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Abstract  7 

Central Asia (referred to as CA) is one of the climate change Hot-Spots due to the fragile ecosystems, 8 

strained water resources, and accelerated glacier melting, which underscores the need of high-resolution 9 

climate projection datasets for application to vulnerability, impacts, and adaption assessments in ecological 10 

and hydrological systems. In this study, a high-resolution (9km) climate projection dataset over CA (the 11 

HCPD-CA dataset) is derived from dynamically downscaled results based on multiple bias-corrected global 12 

climate models, and contains ten meteorological elements that are widely used to drive ecological and 13 

hydrological models. The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon 14 

emission scenario is Representative Concentration Pathway (RCP) 4.5. The results show the data product has 15 

good quality in describing the climatology of all the elements in CA, which ensures the suitability of the 16 

dataset for future research. The main feature of projected climate changes in CA in the near-term future is 17 

strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward 18 

shortwave and longwave flux at surface, with minor changes in other elements (e. g., precipitation, relative 19 

humidity at 2m, and wind speed at 10m). The HCPD-CA dataset presented here serves as a scientific basis for 20 

assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological 21 

systems. It is publicly available at http://data.tpdc.ac.cn/en/disallow/24c7467c-44a6-44ab-bbcf-22 

e6e346dd41d0/ (Qiu, 2021). 23 

1. Introduction 24 

Central Asia (referred to as CA, Fig. 1a) has complex terrain and diverse climates and is among the most 25 

vulnerable regions to climate change due to fragile ecosystems (Zhang et al., 2016;Seddon et al., 2016;Gessner 26 

et al., 2013), strained water resources (Frenken, 2013), and accelerated glacier melting (Narama et al., 27 

2010;Sorg et al., 2012), which underscores the need to achieve high-resolution climate projection datasets for 28 

application to vulnerability, impacts, and adaption assessments in ecological and hydrological systems. Global 29 
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 2 

climate models (GCMs) can describe the response of the global circulation to large-scale forcing, such as 30 

greenhouse gases and solar radiation (Giorgi, 2019). But their horizontal resolutions are too coarse to account 31 

for the effects of local-scale forcing and processes, such as complex topography, land cover distribution, and 32 

dynamical processes occurring at the mesoscale (Giorgi et al., 2016;Qiu et al., 2017;Torma et al., 2015). 33 

Regional climate models (RCMs) have been applied to downscale the GCM outputs to finer scales in CA (Zhu 34 

et al., 2020;Ozturk et al., 2017;Mannig et al., 2013). However, their resolutions are still low (≥ 30km), 35 

especially for the mountainous areas in the southeast. Moreover, most of the previous RCM simulations used 36 

a single GCM as the lateral boundary conditions, which harbor high uncertainties in the projected climate 37 

changes.  38 

The present authors carried out a study that involves the dynamical downscaling of multiple bias-39 

corrected GCMs for the CA region with an unprecedented horizontal resolution of 9km. The future simulation 40 

period is set as 2031-2050 under Representative Concentration Pathway (RCP) 4.5, with the reference period 41 

of 1986-2005. The simulated surface air temperature and precipitation have been evaluated in a recent study 42 

(Qiu et al., 2021) and meanwhile basic features of the projected climate changes have been demonstrated. The 43 

results show that the high-resolution RCMs driven by bias-corrected GCMs are excellent in simulating the 44 

local temperature and precipitation in CA and detect significant warming, severer heatwaves, and drier 45 

conditions in this region in the near-term future. 46 

To satisfy the urgent need of high-resolution climate data for ecological and hydrological applications in 47 

CA, the HCPD-CA (High-resolution Climate Projection Dataset in CA) dataset is derived from the 9-km 48 

resolution downscaled results, which includes ten meteorological elements (Table 1) that are widely used to 49 

drive ecological and hydrological models. They are daily precipitation (PREC, mm/day), daily 50 

mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity 51 

at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily 52 

mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure 53 

(PSFC, Pa). The present paper is to introduce this dataset to the community. Sect. 2 describes the regional 54 

model and experiments. Model evaluation and projected changes in these elements are in Sect. 3. Added values 55 

of using 9-km resolution respect to using coarser resolutions are discussed in Sect. 4 as well as uncertainties 56 

of the dataset. Sect. 5 describes access to the data product and all codes and tools. Main results are concluded 57 

in Sect. 6. 58 
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 3 

2 Model and experiments 59 

2.1 Regional model 60 

The Weather Research and Forecasting (WRF) model with version 3.8.1 (Skamarock et al., 2008) is used 61 

to downscale the GCMs. It has two domains (Fig. 1b). The outer one covers a large region, with a 27-km 62 

resolution and 290×205 grids. The inner one covers the CA region, with a 9-km resolution and 409×295 grids. 63 

The model has 33 levels in the vertical direction with its top fixed at 50 hPa. Its physical schemes are set based 64 

on our previous work about the sensitivity study of different physical parameterizations of the WRF model in 65 

simulating the local climate in CA (Wang et al., 2020). Details about them are in Qiu et al. (2021). Spectral 66 

nudging with a weak coefficient of 3×10-5 is applied in the outer domain (not in the inner one), which prevents 67 

possible model drift during the long-term integration by relaxing the model simulations of wind, temperature, 68 

and moisture toward the driving conditions. In addition to greenhouse gases and solar constant, the WRF 69 

model also considers other external forcing, such as aerosols, volcanoes, and ozone, to make its inner external 70 

forcing consistent with the driving GCMs.  71 

2.2 Bias-correction technique 72 

MPI-ESM-MR (referred to as MPI, Table 2), CCSM4 (referred to as CCSM), and HadGEM2-ES 73 

(referred to as Had) from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) are selected to 74 

drive the regional model. Since all GCMs suffer from some forms of bias (Done et al., 2015;Ehret et al., 75 

2012;Liang et al., 2008;Xu and Yang, 2012) that may propagate down to the RCM outputs, the bias-correction 76 

technique developed by Bruyère et al. (2014) is applied in this study to correct the climatology of the GCMs 77 

and allow synoptic and climate variability to change.  78 

Six-hourly GCM data in a 25-year base/future period (1981-2005/2026-2050), hereafter referred to as 79 

𝐺𝐶𝑀𝐵𝑃/𝐺𝐶𝑀𝐹𝑃, are broken down into the 25-year mean 6-hourly annual cycle over the base period (𝐺𝐶𝑀𝐵𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅) 80 

plus a 6-hourly perturbation term (𝐺𝐶𝑀𝐵𝑃
′/𝐺𝐶𝑀𝐹𝑃

′): 81 

𝐺𝐶𝑀𝐵𝑃 =  𝐺𝐶𝑀𝐵𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐺𝐶𝑀𝐵𝑃

′                         (1) 82 

𝐺𝐶𝑀𝐹𝑃 =  𝐺𝐶𝑀𝐵𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐺𝐶𝑀𝐹𝑃

′                                                        (2) 83 

The ERA-Interim reanalysis data (Dee et al., 2011, Table 2) as “observations” (𝑂𝑏𝑠) is similarly broken 84 

down into the mean annual cycle (𝑂𝑏𝑠̅̅ ̅̅ ̅) and a perturbation term (𝑂𝑏𝑠′): 85 

𝑂𝑏𝑠 =  𝑂𝑏𝑠̅̅ ̅̅ ̅ + 𝑂𝑏𝑠′                                 (3) 86 

The bias corrected GCM data for the base/future period, 𝐺𝐶𝑀𝐵𝑃
∗/𝐺𝐶𝑀𝐹𝑃

∗ , is then constructed by 87 
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 4 

replacing 𝐺𝐶𝑀𝐵𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅ from Eq. 1/2 with 𝑂𝑏𝑠̅̅ ̅̅ ̅ from Eq. 3: 88 

𝐺𝐶𝑀𝐵𝑃
∗ =  𝑂𝑏𝑠̅̅ ̅̅ ̅ + 𝐺𝐶𝑀𝐵𝑃

′                           (4) 89 

𝐺𝐶𝑀𝐹𝑃
∗ =  𝑂𝑏𝑠̅̅ ̅̅ ̅ + 𝐺𝐶𝑀𝐹𝑃

′                           (5) 90 

Eq. 1-5 are applied to all the variables required to generate the initial and lateral boundary conditions for 91 

the WRF model: zonal and meridional wind, geopotential height, air temperature, relative humidity, sea 92 

surface temperature, mean sea level pressure, etc.  93 

2.3 Experiments 94 

The RCM simulations with the bias-corrected GCMs (MPI, CCSM, and Had) as the driving data are 95 

referred to as WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR, respectively (“COR” means using 96 

the bias-correction technique). The reference-period simulations are from December 1, 1985 to December 31, 97 

2005 and the future runs are from December 1，2030 to the end of 2050 under a moderate carbon emission 98 

scenario RCP 4.5, which is arguably the most policy-relevant scenario as the Nationally Determined 99 

Contributions (NDCs) greenhouse gas emissions framework would produce similar temperatures trajectories 100 

(Gabriel and Kimon, 2015). The first month in each simulation is discarded as spin up. Fig. 2 shows the flow 101 

chart to produce the HCPD-CA dataset.  102 

3 Results 103 

3.1 Model evaluation 104 

In Qiu et al. (2021), the key meteorological elements, surface air temperature and precipitation, have 105 

been evaluated with both gridded observations and stations’ data (see Sect. 3.1 in the paper) and the results 106 

show good skills of the regional model in simulating the local temperature and precipitation in CA during the 107 

reference period (1986-2005). Accordingly, the ten meteorological elements (including surface air temperature 108 

and precipitation) in the HCPD-CA dataset are evaluated here, to show the validity and applicability of the 109 

dataset. Note that daily mean wind speed at 10m (referred to as WS10MEAN) instead of U10MEAN and 110 

V10MEAN is evaluated.  111 

Version 4 of the Climatic Research Units gridded Times Series (CRU TS v4, Harris et al., 2020, Table 2) 112 

is applied to evaluate T2MEAN/T2MAX/T2MIN and the fifth generation ECMWF (European Center for 113 

Medium Weather Forecasting) atmospheric reanalysis (ERA5, Hersbach et al., 2020, Table 2) land monthly 114 

averaged data (referred to as ERA-Land) is used as observations to evaluate other elements. Before the 115 

evaluation, the RCM outputs are interpolated to the grides of CRU TS v4 (ERA5-Land) with the distance-116 
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 5 

weighted average (bilinear) method. We found that both on the annual and seasonal scales, the interpolation 117 

methods conserved the area averaged values in the model outputs with a bias of less than 1-2% between the 118 

original and new grids. We thus concluded that our choice of interpolation procedure does not affect the main 119 

conclusions of our work. 120 

The high-resolution downscaled results (WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR) 121 

are very close to the observational data in simulating the climatology of all the elements in CA on the annual 122 

and seasonal scale (Fig. 3-5, seasonal results not shown here). For instance, the spatial correlation coefficients 123 

(SCCs) of all the elements except WS10MEAN are larger than 0.80. The SCCs of WS10MEAN are relatively 124 

small, in a range of 0.54-0.60. The regional model overestimated SWD, with the mean errors (MEs) in a range 125 

of 26.61-29.77 W/m2. Fig. 6 shows mean annual cycle of the monthly values averaged over CA. It is seen that 126 

the model outputs are generally close to the observations. The overestimation of SWD occurs throughout the 127 

year, with the bias larger in the warm seasons than in the cold seasons (Fig. 6e). The results of T2MAX and 128 

T2MIN are similar to those of T2MEAN (not shown here). 129 

To sum up, the model evaluation shows the HCPD-CA dataset has good quality in describing the 130 

climatology of all the ten meteorological elements in CA, which ensures the suitability of the dataset for 131 

ecological and hydrological applications.  132 

3.2 Projected climate changes 133 

Fig. 7 shows projected changes of the annual mean values in CA during 2031-2050, relative to 1986-134 

2005. All the RCM simulations exhibit significant warming over CA in the near-term future, with the annual 135 

mean T2MEAN increasing by 1.62-2.02℃ (Fig. 7a-c). Pronounced warming is found in the north, which is 136 

attributed to the snow and surface albedo feedback (Qiu et al., 2021). Interestingly, enhanced warming 137 

projected in many mountains in the world (Palazzi et al., 2019;Pepin et al., 2015;Rangwala et al., 2013) is not 138 

found in CA (see Fig. 8 in Qiu et al. (2021)). It poses a question if the responses of ecological and hydrological 139 

systems to future warming in the Tien Shan and Pamirs differ from those in other mountains, like Tibetan 140 

Plateau/Himalayas and Alps.  141 

The annual mean precipitation (PREC) is projected to sightly increase by 0.01-0.02 mm/day (Fig. 7d-f). 142 

However, changes in few areas passed the significance test. The annual mean RH2MEAN is projected to 143 

sightly decrease by 0.68-1.28% (Fig. 7g-i), which suggests a drier condition in CA in the coming decades and 144 

may affect the physical and chemical properties of the local vegetations. Changes in wind speed (WS10MEAN) 145 

are inconsistent among the RCM simulations (Fig. 7j-l). WRF_MPI_COR shows a slight increase of 0.02m/s 146 

while others show a slight decrease. Downward shortwave/longwave flux (SWD/LWD) are projected to 147 
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 6 

significantly increase by 3.47-4.28 W/m2 and 7.13-9.61 W/m2, respectively (Fig. 7m-r). Surface pressure 148 

(PSFC) is simulated to slightly increase by 0.15-0.70 hPa in CA (Fig. 7s-u).  149 

To sum up, the main feature of projected climate changes in CA in the near-term future is strong warming 150 

and significant increases in downward shortwave and longwave flux, with minor changes in other elements. 151 

Therefore, the HCPD-CA dataset provides extraordinary warming scenarios for assessing the impacts of future 152 

warming on the local ecological and hydrological systems in CA. Details about changes in these 153 

meteorological elements (e.g., changes at the seasonal scale) are out of the scope of the present paper and will 154 

be presented in further studies. Systematic analyses of changes in surface air temperature, heatwaves and 155 

droughts are in Qiu et al. (2021). 156 

4 Discussion 157 

4.1 9km vs 27km 158 

As discussed above, most of the previous RCM simulations in CA have horizontal resolutions not higher 159 

than 30km. To show the added values of using 9-km resolution in this study respect to using coarser resolutions, 160 

the evaluation metrics (SCC and RMSE) of the simulated 9-km resolution precipitation in the inner domain 161 

of the WRF model are compared with those of 27-km resolution precipitation in the outer domain (Fig. 8). As 162 

the gridded observations (CRU TS v4, and ERA5-Land) have potential limitations in depicting the climatology 163 

of the elements in CA, the metrics are calculated based on 58 stations’ data across CA (see red dots in Fig. 1a) 164 

which have been quality controlled (Qiu et al., 2021). Note that a station is compared with the model grid on 165 

which it is located.  166 

Compared with the 27-km resolution data, the 9-km resolution data largely increases SCCs and reduces 167 

RMSEs, especially over the mountainous areas (see the subregion “MT” in Fig. 1c). For instance, over the 168 

mountainous areas, the ensemble-mean SCC of annual precipitation increases from 0.38 to 0.58 (Fig. 8c) and 169 

the ensemble-mean RMSE of annual precipitation decreases from 1.30 to 1.14 mm/day (Fig. 8d). This 170 

highlights the necessity of improving the model resolution from ≥30km to 9km and the advantages of using 171 

the HCPD-CA dataset for researches in CA. 172 

4.2 Uncertainties 173 

With the limitation of the computational and time cost, this study used three bias-corrected GCMs from 174 

CMIP5 to do the dynamical downscaling over CA, which is an improvement relative to using a single original 175 

GCM. However, it still harbors uncertainties in the projected climate changes. As reported in the 1.5℃ special 176 
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 7 

report of the Intergovernmental Panel on Climate Chane (IPCC), we are on track to exceed 1.5℃ warming 177 

between 2030 and 2052 based on the current warming rate, and hence the near-term future projection becomes 178 

more critical to human development than that for the end of this century. Therefore, this study focuses on 179 

climate changes over CA in the near-term future (2031-2050). Long-term continuous (e.g., 1986-2100) 180 

regional climate projections in CA are more useful for studies in this region and will be conducted in the next 181 

stage. Land-use and land-cover (LULC) in the WRF model is derived from the Moderate Resolution Imaging 182 

Spectroradiometer (MODIS) data of 2002 (Wang et al., 2007). Dramatic changes in water extent of the Aral 183 

Sea (Micklin, 2007) are not taken into account during the simulations, which brings uncertainties in simulating 184 

the local climate in this area as well as projecting the climate changes caused by changes in LULC. 185 

5. Data and code availability 186 

The HCPD-CA dataset is available at http://data.tpdc.ac.cn/en/disallow/24c7467c-44a6-44ab-bbcf-187 

e6e346dd41d0/ (Qiu, 2021). The files are stored in netCDF4 format and compiled using the Climate and 188 

Forecast (CF) conventions. It contains ten meteorological elements from three RCM simulations 189 

(WRF_CCSM_COR, WRF_MPI_COR, and WRF_Had_COR) for a spatial domain covering the CA region 190 

(which is consisted of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) and its surrounding 191 

areas (see “D02” in Fig. 1b). The dataset covers two continuous 20-year periods, 1986-2005 and 2031-2050. 192 

Each year has 365 days (there is no leap year). We provide smaller-size (monthly and annual) files as 193 

surrogates for larger-size (daily) files. The names of the files follow the order: [dataset name]_[experiment 194 

name]_[element name]_[year].[time frequency].nc. For example, the file name, HCPD-195 

CA_WRF_CCSM_COR_T2MAX_2004.mon.nc, represents the monthly mean T2MAX of 2004 from the 196 

experiment WRF_CCSM_COR in the HCPD-CA dataset.  197 

The WRF model is available at https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The 198 

source code to do the bias correction is available at https://rda.ucar.edu/datasets/ds316.1/#!software. The 199 

Climate Data Operators (CDO, https://code.mpimet.mpg.de/projects/cdo), Python modules (like netCDF4, 200 

Xarray, and Numpy), and NCAR Command Languages (NCL, https://www.ncl.ucar.edu/) are recommended 201 

to do operations on the netCDF files. 202 

6. Conclusions 203 

A high-resolution (9km) projection climate dataset in CA (the HCPD-CA dataset), containing ten 204 

meteorological elements, is derived from dynamically downscaled results based on three bias-corrected GCMs 205 

(MPI-ESM-MR, CCSM4, and HadGEM2-ES) from CMIP5 for ecological and hydrological applications in 206 
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 8 

this region. The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission 207 

scenario is RCP4.5. The model estimation shows good quality of the data product in describing the 208 

climatology of all the elements in CA, which ensures the suitability of the dataset. The RCM simulations 209 

commonly suggest strong warming over CA in the near-term future, with the annual mean T2MEAN 210 

increasing by 1.62-2.02℃, and significant increase in downward shortwave and longwave flux. Changes in 211 

other elements (e. g., precipitation, relative humidity at 2m, and wind speed at 10m) are minor. The HCPD-212 

CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on 213 

many sectors, especially on ecological and hydrological systems. 214 
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Tables and Figures 330 

Table 1 Meteorological elements in the HCPD-CA dataset 331 

Element name Description Unit 

PREC Daily precipitation mm/day 

T2MEAN Daily mean temperature at 2m K 

T2MAX Daily maximum temperature at 2m K 

T2MIN Daily minimum temperature at 2m K 

RH2MEAN Daily mean relative humidity at 2m % 

U10MEAN Daily mean eastward wind at 10m m/s 

V10MEAN Daily mean northward wind at 10m m/s 

SWD Daily mean downward shortwave flux at surface W/m2 

LWD Daily mean downward longwave flux at surface W/m2 

PSFC Daily mean surface pressure Pa 
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 334 

Table 2 Information about the datasets used in the study.  335 

Dataset Run Spatial 

Resolution 

Temporal 

Resolution 

Link 

MPI-ESM-MR r1i1p1 1.9°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

HadGEM2-ES r1i1p1 1.3°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

CCSM4 b40.[20th\RCP

4.5].track1.1de

g.012.cam2.h4 

0.9°×1.3° 6-hourly https://rda.ucar.edu/datasets/

ds316.0/#!access 

ERA-Interim - 0.75°×0.75° Synoptic 

monthly means 

https://apps.ecmwf.int/datase

ts/data/interim-full-

mnth/levtype=sfc/ 

CRU TS v4 - 0.5°×0.5° monthly https://crudata.uea.ac.uk/cru/

data/hrg/cru_ts_4.00/ 

ERA5-Land - 0.1°×0.1° monthly https://cds.climate.copernicu

s.eu/cdsapp#!/dataset/reanaly

sis-era5-land-monthly-

means?tab=form 
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 338 

Fig. 1 Central Asia (referred to as CA) and its surrounding (a), nested domains in the WRF model (b), and 339 

climate subregions in CA (c). In subplot a, stations with records of precipitation are marked by red dots. In 340 

subplot c, according to Qiu et al. (2021), the CA region is divided into four climate sub-regions: northern CA 341 

(NCA), middle CA (MCA), southern CA (SCA), and the mountainous areas (MT). This figure is adapted from 342 

Qiu et al. (2021) and the reproduction right has been granted. 343 
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 345 

 346 

Fig. 2 Flow chart for the HCPD-CA dataset. 347 
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 348 

Fig. 3 The observed and simulated annual mean T2MEAN and PREC in Central Asia during the reference 349 

period (1986-2005). The spatial correlation coefficient (SCC), mean error (ME), and root mean square error 350 

(RMSE) are listed. 351 
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 352 

Fig. 4 Same as Fig. 3, but for annual mean RH2MEAN and WS10MEAN. 353 
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 354 

Fig. 5 Same as Fig. 3, but for annual mean SWD, LWD, and PSFC. 355 
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 357 

Fig. 6 Mean annual cycle of the monthly values averaged over Central Asia in the observation and RCM 358 

simulations. 359 
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 361 

Fig. 7 Projected changes of the annual mean values over Central Asia during 2031-2050, relative to 1986-362 
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 20 

2005. The regional mean (upper), minimum and maximum value (in parentheses) are listed. The slashed areas 363 

indicate where the changes passed the significance test at the 95% confidence level using the two-tailed 364 

Student’s t test. 365 

 366 

 367 

Fig. 8 Spatial correlation coefficients (SCCs) and root mean square errors (RMSEs) of the simulated annual 368 

(ANN), summer (JJA: June-July-August), and winter (DJF: December-January-February) mean precipitation 369 

over CA and the mountainous areas (MT) in the 9-km and 27-km resolution downscaled results. The metrics 370 

are calculated based on 58 stations’ data across CA. 371 
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