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Abstract: Land surface soil moisture (SM) plays a critical role in hydrological processes and terrestrial ecosystems in 11 

desertification areas. Passive microwave remote sensing products such as the Soil Moisture Active Passive (SMAP) have been 12 

shown to monitor surface soil water well. However, the coarse spatial resolution and lack of full coverage of these products 13 

greatly limit their application in areas undergoing desertification. In order to overcome these limitations, a combination of 14 

multiple machine learning methods, including multiple linear regression (MLR), support vector regression (SVR), artificial 15 

neural networks (ANN), random forest (RF) and extreme gradient boosting (XGB), have been applied to downscale the 36 km 16 

SMAP SM products and produce higher spatial-resolution SM data based on related surface variables, such as vegetation index 17 

and surface temperature. Desertification areas in Northern China, which are sensitive to SM, were selected as the study area, 18 

and the downscaled SM with a resolution of 1 km on a daily scale from 2015 to 2020 was produced. The results show a good 19 

performance compared with in situ observed SM data, with an average unbiased root mean square error value of 0.057 m3/m3. 20 

In addition, their time series are also consistent with precipitation and perform better than common gridded SM products. The 21 

data can be used to assess soil drought and provide a reference for reversing desertification in the study area. This dataset is 22 

freely available at https://doi.org/10.6084/M9.FIGSHARE.16430478.V5 (Rao et al., 2021). 23 

Keywords: Soil moisture; SMAP; Multiple machine learning; Surface variables; Desertification. 24 

1. Introduction 25 

Surface soil moisture (SM) plays a very important role in water-energy cycle processes (Sandholt et al., 2002; De Santis 26 

et al., 2021) and is an important source of water for plants and soil microbes (Wang et al., 2007; Gu et al., 2008; Mallick et al., 27 

2009). Large-scale areas of northern China are undergoing desertification because of scarce precipitation and insufficient SM. 28 

The accurate acquisition of SM is valuable to ecological conservation and revegetation in arid areas of Northern China. 29 

In the past, SM data were mainly obtained through ground measurements or the assimilation of products based on land 30 

surface models such as the Global Land Data Assimilation System (GLDAS) (Fang and Lakshmi, 2014; Zawadzki and Kędzior, 31 

2016; Liu et al., 2021). Although most accurate SM data at different soil depths can be obtained, field measurements and in 32 
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situ observations are limited due to the high cost and labor intensity involved in their collection and are generally not 33 

representative of soil water status over larger areas (Rahimzadeh-Bajgiran et al., 2013; Zhao et al., 2018; Bai et al., 2019). 34 

With the development of remote sensing technologies, continuous SM estimates can be generated at regional and global scales 35 

(Peng et al., 2021). Compared to ground measurements, remote sensing products can provide good spatial and temporal 36 

coverage of SM with a relatively low cost to the user (Zeng et al., 2015; Zhao et al., 2018; Meng et al., 2020). Data assimilation 37 

SM products largely depend on the accuracy of the land surface model and the original inputs (Zawadzki and Kędzior, 2016). 38 

They generally have low accuracy in areas where ground measurements are scarce, which is a problem that can be overcome 39 

with remote sensing.  40 

At present, there are many remotely sensed SM data, some of which are from microwave remote sensing satellites, 41 

including active and passive types. SM retrievals from active sensors like Synthetic Aperture Radar (SAR) are sensitive to 42 

scattering and greatly affected by the surface roughness and vegetation types (Lievens et al., 2011; Wagner et al., 2013). Unlike 43 

active sensors, passive microwave radiometers or sensors are rarely affected by scattering (Abbaszadeh et al., 2019). Common 44 

passive microwave SM products are listed in Table 1 below. Studies have compared these products and found that SMAP SM 45 

products have higher accuracy and robustness than other remotely sensed SM products (Liu et al., 2019; Wang et al., 2021). 46 

Table 1: Information of five common passive microwave soil moisture (SM) products. 47 

SM Datasets 

(Abbreviation) 
Name Production source Resolution 

Temporal 

Coverage 

Equator 

Crossing 

Time 

AMSR-E/Aqua 

Daily L3 

Advanced Microwave 

Scanning Radiometer-

Earth Observing System 

National Aeronautics and Space 

Administration (NASA) National Snow 

and Ice Data Center Distributed Active 

Archive Center (NSIDC) 

25 km; 

Daily 

2002- 

2011 

1:30 PM 

Ascending 

1:30 AM 

Descending 

SMOS 
Soil Moisture and 

Ocean Salinity 
European Space Agency (ESA) 

25 km; 

Daily 

2010- 

present 

6:00 PM 

Ascending 

6:00 AM 

Descending 

FY3B Fengyun-3B National Satellite Meteorological Center 
25 km; 

Daily 

2011- 

present 

1:40 PM 

Ascending 

1:40 AM 

Descending 

GCOM-

W1/AMSR2 

Advanced Microwave 

Scanning Radiometer 2 

Japan Aerospace Exploration Agency 

(JAXA) 

0.25°/0.1°; 

Daily 

2012-

present 

1:30 PM 

Ascending 

1:30 AM 

Descending 

SMAP 
Soil Moisture Active 

Passive 

National Aeronautics and Space 

Administration (NASA) 

36 km; 

Daily 

2015-

present 

6:00 PM 

Ascending 

6:00 AM 

Descending 

Passive microwave SM products have been applied at watershed and national scale (Fang and Lakshmi, 2014; Meng et 48 

al., 2020). However, due to their coarse spatial resolution, microwave SM products have limited applicability to small-scale 49 

areas. Compared to microwave sensors, optical satellites such as MODIS and Landsat have a finer spatial resolution. Some 50 

observations generated from optical satellites provide good information about SM, such as vegetation index (VI) (usually 51 

Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI)) and land surface temperature (LST) 52 
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(Wang et al., 2007; Sun et al., 2012). Many experiments have tried to use these two parameters from optical remote sensing to 53 

retrieve surface SM (Mallick et al., 2009; Fang et al., 2013). Based on the LST and VI triangle space, Sandholt et al. (2002) 54 

proposed the temperature vegetation dryness index (TVDI) and used it to assess the SM status. Relative SM indicators can be 55 

calculated using optical remote sensing data, however, reliable ground measurements or other data are still required to obtain 56 

the true value of SM. 57 

Some studies have tried to use surface variables from optical observations to improve the spatial resolution of passive 58 

remotely sensed SM products (Peng et al., 2017). Zhao et al. (2017) used the triangle method and Landsat satellite observations 59 

to disaggregate coarse-resolution SM data. Studies have also shown that polynomial regression is effective in SM and optical 60 

observations (Zhao and Li, 2013; Piles et al., 2016). However, these methods have shortcomings in representing the nonlinear 61 

relationship between SM and other surface variables (Zhao et al., 2018; Hu et al., 2020). Machine learning methods can be 62 

applied to show the nonlinear relationships between SM and surface variables. Random forest (RF) and artificial neural 63 

network (ANN) have been widely used in previous studies due to their high generalization ability and robustness (Yao et al., 64 

2017; Liu et al., 2020; Demarchi et al., 2020; Chen et al., 2021). Chen et al. (2021) developed the global surface SM dataset 65 

covering 2003–2018 at 0.1° resolution with neural networks and some related variables. Im et al. (2016) used machine learning 66 

approaches (RF, boosted regression trees, and Cubist) to downscale AMSR-E SM data in South Korea and Australia and found 67 

RF to be superior to the other downscaling methods. Although these machine learning methods perform well in constructing 68 

nonlinear regression models, there are still some shortcomings. For example, neural networks are prone to overfitting when 69 

the sampling is inefficient (Piotrowski and Napiorkowski, 2013) or variables that are weakly correlated with the dependent 70 

variable (Elshorbagy and Parasuraman, 2008; Ågren et al., 2021). Since the RF algorithm uses random sampling with 71 

replacement, its simulation results will not exceed the range of training set and tend to ignore some extreme values when used 72 

as a regression model (Belgiu and Drăguţ, 2016). Also, it does not perform well when learning from an extremely imbalanced 73 

training data (Lin et al., 2021). Extreme gradient boosting (XGB), as a new ensemble learning method (Chen and Guestrin, 74 

2016), performs well in some fields (Wang et al., 2020; Fan et al., 2021; Ma et al., 2021), but it has rarely been used for soil 75 

moisture downscaling. Compared with methods such as RF, the XGB algorithm adopts the boosting weighted sampling method, 76 

which can reduce the impact of imbalanced data and better simulate the extreme values existing in the samples (Chen and 77 

Guestrin, 2016). The coarse-resolution remote sensed SM (>10 km) itself has ignored some maxima or minima with relatively 78 

finer-grid SMs, so a method that better simulates extreme values will obviously have certain theoretical advantages. 79 

The selection of feature variables is critical for regression models. In addition to LST and VI mentioned above, variables 80 

such as terrain and soil conditions also have a significant impact on SM. Abbaszadeh et al. (2019) downscaled SMAP 81 

radiometer SM products over the continental United States using MODIS products (including NDVI and LST), precipitation 82 

and topographic data, and also evaluated the influence of soil texture on SM. Zhao et al. (2018) added additional surface 83 

variables, such as leaf area index (LAI), normalized difference water index (NDWI), surface albedo and the solar zenith angle. 84 

Hu et al. (2020) added the normalized shortwave-infrared difference bare soil moisture index (NSDSI), horizontally polarized 85 
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Brightness Temperature (TBh) and vertically polarized Brightness Temperature (TBv) to the regression model. In general, all 86 

these variables can be classified into vegetation, temperature, soil wetness, topography, and soil factors and sensors conditions. 87 

In recent years, the Chinese government has carried out afforestation activities in order to reverse desertification in the 88 

North. Considering the role of SM in terrestrial ecosystems, it is urgent to obtain accurate SM with high temporal and spatial 89 

resolution. This study aims to downscale SMAP SM products by constructing a nonlinear relationship between SM and related 90 

surface variables by means of multiple machine learning methods and generate SM products with higher temporal and spatial 91 

resolution in desertification areas. The in situ observed SM data from the Maqu Monitoring Network and Babao Monitoring 92 

Network, several gridded SM products, and precipitation and temperature data from meteorological stations were used for 93 

validation and analysis. 94 

2. Materials and methodology 95 

2.1 Study area 96 

Northern China is mostly arid with an annual precipitation of generally less than 600 mm, and is subject to large-scale 97 

desertification. The desert areas of Northern China are susceptible to climate and hydrological changes and have fragile 98 

ecosystems. Soil water is a key parameter in land-atmosphere interactions (Ma et al., 2019), and its change greatly affects the 99 

survival of vegetation and agricultural production in desertification areas. The studied area whose boundaries are provided by 100 

government departments used for this study covers 3.36 million km2, encompassing seven provinces (Fig. 1). The precipitation 101 

in the study area decreases gradually from southeast to northwest, and belongs to the temperate continental climate (Fig. 1). 102 

he terrain is complex, and the average elevation is approximately 1900 m, ranging from -192 m to 7439 m. 103 
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 104 

Figure 1: Location of the study area. 105 

2.2 Observations for the production of soil moisture data 106 

2.2.1 SMAP SM data 107 

The SMAP satellite was launched on January 31, 2015. Its mission consists of an L-band radar and radiometer instrument 108 

suite, which provides global measurements and monitoring of SM in the top 5 cm of soil. The Level-3 products are daily 109 

composites of the Level-2 products and are the most commonly used for applications. The Level-3 products are available in 110 

three spatial resolutions: 36 km passive, 9 km active-passive, and 3 km active (O’Neill et al., 2010). Following the 111 

malfunctioning of its radar in 2015, SMAP radar data were replaced with those of Sentinel-1, limiting the application of active 112 

and active-passive products. 113 

The SMAP Level-3 passive daily SM product (L3_SM_P, Version 6) with a grid resolution of 36 km has been produced 114 

since March 31, 2015. Zeng et al. (2015) showed that most of remotely sensed SM products were slightly better during daytime 115 

than during nighttime, and the same conclusion for the SMAP SM product was confirmed by Zhao et al. (2018). Therefore, 116 

the SMAP Level-3 SM product with the descending overpass time of 6:00 AM was used in this study. The data were 117 

downloaded from NASA Earthdata (https://search.earthdata.nasa.gov). 118 

2.2.2 MODIS products 119 
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MODIS provides continuous time-series predictors for important parameters, such as vegetation index and surface 120 

temperature. This paper used MODIS products MOD09A1, MOD11A1, MOD13A2, MOD15A2H and MCD43D58 (Table 2). 121 

The 1-km daily LST was provided by MOD11A1, and the 1-km 16-day EVI and NDVI was provided by MOD13A2. 122 

MOD15A2H provided 8-day Leaf Area Index (LAI) with a spatial resolution of 500 m. MCD43D58 provided daily albedo 123 

data with a spatial resolution of 30 arc second (~1 000 m). Some soil wetness related indexes, including NDWI, NSDSI, and 124 

Land Surface Water Index (LSWI), were produced by MOD09A1. Their formulas are: 125 

𝑁𝐷𝑊𝐼 = (𝐵4 − 𝐵2)/(𝐵4 + 𝐵2)                                   (1) 126 

𝐿𝑆𝑊𝐼 = (𝐵2 − 𝐵6)/(𝐵2 + 𝐵6)                                   (2) 127 

𝑁𝑆𝐷𝑆𝐼 = (𝐵6 − 𝐵7)/𝐵6                                      (3) 128 

where B2, B4, B6 and B7 represent the MOD09A1 surface reflectance of the 2nd, 4th, 6th and 7th bands, respectively. 129 

These MODIS products are available from NASA Earthdata (https://search.earthdata.nasa.gov). All data were obtained 130 

from 2015 to 2020 and processed to a spatial resolution of 1,000 meters. 131 

2.2.3 Topographic data 132 

Topographic factors are strongly related to SM, including elevation, slope and aspect (Bai et al., 2019; De Santis et al., 133 

2021). The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) at 3 arc second resolution (∼100 m), 134 

version 3, obtained from the Land Processes Distributed Active Archive Center (LP 135 

DAAC)( https://e4ftl01.cr.usgs.gov/MEASURES/SRTMGL3.003/), was used as elevation. Slope and aspect were generated 136 

based on the DEM. 137 

2.2.4 Soil texture data 138 

Soil texture, the proportions of sand, silt and clay particles, controls the water holding capacity of the soil. The soil data 139 

at 1,000 m resolution, including the proportions of sand, silt and clay, used for this study used the China Soil Characteristics 140 

Dataset (CSCD) (Shangguan et al., 2012), obtained from National Tibetan Plateau Data Center (http://westdc.westgis.ac.cn/). 141 

2.2.5 In Situ SM observations 142 

The in situ SM measurements were collected from the data provided by the Maqu Monitoring Network (Zhang et al., 143 

2020) and the Babao Monitoring Network (Kang et al., 2017). The Maqu Monitoring Network covers 26 sites and provides 144 

SM for the surface layer (0-5 cm) at 15-minute intervals from 2009 to 2019; 19 of the available sites which have data after 145 

2015 were used in this study (Fig. 1). The Babao Monitoring Network covers 40 sites and provides hourly SM for the surface 146 

layer (4 cm, 10 cm and 20 cm) from 2013 to 2017; 29 of the available sites have data after 2015 and their observations of the 147 

first layer (4 cm) were used in this study (Fig. 1). To compare with the simulated results, they were all processed into daily 148 

time series. 149 
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2.2.6 Precipitation and temperature data 150 

The daily precipitation and temperature data were acquired from 131 meteorological stations from the China 151 

Meteorological Data Service Centre (http://data.cma.cn). The spatial locations of these meteorological stations are shown in 152 

Fig. 1. The average annual precipitation of most stations from 2015 to 2020 is less than 600 mm, and gradually decreases from 153 

northwest to southeast (Fig. 1). 154 

Table 2: Main predictors used in the study and corresponding datasets 155 

Datasets Predictors Original spatial resolution Temporal resolution Number of granules (Years×tiles) 

SMAP SM ~36 km Daily 2064 

MOD11A1 LST 1 km Daily 17460 

MOD13A2 NDVI; EVI 1 km 16-day 1104 

MOD15A2H LAI; FAPAR 500 m 8-day 2208 

MOD09A1 NDWI; LSWI; NSDSI 500 m 8-day 2208 

MCD43D58 Albedo 30 arc second (~1 km) Daily 2192 

SRTM DEM; Slope; Aspect 3 arc second (∼100 m) - 32 

CSCD Sand; Silt; Clay 1 km - 1 

2.2.7 Other gridded SM datasets 156 

Some other gridded SM data were used to compare the simulation results (Table 3). The SMAP Level-2 product 157 

(L2_SM_SP) merges SMAP radiometer and processed Sentinel-1A/1B SAR observations. It is available at 3 km and 1 km 158 

resolutions. The Global Change Observation Mission Water (GCOM-W1) AMSR2 product is produced by the Japan 159 

Aerospace Exploration Agency (JAXA), and SM data at a 0.1° spatial resolution were selected for this study. The Copernicus 160 

Climate Change Service (C3S) produces a global SM gridded dataset from 1978 to present from satellite sensors such as SMOS, 161 

AMSR2 and SMAP. It has a spatial resolution of 0.25 degrees and offers three types of products: active, passive and combined. 162 

The combined product that we used in this study is generated by merging the active and passive products. The fifth generation 163 

reanalysis dataset (ERA5) produced by European Centre for Medium-Range Weather Forecasts (ECMWF) provides several 164 

variables including volumetric soil water over several decades. In the dataset, the soil is divided into four layers and the depth 165 

of the top layer is 0-7 cm. In this study, we downloaded the hourly volumetric soil water data of the top layer and processed 166 

them as daily averages. Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 167 

provides daily SM at a 0.01° spatial resolution over the Central Asia region (30-100° E, 21-56° N), which covers part of our 168 

study area. The product consists of four layers of SM, and the SM at the top layer (0-10 cm) was selected for this study. 169 

Table 3: The gridded SM products used in this study 170 
Instit

ution 
Name Soil layers TYPES 

Temporal 

resolution 
Grid spacing Data link 

NAS

A 

SMAP/ Sentinel-1 

(L2_SM_SP) 

One layer 

(0-5 cm) 

Active 

microwave 
1-2 days 1/3 km 

https://cmr.earthdata.nasa.gov/search/

concepts/C1931663473-

NSIDC_ECS.html 

JAX

A 

GCOM-

W1/AMSR2 

One layer 

(~) 

Passive 

microwave 
Daily 

0.1°/0.25° (~11 

km/28 km) 
https://gportal.jaxa.jp/gpr/ 

ECM

WF 
C3S 

One layer 

(~) 

Passive, 

active and 

combined 

Daily 0.25° (~28 km) 
https://cds.climate.copernicus.eu/cdsa

pp#!/dataset/satellite-soil-moisture 
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ECM

WF 
ERA5 

Four layers 

(0-7 cm, 7-

28 cm, 28-

100 

cm,100-

289 cm) 

Reanalysis Hourly 0.1°(~11 km) 
https://cds.climate.copernicus.eu/cdsa

pp#!/dataset/reanalysis-era5-land 

NAS

A 
FLDAS 

Four layers 

(0-10 cm, 

10-40 cm, 

40-100 

cm,100-

200 cm) 

Reanalysis Daily 0.01°(~1.1 km) 

https://cmr.earthdata.nasa.gov/search/

concepts/C2020764153-

GES_DISC.html 

2.3 Downscaling approach based on multi-machine learning 171 

According to the selected variable indicators (mainly including topographic data, soil data and some MODIS products) 172 

and machine learning methods, we constructed a framework to downscale SMAP SM based on multiple machine learning 173 

methods (Fig. 2). 174 

 175 

Figure 2: Schematic of the SMAP soil moisture downscaling framework 176 
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2.3.1 Machine learning methods  177 

Machine learning methods are widely used in regression and classification. We selected machine learning methods that 178 

are currently widely used to build regression models for SM and its related variables. We studied five methods: Multiple linear 179 

regression (MLR), support vector regression (SVR), artificial neural networks (ANN), random forest (RF) and extreme 180 

gradient boosting (XGB). MLR and SVR have been widely used as regression methods in the past (Yu et al., 2012; Achieng, 181 

2019; Wang et al., 2019). ANN is currently one of the most popular machine learning methods and is used in many fields, 182 

including remote sensing of soil moisture inversion (Del Frate et al., 2003; Elshorbagy and Parasuraman, 2008; Yao et al., 183 

2017; Chen et al., 2021).  184 

RF and XGB are tree based ensemble algorithms, which have prediction accuracy and good generalization ability, and 185 

are not prone to overfitting (Rao et al., 2018; Abbaszadeh et al., 2019). RF is a multiple-tree algorithm improved by bootstrap 186 

to reduce decision tree bias in determining the splits (Mohana et al., 2021). Many studies have used RF to build regression 187 

models of remotely sensed SM and related variables, and almost all achieved better results compared to other regression 188 

methods (Zhao et al., 2018; Qu et al., 2019; Hu et al., 2020). In contrast, the application of XGB, which applies a regularized 189 

gradient boosting framework, is still very limited. However, XGB has prominent advantages in generalization performance 190 

and accuracy (Wang et al., 2020).  191 

The XGB algorithm is a boosting-type ensemble of multiple CART decision trees (Chen and Guestrin, 2016). The 192 

predicted result of the boosting-type tree ensemble model can be expressed as follows: 193 

𝑦𝑖̂ = ∅(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹                                (4) 194 

where 𝐹 is the space of regression tree, K is the total number of trees, which means the model uses K additive functions, 195 

𝑓𝑘(𝑥𝑖) is the weighted score of the 𝑘-th tree on 𝑖-th input data (𝑥𝑖). 196 

XGB adopts a regularized learning objective to optimize the simulation results. 197 

𝑂𝑏𝑗(∅) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂)
𝑁
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1                              (5) 198 

where 𝑙 is the loss function, N is the total number of input, Ω is the regularization term to penalize the model complexity 199 

and prevent overfitting. 200 

Compared with RF and other some methods, XGB has significantly faster calculation speed (Fan et al., 2018; Shi et al., 201 

2021). Some studies have shown that XGB is a better regression and classification algorithm than RF and other machine 202 

learning methods (Ågren et al., 2021; Fan et al., 2021). 203 

2.3.2 The construction of 16-day regression model 204 

The downscaling process is shown in Fig. 2. First, all data need to be preprocessed. Daily LST data are likely to be 205 

affected by the cloud, so we performed quality control to MOD11A1 products using its quality control (QC) band and choose 206 

high-quality cloud-free pixels. All selected variables, including LST, Albedo, LAI, NDWI, LSWI, NSDSI, NDVI, EVI, DEM, 207 
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slope, aspect, sand, silt and clay, were aggregated into a resolution of 1 km with a geotiff format. These variables were further 208 

resampled to the spatial resolution of the SMAP SM data (36 km) using the nearest neighbor interpolation method. 209 

Second, valid samples were obtained and split. Since it is severely affected by noise (such as clouds), MOD11A1 only 210 

provides daily valid clear-sky LST values onto grids. In addition, each SMAP image has a narrow coverage and provides only 211 

a small number of valid pixels per day. It means that there may be few or no valid samples if only the data of a certain day are 212 

selected to build the regression. The variables from MOD13A2 and MOD15A2H are the best composite within 16 days and 8 213 

days, respectively. To overcome the limitation, we chose to build regression models within 16 day periods (the lowest temporal 214 

resolution from these dynamic variables). All valid data (including training and test sets) within 16 days were used as the 215 

samples in the regression model. For instance, for NDVI and EVI on January 1, 2020, which are composite results from January 216 

1 to January 15, the valid data during the period were used as samples. The number of valid samples for surface variables and 217 

SMAP SM for each period in 2015-2020 is shown in Fig. 3. The day of year (DOY) is used to represent the corresponding 218 

period. Since limited available SMAP SM grid data, there may be few valid samples we can obtain during cold seasons. The 219 

valid samples for each period were divided into training and test sets, each accounting for 50% of the total number of samples. 220 

In this study, stratified random sampling based on sampling date during the 16-day period was employed to split the training 221 

and test sets. Moreover, to avoid excessively inconsistent training and test sets, the Kolmogorov-Smirnov (KS) test is adopted 222 

to test the distribution consistency of them (Kovalev and Utkin, 2020). If the p-value of the KS test result is less than or equal 223 

to 0.05, stratified random sampling is performed again, and until the requirements are met. 224 

 225 

Figure 3: The number of valid samples for a 16-day period in 2015-2020. DOY is the day of year, the same below. 226 

Third, the regression model was determined based on training and test sets. Considering the number of samples is critical 227 

to the accuracy of the regression model, we only selected periods with more than 100 samples to build the model and DOY of 228 

2016017, 2018017, 2018353, 2019001 and 2019177 were excluded. Then, we used the training set and multiple machine 229 
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learning methods (MLR, SVR, ANN, RF and XGB) to build a regression model for each 16-day period. The regression model 230 

was then defined according to the selected machine learning method: 231 

𝑆𝑀 = 𝑓(𝐿𝑆𝑇, 𝐴𝑙𝑏𝑒𝑑𝑜, 𝐿𝐴𝐼, 𝑁𝐷𝑊𝐼, 𝐿𝑆𝑊𝐼, 𝑁𝑆𝐷𝑆𝐼, 𝑁𝐷𝑉𝐼, 𝐸𝑉𝐼,  232 

𝐷𝐸𝑀, 𝑠𝑙𝑜𝑝𝑒, 𝑎𝑠𝑝𝑒𝑐𝑡, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡 𝑎𝑛𝑑 𝑐𝑙𝑎𝑦)                            (6) 233 

where f represents the regression function of the machine learning method (MLR, SVR, ANN, RF or XGB). 234 

    Finally, hyperparameter turning and the selection of the optimal model. Hyperparameters are critical for some machine 235 

learning methods (Klein et al., 2017; Khan et al., 2020; Sun et al., 2021). In this study, the key hyperparameters of SVR, ANN, 236 

RF and XGB are tuned based on grid search cross-validation (CV). All models are evaluated based on the correlation 237 

coefficient (R) and the root mean square error (RMSE). They are calculated as: 238 

𝑅 =
𝐶𝑜𝑣(𝑆𝑀𝐼,𝑆𝑀𝑃)

√𝑉𝑎𝑟(𝑆𝑀𝐼)𝑉𝑎𝑟(𝑆𝑀𝑃)
                                     (7) 239 

𝑅𝑀𝑆𝐸 = √
1

𝑛
(𝑆𝑀𝑃 − 𝑆𝑀𝐼)2                                  (8) 240 

where 𝑆𝑀𝐼 is the SMAP SM, 𝑆𝑀𝑃 is the corresponding SM predicted by the regression model, Cov represents the covariance 241 

function, Var is the variance, and 𝑛 is the number of valid samples for 𝑆𝑀𝐼 or 𝑆𝑀𝑃. 242 

The RMSE is used as the evaluation metric for hyperparameter turning. The tuning results of hyperparameters are shown 243 

in Tables S2 and S3. According to the optimal hyperparameter, the corresponding model can be constructed. 244 

2.3.3 Prediction of 1-km daily SM product 245 

The accuracy of the five regression models is compared using the average RMSE of training and test sets. This average 246 

RMSE can be expressed as: 247 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =
𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔+𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡

2
                                (9) 248 

where 𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡 are the RMSE of training and test sets for these models, respectively. 249 

The regression model with the smallest 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  was selected as the optimal model. Furthermore, we used the selected 250 

optimal model and these surface variables with a resolution of 1 km within 16 days to simulate daily SM at 1 km resolution 251 

on the corresponding date. Taking 16 days as a period, all daily SM data with a spatial resolution of 1 km from 2015 to 2020 252 

were predicted. In addition, to obtain a more complete time series of SM data, we used the model of the previous period when 253 

the number of valid samples was less than 100. 254 

2.4 Evaluation method 255 

The in situ SM measurements were used to validate the downscaled results. In addition to R and RMSE, bias and unbiased 256 

RMSE (ubRMSE) were also used for accuracy evaluation. Bias indicates the overall level of overestimation or underestimation 257 

of simulation results. ubRMSE can eliminate the influence of deviation. They were calculated according to: 258 



 

12 

 

𝑢𝑏𝑅𝑀𝑆𝐸 = √
1

𝑛
((𝑆𝑀𝐼𝑛 − 𝑆𝑀𝐼𝑛

̅̅ ̅̅ ̅̅ ̅) − (𝑆𝑀𝐷 − 𝑆𝑀𝐷
̅̅ ̅̅ ̅̅ ))2                      (10) 259 

𝑏𝑖𝑎𝑠 = 𝑆𝑀𝐼𝑛
̅̅ ̅̅ ̅̅ ̅ − 𝑆𝑀𝐷

̅̅ ̅̅ ̅̅                                    (11) 260 

where 𝑆𝑀𝐼𝑛 is the in situ observed SM, 𝑆𝑀𝑑 is the downscaled SM of the corresponding grid, and 𝑛 is the number of valid 261 

samples for 𝑆𝑀𝐼𝑛 or 𝑆𝑀𝐷. 262 

3. Results 263 

3.1 Model comparison 264 

The daily SM from DOY 81 in 2015 to DOY 366 in 2020 were simulated producing 128 regression results every 16 days. 265 

The correlation coefficient (R) and the root mean square error (RMSE) of each regression result for the training set and the 266 

test set are shown in Fig. 4 and Fig. 5, respectively. According to Equation 9, among the 128 regression results, there were 114 267 

from the XGB model, and 14 from RF. 268 

For all models except MLR, R is greater than 0.6 and RMSE is less than 0.05 m3/m3 both for the training and the test set. 269 

R greater than 0.6 and 0.8 indicates there is a reliable and strong correlation (Akoglu, 2018). It means that all methods except 270 

MLR have reliable simulation accuracy. For the training set using XGB, Rs are all above 0.96, generally higher than for other 271 

methods; Similarly, the RMSEs of XGB are all lower than 0.02 m3/m3, generally lower than those of other methods. The R of 272 

RF is second only to that of XGB, and for several periods it is higher than for XGB; the RMSEs of RF are also generally lower 273 

than 0.02 m3/m3 and are lower than those of XGB in several periods. SVR and ANN perform generally better in the cold 274 

season, and worse in other seasons. In general, their results are inferior to those of XGB and RF. The simulation results of 275 

MLR are relatively poor both in terms of RMSE and R. 276 

The results of the test set show that XGB, RF and SVR perform better than ANN and MLR. Table 4 shows the average 277 

RMSE and R values of the training and test sets over all periods, and the performance order of the model can be obtained as 278 

XGB>RF>SVR >ANN >MLR. In addition, there are seasonal variations in R and RMSE both for training and test sets. 279 

Moreover, the evaluation accuracy was generally better in the cold season, when sample sizes were smaller. 280 
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 281 

Figure 4: The correlation coefficient (R) of the models (MLR, SVR, ANN, RF and XGB) on different periods: (a) The training 282 

accuracy; (b) The test accuracy. 283 

 284 

Figure 5: The root mean square error (RMSE) of the models (MLR, SVR, ANN, RF and XGB) for different periods: (a) The training 285 

accuracy; (b) The test accuracy. 286 

Table 4: Accuracy of the models based on correlation coefficient (R) and root mean square error (RMSE) 287 

Model MLR SVR ANN RF XGB Combination 

Training 

set 

R 0.688 0.943 0.864 0.978 0.991 0.992 

RMSE (m3/m3) 0.042 0.019 0.028 0.013 0.007 0.007 

Test set 
R 0.675 0.824 0.660 0.857 0.861 0.861 

RMSE (m3/m3) 0.043 0.033 0.047 0.030 0.029 0.028 

3.2 Comparison with the in situ data and precipitation 288 
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The downscaled 1 km gridded SM were compared with the in situ SM observations of the Maqu Network and Babao 289 

Network (Fig. 6). Due to the difference in sensors, soil depth and measurement scale (point observation in case of the in situ 290 

measured SM and 1 km grid for the downscaled SM), there is a certain deviation between in situ observation data and the 291 

downscaled gridded SM data. The downscaled SM of most sites at the Maqu Network and Babao Network are highly correlated 292 

with the in situ measured SM (R>0.6). In the Maqu Network, the ubRMSEs with an average of 0.057 m3/m3 are all less than 293 

0.090 m3/m3, and the bias ranges from -0.10 to 0.22 m3/m3. In the Babao Network, the average ubRMSE of all sites is 0.081 294 

m3/m3 , and some of them exceed 0.1 m3/m3. In addition, their bias ranges from -0.07 to 0.45 m3/m3. It means that the validation 295 

accuracy of Babao Network is generally lower than Maqu Network. That may be mainly because the measured soil depth at 296 

the Babao Network is 4 cm, which means that there could be a systematic error between the datasets. Therefore, the validation 297 

accuracy should mainly refer to the evaluation accuracy of Maqu network. 298 

 299 

Figure 6: The relationships between in situ SM and downscaled SM. (a) Maqu Network; (b) Babao Network. 300 

To better understand the reason for these poor results, the scatter plots comparing the two sets of data were drawn. Figure 301 

7 shows the results of the 19 sites of the Maqu Network. All four statistical metrics, namely, R, RMSE, ubRMSE and bias 302 

were calculated, and their fitting line of the scatter was also plotted. Not surprisingly, the relationship is generally improved 303 

where there are more valid data. It means that the validation effect of in situ observations is affected by the amount of data. 304 

The same conclusion can be drawn through 29 sites at the Babao Network (Fig. S1). 305 
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 306 

Figure 7: Comparison between the downscaled SM and in situ SM of the Maqu Network. 307 

All SM products are compared with in situ SM. Figure 8 shows a significantly higher correlation between the downscaled 308 

SM and in situ SM of the Maqu Network. The median ubRMSE of the downscaled SM is the smallest, and its RMSE is second 309 

only to the C3S (0.25°) product. The bias of the downscaled SM is higher than that of some products, even higher than the 310 

original SMAP L3 (36 km) data. Almost the same results can be obtained from in situ observations of Babao Network (Fig. 311 

S2). The difference is that the bias of the downscaled SM is lower than the result of SMAP L3 (36 km). Compared with the 312 

RF-based and the XGB-based downscaled SMs, the downscaled SM with multiple machine learning approaches performed 313 

better, especially R and ubRMSE. 314 
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 315 

Figure 8: Comparison of gridded products and in situ observation SM of the Maqu Network. 316 

The observed SM of sites with a greater number of observed data were compared with these gridded SM data at different 317 

resolutions and precipitation. Figure 9 shows the temporal variations of these SM at four sites 2016-2017. The relationship 318 

between in situ observed SM and precipitation at all four sites is very consistent, showing annual fluctuation. The greater SM 319 

corresponds to more precipitation during the hot season, and the smaller SM corresponds to less precipitation during the cold 320 

season. 321 

Except for GCOMW/ASMR2 SM, the variation trends of these acquired gridded SM and the downscaled SM are basically 322 

the same despite the large difference in spatial resolution. GCOMW/ASMR2 significantly undestimates SM compared to other 323 

products. Both the SMAP L2 SM at 1 km and 3 km may be overestimated (CST05) and may also be underestimated (WSN18) 324 

compared with in situ observations. Moreover, SMAP L2 SM has some valid data mainly on hot days and almost no valid data 325 

during cold seasons. The peak values of the ERA5 SM are close to those of the in situ observations, but the low values are 326 

overestimated. The C3S SM is similar to the 36 km SMAP SM, and its peak values are simulated more accurately, while the 327 

minimum values have little valid data. Compared with the original data (36 km SMAP L3), the downscaled SM has a more 328 

complete time series, especially during the cold season. The downscaled SM data almost all match well with the in situ 329 

measured SM data, and all of them are also consistent with the precipitation. The difference between the downscaled SM and 330 

the in situ measured SM is mainly reflected in the magnitude of the variation, which is probably due to the difference in spatial 331 

resolution.  332 
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 333 

Figure 9: Time series of the in situ observed SM, the downscaled SM, the acquired gridded SM products and daily precipitation at 334 

the four selected SM sites (From Maqu Network and Babao Network, respectively) in 2016-2017. 335 

3.3 Mapping of the downscaled SM 336 

SM varies greatly in different months in desertified areas. Figure 10 shows the average SM in each month in the study 337 

area. The SM shows a monthly change pattern, and the values from June to September are bigger than in other months, 338 

especially in southern Qinghai Province, eastern Inner Mongolia Province, and western Xinjiang Province. The SM in some 339 

areas is low throughout the year, such as in the Tarim Basin of Xinjiang Province, western Inner Mongolia Province and most 340 

of Gansu Province. 341 
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 342 

Figure 10: Monthly average SM in the study area. 343 

The annual average SM was also calculated (Fig. S3). Compared with the monthly average SM, the annual average SM 344 

changed significantly less. Further, we compared the spatial patterns of the downscaled SM with the gridded SM products with 345 

different resolutions. Figure 11 shows the daily average SM of these products from 2015 to 2020. The spatial patterns of the 346 

downscaled SM and 36 km SMAP SM are basically consistent, but the downscaled data show better details in some areas such 347 

as near rivers. The overall values of GCOMW SM are relatively small, and exhibit some obvious errors in some areas. For 348 

example, SM in the Tarim Basin is higher than in the surrounding area, which is completely inconsistent with other SM data. 349 

The spatial pattern of the C3S SM is close to the downscaled SM and the 36 km SMAP SM, but some details are not presented. 350 

For example, SM in the Hetao Plain along the Yellow River is much higher than that in its surrounding area, which can be 351 

found in the downscaled SM and the SMAP SM, but not in the C3S SM. There are obvious errors in the results of ERA5. The 352 

average SM is significantly overestimated in the southern part of the study area, and underestimated in some areas in the 353 

northern of the study area. The FLDAS SM has high resolution, and its overall spatial pattern is relatively consistent with the 354 

downscaled SM and 36 km SMAP SM. The difference is that the FLDAS SM is significantly larger in higher elevation areas 355 

of the west than in other regions, which is quite different from other products. This suggests that the FLDAS SM may be 356 
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overestimated in these regions. In addition, FLDAS SM does not show wetter soil along the river. The spatial patterns of the 357 

RF-based and XGB-based downscaled SMs are both close to that of the downscaled SM with multiple machine learning 358 

approaches, however, the the maximum SM based on RF is smaller than the results based on XGB and multi-model 359 

combination. 360 

 361 

Figure 11: Daily average SM from 2015-2020 in the study area. (a)-(f) are the downscaled SM (1 km), SMAP L3 SM (36 km), 362 

GCOMW/ASMR2 SM (0.1°), C3S SM (0.25°), ERA5 SM (0.1°), FLDAS SM (0.1°) and the RF-based downscaled SM (1 km), 363 

respectively. 364 

To better demonstrate the differences in SM, a case of the Mu Us Desert was selected (Fig. 12). The Mu Us Desert is 365 

located in a semi-arid area with annual average precipitation of generally less than 400 mm, decreasing gradually from 366 

southeast to northwest. The main types of land cover are grassland and sandy land, and the salinization is serious in a few 367 

areas. Desertification has been severe for a long time in the past but significantly reversed with artificial afforestation in recent 368 

years. 369 

SM shows an overall trend of gradual decrease from the southeast to the northwest (Fig. 12 (b)~(g)), which is consistent 370 

with the distribution of precipitation. The average SM of the same location changes little from year to year. Overall, it is 371 

relatively large in 2018 and relatively small in 2015, which is also roughly consistent with annual precipitation patterns. Land 372 

cover types also have a certain influence on the spatial difference of SM. The northwestern portion of the Mu Us Desert is 373 

mainly grassland, which is strongly dependent on precipitation (Fig. 12 (h)). The southeastern area is mainly cultivated land 374 

and is less affected by precipitation as it relies on pumping groundwater rather than natural precipitation (Fig. 12 (j)). 375 
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 376 

Figure 12: Soil moisture estimated for the Mu Us Desert. (a) Land cover distribution over the study area; (b)-(g) annual average SM 377 

from 2015-2020; (h)-(j) annual precipitation and annual average temperature of three sites (53529, 53723 and 53740), whose 378 

surroundings are mainly grassland, cultivated land, and cultivated land, respectively. 379 

4. Discussion 380 

4.1 Variable importance assessment 381 

The selection of variables is an important step of a nonlinear regression model. The importance analysis of the variables 382 

carried out for this research found that a larger number of variables can improve the regression effect of these models. Due to 383 

the variables obtained in this study come from multiple data sources, their preprocessing may affect the construction of 384 

regression models and their relationship with SM. Moreover, variables collinearity and hyperparameters also affects the 385 

importance relationship of variables. This average result of the 128 regression models can give a relatively reasonable result. 386 

Figure 13 shows the average importance scores of each variable for the RF and XGB models across all available days. The 387 
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importance scores of different variables in the RF based model and the XGB based model are similar. LST and surface albedo 388 

both affect surface energy exchange and partition. LST is an important variable in both models, which is consistent with the 389 

study of Zhao et al. (2018). NSDSI is the most sensitive soil moisture index compared to LSWI and NDWI, which was 390 

demonstrated in Yue et al. (2019). Topographical factors also exhibite importance on SM, especially elevation. NDVI is more 391 

sensitive to vagetation index than EVI and LAI. However, their effect was smaller than that of soil moisture index. It indicates 392 

that the SM inversion method based only on LST and VI is inadequate. The influence of soil texture (sand, silt and clay) is 393 

relatively weak. 394 

The standard deviation of the importance scores of each variable is shown with error bars in Fig. 13. Its changes are 395 

mainly affected by the samples used in the regression model and the temporal variations in surface variables. For static 396 

variables such as soil structure and topographic factors, the changes in their importance scores mainly depend on the number 397 

and the location of the samples. Figure 13 also shows that their standard deviation is relatively small. Compared with static 398 

variables, the standard deviation of the importance scores of dynamic variables is significantly larger, especially for LST and 399 

LAI. This indicates that it is not reliable to construct a single regression model for a long time series. 400 

In general, the variable importance analysis suggests that the selected variables are suitable for the construction of the 401 

regression model. Moreover, choosing 16 days as a time period to build a regression model benefits from obtaining a sufficient 402 

number of samples, especially since the surface variables were found still unchanged during these intervals. 403 

 404 

Figure 13: The average importance scores of variables for the RF based approach and XGB based approach. Note: The importance 405 

scores are presented by increase in Node Purity (IncNodePurity) where the sum value is normalized for the RF model; The XGB 406 

model uses Gain to reflect the weight of variables. 407 

4.2 Advantages of model combination 408 

Both RF and ANN have been applied to downscale remote sensed SM so far, especially RF (Zhao et al., 2018; Qu et al., 409 

2019; Hu et al., 2020). This study showed that the simulation results of ANN have greater uncertainty, and the accuracy is 410 
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generally worse than that of RF (Figs. 4 and 5). The RF algorithm shows a good simulation ability, but in comparison, the 411 

XGB algorithm also has a corresponding effect or even higher. We also compared our simulation results combining multiple 412 

models and the RF-based simulation results. The results showed that the combined products have higher accuracy than the RF-413 

based products, which is mainly reflected in the relatively more reasonable simulation of peaks and valleys (Table 4 and Fig 414 

11). MLR has the worst effect compared to the other four models, which is likely to be affected by variable collinearity. In 415 

fact, many algorithms, especially linear ones, exhibit more or less poor robustness when there is high collinearity between 416 

variables (Dormann et al., 2013; Cammarota and Pinto, 2021). However, fewer explanatory variables also often means less 417 

ability to explain target variables. Several studies have shown that ensemble tree algorithms such as RF and XGB are generally 418 

not affected by variable collinearity (Tomaschek et al., 2018; Chen et al., 2020; Feng et al., 2021). 419 

A combination of multiple methods can reduce overfitting and uncertainties for the simulation of long time series (Zanotti 420 

et al., 2019; Yu et al., 2021). The five methods (MLR, SVR, ANN, RF and XGB) in this study have indicated the potential 421 

flaws of a single model. Although the XGB model generally perform better than other models, it has still some shortcomings. 422 

As it can be seen from Figs. 4 and 5, compared with the training accuracy, the test accuracy of the XGB model is significantly 423 

reduced in several periods. This means that the simulation results of the XGB model is likely to have a certain degree of 424 

overfitting. In contrast, the difference between training and test accuracy of the RF model is smaller. It showed better stability 425 

than XGB at several periods (Figs. 4 and 5). The training accuracy of MLR and SVR has a small difference from the test 426 

accuracy, but the overall accuracy is obviously lower (Table 4), which might be due to variable collinearity. Some studies have 427 

also proved that SVR may also perform better than ensemble algorithms (Yu et al., 2012; Fan et al., 2018). The fitting effect 428 

of ANN varies greatly in different periods, indicating that its generalization is lower than other models (Piotrowski and 429 

Napiorkowski, 2013). In general, the XGB and RF models provide the best combination of prediction accuracy and stability. 430 

4.3 Analysis of the relationship with precipitation and temperature 431 

Unlike predictors such as LST and NDVI that reflect SM status, climatic factors are are key drivers of SM variability. To 432 

evaluate the impact of precipitation and temperature on SM, we performed a partial correlation analysis on the data of all 433 

meteorological stations. Figure 14 shows that SM is mainly positively correlated with precipitation and temperature, and a few 434 

regions are significantly negatively correlated with temperature. In terms of spatial distribution, SM of the sites in the eastern 435 

region (including Inner Mongolia Province, Hebei Province and Shanxi Province) is mainly significantly affected by 436 

precipitation. Due to the influence of glaciers and snowmelt, the SM of the sites in the western region (Xinjiang Province and 437 

Gansu Province) is more affected by temperature. In addition, the number of sites with significant positive correlation with 438 

precipitation and temperature is the largest in Qinghai Province. This indicates that precipitation and temperature in the eastern 439 

part of the Tibetan Plateau both have a great influence on SM. 440 
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 441 

Figure 14: Partial correlation between monthly downscaled SM and precipitation and temperature (Pre: precipitation; Tem: 442 

temperature; NS: Not significance; SPC: Significantly positive correlation; SNC: Significantly negative correlation). 443 

4.4 Uncertainty and Prospects 444 

While this study greatly improved the spatial resolution of SM data from 2015-2020 in the desertification areas of North 445 

China by downscaling SMAP SM products, it still presents some shortcomings. Due to the influence of snow, ice and frozen 446 

ground, the number of valid SMAP pixels during cold seasons is very small, that makes the number of available samples is 447 

limited. With a period of 16-day, the number of valid samples may still be less than 100 during cold seasons (Fig. 3). The 448 

sample size affects the simulation accuracy. Figures 4 and 5 show that there are seasonal variations in R and RMSE, which is 449 

likely to be affected by the sample size (Figure 3). In general, a larger sample size often mean more efficient sampling and 450 

more reliable results, but not necessarily better evaluation accuracy. Likewise, insufficient samples can sometimes have good 451 

evaluation accuracy, although the results are less reliable. In order to reduce the error caused by insufficient samples, this study 452 

replaced the periods with less than 100 samples with the model of the previous periods. For this reason, the simulation results 453 

sometimes perform poorly during cold seasons (Fig. 9). In addition, the upscaling (from 1 km to 36 km resolution) of surface 454 

variables also has a certain impact on the accuracy of the model. 455 

Our products have a good correlation with the in situ observation data. Although there are deviations, the results are 456 

relatively reasonable. However, in situ observed SM data are limited in their representation of the entire 1 km ×1 km grid, 457 

which adds to the uncertainty of our product. Figure 6 shows that the evaluation accuracy of different points varies greatly. 458 

Through the investigation of past literature and our study, it is found that the relationship between in situ observation data and 459 

remote sensing SM has great uncertainty due to the influence of scale (Zeng et al., 2015; Abbaszadeh et al., 2019; Bai et al., 460 

2019; Liu et al., 2019; Zhang et al., 2020). In addition, due to instrument accuracy and climate change, there are also large 461 

errors in the in situ observation data, especially at low temperatures. The in situ observed SM data obtained in this paper are 462 

relatively limited, and their spatial distribution is concentrated in a certain part of of the study area, which is not representative. 463 
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It increases the uncertainty of the simulation results. In order to verify the accuracy of the data as much as possible, this study 464 

also selected several sets of gridded SM products for comparison. The results showed that our products perform better in 465 

temporal variability and spatial patterns (Figs. 9 and 11). 466 

5 Data availability 467 

The codes mainly used in this paper mainly includes sample selection, the building of the optimal regression model and 468 

the result prediction. The downscaled daily SM dataset at 1 km spatial resolution is available at 469 

https://doi.org/10.6084/M9.FIGSHARE.16430478.V5 (Rao et al., 2021). The data maps are all provided in Geotiff format, 470 

and the value has expanded 10, 000 times to make them easier to store. The filenames reflect the production date in Julian Day 471 

format. 472 

6 Conclusions 473 

In this study, an approach was proposed for downscaling 36 km SMAP SM products using MODIS optical products and 474 

other surface variables (mainly topographic data and soil data) based on multiple machine learning methods. Overall, the 475 

regression performance of the five methods is, in order: XGB>RF>SVR>ANN>MLR. Compared with MLR, SVR and ANN, 476 

XGB and RF have much better accuracy, and they were used in combination to produce daily 1 km downscaled SM in a period 477 

of 16 days. The validation shows that the downscaled SM are highly related to most in situ measured SM. The ubRMSE with 478 

an average of 0.057 m3/m3 is generally less than 0.090 m3/m3 at the Maqu Network. Time series of SM data from in situ 479 

observation sites are also compared. The results show that the downscaled SMs are highly related to SMAP SMs, and provide 480 

a more complete time series and match better with the in situ measured SM. Compared with some commonly used gridded 481 

SM products such as SMAP L2 (l km or 3 km), GCOMW/ASMR2, C3S, ERA5 and FLDAS SMs, the downscaled SM data 482 

not only have higher spatial resolution, but also have a more reliable accuracy whether in time series or spatial distribution. 483 

The maps of downscaled SM show larger values from June to September, which coincides with the vegetation growing 484 

season. The difference in annual mean SM is small. Spatially, SM is relatively large in Qinghai Province and in northeastern 485 

Inner Mongolia, especially in summer. In arid areas such as the Tarim Basin, SM is relatively small throughout the year. 486 

Moreover, precipitation and temperature both have a great influence on SM in the study area. Precipitation has a greater impact 487 

on SM in the eastern part of the study area, while the effect of temperature appears to be more pronounced in the west. 488 

This approach makes it possible to more accurately assess the soil moisture status in the study area. The results can support 489 

regional agricultural planting and revegetation efforts and can be applied to limit desertification in other areas in the future. 490 
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