2017)

Rodenbeck et al. (2018) (r)

Feng et al., (2016) (s)

Niwa et al., (2017) (t)

Liu et al., (2021)

No change.

No change.

No change.

Fossil fuels now from GCP-GridFEDv2021.2

Some inversion parameters were changed.

New this year

(a) see also Asaadi et al. (2018).

(b) see also Tian et al. (2011)

(c) the dynamic carbon allocation scheme was presented by Xia et al. (2015)

(d) see also Jain et al. (2013). Soil biogeochemistry is updated based on Shu et al. (2020)

(e) see also Decharme et al. (2019) and Seferian et al. (2019)

(f) Mauritsen et al. (2019)

(g) see also Sellar et al. (2019) and Burton et al., (2019). JULES-ES is the Earth System configuration of the Joint UK
Land Environment Simulator as used in the UK Earth System Model (UKESM).

(h) to account for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF
from CRUJRA, the photosynthesis scaling parameter aa was modified (-15%) to yield similar results.
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(i) compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-
site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100
% of harvested grass enters the litter pool.

(j) see also Zaehle et al. (2011).

(k) see also Zaehle and Friend (2010) and Krinner et al. (2005)
(1) see also Woodward and Lomas (2004)

(m) see also Ito and Inatomi (2012).

(n) see also Buitenhuis et al. (2013)

(o) see also Séférian et al. (2019)

(p) see also Schourup-Kristensen et al (2014)

(g) see also Remaud (2018)

(r) see also Rodenbeck et al. (2003)

(s) see also Feng et al. (2009) and Palmer et al. (2019)

(t) see also Niwa et al. (2020)
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the
DGVMs and inverse estimates for different periods, the last decade, and the last year available. All values
are in GtCyr-1. The DGVM uncertainties represent +1o of the decadal or annual (for 2020 only) estimates
from the individual DGVM:s: for the inverse models the range of available results is given. All values are
rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.

Mean (GtC/yr)

2011-
1960s 1970s  1980s 1990s 2000s 2020 2020

Land-use change emissions (ELUC)

Bookkeeping methods - net flux (1a) 1.6+£0.7 1.3%0.7 1.2+0.7 1.3+0.7 1.2+0.7 1.1+x0.7 0.9+0.7
Bookkeeping methods - source 3.4+0.9 3.3+0.8 3.4+0.8 3.6+0.6 3.7+0.6 3.8+0.6 3.6%0.6
Bookkeeping methods - sink -1.9+0.4 -2+0.4 -2.1+0.3 -2.3x0.4 -2.5+0.4 -2.7+0.4 -2.840.4
DGVMs-net flux (1b) 1.6£0.5 1.3+0.4 1.4+0.5 1.4+0.5 1.4+0.5 1.5%0.5 1.4+0.7

Terrestrial sink (SLAND)

Residual sink from global budget (EFOS+ELUC-GATM-

SOCEAN) (2a) 1.8+0.8 1.9+0.8 1.6+0.9 2.5+0.9 2.7+0.9 2.8%0.9 2.1+0.9

DGVMs (2b) 1.2£0.5 2+0.5 1.8+0.5 2.3+0.4 2.6%0.5 3.1%0.6 2.9+1

Total land fluxes (SLAND-ELUC)

GCB2021 Budget (2b-13) -0.4+0.8 0.8+0.8 0.5%0.9 1+£0.8 1.4£0.9 1.9+0.9 2+1.2
Budget constraint (2a-1a) 0.2+0.4 0.6%0.5 0.3+0.5 1.2+0.5 1.5+0.6 1.720.6 1.3%0.6
DGVMs-net (2b-1b) -0.4+0.6 0.7+£0.4 0.320.4 0.9+0.4 1.2+0.4 1.6%£0.6 1.5+£0.8
Inversions® L~ 0506 0912 1318 ., 0113

o Estimates are adjusted for the pre-industrial influence of river fluxes, for the cement carbonation sink, and adjusted to common EFOS (Sect.
2.6). The ranges given include varying numbers (in parentheses) of inversions in each decade (Table A4)
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Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods, and
last year available. All values are in GtC yr-1, and uncertainties are reported as *1c. Fossil CO, emissions
include cement carbonation. The table also shows the budget imbalance (Bw), which provides a measure of
the discrepancies among the nearly independent estimates and has an uncertainty exceeding + 1 GtC yr. A
positive imbalance means the emissions are overestimated and/or the sinks are too small. All values are
rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.

Mean (GtC/yr)

1960s 1970s  1980s 1990s  2000s 2011-2020 2020 2021 (Projection)
Total emissions (EFOS + ELUC)

Fossil CO2 emissions (EFOS)* 3+0.2 4.7¢0.2 5.5+0.3 6.3+0.3 7.7+0.4 9.5%0.5 9.3+0.5 9.9+0.5
Land-use change emissions (ELUC) 1.6+0.7 1.3+0.7 1.2+0.7 1.3+0.7 1.2£0.7 1.1£0.7  0.9+0.7 0.8+0.7
Total emissions 4.6+0.7 5.9+0.7 6.7+t0.8 7.7t0.8 9+0.8 10.6+0.8 10.2+0.8 10.7£0.9
Partitioning

Growth rate in atmos CO2 (GATM) 1.7£0.07 2.8£0.07 3.4+0.02 3.1+0.02 4+0.02 5.1+0.02 5+0.2 5.3+0.1

Ocean sink (SOCEAN) 1.1+0.4 1.3x04 1.8+04 2+04 2.2+04 2.8+0.4 3+0.4 2.9+0.4

Terrestrial sink (SLAND) 1.2+#0.5 2+0.5 1.840.5 2.3+0.4 2.6+0.5 3.1+0.6 2.9+1 3.3+1

Budget Imbalance

BIM=EFOS+ELUC-
(GATM+SOCEAN+SLAND) 0.6 -0.2 -0.2 0.2 0.1 -0.3 -0.8 -0.7

o Fossil emissions excluding the cement carbonation sink amount to 3.1£0.2 GtC/yr, 4.7+0.2 GtC/yr, 5.5+0.3 GtC/yr, 6.4+0.3 GtC/yr, 7.9+0.4
GtC/yr, and 9.7+0.5 GtC/yr for the decades 1960s to 2010s respectively and to 9.5+0.5 GtC/yr for 2020.
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Table 7. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the
estimate available using actual data, and the ‘Projected’ values refers to estimates made before the end of the
year for each publication. Projections based on a different method from that described here during 2008-2014 are
available in Le Quéré et al., (2016). All values are adjusted for leap years.

World China USA EU28 (h) India Rest of World

Project Projec Projec Projec Projec Projec
Actual Actual Actual Actual Actual Actual

ted ted ted ted ted

2015 -0.6% -3.9% -1.5% 1.2%
() (-1.6to 0.06% [(-4.6t0 —0.7% |(-5.5t0 —2.5% - - - - |(-0.2t0 1.2%

0.5) -1.1) 0.3) 2.6)

2016 -0.2% -0.5% -1.7% 1.0%
(b) (-1.0to 0.20% |(-3.8t0 -0.3% |(-4.0t0 —2.1% | - - - - |(-04t0 1.3%

+1.8) +1.3) +0.6) +2.5)

2.0% 3.5% -0.4% 2.00% 1.6%
2017 (c)|(+0.8to 1.6% [(+0.7to 1.5% |(-2.7to -0.5% | - - |(+02to 3.9% | (0.0to 1.9%

+3.0) +5.4) +1.0) +3.8) +3.2)

2018 2.7% 4.7% 2.5% -0.7% 6.3% 1.8%
(d) (+1.8to 2.1% |(+2.0to 2.3% |(+0.5t0 2.8% |[(-2.6t0 -2.1% |(+4.3to 8.0% [(+0.5t0 1.7%

+3.7) +7.4) +4.5) +1.3) +8.3) +3.0)

0.5% 2.6% -2.4% -1.7% 1.8% 0.5%

2019 (-5.1%

(e) (-0.3to 0.1% [|(+0.7to 2.2% |(-4.7to -2.6% to -43% |(-0.7to 1.0% |(-0.8to 0.5%

+1.4) +4.4) -0.1) +3.7) +1.8)

+1.8%)

-6.7% -1.7% -12.2% “11.3% -9.1% -7.4%
2020 (f) -5.4% 1.4% -10.6% | (EU27)  -10.9% -7.3% -7.0%

4.8% 4.3% 6.8% 6.3% 11.2% 3.2%

2021 | (4.2% (3.0% (6.6% (4.3% (10.7% (2.0%

(8) to to to to to to

5.4%) 5.4%) 7.0%) 8.3%) 11.7%) 4.3%)

(a) Jackson et al. (2016) and Le Quéré et al. (2015a). (b) Le Quéré et al. (2016). (c) Le Quéré et al. (2018a). (d) Le
Quéré et al. (2018b). (e) Friedlingstein et al., (2019), (f) Friedlingstein et al., (2020), (g) This study (median of four
reported estimates, Section 3.4.1.2)

(h) EU28 until 2019, EU27 from 2020
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Table 8. Cumulative CO; for different time periods in gigatonnes of carbon (GtC). All uncertainties are reported as
t10. Fossil CO; emissions include cement carbonation. The budget imbalance (Biv) provides a measure of the
discrepancies among the nearly independent estimates. All values are rounded to the nearest 5 GtC and therefore
columns do not necessarily add to zero.

1750-2020 1850-2014 1850-2020 1960-2020 1850-2021

Emissions

Fossil CO2 emissions (EFOS) 460+25 400+20 455+25 375420 465+25
Land-use change emissions (ELUC) 235475 195+60 200+65 80+45 205+65
Total emissions 690+80 595+65 660%65 455+45 670%65
Partitioning

Growth rate in atmos CO2 (GATM) 29045 235%5 27045 205+5 275%5
Ocean sink (SOCEAN) 18035 150+30 17035 115+25 17035
Terrestrial sink (SLAND) 215+50 180+40 195+45 135+25 200+45

Budget imbalance

BIM=EFOS+ELUC-(GATM+SOCEAN+SLAND) 10 30 25 0 25
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Table 9. Major known sources of uncertainties in each component of the Global Carbon Budget, defined as input
data or processes that have a demonstrated effect of at least 0.3 GtC yr-1.

Source of Time scale . .
. Location Status Evidence
uncertainty (years)
Fossil CO2 emissions (EFOS; Section 2.1)
global, but
mainly China &
o annual to .
energy statistics decadal major see Sect. 2.1 (Korsbakken et al., 2016, Guan et al., 2012)
ecada
developing
countries
global, but
mainly China &
carbon content annual to . .
major see Sect. 2.1 (Liu et al., 2015)
of coal decadal .
developing
countries
system annual to .
all countries see Sect. 2.1 (Andrew, 2020)
boundary decadal
Net land-use change flux (ELUC; section 2.2)
land-cover and global; in
land-use change  continuous particular see Sect. 2.2 (Houghton et al., 2012; Gasser et al., 2020)
statistics tropics
sub-grid-scale annual to ) .
. global see Table A1 (Wilkenskjeld et al., 2014)
transitions decadal
. global; in
vegetation annual to ]
. particular see Table Al (Houghton et al., 2012)
biomass decadal .
tropics
forest
degradation annual to . N .
. . tropics (Aragdo et al., 2018; Qin et al., 2020)
(fire, selective decadal
logging)
wood and cro annual to
P global; SE Asia see Table Al (Arneth et al., 2017, Erb et al., 2018)
harvest decadal
multi-decadal
peat burning (a) trend global see Table A1 (van der Werf et al., 2010, 2017)
ren
loss of . not included;
. . multi-decadal ] (Pongratz et al, 2014, Gasser et al, 2020;
additional sink global see Appendix

capacity

trend

D1.4

Obermeier et al., 2021)

Atmospheric growth rate (GATM; section 2.3) no demonstrated uncertainties larger than 0.3 GtC yr-1 (b)

Ocean sink (SOCEAN; section 2.4)
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global, in

sparsity in mean, decadal . .
o particular (Gloege et al., 2021, Denvil-Sommer et al.,
surface fCO2 variability and see Sect 3.5.2 .
. southern 2021, Bushinsky et al., 2019)
observations trend .
hemisphere
. global, in
riverine carbon ]
. particular see Sect. 2.4
outgassing and L .
it annual to partitioning  (anthropogenic  (Aumont et al., 2001, Resplandy et al., 2018,
its
. decadal between perturbations Lacroix et al., 2020)
anthropogenic . .
. Tropics and not included)
perturbation
South
interior ocean
) annual to
anthropogenic decadal global see Sect 3.5.5 (Gruber et al., 2019)
ec
carbon storage
near-surface
temperature mean on all
. . global see Sect. 3.8.2 (Watson et al., 2020)
and salinity time-scales
gradients
Land sink (SLAND; section 2.5)
strength of CO2  multi-decadal
. global see Sect. 2.5 (Wenzel et al., 2016; Walker et al., 2021)
fertilisation trend
response to
variability in
temperature global; in
. annual to ] (Cox et al., 2013; Jung et al., 2017; Humphrey
and rainfall particular see Sect. 2.5
- decadal . etal., 2018; 2021)
nutrient tropics
limitation and
supply
global in
tree mortality annual particular see Sect. 2.5 (Hubau et al., 2021; Brienen et al., 2020)
tropics
response to .
annual global see Sect. 2.5 (Mercado et al., 2009; O'Sullivan et al., 2021)

diffuse radiation

a As result of interactions between land-use and climate

b The uncertainties in GATM have been estimated as +0.2 GtC yr-1, although the conversion of the growth rate into a
global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that have

not yet been quantified.
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13 Figures and Captions
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Figure 1. Surface average atmospheric CO, concentration (ppm). Since 1980, monthly data
are from NOAA/ESRL (Dlugokencky and Tans, 2022) and are based on an average of direct
atmospheric CO, measurements from multiple stations in the marine boundary layer
(Masarie and Tans, 1995). The 1958-1979 monthly data are from the Scripps Institution of
Oceanography, based on an average of direct atmospheric CO, measurements from the
Mauna Loa and South Pole stations (Keeling et al., 1976). To account for the difference of
mean CO; and seasonality between the NOAA/ESRL and the Scripps station networks used
here, the Scripps surface average (from two stations) was de-seasonalised and adjusted to
match the NOAA/ESRL surface average (from multiple stations) by adding the mean

difference of 0.667 ppm, calculated here from overlapping data during 1980-2012.
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The global carbon cycle

Atmospheric CO,
+5.1

8/1').GTC 28+04

9.5+£05

Vegetation
450 GtC

Dissolved
)Y . A
Gas reserves A ¥ inorganic carbon

7 G,
115GtC & 37,000 GtC
ivers Organic carbon Marine
Permafrost
o 1400 GIG andllakes s L] 700 GtC . biota

1400 GtC i
Oil reserves 17%8”(;0 Coasts @ 3 GIC
230GtC 10-45 GtC Surface
sediments
1750 GtC

Coal reserves
560 GtC Budgetimbalance -0.3

Anthropogenic fluxes 2011-2020 average GtC per year

T Fossil CO, E_ Land-use change E, + Atmospheric increase G,,, Carbon cycling GtC per year

Land uptake S ,,, ¢ Ocean uptake S,y BudgetImbalance B, Stocks GtC

13.2 Figure 2. Schematic representation of the overall perturbation of the global carbon cycle
caused by anthropogenic activities, averaged globally for the decade 2011-2020. See
legends for the corresponding arrows and units. The uncertainty in the atmospheric CO;
growth rate is very small (+0.02 GtC yr!) and is neglected for the figure. The
anthropogenic perturbation occurs on top of an active carbon cycle, with fluxes and stocks
represented in the background and taken from Canadell et al. (2021) for all numbers,
except for the carbon stocks in coasts which is from a literature review of coastal marine

sediments (Price and Warren, 2016).
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b Cumulative Carbon Emissions (+ve) and their Partitioning (-ve) since 1850

a Annual Carbon Emissions (+ve) and their Partitioning (-ve)
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13.4 Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a
function of time, for fossil CO, emissions (Eros, including a small sink from cement
carbonation; grey) and emissions from land-use change (ELuc; brown), as well as their
partitioning among the atmosphere (Garm; cyan), ocean (Socean; blue), and land (Sianp;
green). Panel (a) shows annual estimates of each flux and panel (b) the cumulative flux (the
sum of all prior annual fluxes) since the year 1850. The partitioning is based on nearly
independent estimates from observations (for Garm) and from process model ensembles
constrained by data (for Socean and Sianp) and does not exactly add up to the sum of the
emissions, resulting in a budget imbalance (Blm) which is represented by the difference
between the bottom red line (mirroring total emissions) and the sum of carbon fluxes in the
ocean, land, and atmosphere reservoirs. All data are in GtC yr'! (panel a) and GtC (panel b).
The Eros estimates are primarily from (Gilfillan and Marland, 2021), with uncertainty of
about £5% (+10). The ELuc estimates are from three bookkeeping models (Table 4) with
uncertainties of about 0.7 GtC yr’. The Gatm estimates prior to 1959 are from Joos and
Spahni (2008) with uncertainties equivalent to about +0.1-0.15 GtC yr*and from
Dlugokencky and Tans (2022) since 1959 with uncertainties of about +-0.07 GtC yr during
1959-1979 and +0.02 GtC yr! since 1980. The Socean estimate is the average from Khatiwala
et al. (2013) and DeVries (2014) with uncertainty of about +30% prior to 1959, and the
average of an ensemble of models and an ensemble of fCO, data products (Table 4) with
uncertainties of about 0.4 GtC yrsince 1959. The Sianp estimate is the average of an
ensemble of models (Table 4) with uncertainties of about +1 GtC yr'. See the text for more

details of each component and their uncertainties.
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13.5 Figure 4. Components of the global carbon budget and their uncertainties as a function of
time, presented individually for (a) fossil CO, emissions (Eros), (b) growth rate in atmospheric
CO; concentration (Gatm), (c) emissions from land-use change (ELuc), (d) the land CO; sink
(Stanp), (e) the ocean CO; sink (Socean), (f) the budget imbalance that is not accounted for by
the other terms. Positive values of Siano and Socean represent a flux from the atmosphere to
land or the ocean. All data are in GtC yr'* with the uncertainty bounds representing +1
standard deviation in shaded colour. Data sources are as in Fig. 3. The red dots indicate our
projections for the year 2021 and the red error bars the uncertainty in the projections (see

methods).
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13.6

CO, Emissions (GtC yr‘1)

CO, Emissions (GtC yr‘1)

Figure 5. Fossil CO, emissions for (a) the globe, including an uncertainty of £ 5% (grey
shading) and a projection through the year 2021 (red dot and uncertainty range), (b)
territorial (solid lines) and consumption (dashed lines) emissions for the top three country
emitters (USA, China, India) and for the European Union (EU27), (c) global emissions by fuel
type, including coal, oil, gas, and cement, and cement minus cement carbonation (dashed),
and (d) per-capita emissions the world and for the large emitters as in panel (b). Territorial
emissions are primarily from Gilfillan and Marland (2021) except national data for the USA
and EU27 for 1990-2018, which are reported by the countries to the UNFCCC as detailed in

the text; consumption-based emissions are updated from Peters et al. (2011b). See Section
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2.1 and Appendix C.1 for details of the calculations and data sources.
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13.8 Figure 6. The 2011-2020 decadal mean components of the global carbon budget, presented
for (a) fossil CO2 emissions (Eros), (b) land-use change emissions (ELuc), (c) the ocean CO; sink
(Socean), and (d) the land CO; sink (Sianp). Positive values for Eros and ELuc represent a flux to
the atmosphere, whereas positive values of Socean and Sianp represent a flux from the
atmosphere to the ocean or the land. In all panels, yellow/red (green/blue) colours
represent a flux from (into) the land/ocean to (from) the atmosphere. All units are in kgC m
yr'l. Note the different scales in each panel. Eros data shown is from GCP-GridFEDv2021.2.
ELuc data shown is only from BLUE as the updated H&N2017 and OSCAR do not resolve
gridded fluxes. Socean data shown is the average of GOBMs and data-products means, using
GOBMs simulation A, no adjustment for bias and drift applied to the gridded fields (see
Sections 2.4). Sianp data shown is the average of DGVMs for simulation S2 (see Sections

2.5).
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Figure 7. CO; exchanges between the atmosphere and the terrestrial biosphere as used in
the global carbon budget (black with 10 uncertainty in grey shading in all panels). (a) CO2
emissions from land-use change (E.uc) with estimates from the three bookkeeping models
(yellow lines) and DGVMs models (green) shown individually, with DGVMs ensemble means
(dark green). The dashed line identifies the pre-satellite period before the inclusion of
peatland burning. (b) CO; gross sinks (positive, from regrowth after agricultural
abandonment and wood harvesting) and gross sources (negative, from decaying material
left dead on site, products after clearing of natural vegetation for agricultural purposes,
wood harvesting, and for BLUE, degradation from primary to secondary land through usage
of natural vegetation as rangeland, and also from emissions from peat drainage and peat
burning) from the three bookkeeping models (yellow lines). The sum of the gross sinks and

sources is Eiyc shown in panel(a). (c) Land CO3 sink (Sianp) with individual DGVMs estimates
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(green). (d) Total atmosphere-land CO; fluxes (Siano — Evuc), with individual DGVMs (green)

and their multi-model mean (dark green).
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13.11Figure 8. The partitioning of total anthropogenic CO; emissions (Eros + ELuc) across (a) the
atmosphere (airborne fraction), (b) land (land-borne fraction), and (c) ocean (ocean-borne
fraction). Black lines represent the central estimate, and the coloured shading represents
the uncertainty. The grey dashed lines represent the long-term average of the airborne

(44%), land-borne (28%) and ocean-borne (24%) fractions during 1959-2020.
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13.13 Figure 9. Comparison of the anthropogenic atmosphere-ocean CO; flux showing the budget
values of Socean (black; with the uncertainty in grey shading), individual ocean models (teal),
and the ocean fCO-based data products (cyan; with Watson et al. (2020) in dashed line as
not used for ensemble mean). The fCO,-based data products were adjusted for the pre-
industrial ocean source of CO; from river input to the ocean, by subtracting a source of 0.61
GtC yr! to make them comparable to Socean (see Section 2.4). Bar-plot in the lower right
illustrates the number of fCO, observations in the SOCAT v2021 database (Bakker et al.,
2021). Grey bars indicate the number of data points in SOCAT v2020, and coloured bars the

newly added observations in v2021.
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13.14 Figure 10. Attribution of the atmosphere-ocean (Socean) and atmosphere-land (Sianp) CO2
fluxes to (a) increasing atmospheric CO, concentrations and (b) changes in climate, averaged
over the previous decade 2011-2020. All data shown is from the processed-based GOBMs
and DGVMs. The sum of ocean CO; and climate effects will not equal the ocean sink shown
in Figure 6 which includes the fCO,-based data products. See Appendix C.3.2 and C.4.1 for

attribution methodology. Units are in kgC m? yr! (note the non-linear colour scale).
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13.15Figure 11. The 2011-2020 decadal mean net atmosphere-ocean and atmosphere-land fluxes
derived from the ocean models and fCO2 products (y-axis, right and left pointing blue
triangles respectively), and from the DGVMs (x-axis, green symbols), and the same fluxes
estimated from the six inversions (purple symbols on secondary x- and y-axis). The grey
central point is the mean (£10) of Socean and (Siano — Eruc) as assessed in this budget. The
shaded distributions show the density of the ensemble of individual estimates. The grey
diagonal band represents the fossil fuel emissions minus the atmospheric growth rate from

this budget (Eros— Gatm). Note that positive values are CO; sinks.
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Figure 12. CO; fluxes between the atmosphere and the Earth’s surface separated between
land and oceans, globally and in three latitude bands. The ocean flux is Socean and the land
flux is the net atmosphere-land fluxes from the DGVMs. The latitude bands are (top row)
global, (2" row) north (>30°N), (3™ row) tropics (30°S-30°N), and (bottom row) south
(<30°S), and over ocean (left column), land (middle column), and total (right column).
Estimates are shown for: process-based models (DGVMs for land, GOBMs for oceans);
inversion models (land and ocean); and fCO,-based data products (ocean only). Positive

values indicate a flux from the atmosphere to the land or the ocean. Mean estimates from
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the combination of the process models for the land and oceans are shown (black line) with
+1 standard deviation (10) of the model ensemble (grey shading). For the total uncertainty
in the process-based estimate of the total sink, uncertainties are summed in quadrature.
Mean estimates from the atmospheric inversions are shown (purple lines) with their full
spread (purple shading). Mean estimates from the fCO,-based data products are shown for
the ocean domain (light blue lines) with their +1o spread (light blue shading). The global
Socean (upper left) and the sum of Socean in all three regions represents the anthropogenic
atmosphere-to-ocean flux based on the assumption that the preindustrial ocean sink was 0
GtC yr! when riverine fluxes are not considered. This assumption does not hold at the
regional level, where preindustrial fluxes can be significantly different from zero. Hence, the
regional panels for Socean represent a combination of natural and anthropogenic fluxes. Bias-
correction and area-weighting were only applied to global Socean; hence the sum of the

regions is slightly different from the global estimate (<0.06 GtC yr).
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13.17 Figure 13. Cumulative changes over the 1850-2020 period (left) and average fluxes
over the 2011-2020 period (right) for the anthropogenic perturbation of the global carbon
cycle. See the caption of Figure 3 for key information and the methods in text for full

details.
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13.18Figure 14. Kaya decomposition of the main drivers of fossil CO, emissions, considering
population, GDP per person, Energy per GDP, and CO, emissions per energy, for China (top
left), USA (top right), EU27 (middle left), India (middle right), Rest of the World (bottom left),
and World (bottom right). Black dots are the annual fossil CO, emissions growth rate,
coloured bars are the contributions from the different drivers. A general trend is that
population and GDP growth put upward pressure on emissions, while energy per GDP and
more recently CO, emissions per energy put downward pressure on emissions. The changes

during 2020 led to a stark contrast to previous years, with different drivers in each region.
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14 Appendix A. Supplementary Tables

activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study.

Table Al. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4
for model references. All models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation

Bookkeeping

DGVMs
Models
CA ISB
LPX OR
BLE[CLA| CL A- | JSB | JUL [ LPJ- SD
OSCA DLE ISA - | OC | CHI VISI| YIB
H&N | BLUE - | SSI |M5. IBIS CTR| AC [ ES- [ GU | LPJ GV
R M M Ber [ Nv2|DEE T S
PO| C| O IP(h| H | ES | ESS M
n v3
P )
Processes relevant for ELUC
Wood harvest and forest no
. yes | yes | yes |yes| no |yes|yes|yes|yes| no|[yes| no |yes]|yes yes [ yes [ no [ yes | no
degradation (a) (d)
Shifting cultivation / Subgrid no no
" yes yes| no [yes| no | no | no | no|yes| no |yes|yes no [ no | no [yes| no
scale transitions (b) yes (d)
yes | yes yes | yes yes
Cropland harvest (removed, R, yes |yes|yes|yes yes yes | yes | yes | yes yes | yes | yse | yes
. (R) (R) yes yes | (R+| (R+ (R+
or added to litter, L) (R) | (R)| (L) | (R) (R) (R) [ (R) | (L) | (R) (R) | (R) [ (R) ] (L)
(z) | (2 L (L L)
Peat fires yes | yes ves no|no|fyes|{no|[nofno|fnofnofnofnofno|no|no|no|no|nolno
) yes | yes | yes
fire as a management tool @) @) () no|[nofnofnof{nofnofnofnofnofnofno|no|no|no|no|nolno
z z j
. yes | yes | yes yes
N fertilisation K no | no |yes|yes| no [yes| no | no yes | no | yes|yes|yes| no | no | no
(z) | (2 (i) (k)
. yes | yes | yes yes yes
tillage i no no|no|nofnofno|no|nojfyes|no|nofno no | no | no
(z) | (2 (i) (g) (g)
N yes | yes | yes
irrigation @) @) () no | no [yes|yes| no|yes| no|no|no|yes|[no|no|no|no|no|no|no
z z
. yes | yes | yes
wetland drainage @) @) (0 no|no|fnofnofnofyes|nofno|[nofnofno|no|no|no|no|nolno
z z j
. yes | yes | yes
erosion i no|no|nofyes{nofno|fnofno|[nofnofno|no|no|no|no|yes|no
(z) | (2 (i)
peat drainage yes | yes ves no|[no|fnofnofnofnofnofnofnofnofno|no|no|no|no|no|no
Grazing and mowing Harvest yes yes
. yes yes yes yes yes | yes
(removed, r, or added to litter,| (r) yes no [ no| no| no no no no | (r+l|{ no [ no | no | no
(r) () (r) (1 (1 (r ]
) (z) (r) )
Processes also relevant for SLAND (in addition to CO2 fertilisation and climate)
Fire simulation and/or
X N.A. [ N.A. | N.AA. | no [yes|yes| no [yes| no |yes|yes|yes|yes|yes|yes| no| no|yes|yes| no
suppression
Carbon-nitrogen interactions, no no yes no
. X . N.A. [ N.A. | N.A. | yes yes | yes | no | yes yes | yes [ yes | no | yes | yes | yes no
including N deposition (f) (e) (c) (f)
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Table A2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of
SOCEAN. See Table 4 for model references.

MICOM-
NEMO- NEMO- NEMO3.6- MOM6-
PlankTOM1  PISCES HAMOCC  MPIOM- ~ FESOM-21- o\ c0pq . COBALT CESM-ETHZ
2 (IPSL) (NorESM1-  HAMOCC6 REcoM2 gas (CNRM) (Princeton)
0OCv1.2)
SPIN-UP procedure
Initialisation of GLODAPv1 GLODAPv2 GLODAP v1 initialization GLODAPv2 GLODAPv2 GLODAPv2 GLODAPv2
carbon chemistry  corrected for (preindustrial from alkalinity and for Alkalinity preindustrial
anthropogeni DIC) previous preindustrial and DIC.
¢ carbon model DIC DICis
from Sabine simulations corrected to
et al. (2004) 1959 level
for
simulation A
and C and
corrected to
pre-industrial
level for
simulation B
using
Khatiwala et
al. (2009,
2013)
Preindustrial spin- spin-up spin-up 1000 year yes, ~2000 50 years long spin-up Other spinup 1655-
up prior to 1850? 1750-1947  starting in spin up years (> 1000 biogeochemi 1849
If yes, how long? 1836 with 3 years) cal tracers
loops of are initialized
JRA55 from a
GFDL-
ESM2M
spin-up (>
1000 years)
atmospheric looping JRA55 CORE-I spinup with  JRA55-do JRA55-do GFDL- COREv2
forcing for pre- NCEP year (normal omip v.1.5.0 ESM2M forcing until
industrial spin-up 1990 year) forcing climatology repeated internal 1835, three
to reach year 1961 forcing cycles of
steady state conditions
with the from 1949-
rivers 2009. from
1835-1850:
JRA forcing
atmospheric 1750-1947: 1836-1958 : CORE-I NCEP 6 JRA55-do-  JRA55-do JRA55-do-  JRA55
forcing for looping looping full  (normal hourly cyclic v1.5.0 cycling year v1.5repeat version 1.3,
historical spin-up NCEP year JRA55 year) forcing; forcing (10  repeated 1958 year 1959 repeat cycle
1850-1958 for 1990; 1948- reanalysis from 1948 years year 1961 (71 years) between
simulation A 2020: NCEP onwards starting from 1958-2018.
NCEP-R1 1948) with
with CORE-Il co2 at 278
corrections  ppm and
rivers
atmospheric CO2 provided by xCO2 as xCO2 as provided by xCO2 as xCO2 as xCO2 at year xCO2 as
for historical spin- the GCP; provided by provided by the GCB provided by provided by 1959 level provided by
up 1850-1958 for converted to the GCB, the GCB, the GCB, the GCB, (315 ppm), the GCB
simulation A pCO2 global mean, converted to converted to converted to converted to (new version
temperature annual pCO2 with pCO2 with  pCO2 with  pCO2 with  2021),
formulation  resolution, sea level sea-level constant sea-level converted to
(Sarmiento  converted to pressure and pressure and sea-level pressure and pCO2 with
etal., 1992), pCO2 with water vapor water vapour pressure and water vapour atmospheric
monthly sea-level correction pressure, water vapour pressure, pressure,

147



resolution pressure and global mean, pressure, global mean, and locally
water vapour monthly global mean, yearly determined
pressure resolution yearly resolution water vapour
resolution pressure
from SST
and SSS
(100%
saturation)
atmospheric 1750-2020: 1836-1958: CORE-I NCEP 1957 JRA55-do- JRA55-do JRA55-do-  normal year
forcing for control looping looping full  (normal fixed forcing, v1.5.0 repeat cycling year v1.5repeat forcing
spin-up 1850- NCEP 1990 JRA55 year) forcing co2=278 and year 1961 1958 year 1959 created from
1958 for reanalysis rivers (71 years) JRA-55
simulation B version 1.3,
NYF =
climatology
with
anomalies
from the year
2001
atmospheric CO2 constant xCO2 of xCO2 of 278 278, no xCO2 of xCO2 of xCO2 of xCO2 as
for control spin-up 278ppm; 286.46ppm, ppm, conversion, 278ppm, 286.46ppm, 278ppm, provided by
1850-1958 for converted to converted to converted to assuming converted to converted to converted to the GCB for
simulation B pCO2 pCO2 with  pCO2 with  constant pCO2 with  pCO2 with  pCO2 with 1850,
temperature constant seal level standard sea sea-level constant sea-level converted to
formulation  sea-level pressure and level pressure and sea-level pressure and pCO2 with
(Sarmiento  pressure and water vapor pressure water vapour pressure and water vapour atmospheric
et al., 1992), water vapour correction pressure water vapour pressure pressure,
monthly pressure pressure and locally
resolution determined
water vapour
pressure
from SST
and SSS
(100%
saturation)
simulation A
Atmospheric NCEP JRA55-v1.4 NCEP-R1 till1948: JRA55-do-  JRA55-do JRA55-do-  JRA-55
forcing for then 1.5 for  with CORE-Il continue v1.5.0 v1.5.0 1959- version 1.3
simulation A 2020. corrections  from 2019 and
A_spinup JRA55-do-
with cyclic v1.5.0.1b for
NCEP 2020
forcing
(1948+10)
and
increasing
COo2 =>
GCBA-1777-
1948
-1948-2020 :
with transient
NCEP
forcing and
transient
monthly CO2
atmospheric CO2 provided by xCO2 as xCO2 as xCO2 as xCO2 as xCO2 as xCO2 as
for simulation A the GCP; provided by provided by provided by provided by provided by provided by
converted to the GCB, the GCB, the GCB, the GCB, the GCB, the GCB
pCO2 global mean, converted to converted to converted to converted to (new version
temperature annual pCO2 with pCO2 with  pCO2 with  pCO2 with  2021),
formulation  resolution, sea level sea-level constant sea-level converted to
(Sarmiento  converted to pressure and pressure and sea-level pressure and pCO2 with
etal., 1992), pCO2 with water vapor water vapour pressure and water vapour atmospheric
monthly sea-level correction pressure, water vapour pressure, pressure,
resolution pressure and global mean, pressure, global mean, and locally
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water vapour monthly global mean, yearly determined

pressure resolution yearly resolution water vapour
resolution pressure
from SST
and SSS
(100%
saturation)
simulation B
Atmospheric NCEP 1990 N/A CORE-I 1948-2020: JRAS55-do-  JRAS5-do JRA55-do-  normal year
forcing for (normal continue with v1.5.0 repeat cycling year v1.5.0 repeat forcing
simulation B year) forcing B_spinup year 1961 1958 year 1959 created from
with fixed JRA-55
NCEP version 1.3,
forcing 1957, NYF =
€c02=278 and climatology
rivers with
anomalies
from the year
2001
atmospheric CO2 constant N/A xCO2 of 278 xCO2 of xCO2 of xCO2 of xCO2 as
for simulation B 278ppm; ppm, 278ppm, 286.46ppm, 278ppm, provided by
converted to converted to converted to converted to converted to the GCB for
pCO2 pCO2 with pCO2with pCO2 with  pCO2 with 1850,
temperature sea level sea-level constant sea-level converted to
formulation pressure and pressure and sea-level pressure and pCO2 with
(Sarmiento water vapor water vapour pressure and water vapour atmospheric
et al., 1992), correction pressure water vapour pressure pressure,
monthly pressure and locally
resolution determined
water vapour
pressure
from SST
and SSS
(100%
saturation)
model specifics
Physical ocean NEMOv3.6- NEMOv3.6- MICOM MPIOM FESOM-2.1 NEMOv3.6- MOM®6-SIS2 CESMv1.3
model ORCA2 eORCA1L75 (NorESM1- GELATOvV6- (ocean
OCv1.2) eORCA1L75 model based
on POP2)
Biogeochemistry PlankTOM12 PISCESv2 HAMOCC HAMOCC6 REcoM-2-M PISCESv2- COBALTv2 BEC
model (NorESM1- gas (modified &
0OCv1.2) extended)
Horizontal 20lon,0.3to 1°lon,0.3to 1°lon, 0.17 1.5¢ unstructured 1°lon, 0.3to 0.5°lon, 0.25 Lon: 1.125°,
resolution 1.50 lat 1° lat to 0.25 lat multi- 1° lat to 0.5° lat Lat varying
(nominally resolution from 0.53° in
1°) mesh. the
CORE- extratropics
mesh, with to 0.27° near
20-120 km the equator
resolution.
Highest
resolution
north of 50N,
intermediate
in the
equatorial
belt and
Southern
Ocean,
lowest in the
subtropical
gyres
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Vertical resolution

Total ocean area
on native grid
(km2)

Ocean area on
native grid (km2) -
NORTH

Ocean area on
native grid (km2) -
TROPICS

Ocean area on
native grid (km2) -
SOUTH
gas-exchange
parameterization

time-step
output frequency

CO2 chemistry
routines

river carbon input
(PgClyr)

31 levels

3.6080E+08

6.2646E+07

1.1051E+08

1.8766E+08

Quadratic
exchange
formulation
(function of T
+0.3*Ur2)*
(Sc/660)"-
0.5);
Wanninkhof
(1992,
Equation 8);
Sweeney et
al. (2007)

96 mins
Monthly

Following
Broecker et
al. (1982)

60.24
Tmollyr;
0.723 PgClyr

75 levels, 1m 51 isopycnic
at the layers + 2
surface layers
representing
a bulk mixed
layer
3.6270E+08 3.6006E+08
6.2049E+07
1.9037E+08
1.0765E+08
see Orr et al. see Orr et al.
(2017): kw  (2017): kw
parameterize parameterize
d from d from
Wanninkhof Wanninkhof
(1992), with  (1992), with
kw = a* kw = a*
(Sc/660)"- (Sc/660)"-
0.5) *u2*(1-  0.5) *u2*(1-
f_ice) witha f_ice) with
from a=0.337
Wanninkhof following the
(2014) OCMIP2
protocols
45 min 3200 sec
monthly monthly/daily
mocsy Following
Dickson et
al. (2007)
0.61 PgCy-1 0

burial/net flux into  0.723 PgCl/yr 0.59 GtC y-1 around 0.54

the sediment
(PgClyr)

40 levels, 46 levels, 10
layer m spacing in
thickness the top 100
increase with m

depth

3.6598E+08 3.6475E+08
6.4440E+07

1.9248E+08

1.0986E+08

Gas transfer see Orr et al.
velocity (2017): kw
formulation  parameterize
and d from
parameter Wanninkhof
setup of (1992), with
Wanninkhof kw = a*
(2014), (Sc/660)"-
including 0.5) *u2*(1-
updated f_ice) with a
Schmidt from
number Wanninkhof
parameteriza (2014)

tions for CO2

to comply

with OMIP

protocol (Orr

etal., 2017)

60 mins 45 min
monthly monthly

as in llyina et mocsy

al. (2013)

adapted to

comply with

OMIP

protocol (Orr

et al., 2017).

0.77 PgClyr 0

around 0.44 0
PgClyr
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75 levels, 1m
at surface

3.6270E+14

6.3971E+13

1.9025E+14

1.0848E+14

see Orr et al.
(2017): kw
parameterize
d from
Wanninkhof
(1992), with
kw = a*
(Sc/660)"-
0.5) *u2*(1-
f_ice) with a
from
Wanninkhof
(2014)

15min
monthly

mocsy

~0.611 PgC
y-1

~0.656 GtC
y-1

75 levels 60 levels (z-
hybrid coordinates)
coordinates,

2mat

surface

3.6110E+08 3.5926E+08

see Orr et al. Gas
(2017): kw  exchange is
parameterize parameterize
d from d using the
Wanninkhof Wanninkhof
(1992), with  (1992)
kw = a* quadratic
(Sc/660)"- windspeed
0.5) *u2*(1- dependency
f_ice) with a formulation,
from but with the
Wanninkhof  coefficient
(2014) scaled down
to reflect the
recent 14C
inventories.
Concretely,
we used a
coefficent a
of 0:31 cm
hr-1 s2 m-2
to read kw =
0:31 ws”2
(1-fice)
(Sc=660){-
1/2}
30 min 3757 sec
monthly monthly
mocsy OCMIP2 (Orr
etal., 2017)

~0.15 PgC y- 0.33 Pg C yr-
1 1

~0.18 PgC y- 0.21 Pg C yr-
1 1



Table A3: Description of ocean data-products used for assessment of SOCEAN. See Table 4 for references.

Jena-MLS MPI-SOMFFN | CMEMS-LSCE- CSIR-ML6 Watson et al NIES-NN JMA-MLR | OS-ETHZ-GRaCER
FFNN
Method Spatio- 2-step neural Anensemble  Anensemble Derived from A feed forward Fields of total OceanSODA-
temporal network of neural average of six the neural network alkalinity (TA) ETHZ's
interpolation method where network machine SOCAT(v2021) model was were Geospatial
(update of inafirststep  models trained learning pCO2 used to estimated by  Random
Rodenbeck  the global on 100 estimates of database, but  reconstruct using a Cluster
etal., 2013, oceanis subsampled surface ocean corrected to monthly global multiple linear Ensemble
version clustered into  datasets from pCO2 using the the subskin surface ocean regressions Regression is a
oc_v2021). 16 the Surface approach temperature  CO2 (MLR) method two-step
Specifically, biogeochemica Ocean CO2 described in of the ocean as concentrations based on cluster-
the sea-air | provinces Atlas v2021 Gregor et al. measured by  1x1 degree GLODAPv2.202 regression
CO2 fluxes (one stand (SOCATv2021, (2019) with satellite, using meshes and 1 and satellite approach,
and the alone province Bakker et al. the updated the estimate air-  observation where multiple
pCO2 field for the Arctic  2021) . Like the product using methodology sea CO2 fluxes. data. clustering
are Ocean - see original data, SOCATv2021 described by The target TA = f(SSDH, instances with
numerically Landschiitzer subsamples (Bakker et al., Goddijn- variable is the SSS) slight
linked to et al 2020) are distributed 2016). All Murphy etal.  per cruise SOCATv2021  variations are
each other using a self- after ensemble (2015). A weighted fCO2 fCO2 data run to create
and to the organizing map interpolation  members use a correctionto  mean of were an ensemble
spatio- (SOM). In a on 1x1 grid cluster- the flux SOCAT 2021. convertedto  of estimates
temporal second step, cells along ship regression calculationis  Feature total dissolved (n_membersd=
field of the non-linear tracks. Sea approach. Two also applied variables inorganic 16). We use K-
ocean- relationship surface different for the cool include sea carbon (DIC) means
internal between salinity, cluster and salty surface concentrations clustering
carbon available pCO2 temperature, configurations surface skin.In temperature in combination (n_clusters=21
sources/sinks measurements sea surface are used: (1) other respects  (SST), salinity, with the TA, ) for the
through from the height, mixed based on K- the product chlorophyll-a, and then fields clustering step
process SOCAT layer depth, means uses mixed layer of DIC were and a
parametrizati database atmospheric clustering; (2) interpolation depth, and the estimated by  combination of
ons, and the (Bakker et al CO2 mole Fay and of the data monthly using a MLR Gradient
ocean- 2016) and fraction, McKinley using the two  nomaly of SST. method based boosted trees
internal environmental chlorophyll-a, (2014)'s CO2 step neural See Zeng etal. ontheDICand (n_members=8
sources/sink predictor data pCO2 biomes. Three network based (2014) satellite ) and Feed-
field is then  (SST, SSS, MLD, climatology, regression on MPI- observation forward
fit to the CHL-a, latitude and algorithms are  SOMFFN :in data. neural-
SOCATv2021 atmospheric longitude are  used: (1) the first step DIC = f(SSDH,  networks
pCO2 data CO2 - used as gradient the ocean is SST, SSS, (n_members=8
(Bakker et references see predictors. The boosted divided into a log(Chl), ) to estimate
al., 2021). Landschitzer  models are decision trees; monthly log(MLD), SOCAT v2021
The fit et al 2016) are used to (2) feed- climatology of time) fCO2.
includes a established reconstruct forward neural 16 Clustering is
multi-linear  using a feed-  sea surface network; (3) biogeochemica performed on
regression forward neural pCO2 and support vector | provinces the following
against network (FFN) convert to air- regression. The using a SOM, variables:
environment for each sea CO2 fluxes product of the In the second SOCOM_pC02
al driversto  province (see the cluster step a feed- _climatology,
bridge data  separately. The proposed configurations forward neural SST_clim,
gaps, and established ensemble- and the network MLD_clim,
interannually relationship is based regression establishes CHL_clim.
explicit then used to approach and  algorithms non-linear Regression is
corrections fill the existing analysis in results in an relationships performed on
to represent data gaps (see Chau et al. ensemble with between pCO2 the following
the data Landschitzer 2020, 2021). six members., and SST, SSS, variables:
signals more etal. 2013, hence the mixed layer xCO2atm, SST,
completely. 2016). CSIR-ML6. depth(MLD) SST_anomaly,
and SSS, CHL, MLD,
atmospheric ul0_wind,
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v10_wind, sea-




Gas-exchange
parameterizati
on

Wind product

Spatial
resolution

Quadratic
exchange
formulation
(k*un2*
(Sc/660)7-
0.5)
(Wanninkhof
, 1992) with
the transfer
coefficient k
scaled to
match a
global mean
transfer rate
of 16.5
cm/hr by
Naegler
(2009)

JMAS55-do
reanalysis

2.5 degrees
longitude * 2
degrees
latitude

Quadratic
exchange
formulation
(k*un2*
(Sc/660)7-0.5)
(Wanninkhof,
1992) with the
transfer
coefficient k
scaled to
match a global
mean transfer
rate of 16.5
cm/hr
(calculated
myself over
the full period
1982-2020)

ERAS

1x1 degree

Quadratic
exchange
formulation
(k*un2*
(Sc/660)1-0.5)
(Wanninkhof.,
2014) with the
transfer
coefficient k
scaled to
match a global
mean transfer
rate of 16.5
cm/hr
(Naegler,
2009).

ERAS

1x1 degree

Quadratic
formulation kw
=a*u1012 *
(Sc/660)"0.5
(). We use
scaled kw for
ERAS
reanalysis
wind data,
which is scaled
globally to 16.5
cm/hr (after
Naegler 2009)
like in Fay and
Gregor et al.
(2021)
https://doi.org
/10.5194/essd-
2021-16

ERAS

1x1
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of the 16
provinces.
Further
description in
Watson et al.
(2020).

Nightingale et
al. (2000)
formulation :
K=((Sc/600)"-
0.5)*(0.333*U
+0.222*U72)

CCMP wind
product, 0.25 x
0.25 degrees x
6-hourly, from
which we
calculate mean
and mean
square winds
over1x1
degree and 1
month
intervals.
CCMP product
does not cover
years 1985-
1987, for
which we use a
monthly
climatology
calculated as
the means of
1988-1991.

1x 1 degree

Kw=0.251*Wn Quadratic
d*Wnd/sqrt(Sc exchange

/660.0)
(Wanninkhof,
2014)

ERAS

1x1 degree

formulation
(k*un2*
(Sc/660)7-0.5)
(Wanninkhof.,
2014) with the
transfer
coefficient k
scaled to
match a global
mean transfer
rate of 16.5
cm/hr
(Naegler,
2009) under
fitted to the
JRAS5 wind
field.

JRA55

1x1 degree

ice changes,
SSH (note that
the latter two
variables are
an update
from Gregor
and Gruber,
2021).

Quadratic
formulation of
bulk air-sea
CO2 flux:

kw =a * U10”2
* (Sc/660)"0.5
We use
individually
scaled kw's for
JRAS5, ERAS,
and NCEP-R1,
which are all
scaled globally
to 16.5 cm/hr
(after Naegler,
2009). See Fay
and Gregor et
al. (2021)

JRAS5, ERAS,
NCEP1

1x1 degree



Temporal
resolution

Atmospheric
co2

Total ocean
area on native
grid (km2)

method to
extend product
to full global
ocean
coverage

Ocean area on
native grid
(km2) - NORTH

Ocean area on
native grid
(km2) -
TROPICS

daily

Spatially and
temporally
varying field
based on
atmospheric
CO2 data
from 169
stations
(Jena
CarboScope
atmospheric
inversion
SEXTALL_v20
21)

3.63E+08

monthly

atmospheric
pCO2_wet
calculated
from the
NOAA ESRL
marine
boundary layer
xCO2 and the
NCEP sea level
pressure with
the moisture
correction by
Dickson et al
2007 (details
and references
can be
obtained from
Appendix A3 in
Landschitzer
et al 2013)

3.63E+08

Arctic and
marginal seas
added
following
Landschitzer
et al. (2020).
previously
applied coastal
cut (1degree
off coast) was
dropped

monthly

Spatially and
monthly
varying fields
of atmospheric
pCO2
computed
from CO2 mole
fraction (
Chevallier,
2013; CO2
atmospheric
inversion from
the Copernicus
Atmosphere
Monitoring
Service ), and
atmospheric
dry-air
pressure which
is derived from
monthly
surface
pressure
(ERA5) and
water vapour
pressure fitted
by Weiss and
Price (1980)

3.46E+08

5.4545E+07

1.8875E+08

monthly

The NOAA's
marine
boundary layer
product for the
mole fraction
of carbon
dioxide (xCO2)
is linearly
interpolated
onto a 1°x1°
grid and
resampled
from weekly to
monthly.
Basically, xCO2
is multiplied by
ERA5 mean sea
level pressure
(MSLP), and a
water vapour
pressure
correction is
applied to
MSLP using the
equation from
Dickson et al.
(2007). This
results in
monthly 1°x 1°
atmospheric
pCOo2.

3.48E+08

5.0528E+07

1.8933E+08
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monthly

Atmospheric
pCO2 (wet)
calculated
from NOAA
marine
boundary layer
XCO02 and
NCEP sea level
pressure, with
pH20
calculated
from Cooper et
al. (1998).
(2019 XCO2
marine
boundary
values were
not available
at submission
so we used
preliminary
values,
estimated
from 2018
values and
increase at
Mauna Loa.)

3.51E+08

5.0700E+07

1.9230E+08

monthly

NOAA
Greenhouse
Gas Marine
Boundary
Layer
Reference.

https://gml.no
aa.gov/ccgg/m

bl/mbl.html

3.28E+08
(3.23E+08 to
3.35E+08,
depending on
ice cover)

monthly

Atmospheric
xCO2 fields of
JMA-GSAM
inversion
model (Maki et
al. 2010;
Nakamura et
al. 2015) were
used. They
were
converted to
pCO2 by using
JRASS sea level
pressure. xCO2
fields in 2020
were not
available at
this stage, and
we use
observation
data of
obspack_co2_
1_NRT_v6.1.1_
2021-05-17 (Di
Sarra et al.
2021) to
estimate the
increase from
2019 to 2020.

3.05E+08
(2.98E+08 to
3.15E+08,
depending on
ice cover)

We used the
same method

as Fay et al.
(2021a)

3.90E+07
(3.75E+07 to
4.09E+07,
depending on
ice cover)

1.74E+08

monthly

NOAA's marine
boundary layer
product for
xCO2 is linearly
interpolated
onto a 1x1
degree grid
and resampled
from weekly to
monthly. xCO2
is multiplied by
ERAS5 mean sea
level pressure,
where the
latter
corrected for
water vapour
pressure using
Dickson et al.
(2007). This
results in
monthly 1x1
degree
pCO2atm.

3.55E+08

Method has
near full
coverage

5.9771E+07

1.8779E+08



Ocean area on
native grid
(km2) - SOUTH

1.0241E+08

1.0767E+08
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1.0868E+08

9.20E+07 1.0705E+08
(8.47E+07 to

1.02E+08,

depending on

ice cover)



Table A4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric
inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial fluxes. Hence they need to be
adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle
before they can be compared with SOCEAN and SLAND from process models. See Table 4 for references.

CarbonTracker Jena CarboScope Copernicus UoE CMS-Flux NISMON-CO2
Europe (CTE) Atmosphere
Monitoring Service
(CAMS)
SEXTocNEET_v20 L
Version number CTE2021 21 v20r2 in-situ v2021.1
Observations
Atmospheric observations  Hourly Flasks and hourly Hourly resolution Hourly ACOS-GOSAT v9 (6)  Hourly resolution
resolution (well- from various (well-mixed resolution retrievals between (well-mixed
mixed institutions conditions) obspack (well-mixed July 2009 and Dec conditions) obspack
conditions) (outliers GLOBALVIEWplus  conditions) 2014 and OCO-2 b10 GLOBALVIEWplus v6.1
obspack removed by 2-  v6.1and obspack (7) retrievals and NRT_v6.1.1 (a)
GLOBALVIEWpIu sigma criterion) NRT_v6.1.1 (a), GLOBALVIEWpI between Jan 2015 to
sv6.1 and WDCGG, RAMCES  usv6.1and Dec 2015. In
NRT_v6.1.1 (a) and ICOS ATC NRT_v6.1.1 (a) addition, surface
flask observations
from remote sites
were also
assimilated from
GLOBALVIEWDplus
v6.1 and NRT_v6.1.1
Period covered 2001-2020 1957-2020 1979-2021 2001-2020 2010-2020 1990-2020
Prior fluxes
Biosphere and fires SIBCASA No prior ORCHIDEE CASA v1.0, yearly repeating VISIT & GFEDv4.1s
biosphere (b) (climatological), climatology CARDAMOM
with 2019-2020 GFEDv4.1s after 2016 & biosphere+fires
climatological, GFED4.0
GFAS fires
Ocean oc_v2020 oc_v2021 CMEMS Copernicus Takahashi MOM6 JMA global ocean
(Rodenbeck et  (Rodenbeck et ocean fluxes climatology mapping (lida et al.,
al., 2014), with  al., 2014) with (Denvil-Sommer et 2015)
updates, For updates al., 2019), with
2020: updates
climatology
based on years
2015-2019
Fossil fuels GCP- GCP- GCP- GCP- GCP-GridFEDv2021.2 GCP-GridFEDv2021.2
GridFEDv2021.1 GridFEDv2021.2 GridFEDv2021.2 GridFEDv2021.2 (Jones et al., 2021b) (Jones et al., 2021b)
(Jones et al., (Jones et al., (Jones et al., 2021b) (Jones et al., (c) (c)
2021b) for 2021b) (c) (c) 2021b) (c)
2000-2018,
GCP-
GridFEDv2021.2
for 2019+2020
(c)
Transport and optimization
Transport model T™M5 ™3 LMDZ v6 GEOS-CHEM GEOS-CHEM NICAM-TM
Weather forcing ECMWEF NCEP ECMWEF MERRA2 MERRA-2 JRAS5
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Horizontal Resolution Global: 3°x2°, Global: 4°x5° Global: 3.75° x Global: 4°x5°  Global: 4° x 5° isocahedral grid:

Europe: 1°x 1°, 1.875° ~225km
North America:
1°x1°
Optimization Ensemble Conjugate Variational Ensemble Variational Variational
Kalman filter gradient (re- Kalman filter
ortho-

normalization)

(d)

(a) (Cox et al., 2021; Di Sarra et al., 2021)
(b) (van der Velde et al., 2014)

(c) GCP-GridFEDv2021.2 (Jones et al., 2021b) is an update through the year 2020 of the GCP-GridFED dataset presented by Jones et al. (2021a).

(d) ocean prior not optimised
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Table A5 Attribution of fCO2 measurements for the year 2020 included in SOCATv2021 (Bakker et al., 2016, 2021)

to inform ocean fCO2-based data products.

) No. of L. ) No. of data
Platform name Regions Principal Investigators Platform type
measurements sets
1 degree North Atlantic, Coastal 8,652 Gutekunst, S. 2 Ship
North Atlantic, Tropical Atlantic, . . .
Allure of the Seas P 19,321 Wanninkhof, R.; Pierrot, D. 8 Ship
Coastal
Atlantic Explorer ~ North Atlantic 15,665 Bates, N. 11 Ship
Atlantic Sail North Atlantic, Coastal 25,082 Steinhoff, T.; Kortzinger, A. 6 Ship
Aurora Australis Southern Ocean 14,316 Tilbrook, B. 1 Ship
Bjarni . ) . L. i
Coastal 3,269 Benoit-Cattin A.; Olafsdattir, S. R. 1 Ship
Saemundsson
. North Pacific, Tropical Pacific, i .
BlueFin 76,505 Alin, S. R.; Feely, R. A. 12 Ship
Coastal
Cap San Lorenzo Tropical Atlantic, Coastal 12,417 Lefévre, N. 2 Ship
Celtic Explorer North Atlantic, Coastal 18,617 Cronin, M. 6 Ship
e North Atlantic, Tropical Atlantic, . .
Colibri 13,402 Lefévre, N. 2 Ship
Coastal
Equinox North Atlantic, Coastal 25,052 Wanninkhof, R.; Pierrot, D. 11 Ship
. Rodriguez, C.; Millero, F. J.; Pierrot, D.; .
F. G. Walton Smith Coastal 10,460 . 6 Ship
Wanninkhof, R.
Finnmaid Coastal 253,894 Rehder, G.; Glockzin, M. 11 Ship
Flora Tropical Pacific 4,099 Wanninkhof, R.; Pierrot, D. 2 Ship
G.O. Sars Arctic, North Atlantic, Coastal 75,833 Skjelvan, I. 7 Ship
GAKOA_149W_60 ) )
N Coastal 68 Cross, J. N.; Monacci, N. M. 3 Mooring
Gulf Challenger Coastal 2,717 Salisbury, J.; Vandemark, D.; Hunt, C. 3 Ship
X - Sweeney, C.; Newberger, T.; i
Healy Arctic, North Pacific, Coastal 16,943 4 Ship
Sutherland, S. C.; Munro, D. R.
Henry B. Bigelow  North Atlantic, Coastal 14,436 Wanninkhof, R.; Pierrot, D. 4 Ship
Heron Island Coastal 768 Tilbrook B. 1 Mooring
James Clark Ross  Southern Ocean 2,000 Kitidis, V. 1 Ship
North Atlantic, Tropical Atlantic, .
James Cook 46,710 Theetaert, H. 1 Ship
Coastal
KC_BUOY Coastal 1,983 Evans, W. 1 Mooring
Sweeney, C.; Newberger, T.; i
Laurence M. Gould Southern Ocean 25,414 4 Ship
Sutherland, S. C.; Munro, D. R.
Maria. S. Merian  Tropical Atlantic, Coastal 35,806 Ritschel, M. 1 Ship
Marion Dufresne  Southern Ocean, Indian 4,709 Lo Monaco, C.; Metzl, N. 1 Ship
Nathaniel B. . o Sweeney, C.; Newberger, T.; .
Southern Ocean, Tropical Pacific 34,357 3 Ship
Palmer Sutherland, S. C.; Munro, D. R.
North Pacific, Tropical Pacific,
New Century 2 Tropical Atlantic, North Atlantic, 27,793 Nakaoka, S.-I. 14 Ship
Coastal
Nuka Arctica North Atlantic, Coastal 26,576 Becker, M.; Olsen, A. 6 Ship
Oscar Dyson Arctic, North Pacific, Coastal 28,196 Alin, S. R.; Feely, R. A. 6 Ship
Quadra Island .
i . Coastal 78,098 Evans, W. 1 Mooring
Field Station
Southern Ocean, Tropical Atlantic, . . .
Ronald H. Brown 51,611 Wanninkhof, R.; Pierrot, D. 6 Ship

North Atlantic, Coastal
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Saildrone1030

Sea Explorer

Sikuliag

Simon Stevin
Soyo Maru
Tangaroa
TAO110W_ON

Tavastland

Thomas G.
Thompson

Trans Carrier
Trans Future 5

Wakataka Maru

North Atlantic, Tropical Atlantic,
Coastal

Southern Ocean, Tropical Atlantic,
North Atlantic, Coastal

Arctic, North Pacific, Coastal

Coastal

Coastal

Southern Ocean, Tropical Pacific
Tropical Pacific

Coastal
Southern Ocean, Tropical Atlantic

Coastal
Southern Ocean, Coastal

North Pacific, Coastal

4,080

89,896

36,278

16,448
46,280
121,135
1,518

4,214

1,317

24,135
16,404

101,327

Skjelvan, I.; Fiedler, B.; Pfeil, B.; Jones,

S.D.
Landschitzer, P.; Tanhua, T.

Sweeney, C.; Newberger, T.;
Sutherland, S. C.; Munro, D. R.

Gkritzalis, T.
Ono, T.
Currie, K. 1.

Sutton, A. J.

Willstrand Wranne, A., Steinhoff, T.

Alin, S. R.; Feely, R. A.
Omar, A. M.
Nakaoka, S.-I.; Nojiri, Y.

Tadokoro, K.; Ono, T.
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10

13

15

Saildrone
Ship
Ship
Ship
Ship
Ship

Mooring
Ship
Ship
Ship
Ship

Ship



Table A6. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration Project
(CGADIP; Cox et al., 2021) that contribute to the evaluation of the atmospheric inversions (Figure B4).

Site [Measurement program name in . . . used in
Specific doi Data providers
code |Obspack 2021
Airborne Aerosol Observatory, Bondville,
L Sweeney, C.; Dlugokencky, E.J.
AAO [Illinois yes
Sweeney, C.; McKain, K.; Karion, A.;
Alaska Coast Guard
ACG Dlugokencky, E.J. ves
Atmospheric Carbon and Transport - Sweeney, C.; Dlugokencky, E.J.; Baier, B;
ACT America Montzka, S.; Davis, K. yes
Alta Floresta Gatti, L.V.; Gloor, E.; Miller, J.B.;
ALF yes
Aircraft Observation of Atmospheric trace . .
ghg_obs@met.kishou.go.jp
AOA |8ases by JIMA ves
BGI Bradgate, lowa Sweeney, C.; Dlugokencky, E.J. ves
BNE Beaver Crossing, Nebraska Sweeney, C.; Dlugokencky, E.J. yes
BRZ Berezorechka, Russia Sasakama, N.; Machida, T. yes
CAR Briggsdale, Colorado Sweeney, C.; Dlugokencky, E.J. yes
Cape May, New Jersey Sweeney, C.; Dlugokencky, E.J.
CMA yes
CONTRAIL (Comprehensive Observation http://dx.doi.org/10.17595/201
( P R p:// 4 / Machida, T.; Matsueda, H.; Sawa, Y. Niwa, Y.
CON Network for TRace gases by AlrLiner) 80208.001 ves
Carbon in Arctic Reservoirs Vulnerability Sweeney, C.; Karion, A.; Miller, J.B.; Miller, C.E.;
CRV Experiment (CARVE) Dlugokencky, E.J. yes
DND Dahlen, North Dakota Sweeney, C.; Dlugokencky, E.J. ves
ESP Estevan Point, British Columbia Sweeney, C.; Dlugokencky, E.J. yes
ETL East Trout Lake, Saskatchewan Sweeney, C.; Dlugokencky, E.J. ves
FWI Fairchild, Wisconsin Sweeney, C.; Dlugokencky, E.J. ves
NASA Goddard Space Flight Center Aircraft
GSFC |Campaign Kawa, S.R.; Abshire, J.B.; Riris, H. yes
HAA Molokai Island, Hawaii Sweeney, C.; Dlugokencky, E.J. ves
HFM  |Harvard University Aircraft Campaign Wofsy, S.C. yes
Homer, lllinois Sweeney, C.; Dlugokencky, E.J.
HIL yes
X https://doi.org/10.3334/CDIAC/ | Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; Hintsa,
HIPPO (HIAPER Pole-to-Pole Observations)
HIP HIPPO_010 E.J.; Moore, F. ves
IAGOS
- In-service Aircraft for a Global Observing Obersteiner, F.; Boenisch., H; Gehrlein, T.; Zahn,
CARIBI | System A.; Schuck, T.
C yes
Sweeney, C.; Dlugokencky, E.J.; Shepson, P.B.;
INFLUX (Indianapolis Flux Experiment) Y & ¥ P
INX Turnbull, J. yes
LEF Park Falls, Wisconsin Sweeney, C.; Dlugokencky, E.J. ves
NHA |Offshore Portsmouth, New Hampshire (Isles Sweeney, C.; Dlugokencky, E.J. yes
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of Shoals)

olL Oglesby, Illinois Sweeney, C.; Dlugokencky, E.J. ves
PFA Poker Flat, Alaska Sweeney, C.; Dlugokencky, E.J. yes
RBA-B Rio Branco Gatti, L.V.; Gloor, E.; Miller, J.B. ves
RTA Rarotonga Sweeney, C.; Dlugokencky, E.J. ves
SCA Charleston, South Carolina Sweeney, C.; Dlugokencky, E.J. yes
SGP Southern Great Plains, Oklahoma Sweeney, C.; Dlugokencky, E.J.; Biraud, S. ves
TAB Tabatinga Gatti, L.V.; Gloor, E.; Miller, J.B. ves
TGC |Offshore Corpus Christi, Texas Sweeney, C.; Dlugokencky, E.J. yes
THD Trinidad Head, California Sweeney, C.; Dlugokencky, E.J. ves
WBI  [West Branch, lowa Sweeney, C.; Dlugokencky, E.J. yes
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Table A7. Main methodological changes in the global carbon budget since first publication. Methodological
changes introduced in one year are kept for the following years unless noted. Empty cells mean there were
no methodological changes introduced that year.

Fossil fuel emissions LUC Reservoirs
L emissions Uncertainty
Publication
& other
year Global Cot'.mtr.y CountrY Atmosphere Ocean Land changes
(territorial) | (consumption)
2006 (a) Splitin
regions
2007 (b) ELUC based 1959-1979 Based on one +10 provided
on FAO-FRA |data from ocean model for all
2005; Mauna Loa; tuned to components
constant data after reproduced
ELUC for 2006 [ 1980 from observed
global 1990s sink
average
2008 (c) Constant
ELUC for 2007
2009 (d) Split Results from Fire-based Based on four [First use of
between an emission ocean models |five DGVMs
Annex B and |independent |anomalies normalised to [to compare
non-Annex B [study used for observations |with budget
discussed 2006-2008 with constant |residual
delta
2010 (e) Projection for | Emissions for ELUC updated
current year [top emitters with FAO-FRA
based on GDP 2010
2011 (f) Split between
Annex B and
non-Annex B
2012 (g) 129 129 countries |ELUC for All years from |Based on 5 Ten DGVMs
countries and regions 1997-2011 global ocean models |available for
from 1959 from 1990- includes average normalised to [ SLAND; First
2010 based on |interannual observations |use of four
GTAPS8.0 anomalies with ratio models to
from fire- compare with
based ELUC
emissions
2013 (h) 250 134 countries |ELUC for 2012 Based on six [Coordinated |Confidence
countriesb and regions estimated models DGVM levels;
1990-2011 from 2001- compared experiments |cumulative
based on 2010 average with two for SLAND emissions;
GTAP8.1, with data-products |and ELUC budget from
detailed to year 2011 1750
estimates for
years 1997,
2001, 2004,
and 2007
2014 (i) Three years |Three years [Extended to ELUC for Based on Based on ten |[Inclusion of
of BP data of BP data 2012 with 1997-2013 seven models | models breakdown of
updated GDP |includes the sinks in
data interannual three latitude
anomalies bands and
from fire- comparison
based with three
emissions atmospheric

inversions
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2015 (j) Projection for | National Detailed Based on Based on ten [The decadal
current year |[emissions estimates eight models |models with [uncertainty
based Jan- from introduced for assessment of | for the DGVM
Aug data UNFCCC 2011 based on minimum ensemble

extended to |GTAP9 realism mean now

2014 also uses +10 of

provided the decadal
spread across
models

2016 (k) Two years of |Added three Preliminary Based on Based on Discussion of
BP data small ELUC using seven models |fourteen projection for

countries; FRA-2015 models full budget
China’s shown for for current
emissions comparison; year

from 1990 use of five

from BP data DGVMs

(this release
only)

a Raupach et al. (2007)

b Canadell et al. (2007)

¢ GCP (2008)

d Le Quéré et al. (2009)

e Friedlingstein et al. (2010)

f Peters et al. (2012b)

g Le Quéré et al. (2013), Peters et al. (2013)

h Le Quéré et al. (2014)

i Le Quéré et al. (2015a)

j Le Quéré et al. (2015b)

k Le Quéré et al. (2016)
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Table A8: Mapping of global carbon cycle models' land flux definitions to the definition of the
LULUCEF net flux used in national reporting to UNFCCC. Non-intact lands are used here as
proxy for "managed lands" in the country reporting

2001-2010 2011-2020
ELUC from bookkeeping
estimates (from Tab. 5) 1.21 1.13
Total (from Tab. 5) from DGVMs -2.54 -3.06
on non-forest lands from DGVMs -0.90 -1.14
on non-intact forest from DGVMs -1.27 -1.50
SLAND on intact land (intact forest only  |from DGVMs -0.37 -0.42
D
for DGVM:s) from ORCHIDEE-MICT -1.29 -1.47
from DGVMs and bookkeeping
SLAND on non-intact ELUC -0.06 037
lands plus ELUC
1.00
from ORCHIDEE-MICT 0.61
National greenhouse gas
inventories (LULUCF) -0.43 -0.57
FAOSTAT (LULUCF) 0.39 0.20
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Table A9. Funding supporting the production of the various components of the global carbon budget in
addition to the authors’ supporting institutions (see also acknowledgements).

Funder and grant number (where relevant)

Author Initials

Australia, Integrated Marine Observing System (IMOS)
Australian National Environment Science Program (NESP)

Belgium, FWO (Flanders Research Foundation, contract IRI I001019N)

BNP Paribas Foundation through Climate & Biodiversity initiative, philanthropic grant for
developments of the Global Carbon Atlas

Canada, Tula Foundation
China, National Natural Science Foundation (grant no. 41975155)

Commonwealth Scientific and Industrial Organization (CSIRO) - Climate Science Centre
EC Copernicus Atmosphere Monitoring Service implemented by ECMWF on behalf of the
European Commission

EC Copernicus Marine Environment Monitoring Service implemented by Mercator Ocean

EC H2020 (4C; grant no 821003)

EC H2020 (CHE; grant no 776186)

EC H2020 (CoCO2: grant no. 958927)

EC H2020 (COMFORT: grant no. 820989)
EC H2020 (CONSTRAIN: grant no 820829)

EC H2020 (CRESCENDO: grant no. 641816)

EC H2020 (ESM2025 — Earth System Models for the Future; grant agreement No 101003536).

EC H2020 (EuroSea: grant no. 862626)
EC H2020 (JERICO-S3: grant no. 871153)
EC H2020 (QUINCY; grant no 647204)
EC H2020 (RINGO: grant no. 730944)

EC H2020 (VERIFY: grant no. 776810)
Efg International

EFG International
European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 655
(ESRIN/4000123002/18/I-NB)

European Space Agency OceanSODA project (grant no. 4000112091/14/I-LG)
France, ICOS (Integrated Carbon Observation System) France

France, Institut de Recherche pour le Développement (IRD)
Germany, Blue Ocean and Federal Ministry of Education (BONUS INTEGRAL; Grant No.
03F0773A)

Germany, Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy — EXC

2037 ‘Climate, Climatic Change, and Society’ — Project Number: 390683824
Germany, Federal Ministry for Education and Research (BMBF)

Germany, GEOMAR Helmholtz Centre for Ocean Research
Germany, German Federal Ministry of Education and Research under project "DArgo2025"
(03F0857C)

Germany, Helmholtz Association ATMO programme

Germany, Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the

Earth System (MarESys), grant number VH-NG-1301
Germany, ICOS (Integrated Carbon Observation System) Germany

Hapag-Lloyd
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Ireland, Marine Institute MC

Japan, Environment Research and Technology Development Fund of the Ministry of the

Environment (JPMEERF21520810) YN
Japan, Global Environmental Research Coordination System, Ministry of the Environment (grant
number E1751) SN, TO, CW
Kuehne + Nagel International AG T
Mediterranean Shipping Company (MSc) T
Monaco, Fondation Prince Albert Il de Monaco T
Monaco, Yacht Club de Monaco T
NASA Interdisciplinary Research in Earth Science Program. BP
Netherlands Organization for Scientific Research (NWO; grant no. SH-312, 17616) WP
New Zealand, NIWA MBIE Core funding KIC
Norway, Norwegian Research Council (grant no. 270061) IS
Norway, Research Council of Norway, ICOS (Integrated Carbon Observation System) Norway

and OTC (Ocean Thematic Centre) (grant no. 245927) SKL, MB, SDJ
PEAKG Investments SKL
Saildrone Inc. SKL
South Africa, Department of Science and Innovation LD
South Africa, National Science Foundation LD
Swiss National Science Foundation (grant no. 200020_172476) SL
UK Royal Society (grant no. RP\R1\191063) CcLQ
UK, CLASS ERC funding TG
UK, National Centre for Atmospheric Science (NCAS) PCM
UK, Natural Environment Research Council (SONATA: grant no. NE/P021417/1) DW
UK, Natural Environmental Research Council (NE/R016518/1) LF
UK, Newton Fund, Met Office Climate Science for Service Partnership Brazil (CSSP Brazil) AJWi
UK, Royal Society: The European Space Agency OCEANFLUX projects AJWa
UK, University of Reading Research Endowment Trust Fund PCM

USA, Department of Commerce, Office of Oceanic and Atmospheric Research (OAR)'s / National
Oceanic and Atmospheric Administration (NOAA)'s Global Ocean Monitoring and Observation

Program (GOMO) DRM, CS, DP, RW, SRA, RAF, AJS, NRB
USA, Department of Commerce, Office of Oceanic and Atmospheric Research (OAR)'s / National

Oceanic and Atmospheric Administration (NOAA)'s Ocean Acidification Program DP, RW, SRA, RAF, AJS

USA, Department of Energy, Office of Science and BER prg. (grant no. DE-SC000 0016323) AKJ

USA, Department of Energy, SciDac (DESC0012972) GCH, LPC

USA, NASA Carbon Monitoring System probram and OCO Science team program

(8ONMO018F0583) . JL

USA, NASA Interdisciplinary Research in Earth Science (IDS) (80NSSC17K0348) GCH, LPC

USA, National Science Foundation (grant number 1903722) HT

USA, National Science Foundation (grant number PLR 1543457) DRM, CS

USA, Princeton University Environmental Institute and the NASA OCO2 science team, grant
number 80NSSC18K0893. LR

Computing resources

bwHPC, High Performance Computing Network of the State of Baden-Wirttemberg, Germany  PA

Cheyenne supercomputer, Computational and Information Systems Laboratory (CISL) at

National Center for Atmospheric Research (NCAR) DK
Deutsches Klimarechenzentrum (allocation bm0891) JEMSN, JP
HPC cluster Aether at the University of Bremen, financed by DFG within the

scope of the Excellence Initiative ITL, WP
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MRI (FUJITSU Server PRIMERGY CX2550M5) YN

NIES (SX-Aurora) YN

NIES supercomputer system EK
supercomputer 'Gadi' of the National Computational Infrastructure (NCI), Australia JK
Supercomputing time was provided by the Météo-France/DSI supercomputing center. RS, BD

TGCC under allocation 2019-A0070102201 made by GENCI FC

UEA High Performance Computing Cluster, UK MWJ, CLQ, DRW
UNINETT Sigma2, National Infrastructure for High Performance Computing and Data Storage in

Norway (NN2980K/NS2980K) IN
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15 Appendix B. Supplementary Figures
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Figure B1. Ensemble mean air-sea CO; flux from a) global ocean biogeochemistry models and b)
fCO, based data products, averaged over 2011-2020 period (kgC m2 yr?). Positive numbers
indicate a flux into the ocean. c) gridded SOCAT v2021 fCO, measurements, averaged over the
2011-2020 period (pnatm). In (a) model simulation A is shown. The data-products represent the
contemporary flux, i.e. including outgassing of riverine carbon, which is estimated to amount to

0.615 GtC yr globally.
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Figure B2. Evaluation of the GOBMs and data products using the root mean squared error (RMSE)
for the period 1990 to 2020, between the individual surface ocean fCO, mapping schemes and the
SOCAT v2021 database. The y-axis shows the amplitude of the interannual variability (A-IAV, taken

as the standard deviation of a detrended time series calculated as a 12-months running mean over

the monthly flux time series, Rodenbeck et al., 2015). Results are presented for the globe, north

(>30°N), tropics (30°S-30°N), and south (<30°S) for the GOBM s (see legend circles) and for the

fCO,-based data products (star symbols). The fCO,-based data products use the SOCAT database

and therefore are not independent from the data (see section 2.4.1).
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Figure B3. Evaluation of the DGVMs using the International Land Model Benchmarking system
(ILAMB; Collier et al., 2018) (left) absolute skill scores and (right) skill scores relative to other
models. The benchmarking is done with observations for vegetation biomass (Saatchi et al., 2011;
and GlobalCarbon unpublished data; Avitabile et al., 2016), GPP (Jung et al., 2010; Lasslop et al.,
2010), leaf area index (De Kauwe et al., 2011; Myneni et al., 1997), net ecosystem exchange (Jung
et al., 2010;Lasslop et al., 2010), ecosystem respiration (Jung et al., 2010;Lasslop et al., 2010), soil
carbon (Hugelius et al., 2013;Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al.,
2011), and runoff (Dai and Trenberth, 2002). For each model-observation comparison a series of
error metrics are calculated, scores are then calculated as an exponential function of each error
metric, finally for each variable the multiple scores from different metrics and observational data
sets are combined to give the overall variable scores shown in the left panel. Overall variable
scores increase from 0 to 1 with improvements in model performance. The set of error metrics
vary with data set and can include metrics based on the period mean, bias, root mean squared
error, spatial distribution, interannual variability and seasonal cycle. The relative skill score shown
in the right panel is a Z-score, which indicates in units of standard deviation the model scores
relative to the multi-model mean score for a given variable. Grey boxes represent missing model

data.
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Figure B4. Evaluation of the atmospheric inversion products. The mean of the model minus

observations is shown for four latitude bands in three periods: (left) 2001-2010, (centre) 2011-

2020, (right) 2001-2020. The six models are compared to independent CO; measurements made

onboard aircraft over many places of the world between 2 and 7 km above sea level. Aircraft

measurements archived in the Cooperative Global Atmospheric Data Integration Project (CGADIP;

Cox et al., 2021) from sites, campaigns or programs that cover at least 9 months between 2001

and 2020 and that have not been assimilated, have been used to compute the biases of the

differences in four 45° latitude bins. Land and ocean data are used without distinction, and

observation density varies strongly with latitude and time as seen on the lower panels.
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Figure B5. Comparison of the estimates of each component of the global carbon budget in this
study (black line) with the estimates released annually by the GCP since 2006. Grey shading shows
the uncertainty bounds representing +1 standard deviation of the current global carbon budget,
based on the uncertainty assessments described in Appendix C. CO; emissions from (a) fossil CO2
emissions (Eros), and (b) land-use change (ELuc), as well as their partitioning among (c) the
atmosphere (Garm), (d) the land (Sianp), and (e) the ocean (Socean). See legend for the
corresponding years, and Tables 3 and A7 for references. The budget year corresponds to the year

when the budget was first released. All values are in GtC yr?.
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Figure B6. Changes in the HYDE/LUH2 land-use forcing from last year’s global carbon budget
(Friedlingstein et al., 2020, in blue) to this year (orange). Shown are year-to-year changes in
cropland area (middle panel) and pasture area (bottom panel). To illustrate the relevance of the
update in the land-use forcing to the recent trends in ELyc, the top panel shows the land-use
emission estimate from the bookkeeping model BLUE (original model output, i.e. excluding peat

fire and drainage emissions).
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17 Appendix C. Extended Methodology

17.1 Appendix C.1 Methodology Fossil Fuel CO, emissions (Eros)

17.1.1 C.1.1 Cement carbonation

From the moment it is created, cement begins to absorb CO, from the atmosphere, a process
known as ‘cement carbonation’. We estimate this CO: sink, as the average of two studies in the
literature (Cao et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et
al. (2016), with different parameterisations and input data, with the estimate of Guo and
colleagues being a revision of Xi et al (2016). The trends of the two studies are very similar.
Modelling cement carbonation requires estimation of a large number of parameters, including the
different types of cement material in different countries, the lifetime of the structures before
demolition, of cement waste after demolition, and the volumetric properties of structures, among
others (Xi et al., 2016). Lifetime is an important parameter because demolition results in the
exposure of new surfaces to the carbonation process. The main reasons for differences between
the two studies appear to be the assumed lifetimes of cement structures and the geographic
resolution, but the uncertainty bounds of the two studies overlap. In the present budget, we

include the cement carbonation carbon sink in the fossil CO, emission component (Egos).

17.1.2 C.1.2 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and
removals taking place within national territory and offshore areas over which the country has
jurisdiction’ (Rypdal et al., 2006), and are called territorial emission inventories. Consumption-
based emission inventories allocate emissions to products that are consumed within a country,
and are conceptually calculated as the territorial emissions minus the ‘embodied’ territorial
emissions to produce exported products plus the emissions in other countries to produce
imported products (Consumption = Territorial — Exports + Imports). Consumption-based emission
attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-
based emissions that can be used to understand emission drivers (Hertwich and Peters, 2009) and
guantify emission transfers by the trade of products between countries (Peters et al., 2011b). The
consumption-based emissions have the same global total, but reflect the trade-driven movement

of emissions across the Earth's surface in response to human activities. We estimate consumption-
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based emissions from 1990-2018 by enumerating the global supply chain using a global model of
the economic relationships between economic sectors within and between every country (Andrew
and Peters, 2013; Peters et al., 2011a). Our analysis is based on the economic and trade data from
the Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed
estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, and 2011
(GTAP9.2), covering 57 sectors and 141 countries and regions. The detailed results are then
extended into an annual time series from 1990 to the latest year of the Gross Domestic Product
(GDP) data (2018 in this budget), using GDP data by expenditure in current exchange rate of US
dollars (USD; from the UN National Accounts main Aggregrates database; UN, 2021) and time
series of trade data from GTAP (based on the methodology in Peters et al., 2011a). We estimate
the sector-level CO, emissions using the GTAP data and methodology, include the flaring and
cement emissions from CDIAC, and then scale the national totals (excluding bunker fuels) to
match the emission estimates from the carbon budget. We do not provide a separate uncertainty
estimate for the consumption-based emissions, but based on model comparisons and sensitivity
analysis, they are unlikely to be significantly different than for the territorial emission estimates

(Peters et al., 2012a).

17.1.3 C.1.3 Uncertainty assessment for Eros

We estimate the uncertainty of the global fossil CO2 emissions at +5% (scaled down from the
published +10 % at +20 to the use of +10 bounds reported here; Andres et al., 2012). This is
consistent with a more detailed analysis of uncertainty of +8.4% at +20 (Andres et al., 2014) and at
the high-end of the range of +5-10% at +20 reported by (Ballantyne et al., 2015). This includes an
assessment of uncertainties in the amounts of fuel consumed, the carbon and heat contents of
fuels, and the combustion efficiency. While we consider a fixed uncertainty of +5% for all years,
the uncertainty as a percentage of emissions is growing with time because of the larger share of
global emissions from emerging economies and developing countries (Marland et al., 2009).
Generally, emissions from mature economies with good statistical processes have an uncertainty
of only a few per cent (Marland, 2008), while emissions from strongly developing economies such
as China have uncertainties of around +10% (for +10; Gregg et al., 2008; Andres et al., 2014).
Uncertainties of emissions are likely to be mainly systematic errors related to underlying biases of

energy statistics and to the accounting method used by each country.
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17.1.4 C.1.4 Growth rate in emissions

We report the annual growth rate in emissions for adjacent years (in percent per year) by
calculating the difference between the two years and then normalising to the emissions in the first
year: (EFOS(t0+1)-EFOS(t0))/EFOS(t0)x100%. We apply a leap-year adjustment where relevant to
ensure valid interpretations of annual growth rates. This affects the growth rate by about 0.3% yr-
1 (1/366) and causes calculated growth rates to go up approximately 0.3% if the first year is a leap

year and down 0.3% if the second year is a leap year.

The relative growth rate of Eros over time periods of greater than one year can be rewritten using

its logarithm equivalent as follows:

1 dEpos _ d(InEfos) (2)
Epos dt dt

Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by

fitting a linear trend to In(Eros) in Eq. (2), reported in percent per year.

17.1.5 C.1.5 Emissions projection for 2021

To gain insight on emission trends for 2021, we provide an assessment of global fossil CO»
emissions, Eros, by combining individual assessments of emissions for China, USA, the EU, and
India (the four countries/regions with the largest emissions), and the rest of the world. We
provide full year estimates for two datasets: IEA (2021b) and our own analysis. This approach
differs from last year where we used four independent estimates including our own, because of
the unique circumstances related to the COVID-19 pandemic. This year’s analysis is more in line

with earlier budgets.

Previous editions of the Global Carbon Budget (GCB) have estimated year to date (YTD) emissions,
and performed projections, using sub-annual energy consumption data from a variety of sources
depending on the country or region. The YTD estimates have then been projected to the full year

using specific methods for each country or region. The methods described in detail below.

China: We use the growth in total fossil CO; emissions in 2021 reported by the National Bureau of
Statistics (NBS) in their 2022 Statistical Communique (NBS, 2022). This report includes growth
rates of energy consumption for coal, oil, and natural gas as well as the growth in cement

production, which are used to determine the changes in emissions from these four categories.
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USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their
Short-Term Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year
projection (EIA, 2022). The STEO also includes a near-term forecast based on an energy
forecasting model which is updated monthly (last update with preliminary data through
September 2021), and takes into account expected temperatures, household expenditures by fuel
type, energy markets, policies, and other effects. We combine this with our estimate of emissions
from cement production using the monthly U.S. cement clinker production data from USGS for
January-June 2021, assuming changes in cement production over the first part of the year apply

throughout the year.

India: We use monthly emissions estimates for India updated from Andrew (2020b) through
August 2021. These estimates are derived from many official monthly energy and other activity
data sources to produce direct estimates of national CO; emissions, without the use of proxies.
Emissions from coal are then extended to September using a regression relationship based on
power generated from coal, coal dispatches by Coal India Ltd., the composite PMI, time, and days
per month. For the last 3-4 months of the year, each series is extrapolated assuming typical

trends.

EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from
monthly energy data reported by Eurostat. Some data gaps are filled using data from the Joint
Organisations Data Initiative (JODI, 2022). Sub-annual cement production data are limited, but
data for Germany and Poland, the two largest producers, suggest a small decline. For fossil fuels
this provides estimates through July. We extend coal emissions through September using a
regression model built from generation of power from hard coal, power from brown coal, total
power generation, and the number of working days in Germany and Poland, the two biggest coal
consumers in the EU. These are then extended through the end of the year assuming typical
trends. We extend oil emissions by building a regression model between our monthly CO2
estimates and oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook
(October edition), and then using this model with EIA’s monthly forecasts. For natural gas, the
strong seasonal signal allows the use of the bias-adjusted Holt-Winters exponential smoothing

method (Chatfield, 1978).

Rest of the world: We use the close relationship between the growth in GDP and the growth in

emissions (Raupach et al., 2007) to project emissions for the current year. This is based on a
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simplified Kaya Identity, whereby Eros (GtC yr!) is decomposed by the product of GDP (USD yr?)

and the fossil fuel carbon intensity of the economy (Iros; GtC USD™?) as follows:
Erpos = GDP X Ipgs (3)

Taking a time derivative of Equation (3) and rearranging gives:

1 dEpps _ 1 dGDP 1 dIros
Erpos dt GDP dt Irps dt

(4)
where the left-hand term is the relative growth rate of Eros, and the right-hand terms are the

relative growth rates of GDP and Iros, respectively, which can simply be added linearly to give the

overall growth rate.

The Iros is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy
Agency (IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund
(IMF) growth rates through 2020 (IMF, 2022). Interannual variability in lros is the largest source of
uncertainty in the GDP-based emissions projections. We thus use the standard deviation of the
annual lros for the period 2009-2019 as a measure of uncertainty, reflecting a 1o as in the rest of

the carbon budget.

World: The global total is the sum of each of the countries and regions.

17.2 Appendix C.2 Methodology CO; emissions from land-use, land-use change and forestry
(Evuc)

The net CO; flux from land-use, land-use change and forestry (ELuc, called land-use change
emissions in the rest of the text) includes CO; fluxes from deforestation, afforestation, logging and
forest degradation (including harvest activity), shifting cultivation (cycle of cutting forest for
agriculture, then abandoning), and regrowth of forests following wood harvest or abandonment
of agriculture. Emissions from peat burning and drainage are added from external datasets (see
section C.2.1 below). Only some land-management activities are included in our land-use change
emissions estimates (Table Al). Some of these activities lead to emissions of CO; to the
atmosphere, while others lead to CO; sinks. ELyc is the net sum of emissions and removals due to
all anthropogenic activities considered. Our annual estimate for 1960-2020 is provided as the
average of results from three bookkeeping approaches (Section C.2.1 below): an estimate using

the Bookkeeping of Land Use Emissions model (Hansis et al., 2015; hereafter BLUE) and one using

177



the compact Earth system model OSCAR (Gasser et al., 2020), both BLUE and OSCAR being
updated here to new land-use forcing covering the time period until 2020, and an updated version
of the estimate published by Houghton and Nassikas (2017) (hereafter updated H&N2017). All
three data sets are then extrapolated to provide a projection for 2021 (Section C.2.5 below). In
addition, we use results from Dynamic Global Vegetation Models (DGVMs; see Section 2.5 and
Table 4) to help quantify the uncertainty in ELuc (Section C.2.4), and thus better characterise our
understanding. Note that in this budget, we use the scientific E.yc definition, which counts fluxes
due to environmental changes on managed land towards Sianp, as opposed to the national
greenhouse gas inventories under the UNFCCC, which include them in ELyc and thus often report
smaller land-use emissions (Grassi et al., 2018; Petrescu et al., 2020). However, we provide a

methodology of mapping of the two approaches to each other further below (Section C.2.3).

17.2.1 C.2.1 Bookkeeping models

Land-use change CO; emissions and uptake fluxes are calculated by three bookkeeping models.
These are based on the original bookkeeping approach of Houghton (2003) that keeps track of the
carbon stored in vegetation and soils before and after a land-use change (transitions between
various natural vegetation types, croplands, and pastures). Literature-based response curves
describe decay of vegetation and soil carbon, including transfer to product pools of different
lifetimes, as well as carbon uptake due to regrowth. In addition, the bookkeeping models
represent long-term degradation of primary forest as lowered standing vegetation and soil carbon

stocks in secondary forests, and include forest management practices such as wood harvests.

BLUE and the updated H&N2017 exclude land ecosystems’ transient response to changes in
climate, atmospheric CO; and other environmental factors, and base the carbon densities on
contemporary data from literature and inventory data. Since carbon densities thus remain fixed
over time, the additional sink capacity that ecosystems provide in response to CO,-fertilisation
and some other environmental changes is not captured by these models (Pongratz et al., 2014).
On the contrary, OSCAR includes this transient response, and it follows a theoretical framework
(Gasser and Ciais, 2013) that allows separating bookkeeping land-use emissions and the loss of
additional sink capacity. Only the former is included here, while the latter is discussed in Appendix
D4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of land-
use change for BLUE, regional-/ mostly country-level for the updated H&N2017 and OSCAR), (2)
processes represented (see Table A1), and (3) carbon densities assigned to vegetation and soil of
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each vegetation type (literature-based for the updated H&N2017 and BLUE, calibrated to DGVMs
for OSCAR). A notable difference between models exists with respect to the treatment of shifting
cultivation. The update of H&N2017 changed the approach over the earlier H&N2017 version:
H&N2017 had assumed the "excess loss" of tropical forests (i.e., when FRA indicated a forest loss
larger than the increase in agricultural areas from FAO) resulted from converting forests to
croplands at the same time older croplands were abandoned. Those abandoned croplands began
to recover to forests after 15 years. The updated H&N2017 now assumes that forest loss in excess
of increases in cropland and pastures represented an increase in shifting cultivation. When the
excess loss of forests was negative, it was assumed that shifting cultivation was returned to forest.
Historical areas in shifting cultivation were extrapolated taking into account country-based
estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al.,
2017). In contrast, the BLUE and OSCAR models include sub-grid-scale transitions between all
vegetation types. Furthermore, the updated H&N2017 assume conversion of natural grasslands to
pasture, while BLUE and OSCAR allocate pasture proportionally on all natural vegetation that
exists in a grid-cell. This is one reason for generally higher emissions in BLUE and OSCAR.
Bookkeeping models do not directly capture carbon emissions from peat fires, which can create
large emissions and interannual variability due to synergies of land-use and climate variability in
Southeast Asia, particularly during EI-Nifio events, nor emissions from the organic layers of
drained peat soils. To correct for this, the updated H&N2017 includes carbon emissions from
burning and draining of peatlands in Indonesia, Malaysia, and Papua New Guinea (based on the
Global Fire Emission Database (GFED4s; van der Werf et al., 2017) for fire and Hooijer et al. for
drainage. Further, estimates of carbon losses from peatlands in extra-tropical regions are added
from Qiu et al. (2021). We add GFED4s peat fire emissions to BLUE and OSCAR output as well as
the global FAO peat drainage emissions 1990-2018 from croplands and grasslands (Conchedda
and Tubiello, 2020), keeping post-2018 emissions constant. We linearly increase tropical drainage
emissions from 0 in 1980, consistent with H&N2017’s assumption, and keep emissions from the
often old drained areas of the extra-tropics constant pre-1990. This adds 9.0 GtC for FAO
compared to 5.6 GtC for Hooijer et al. (2010). Peat fires add another 2.0 GtC over the same

period.

The three bookkeeping estimates used in this study differ with respect to the land-use change

data used to drive the models. The updated H&N2017 base their estimates directly on the Forest
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Resource Assessment of the FAO which provides statistics on forest-area change and management
at intervals of five years currently updated until 2020 (FAO, 2020). The data is based on country
reporting to FAO and may include remote-sensing information in more recent assessments.
Changes in land-use other than forests are based on annual, national changes in cropland and
pasture areas reported by FAO (FAOSTAT, 2021). On the other hand, BLUE uses the harmonised
land-use change data LUH2-GCB2021 covering the entire 850-2020 period (an update to the
previously released LUH2 v2h dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used
as input to the DGVMs (Section C.2.2). It describes land-use change, also based on the FAO data as
described in Section C.2.2 as well as the HYDE3.3 dataset (Klein Goldewijk et al., 2017a, 2017b),
but provided at a quarter-degree spatial resolution, considering sub-grid-scale transitions
between primary forest, secondary forest, primary non-forest, secondary non-forest, cropland,
pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2021 provides
a distinction between rangelands and pasture, based on inputs from HYDE. To constrain the
models’ interpretation on whether rangeland implies the original natural vegetation to be
transformed to grassland or not (e.g., browsing on shrubland), a forest mask was provided with
LUH2-GCB2021; forest is assumed to be transformed to grasslands, while other natural vegetation
remains (in case of secondary vegetation) or is degraded from primary to secondary vegetation
(Ma et al., 2020). This is implemented in BLUE. OSCAR was run with both LUH2-GCB2021 and
FAO/FRA (as used by Houghton and Nassikas, 2017), where emissions from the latter were
extended beyond 2015 with constant 2011-2015 average values. The best-guess OSCAR estimate
used in our study is a combination of results for LUH2-GCB2021 and FAO/FRA land-use data and a
large number of perturbed parameter simulations weighted against an observational constraint.
All three bookkeeping estimates were extended from 2020 to provide a projection for 2021 by
adding the annual change in emissions from tropical deforestation and degradation and peat
burning and drainage to the respective model’s estimate for 2020 (van der Werf et al., 2017,

Conchedda & Tubiello, 2020).

For ELuc from 1850 onwards we average the estimates from BLUE, the updated H&N2017 and
OSCAR. For the cumulative numbers starting 1750 an average of four earlier publications is added

(30 £ 20 PgC 1750-1850, rounded to nearest 5; Le Quéré et al., 2016).

We provide estimates of the gross land use change fluxes from which the reported net land-use

change flux, Eruc, is derived as a sum. Gross fluxes are derived internally by the three bookkeeping
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models: Gross emissions stem from decaying material left dead on site and from products after
clearing of natural vegetation for agricultural purposes, wood harvesting, emissions from peat
drainage and peat burning, and, for BLUE, additionally from degradation from primary to
secondary land through usage of natural vegetation as rangeland. Gross removals stem from
regrowth after agricultural abandonment and wood harvesting. Gross fluxes for the updated
H&N2017 2016-2020 and for the 2021 projection of all three models were based on a regression

of gross sources (including peat emissions) to net emissions for recent years.

Due to an artefact in the HYDE3.3 dataset expressed as an abrupt shift in the pattern of
pastures/rangelands in 1960, the year 1960 exhibits much larger gross transitions between natural
vegetation and pastures/rangelands than prior and subsequent years. Although these gross
transitions cancel in terms of net area changes causing large abrupt transitions, an unrealistic
peak in emissions occurs around 1960 in BLUE and OSCAR. To correct for this, we replace the
estimates for 1959-1961 by the average of 1958 and 1962 in each BLUE and OSCAR. Abrupt
transitions will immediately influence gross emissions, which have a larger instantaneous
component. Processes with longer timescales, such as slow legacy emissions and regrowth, are
inseparable from the carbon dynamics due to subsequent land-use change events. We therefore
do not adjust gross removals, but only gross emissions to match the corrected net flux. Since
DGVMs estimates are only used for an uncertainty range of E.uc, which is independent of land-use

changes, no correction is applied to the DGVMs data.

17.2.2 C.2.2 Dynamic Global Vegetation Models (DGVMs)

Land-use change CO, emissions have also been estimated using an ensemble of 17 DGVMs
simulations. The DGVMs account for deforestation and regrowth, the most important components
of ELuc, but they do not represent all processes resulting directly from human activities on land
(Table A1). All DGVMs represent processes of vegetation growth and mortality, as well as
decomposition of dead organic matter associated with natural cycles, and include the vegetation
and soil carbon response to increasing atmospheric CO, concentration and to climate variability
and change. Most models explicitly simulate the coupling of carbon and nitrogen cycles and
account for atmospheric N deposition and N fertilisers (Table A1). The DGVMs are independent
from the other budget terms except for their use of atmospheric CO, concentration to calculate

the fertilisation effect of CO; on plant photosynthesis.
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DGVMs that do not simulate subgrid scale transitions (i.e., net land-use emissions; see Table A1)
used the HYDE land-use change data set (Klein Goldewijk et al., 2017a, 2017b), which provides
annual (1700-2019), half-degree, fractional data on cropland and pasture. The data are based on
the available annual FAO statistics of change in agricultural land area available until 2015. The new
HYDE3.3 cropland/grazing land dataset which now in addition to FAO country-level statistics is
constrained spatially based on multi-year satellite land cover maps from ESA CClI LC. Data from
HYDE3.3 is based on a FAO which includes yearly data from 1961 up to and including the year
2017. After the year 2017 HYDE extrapolates the cropland, pasture, and urban data linearly based
on the trend over the previous 5 years, to generate data until the year 2020. HYDE also uses
satellite imagery from ESA-CCI from 1992 — 2018 for more detailed yearly allocation of cropland
and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level.
The 2018 map is also used for the 2019-2020 period. The original 300 metre resolution data from
ESA was aggregated to a 5 arc minute resolution according to the classification scheme as
described in Klein Goldewijk et al (2017a). DGVMs that simulate subgrid scale transitions (i.e.,
gross land-use emissions; see Table A1) also use the LUH2-GCB2021 data set, an update of the
more comprehensive harmonised land-use data set (Hurtt et al., 2020), that further includes
fractional data on primary and secondary forest vegetation, as well as all underlying transitions
between land-use states (850-2020; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table A1).
This new data set is of quarter degree fractional areas of land-use states and all transitions
between those states, including a new wood harvest reconstruction, new representation of
shifting cultivation, crop rotations, management information including irrigation and fertiliser
application. The land-use states include five different crop types in addition to the pasture-
rangeland split discussed before. Wood harvest patterns are constrained with Landsat-based tree
cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2021 over last year’s version (LUH2-
GCB2020) are using the most recent HYDE/FAO release (covering the time period up to 2021
included). We also use the most recent FAO wood harvest data for all years from 1961 to 2019.
After the year 2019 we extrapolated the wood harvest data until the year 2020. The HYDE3.3
population data is also used to extend the wood harvest time series back in time. Other wood
harvest inputs (for years prior to 1961) remain the same in LUH2. With the switch from HYDE3.2
to HYDE3.3 changes in the land-use forcing compared to the version used in the GCB2020
(Friedlingstein et al., 2020) are pronounced. They are thus compared in Fig. 6B and their relevance

for land-use emissions discussed in Section 3.4.2. DGVMs implement land-use change differently
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(e.g., an increased cropland fraction in a grid cell can either be at the expense of grassland or
shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural
land differ between models). Similarly, model-specific assumptions are applied to convert
deforested biomass or deforested area, and other forest product pools into carbon, and different

choices are made regarding the allocation of rangelands as natural vegetation or pastures.

The difference between two DGVMs simulations (See Section C4.1 below), one forced with
historical changes in land-use and a second with time-invariant pre-industrial land cover and pre-
industrial wood harvest rates, allows quantification of the dynamic evolution of vegetation
biomass and soil carbon pools in response to land-use change in each model (ELuc). Using the
difference between these two DGVMs simulations to diagnose E.yc means the DGVMs account for
the loss of additional sink capacity (around 0.4 + 0.3 GtC yr-1; see Section 2.7.4, Appendix D4),

while the bookkeeping models do not.

As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive
ELuc during the 1990s, as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al.,
2013). All DGVMs met this criterion, although one model was not included in the Eiuc estimate
from DGVMs as it exhibited a spurious response to the transient land cover change forcing after

its initial spin-up.

17.2.3 C.2.3 Mapping of national GHG inventory data to Euc

An approach was implemented to reconcile the large gap between ELUC from bookkeeping
models and land use, land-use change and forestry (LULUCF) from national GHG Inventories
(NGHGI) (see Tab. A8). This gap is due to different approaches to calculating “anthropogenic” CO;
fluxes related to land-use change and land management (Grassi et al. 2018). In particular, the land
sinks due to environmental change on managed lands are treated as non-anthropogenic in the
global carbon budget, while they are generally considered as anthropogenic in NGHGIs (“indirect
anthropogenic fluxes”; Eggleston et al., 2006). Building on previous studies (Grassi et al. 2021), the
approach implemented here adds the DGVMs estimates of CO; fluxes due to environmental
change from countries’ managed forest area (part of the Sianp) to the original Eiuc flux. This sum is

expected to be conceptually more comparable to LULUCF than simply ELuc.

ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To

determine Siano on managed forest, the following steps were taken: Spatially gridded data of
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III

“natural” forest NBP (Sianp i.e., due to environmental change and excluding land use change
fluxes) were obtained with S2 runs from DGVMs up to 2019 from the TRENDY v9 dataset. Results
were first masked with the Hansen forest map (Hansen et al. 2013), with a 20% tree cover and
following the FAO definition of forest (isolated pixels with maximum connectivity less than 0.5 ha
are excluded), and then further masked with the “intact” forest map for the year 2013, i.e. forest
areas characterised by no remotely detected signs of human activity (Potapov et al. 2017). This
way, we obtained the Sianp in “intact” and “non-intact” forest area, which previous studies (Grassi
et al. 2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest
area in the NGHGI. Note that only 4 models (CABLE-POP, CLASSIC, YIBs and ORCHIDEE-CNP) had
forest NBP at grid cell level. Two models (OCN and ISBA-CTRIP) provided forest NEP and simulated

disturbances at pixel level that were used as basis, in addition to forest cover fraction, to estimate

forest NBP. For the other DGVMs, when a grid cell had forest, all the NBP was allocated to forest.

LULUCF data from NGHGIs are from Grassi et al. (2021) until 2017, updated until 2019 for UNFCCC
Annex | countries. For non-Annex | countries, the years 2018 and 2019 were assumed to be equal
to the average 2013-2017. This data includes all CO2 fluxes from land considered managed, which
in principle encompasses all land uses (forest land, cropland, grassland, wetlands, settlements,
and other land), changes among them, emissions from organic soils and from fires. In practice,
although almost all Annex | countries report all land uses, many non-Annex | countries report only
on deforestation and forest land, and only few countries report on other land uses. In most cases,
NGHGI include most of the natural response to recent environmental change, because they use
direct observations (e.g., national forest inventories) that do not allow separating direct and

indirect anthropogenic effects (Eggleston et al., 2006).

To provide additional, largely independent assessments of fluxes on unmanaged vs managed
lands, we include a DGVM that allows diagnosing fluxes from unmanaged vs managed lands by
tracking vegetation cohorts of different ages separately. This model, ORCHIDEE-MICT (Yue et al.,
2018), was run using the same LUH2 forcing as the DGVMs used in this budget (Section 2.5) and
the bookkeeping models BLUE and OSCAR (Section 2.2). Old-aged forest was classified as primary
forest after a certain threshold of carbon density was reached again, and the model-internal
distinction between primary and secondary forest used as proxies for unmanaged vs managed

forests; agricultural lands are added to the latter to arrive at total managed land.
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Tab. A8 shows the resulting mapping of global carbon cycle models' land flux definitions to that of
the NGHGI (discussed in Section 3.2.2). ORCHIDEE-MICT estimates for SLAND on intact forests are
expected to be higher than based on DGVMs in combination with the NGHGI
managed/unmanaged forest data because the unmanaged forest area, with about 27 mio km2, is
estimated to be substantially larger by ORCHIDEE-MICT than, with less than 10 mio km2, by the
NGHGI, while managed forest area is estimated to be smaller (22 compared to 32 mio km2).
Related to this, Sianp on non-intact lands plus Evuc is a larger source estimated by ORCHIDEE-MICT
compared to NGHGI. We also show as comparison FAOSTAT emissions totals (FAO, 2021), which
include emissions from net forest conversion and fluxes on forest land (Tubiello et al., 2021) as

well as CO, emissions from peat drainage and peat fires.

17.2.4 C.2.4 Uncertainty assessment for ELuc

Differences between the bookkeeping models and DGVMs models originate from three main
sources: the different methodologies, which among others lead to inclusion of the loss of
additional sink capacity in DGVMs (see Appendix D1.4), the underlying land-use/land cover data
set, and the different processes represented (Table Al). We examine the results from the DGVMs
models and of the bookkeeping method and use the resulting variations as a way to characterise

the uncertainty in Eruc.

Despite these differences, the E.yc estimate from the DGVMs multi-model mean is consistent with
the average of the emissions from the bookkeeping models (Table 5). However there are large
differences among individual DGVMs (standard deviation at around 0.5 GtC yr!; Table 5), between
the bookkeeping estimates (average difference 1850-2020 BLUE-updated H&N2017 of 0.8 GtC yr?,
BLUE-OSCAR of 0.4 GtC yr?, OSCAR-updated H&N2017 of 0.3 GtC yr!), and between the updated
estimate of H&N2017 and its previous model version (Houghton et al., 2012). A factorial analysis
of differences between BLUE and H&N2017 attributed them particularly to differences in carbon
densities between natural and managed vegetation or primary and secondary vegetation (Bastos
et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as

applied (in updated versions) also in the current study (Gasser et al., 2020).

The uncertainty in Eiyc of 0.7 GtC yr! reflects our best value judgement that there is at least 68%
chance (+10) that the true land-use change emission lies within the given range, for the range of

processes considered here. Prior to the year 1959, the uncertainty in ELuc was taken from the
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standard deviation of the DGVMs. We assign low confidence to the annual estimates of Euc
because of the inconsistencies among estimates and of the difficulties to quantify some of the

processes in DGVMs.

1725 C.2.5 Emissions projections for Epyc

We project the 2021 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting
from their estimates for 2020 assuming unaltered peat drainage, which has low interannual
variability, and the highly variable emissions from peat fires, tropical deforestation and
degradation as estimated using active fire data (MCD14ML; Giglio et al., 2016). Those latter scale
almost linearly with GFED over large areas (van der Werf et al., 2017), and thus allows for tracking

fire emissions in deforestation and tropical peat zones in near-real time.

17.3 Appendix C.3 Methodology Ocean CO; sink
17.3.1 C.3.1 Observation-based estimates

We primarily use the observational constraints assessed by IPCC of a mean ocean CO; sink of 2.2 +
0.7 GtC yr* for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs
provide a realistic assessment of Socean. This is based on indirect observations with seven
different methodologies and their uncertainties, using the methods that are deemed most reliable
for the assessment of this quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based
estimates use the ocean/land CO; sink partitioning from observed atmospheric CO; and O2/N»
concentration trends (Manning and Keeling, 2006; Keeling and Manning, 2014), an oceanic
inversion method constrained by ocean biogeochemistry data (Mikaloff Fletcher et al., 2006), and
a method based on penetration time scale for chlorofluorocarbons (McNeil et al., 2003). The IPCC
estimate of 2.2 GtC yr for the 1990s is consistent with a range of methods (Wanninkhof et al.,
2013). We refrain from using the IPCC estimates for the 2000s (2.3 + 0.7 GtC yr'!), and the period
2002-2011 (2.4 +0.7 GtC yr%, Ciais et al., 2013) as these are based on trends derived mainly from
models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6
(Canadell et al., 2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019)
and ocean sink estimate from atmospheric CO, and O,/N; (Tohjima et al., 2019) which are used

for model evaluation and discussion, respectively.

We also use eight estimates of the ocean CO; sink and its variability based on surface ocean fCO;

maps obtained by the interpolation of surface ocean fCO, measurements from 1990 onwards due
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to severe restriction in data availability prior to 1990 (Figure 9). These estimates differ in many
respects: they use different maps of surface fCO,, different atmospheric CO, concentrations, wind
products and different gas-exchange formulations as specified in Table A3. We refer to them as
fCO;-based flux estimates. The measurements underlying the surface fCO, maps are from the
Surface Ocean CO; Atlas version 2021 (SOCATv2021; Bakker et al., 2021), which is an update of
version 3 (Bakker et al., 2016) and contains quality-controlled data through 2020 (see data
attribution Table A5). Each of the estimates uses a different method to then map the SOCAT
v2021 data to the global ocean. The methods include a data-driven diagnostic method (R6denbeck
et al., 2013; referred to here as Jena-MLS), three neural network models (Landschiitzer et al.,
2014; referred to as MPI-SOMFFN; Chau et al., 2021; Copernicus Marine Environment Monitoring
Service, referred to here as CMEMS-LSCE-FFNN; and Zeng et al., 2014; referred to as NIES-FNN),
two cluster regression approaches (Gregor et al., 2019; referred to here as CSIR-ML6; and Gregor
and Gruber, 2021, referred to as OS-ETHZ-GRaCER), and a multi-linear regression method (lida et
al., 2021; referred to as IMA-MLR). The ensemble mean of the fCO,-based flux estimates is
calculated from these seven mapping methods. Further, we show the flux estimate of Watson et
al. (2020) who also use the MPI-SOMFFN method to map the adjusted fCO; data to the globe, but
resulting in a substantially larger ocean sink estimate, owing to a number of adjustments they
applied to the surface ocean fCO; data and the gas-exchange parameterization. Concretely, these
authors adjusted the SOCAT fCO, downward to account for differences in temperature between
the depth of the ship intake and the relevant depth right near the surface, and included a further
adjustment to account for the cool surface skin temperature effect. The Watson et al. flux
estimate hence differs from the others by their choice of adjusting the flux to a cool, salty ocean
surface skin. Watson et al. (2020) showed that this temperature adjustment leads to an upward
correction of the ocean carbon sink, up to 0.9 GtC yr?, that, if correct, should be applied to all
fCO,-based flux estimates. So far, this adjustment is based on a single line of evidence and hence
associated with low confidence until further evidence is available. The Watson et al flux estimate
presented here is therefore not included in the ensemble mean of the fCO,-based flux estimates.

This choice will be re-evaluated in upcoming budgets based on further lines of evidence.

The CO; flux from each fCO,-based product is either already at or above 98% areal coverage (Jena-
MLS, OS-ETHZ-GRaCER), filled by the data-provider (using Fay et al., 2021a, method for IMA-MLR;
and Landschutzer et al., 2020, methodology for MPI-SOMFFN) or scaled for the remaining
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products by the ratio of the total ocean area covered by the respective product to the total ocean
area (361.9e6 km?) from ETOPO1 (Amante and Eakins, 2009; Eakins and Sharman, 2010). In
products where the covered area varies with time (e.g., CMEMS-LSCE-FFNN) we use the maximum
area coverage. The lowest coverage is 93% (NIES-NN), resulting in a maximum adjustment factor

of 1.08 (Table A3, Hauck et al., 2020).

We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries
(2014), to estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two
approaches assume constant ocean circulation and biological fluxes, with Socean estimated as a
response in the change in atmospheric CO; concentration calibrated to observations. The
uncertainty in cumulative uptake of +20 GtC (converted to +10) is taken directly from the IPCC’s
review of the literature (Rhein et al., 2013), or about #30% for the annual values (Khatiwala et al.,

2009).

17.3.2 C.3.2 Global Ocean Biogeochemistry Models (GOBMs)

The ocean CO; sink for 1959-2019 is estimated using eight GOBMs (Table A2). The GOBMs
represent the physical, chemical, and biological processes that influence the surface ocean
concentration of CO; and thus the air-sea CO; flux. The GOBMs are forced by meteorological
reanalysis and atmospheric CO, concentration data available for the entire time period. They
mostly differ in the source of the atmospheric forcing data (meteorological reanalysis), spin up
strategies, and in their horizontal and vertical resolutions (Table A2). All GOBMs except one
(CESM-ETHZ) do not include the effects of anthropogenic changes in nutrient supply (Duce et al.,
2008). They also do not include the perturbation associated with changes in riverine organic

carbon (see Section 2.7.3).

Three sets of simulations were performed with each of the GOBMs. Simulation A applied historical
changes in climate and atmospheric CO; concentration. Simulation B is a control simulation with
constant atmospheric forcing (normal year or repeated year forcing) and constant pre-industrial
atmospheric CO; concentration. Simulation C is forced with historical changes in atmospheric CO;
concentration, but repeated year or normal year atmospheric climate forcing. To derive Socean
from the model simulations, we subtracted the annual time series of the control simulation B from
the annual time series of simulation A. Assuming that drift and bias are the same in simulations A

and B, we thereby correct for any model drift. Further, this difference also removes the natural

188



steady state flux (assumed to be 0 GtC yr? globally without rivers) which is often a major source of
biases. Simulation B of IPSL had to be treated differently as it was forced with constant
atmospheric CO; but observed historical changes in climate. For IPSL, we fitted a linear trend to
the simulation B and subtracted this linear trend from simulation A. This approach assures that

the interannual variability is not removed from IPSL simulation A.

The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr*
and 0.26 GtC yr!, with six models having positive biases, and one model having essentially no bias
(NorESM). The remaining model (MPI) uses riverine input and therefore simulates outgassing in
simulation B, i.e., a seemingly negative bias. By subtracting simulation B, also the ocean carbon
sink of the MPI model follows the definition of Socean. This correction reduces the model mean
ocean carbon sink by 0.03 GtC yr? in the 1990s. The ocean models cover 99% to 101% of the total

ocean area, so that area-scaling is not necessary.

17.3.3 C.3.3 GOBM evaluation and uncertainty assessment for Socean

The ocean CO; sink for all GOBMs and the ensemble mean falls within 90% confidence of the
observed range, or 1.5 to 2.9 GtC yr* for the 1990s (Ciais et al., 2013) after applying adjustments.
An exception is the MPI model, which simulates a low ocean carbon sink of 1.38 GtC yr! for the
1990s in simulation A owing to the inclusion of riverine carbon flux. After adjusting to the GCB’s
definition of Socean by subtracting simulation B, the MPI model falls into the observed range with

an estimated sink of 1.69 GtC yr.

The GOBMs and data products have been further evaluated using the fugacity of sea surface CO;
(fCO) from the SOCAT v2021 database (Bakker et al., 2016, 2021). We focused this evaluation on
the root mean squared error (RMSE) between observed and modelled fCO, and on a measure of
the amplitude of the interannual variability of the flux (modified after Rodenbeck et al., 2015).
The RMSE is calculated from detrended, annually and regionally averaged time series calculated
from GOBMs and data-product fCO, subsampled to open ocean (water depth > 400 m) SOCAT
sampling points to measure the misfit between large-scale signals (Hauck et al., 2020) The
amplitude of the Socean interannual variability (A-1AV) is calculated as the temporal standard
deviation of the detrended CO; flux time series (R6denbeck et al., 2015, Hauck et al., 2020). These

metrics are chosen because RMSE is the most direct measure of data-model mismatch and the A-
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IAV is a direct measure of the variability of Socean on interannual timescales. We apply these

metrics globally and by latitude bands. Results are shown in Fig. B2 and discussed in Section 3.5.5.

We quantify the 1-0 uncertainty around the mean ocean sink of anthropogenic CO; by assessing
random and systematic uncertainties for the GOBMs and data-products. The random
uncertainties are taken from the ensemble standard deviation (0.3 GtC yr'for GOBMs, 0.3 GtC yr
for data-products). We derive the GOBMs systematic uncertainty by the deviation of the DIC
inventory change 1994-2007 from the Gruber et al (2019) estimate (0.5 GtC yr!) and suggest
these are related to physical transport (mixing, advection) into the ocean interior. For the data-
products, we consider systematic uncertainties stemming from uncertainty in fCO observations
(0.2 GtCyr?, Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2 GtCyr?,
Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr!, Fay et
al., 2021a), river flux adjustment (0.2 GtCyr?, Jacobson et al., 2007; Resplandy et al., 2018), and
fCO> mapping (0.2 GtCyr?, Landschiitzer et al., 2014). Combining these uncertainties as their
squared sums, we assign an uncertainty of + 0.6 GtC yr! to the GOBMs ensemble mean and an
uncertainty of + 0.5 GtC yr'! to the data-product ensemble mean. These uncertainties are
propagated as o(Socean) = (1/22 * 0.62 + 1/22 * 0.52)Y2 GtC yr'! and result in an + 0.4 GtC yr!
uncertainty around the best estimate of Socean.

We examine the consistency between the variability of the model-based and the fCO,-based data
products to assess confidence in Socean. The interannual variability of the ocean fluxes (quantified
as A-lAV, the standard deviation after detrending, Figure B2) of the seven fCO,-based data
products plus the Watson et al. (2020) product for 1990-2020, ranges from 0.16 to 0.26 GtC yr*
with the lower estimates by the three ensemble methods (CSIR-ML6, CMEMS-LSCE-FFNN, OS-
ETHZ-GRaCER). The inter-annual variability in the GOBMs ranges between 0.10 and 0.19 GtC yr?,
hence there is overlap with the lower A-IAV estimates of three data-products.

Individual estimates (both GOBMs and data products) generally produce a higher ocean CO; sink
during strong El Nifio events. There is emerging agreement between GOBMs and data-products on
the patterns of decadal variability of Socean with a global stagnation in the 1990s and an extra-
tropical strengthening in the 2000s (McKinley et al., 2020, Hauck et al., 2020). The central
estimates of the annual flux from the GOBMs and the fCO;-based data products have a correlation

r of 0.94 (1990-2020). The agreement between the models and the data products reflects some
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consistency in their representation of underlying variability since there is little overlap in their

methodology or use of observations.

17.4 Appendix C.4 Methodology Land CO; sink
17.4.1 C.4.1 DGVM simulations

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU)
and 6 hourly Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both
providing observation-based temperature, precipitation, and incoming surface radiation on a
0.5°x0.5° grid and updated to 2020 (Harris et al., 2014, 2020). The combination of CRU monthly
data with 6 hourly forcing from JRA-55 (Kobayashi et al., 2015) is performed with methodology
used in previous years (Viovy, 2016) adapted to the specifics of the JRA-55 data.

New to this budget is the revision of incoming short-wave radiation fields to take into account
aerosol impacts and the division of total radiation into direct and diffuse components as

summarised below.

The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface
shortwave fluxes over the period 1901-2020. Radiative transfer calculations are based on
monthly-averaged distributions of tropospheric and stratospheric aerosol optical depth, and 6-
hourly distributions of cloud fraction. Methods follow those described in the Methods section of

Mercado et al. (2009), but with updated input datasets.

The time series of speciated tropospheric aerosol optical depth is taken from the historical and
RCP8.5 simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases
in HadGEM2-ES, tropospheric aerosol optical depths are scaled over the whole period to match
the global and monthly averages obtained over the period 2003-2020 by the CAMS Reanalysis of
atmospheric composition (Inness et al., 2019), which assimilates satellite retrievals of aerosol

optical depth.

The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993)
climatology, which has been updated to 2012. Years 2013-2020 are assumed to be background
years so replicate the background year 2010. That assumption is supported by the Global Space-
based Stratospheric Aerosol Climatology time series (1979-2016; Thomason et al., 2018). The time
series of cloud fraction is obtained by scaling the 6-hourly distributions simulated in the Japanese
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Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud cover in the CRU TS
v4.03 dataset (Harris et al., 2021). Surface radiative fluxes account for aerosol-radiation
interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions
from tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert

interactions with clouds.

The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative
effects of aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors
derived from HadGEM?2-ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric
constituents other than aerosols and clouds are set to a constant standard mid-latitude summer

atmosphere, but their variations do not affect the diffuse fraction of surface shortwave fluxes.

In summary, the DGVMs forcing data include time dependent gridded climate forcing, global
atmospheric CO; (Dlugokencky and Tans, 2022), gridded land cover changes (see Appendix C.2.2),

and gridded nitrogen deposition and fertilisers (see Table Al for specific models details).

Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control
simulation which uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles
early 20th century (1901-1920) climate and applies a time-invariant pre-industrial land cover
distribution and pre-industrial wood harvest rates. Simulation 1 (S1) differs from SO by applying
historical changes in atmospheric CO2 concentration and N inputs. Simulation 2 (S2) applies
historical changes in atmospheric CO; concentration, N inputs, and climate, while applying time-
invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. Simulation 3
(S3) applies historical changes in atmospheric CO2 concentration, N inputs, climate, and land

cover distribution and wood harvest rates.

S2 is used to estimate the land sink component of the global carbon budget (Sianp). S3 is used to
estimate the total land flux but is not used in the global carbon budget. We further separate Sianp

into contributions from CO; (=51-S0) and climate (=52-51-S0).

17.4.2 C.4.2 DGVM evaluation and uncertainty assessment for Sianp

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1)
steady state after spin up, (2) global net land flux (Stano — ELuc) that is an atmosphere-to-land
carbon flux over the 1990s ranging between -0.3 and 2.3 GtC yr!, within 90% confidence of

constraints by global atmospheric and oceanic observations (Keeling and Manning, 2014;
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Wanninkhof et al., 2013), and (3) global Eruc that is a carbon source to the atmosphere over the

1990s, as already mentioned in section C.2.2. All 17 DGVMs meet these three criteria.

In addition, the DGVMs results are also evaluated using the International Land Model
Benchmarking system (ILAMB; Collier et al., 2018). This evaluation is provided here to document,
encourage and support model improvements through time. ILAMB variables cover key processes
that are relevant for the quantification of Sianp and resulting aggregated outcomes. The selected
variables are vegetation biomass, gross primary productivity, leaf area index, net ecosystem
exchange, ecosystem respiration, evapotranspiration, soil carbon, and runoff (see Fig. B3 for the
results and for the list of observed databases). Results are shown in Fig. B3 and discussed in

Section 3.6.5.

For the uncertainty for Sianp, we use the standard deviation of the annual CO; sink across the
DGVMs, averaging to about + 0.6 GtC yr* for the period 1959 to 2019. We attach a medium
confidence level to the annual land CO; sink and its uncertainty because the estimates from the

residual budget and averaged DGVMs match well within their respective uncertainties (Table 5).

17.5 Appendix C.5 Methodology Atmospheric Inversions

Six atmospheric inversions (details of each in Table A4) were used to infer the spatio-temporal
distribution of the CO; flux exchanged between the atmosphere and the land or oceans. These
inversions are based on Bayesian inversion principles with prior information on fluxes and their
uncertainties. They use very similar sets of surface measurements of CO; time series (or subsets
thereof) from various flask and in situ networks. One inversion system also used satellite xCO;
retrievals from GOSAT and OCO-2.

Each inversion system uses different methodologies and input data but is rooted in Bayesian
inversion principles. These differences mainly concern the selection of atmospheric CO; data and
prior fluxes, as well as the spatial resolution, assumed correlation structures, and mathematical
approach of the models. Each system uses a different transport model, which was demonstrated
to be a driving factor behind differences in atmospheric inversion-based flux estimates, and
specifically their distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019).
The inversion systems prescribe same global fossil fuel emissions for Eros; specifically, the GCP’s
Gridded Fossil Emissions Dataset version 2021 (GCP-GridFEDv2021.2; Jones et al., 2021b), which is

an update through 2020 of the first version of GCP-GridFED presented by Jones et al. (2021a).
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GCP-GridFEDv2021.2 scales gridded estimates of CO; emissions from EDGARv4.3.2 (Janssens-
Maenhout et al., 2019) within national territories to match national emissions estimates provided
by the GCP for the years 1959-2020, which were compiled following the methodology described in
Appendix C.1 based on all information available on 31st July 2021 (R. Andrew, pers. comm.).
Typically, the GCP-GridFED adopts the seasonal variation in emissions (the monthly distribution of
annual emissions) from EDGAR and applies small corrections based on heating or cooling degree
days to account for the effects of inter-annual climate variability on the seasonality emissions
(Jones et al., 2021a). However, strategies taken to deal with the COVID-19 pandemic during 2020
mean that the seasonality of emissions diverged substantially in 2020 from a typical year. To
account for this change, GCP-GridFEDv2021.2 adopts the national seasonality in emissions from

Carbon Monitor (Liu et al., 2020a,b) during the years 2019-2020 (Jones et al. 2021b).

The consistent use of GCP-GridFEDv2021.2 for Egos ensures a close alignment with the estimate of
Eros used in this budget assessment, enhancing the comparability of the inversion-based estimate
with the flux estimates deriving from DGVMs, GOBMs and fCO;-based methods. To account for
small differences in regridding, and the use of a slightly earlier file version (GCP-GridFEDv2021.1)
for 2000-2018 in CarbonTracker Europe, small fossil fuel corrections were applied to all inverse
models to make the estimated uptake of atmospheric CO2 fully consistent. Finally, we note that
GCP-GridFEDv2021.2 includes emissions from cement production, but it does not include the
cement carbonation CO; sink (Xi et al., 2016; Cao et al., 2020; Guo et al. 2021) that is applied to
the GCB estimate of Efos in Table 6.

The land and ocean CO; fluxes from atmospheric inversions contain anthropogenic perturbation
and natural pre-industrial CO; fluxes. On annual time scales, natural pre-industrial fluxes are
primarily land CO; sinks and ocean CO; sources corresponding to carbon taken up on land,
transported by rivers from land to ocean, and outgassed by the ocean. These pre-industrial land
CO; sinks are thus compensated over the globe by ocean CO; sources corresponding to the
outgassing of riverine carbon inputs to the ocean, using the exact same numbers and distribution
as described for the oceans in Section 2.4. To facilitate the comparison, we adjusted the inverse
estimates of the land and ocean fluxes per latitude band with these numbers to produce historical
perturbation CO; fluxes from inversions. Finally, for the presentation of the comparison in Figure
11 we modified the FF-corrected and riverine-adjusted land sinks from the inversions further, by

removing a 0.2 GtCyr! CO; sink that is ascribed to cement carbonation in the GCB, rather than to
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terrestrial ecosystems. The latter is not applied in the inversion products released through GCB or

the original data portals of these products.

All participating atmospheric inversions are checked for consistency with the annual global growth
rate, as both are derived from the global surface network of atmospheric CO2 observations. In this
exercise, we use the conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to
mole fractions, as suggested by Prather (2012). This number is specifically suited for the
comparison to surface observations that do not respond uniformly, nor immediately, to each
year’s summed sources and sinks. This factor is therefore slightly smaller than the GCB conversion
factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions agree with the
growth rate with biases between 0.03-0.08 ppm (0.06-0.17 GtCyr?) on the decadal average.

The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO;
concentrations (Fig. B4). More than 30 aircraft programs over the globe, either regular programs
or repeated surveys over at least 9 months, have been used in order to draw a robust picture of
the model performance (with space-time data coverage irregular and denser in the 0-45°N
latitude band; Table A6). The six models are compared to the independent aircraft CO;
measurements between 2 and 7 km above sea level between 2001 and 2020. Results are shown in
Fig. B4, where the inversions generally match the atmospheric mole fractions to within 0.6 ppm at
all latitudes, except for CT Europe in 2010-2020 over the more sparsely sampled southern

hemisphere.

18 Appendix D Processes not included in the global carbon budget
18.1 Appendix D.1 Contribution of anthropogenic CO and CH, to the global carbon budget

Equation (1) includes only partly the net input of CO; to the atmosphere from the chemical
oxidation of reactive carbon-containing gases from sources other than the combustion of fossil
fuels, such as: (1) cement process emissions, since these do not come from combustion of fossil
fuels, (2) the oxidation of fossil fuels, (3) the assumption of immediate oxidation of vented
methane in oil production. However, it omits any other anthropogenic carbon-containing gases
that are eventually oxidised in the atmosphere, such as anthropogenic emissions of CO and CHa.
An attempt is made in this section to estimate their magnitude and identify the sources of
uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning and

deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the global
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(anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below).

These emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere.

In our estimate of Eros we assumed (Section 2.1.1) that all the fuel burned is emitted as CO3, thus
CO anthropogenic emissions associated with incomplete fossil fuel combustion and its
atmospheric oxidation into CO, within a few months are already counted implicitly in Eros and
should not be counted twice (same for ELyc and anthropogenic CO emissions by deforestation
fires). Anthropogenic emissions of fossil CH4 are however not included in Eros, because these
fugitive emissions are not included in the fuel inventories. Yet they contribute to the annual CO;
growth rate after CHa gets oxidized into CO,. Emissions of fossil CHa represent 30% of total
anthropogenic CHs emissions (Saunois et al. 2020; their top-down estimate is used because it is
consistent with the observed CH4 growth rate), that is 0.083 GtC yr for the decade 2008-2017.
Assuming steady state, an amount equal to this fossil CH4 emission is all converted to CO, by OH
oxidation, and thus explain 0.083 GtC yr! of the global CO, growth rate with an uncertainty range
of 0.061 to 0.098 GtC yr! taken from the min-max of top-down estimates in Saunois et al. (2020).
If this min-max range is assumed to be 2 o because Saunois et al. (2020) did not account for the
internal uncertainty of their min and max top-down estimates, it translates into a 1-0 uncertainty

of 0.019 GtC yr™.

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass,
wetlands, ruminants, or permafrost changes are similarly assumed to have a small effect on the
CO; growth rate. The CH4 and CO emissions and sinks are published and analysed separately in the
Global Methane Budget and Global Carbon Monoxide Budget publications, which follow a similar

approach to that presented here (Saunois et al., 2020; Zheng et al., 2019).

18.2 Appendix D.2 Contribution of other carbonates to CO, emissions

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of
fossil carbonates (carbon sources) other than cement production is not systematically included in
estimates of Eros, except at the national level where they are accounted for in the UNFCCC

national inventories. The missing processes include CO, emissions associated with the calcination
of lime and limestone outside cement production. Carbonates are also used in various industries,
including in iron and steel manufacture and in agriculture. They are found naturally in some coals.

CO; emissions from fossil carbonates other than cement are estimated to amount to about 1% of
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Eros (Crippa et al., 2019), though some of these carbonate emissions are included in our estimates

(e.g., via UNFCCC inventories).

18.3 Appendix D.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum

The approach used to determine the global carbon budget refers to the mean, variations, and
trends in the perturbation of CO; in the atmosphere, referenced to the pre-industrial era. Carbon
is continuously displaced from the land to the ocean through the land-ocean aquatic continuum
(LOAC) comprising freshwaters, estuaries, and coastal areas (Bauer et al., 2013; Regnier et al.,
2013). A substantial fraction of this lateral carbon flux is entirely ‘natural’ and is thus a steady
state component of the pre-industrial carbon cycle. We account for this pre-industrial flux where
appropriate in our study (see Appendix C.3). However, changes in environmental conditions and
land-use change have caused an increase in the lateral transport of carbon into the LOAC—a

perturbation that is relevant for the global carbon budget presented here.

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance
for the anthropogenic CO; budget. First, the anthropogenic perturbation of the LOAC has
increased the organic carbon export from terrestrial ecosystems to the hydrosphere by as much as
1.0 + 0.5 GtC yr since pre-industrial times, mainly owing to enhanced carbon export from soils.
Second, this exported anthropogenic carbon is partly respired through the LOAC, partly
sequestered in sediments along the LOAC and to a lesser extent, transferred to the open ocean
where it may accumulate or be outgassed. The increase in storage of land-derived organic carbon
in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et
al. (2013) at 0.65 + 0.35GtC yrt. The inclusion of LOAC related anthropogenic CO; fluxes should
affect estimates of Siano and Socean in Eq. (1) but does not affect the other terms. Representation
of the anthropogenic perturbation of LOAC CO; fluxes is however not included in the GOBMs and

DGVMs used in our global carbon budget analysis presented here.

18.4 Appendix D.4 Loss of additional land sink capacity

Historical land-cover change was dominated by transitions from vegetation types that can provide
a large carbon sink per area unit (typically, forests) to others less efficient in removing CO, from
the atmosphere (typically, croplands). The resultant decrease in land sink, called the ‘loss of
additional sink capacity’, can be calculated as the difference between the actual land sink under

changing land-cover and the counterfactual land sink under pre-industrial land-cover. This term is
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not accounted for in our global carbon budget estimate. Here, we provide a quantitative estimate
of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et al. (2019)
performed additional simulations with and without land-use change under cycled pre-industrial
environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 + 0.3 GtC
yr'! on average over 2009-2018 and 42 + 16 GtC accumulated between 1850 and 2018 (Obermeier
et al., 2021). OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional
sink capacity of 0.7 + 0.6 GtC yr! and 31 + 23 GtC for the same time period (Gasser et al., 2020).
Since the DGVM-based ELUC estimates are only used to quantify the uncertainty around the
bookkeeping models' ELUC, we do not add the loss of additional sink capacity to the bookkeeping

estimate.
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