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Abstract  6 

Central Asia (referred to as CA) is one of the climate change Hot-Spots due to the fragile ecosystems, 7 

frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the 8 

need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption 9 

assessments in this region. In this study, a high-resolution (9km) climate projection dataset over CA (the 10 

HCPD-CA dataset) is derived from dynamically downscaled results based on multiple bias-corrected global 11 

climate models and contains four geostatic variables and ten meteorological elements that are widely used to 12 

drive ecological and hydrological models. The reference and future periods are 1986-2005 and 2031-2050, 13 

respectively. The carbon emission scenario is Representative Concentration Pathway (RCP) 4.5. The 14 

evaluation shows that the data product has good quality in describing the climatology of all the elements in 15 

CA despite some systematic biases, which ensures the suitability of the dataset for future research. Main 16 

features of projected climate changes over CA in the near-term future are strong warming (annual mean 17 

temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux 18 

at surface, with minor changes in other elements (e.g., precipitation, relative humidity at 2m, and wind speed 19 

at 10m). The HCPD-CA dataset presented here serves as a scientific basis for assessing the potential impacts 20 

of projected climate changes over CA on many sectors, especially on ecological and hydrological systems. It 21 

has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu, 2021). 22 

1. Introduction 23 

Central Asia (referred to as CA, Fig. 1a) has complex terrain and diverse climates and is among the most 24 

vulnerable regions to climate change due to fragile ecosystems (Zhang et al., 2016;Seddon et al., 2016;Gessner 25 

et al., 2013), frequent natural hazards (Thurman, 2011;Burunciuc, 2020), strained water resources (Frenken, 26 

2013), and accelerated glacier melting (Narama et al., 2010;Sorg et al., 2012), which underscores the need to 27 

achieve high-resolution climate projection datasets for application to vulnerability, impacts, and adaption 28 

assessments. Global climate models (GCMs) can describe the response of the global circulation to large-scale 29 
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forcing, such as greenhouse gases and solar radiation (Giorgi, 2019). But their horizontal resolutions are too 30 

coarse to account for the effects of local-scale forcing and processes, such as complex topography, land cover 31 

distribution, and dynamical processes occurring at the mesoscale (Giorgi et al., 2016;Qiu et al., 2017;Torma 32 

et al., 2015). To obtain the accurate information on region-scale climate change, dynamical downscaling has 33 

been developed and widely applied in regional climate projections over many areas, like East Asia (Zou and 34 

Zhou, 2016;Tang et al., 2016;Jung et al., 2015;Jiang et al., 2021;Ji and Kang, 2013;Hong et al., 2017;Guo et 35 

al., 2021;Bao et al., 2015;Zou and Zhou, 2017), North America (Wang and Kotamarthi, 2015;Racherla et al., 36 

2012;Pierce et al., 2013;Giorgi et al., 1994;Di Luca et al., 2013, 2012;Wang et al., 2015), and Europe (Vautard 37 

et al., 2013;Jacob et al., 2014;Kotlarski et al., 2014;Fischer et al., 2015;Kotlarski et al., 2015;Torma et al., 38 

2015;Giorgi et al., 2016;Zittis et al., 2019;Jacob et al., 2020;Déqué et al., 2007;Gao et al., 2006;Im et al., 39 

2010). Some efforts have also been devoted on regional climate projection in CA with the dynamical 40 

downscaling method (Zhu et al., 2020;Ozturk et al., 2017;Mannig et al., 2013). However, their resolutions are 41 

still low (≥30km), especially for the mountainous areas in the southeast. Moreover, most of the previous RCM 42 

simulations in CA used a single GCM as the lateral boundary conditions, which harbor high uncertainties in 43 

the projected climate changes.  44 

The present authors carried out a study that involves the dynamical downscaling of multiple bias-45 

corrected GCMs for the CA region with an unprecedented horizontal resolution of 9km. The future simulation 46 

period is set as 2031-2050 under Representative Concentration Pathway (RCP) 4.5, with the reference period 47 

of 1986-2005. The simulated surface air temperature and precipitation have been evaluated in a recent study 48 

(Qiu et al., 2021) and meanwhile basic features of the projected climate changes have been demonstrated. The 49 

results show that the high-resolution RCM simulations can well capture the local temperature and precipitation 50 

in CA and detect significant warming, severer heatwaves, and drier conditions in this region in the near-term 51 

future. 52 

To satisfy the urgent need of high-resolution climate data for assessing the potential impacts of the 53 

projected climate changes over CA on many sectors, especially on ecological and hydrological systems, the 54 

HCPD-CA (High-resolution Climate Projection Dataset in CA) dataset is derived from the 9-km-resolution 55 

downscaled results, which includes four geostatic (time-invariant) variables and ten meteorological elements 56 

(Table 1) that are widely used to drive ecological and hydrological models. The geostatic variables are terrain 57 

height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 58 

for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation 59 

(PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily 60 

mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m 61 
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(U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, 62 

W/m2), and daily mean surface pressure (PSFC, Pa). The present paper is to introduce this dataset to the 63 

community. Sect. 2 describes the regional model and experiments. Model evaluation and projected changes 64 

in the meteorological elements are in Sect. 3. Added values of using 9-km resolution respect to using coarser 65 

resolutions are discussed in Sect. 4 as well as uncertainties of the evaluation and the HCPD-CA dataset. Sect. 66 

5 describes access to the data product and all codes and tools. Main results are concluded in Sect. 6. 67 

2 Model and experiments 68 

2.1 Regional model 69 

The Weather Research and Forecasting (WRF) model with version 3.8.1 (Skamarock et al., 2008) is used 70 

to downscale the GCMs. It has two domains (Fig. 1b). The outer one covers a large region, with a 27-km 71 

resolution and 290×205 grids. The inner one covers the CA region, with a 9-km resolution and 409×295 grids. 72 

The model has 33 levels in the vertical direction with its top fixed at 50 hPa. Its physical schemes are set based 73 

on our previous work about the sensitivity analysis of physical parameterizations in the WRF model for local 74 

climate simulations in CA (Wang et al., 2020). Details about the optimal physical schemes are in Qiu et al. 75 

(2021). Spectral nudging with a weak coefficient of 3×10-5 is applied in the outer domain (not in the inner 76 

one), which prevents possible model drift during the long-term integration by relaxing the model simulations 77 

of wind, temperature, and moisture toward the driving conditions. In addition to greenhouse gases and solar 78 

constant, the WRF model also considers other external forcing, such as aerosols, volcanoes, and ozone, to 79 

make its inner external forcing consistent with the driving GCMs.  80 

The geogrid program in the WRF model is to define the simulation domains, and interpolate various 81 

terrestrial datasets to the model grids (Wang et al., 2007). First, geogrid computes the latitude, longitude, and 82 

map scale factors at every grid point. Then, it interpolates terrain height, land use category, soil category and 83 

other time-invariant data to the model grides. Global datasets of each of these fields are provided through the 84 

WRF download page (https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html). The 85 

HCPD-CA dataset contains four of the geostatic variables. In them, the terrain height (HGT) data (Fig. S1) is 86 

from the United States Geological Survey (USGS) GTOPO30 elevation dataset, the land use category 87 

(LU_INDEX) data (Table S1 and Fig. S2) is from the Moderate Resolution Imaging Spectroradiometer 88 

(MODIS) 21 category land dataset, the soil category (ISLTYP) data (Table S2 and Fig. S3) is from the global 89 

5-minute United Nation FAO soil category dataset, and the land mask (LANDMASK) data (Fig. S4) is 90 

calculated based on LU_INDEX with the condition that the value of a grid cell is set as 1 (0) if land (water) 91 
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area at least accounts for 50%. 92 

2.2 Bias-correction technique 93 

MPI-ESM-MR (referred to as MPI, Table 2), CCSM4 (CCSM), and HadGEM2-ES (Had) from Phase 5 94 

of the Coupled Model Intercomparison Project (CMIP5) are selected to drive the regional model. The reasons 95 

why we chose these three GCMs are as follows: they can provide all the variables that are needed to drive the 96 

regional model; they have relatively high horizontal resolutions (Table 2) among the CMIP5 models; they 97 

have fairly good performance in simulating the local temperature and precipitation in CA (see Fig. S1 and S3 98 

in Qiu et al., 2021), though systematic biases exist partially due to their coarse resolutions. Since all GCMs 99 

suffer from some forms of bias (Done et al., 2015;Ehret et al., 2012;Liang et al., 2008;Xu and Yang, 2012) 100 

that may propagate down to the RCM outputs, the bias-correction technique developed by Bruyère et al. (2014) 101 

is applied in this study to correct the climatology of the GCMs and meanwhile allow synoptic and climate 102 

variability to change.  103 

Six-hourly GCM data in a 25-year base/future period (1981-2005/2026-2050), hereafter referred to as 104 

𝐺𝐶𝑀!"/𝐺𝐶𝑀#", are broken down into the 25-year mean 6-hourly annual cycle over the base period (𝐺𝐶𝑀!"''''''''') 105 

plus a 6-hourly perturbation term (𝐺𝐶𝑀!"
$/𝐺𝐶𝑀#"

$): 106 

𝐺𝐶𝑀!" =	𝐺𝐶𝑀!"''''''''' + 𝐺𝐶𝑀!"
$                         (1) 107 

𝐺𝐶𝑀#" =	𝐺𝐶𝑀!"''''''''' + 𝐺𝐶𝑀#"
$																																																								(2) 108 

The ERA-Interim reanalysis data (Dee et al., 2011, Table 2) as “observations” (𝑂𝑏𝑠) is similarly broken 109 

down into the mean annual cycle (𝑂𝑏𝑠''''') and a perturbation term (𝑂𝑏𝑠$): 110 

𝑂𝑏𝑠 = 	𝑂𝑏𝑠''''' + 𝑂𝑏𝑠$                                 (3) 111 

The bias corrected GCM data for the base/future period, 𝐺𝐶𝑀!"
∗/𝐺𝐶𝑀#"

∗ , is then constructed by 112 

replacing 𝐺𝐶𝑀!"''''''''' from Eq. 1/2 with 𝑂𝑏𝑠''''' from Eq. 3: 113 

𝐺𝐶𝑀!"
∗ =	𝑂𝑏𝑠''''' + 𝐺𝐶𝑀!"

$                           (4) 114 

𝐺𝐶𝑀#"
∗ =	𝑂𝑏𝑠''''' + 𝐺𝐶𝑀#"

$                           (5) 115 

Eq. 1-5 are applied to all the variables required to generate the initial and lateral boundary conditions for 116 

the WRF model: zonal and meridional wind, geopotential height, air temperature, relative humidity, sea 117 

surface temperature, mean sea level pressure, etc. In a recent study (Qiu et al., 2021), we conducted the 118 

sensitivity analysis of using the bias-correction technique, to quantify its contribution to improving the RCM 119 

simulation. The results show that using the bias-correction technique largely reduced the biases in the 120 

simulated annual and seasonal precipitation over CA relative to not using it and slightly improved the model’s 121 

skill in simulating the spatial pattern of precipitation (see Fig. 4 in Qiu et al., 2021). 122 
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The bias-corrected CCSM4 outputs (DOI: https://doi.org/10.5065/D6DJ5CN4) is produced by Bruyère 123 

et al. (2014) with a 25-year base period (1981-2005) during the bias correction. In this study, we produced the 124 

bias-corrected MPI-ESM-MR and HadGEM2-ES outputs with the same base period as them. Note that the 125 

base period used during the bias correction is not necessary to be consistent with the reference period (1986-126 

2005) of the RCM simulations. 127 

2.3 Experiments 128 

The RCM simulations with the bias-corrected GCMs (MPI, CCSM, and Had) as the driving data are 129 

referred to as WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR, respectively (“COR” means using 130 

the bias-correction technique). The reference-period simulations are from December 1, 1985 to December 31, 131 

2005 and the future runs are from December 1，2030 to the end of 2050 under a moderate carbon emission 132 

scenario RCP 4.5, which is arguably the most policy-relevant scenario as the Nationally Determined 133 

Contributions (NDCs) greenhouse gas emissions framework would produce similar temperatures trajectories 134 

(Gabriel and Kimon, 2015). The first month in each simulation is discarded as spin up. Fig. 2 shows the flow 135 

chart to produce the HCPD-CA dataset. The procedure can be divided into four steps. First, a sensitivity 136 

analysis of physical parameterizations in the WRF model was done and then we identified the optimal physical 137 

parameterizations combination for WRF for regional climate studies over CA. Second, the original GCMs are 138 

bias corrected and the bias-corrected GCMs are used to drive the WRF model with the optimal physical 139 

schemes. Third, we conducted the dynamical downscaling over CA and produced 9-km resolution downscaled 140 

results. At last, the HCPD-CA dataset with certain variables and standard file formats is derived from the 141 

downscaled results. 142 

3 Results 143 

3.1 Model evaluation 144 

In Qiu et al. (2021), the key meteorological elements, surface air temperature and precipitation in the 145 

RCM simulations, have been evaluated with both gridded observations and stations’ data (see Sect. 3.1 in the 146 

paper) and the results show good skills of the regional model in simulating the local temperature and 147 

precipitation in CA during the reference period (1986-2005). Accordingly, the ten meteorological elements 148 

(including surface air temperature and precipitation) in the HCPD-CA dataset are evaluated here, to show the 149 

validity and applicability of the dataset. Note that daily mean wind speed at 10m (referred to as WS10MEAN) 150 

instead of U10MEAN and V10MEAN is evaluated.  151 
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Version 4 of the Climatic Research Units gridded Times Series (CRU TS v4, Harris et al., 2020, Table 2) 152 

is applied to evaluate T2MEAN/T2MAX/T2MIN and the land component of the fifth generation of European 153 

reanalysis (ERA5-Land, Hersbach et al., 2020, Table 2) is used as “observations” to evaluate other elements. 154 

Before the evaluation, the RCM outputs are interpolated to the grides of CRU TS v4 (ERA5-Land) with the 155 

distance-weighted average (bilinear) method. We found that both on the annual and seasonal scales, the 156 

interpolation methods conserved the area averaged values in the model outputs with a bias of less than 1-2% 157 

between the original and new grids. We thus concluded that our choice of interpolation procedure does not 158 

affect the main conclusions of our work. 159 

The high-resolution downscaled results (WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR) 160 

are very close to the observational data in simulating the climatology of all the elements in CA on both annual 161 

and seasonal scales (Fig. 3-5, seasonal results not shown). For instance, the spatial correlation coefficients 162 

(SCCs) of all the annual mean values (except WS10MEAN) over CA are larger than 0.80. The SCCs of annual 163 

mean WS10MEAN over CA are relatively small, in a range of 0.54-0.64. The simulated annual mean 164 

T2MEAN over the very north of Kazakhstan and the Pamirs has cold bias and that over other areas generally 165 

has warm bias (Fig. S5a-c). However, the bias over most of CA is within -2~2℃. The annual mean RH2MEAN 166 

is generally underestimated over CA except some areas in the northern part and the Aral Sea (Fig. S6a-c). The 167 

RCM simulations commonly overestimate the annual mean WS10MEAN over the mountainous areas (Fig. 168 

S6d-f). Stronger annual mean SWD prevails in CA in each simulation (Fig. S7a-c), with the mean errors (MEs) 169 

over the whole region in a range of 27.72-31.43 W/m2. Meanwhile, the regional model slightly underestimates 170 

annual mean LWD (Fig. S7d-f). The bias in annual mean PSFC is very small over the majority of CA (Fig. 171 

S7g-i). Table S3 summarizes the statistic metrics [SCCs, RMSEs, and mean errors (MEs)] of all the annual 172 

mean variables over both CA and its climate subregions [northern CA (NCA), middle CA (MCA), southern 173 

CA (SCA), and the mountainous areas (MT), see their scopes in Fig. 1c], to help the readers easily check the 174 

quality of this data product in the areas they are interested. 175 

Fig. 6 shows mean annual cycle of the monthly values averaged over CA. It is seen that the model outputs 176 

are generally close to the observations. The warm bias in T2MEAN mainly occurs during May-August (Fig. 177 

6a). The overestimation of SWD occurs throughout the year, with the bias larger in the warm seasons than in 178 

the cold seasons (Fig. 6e). The results of T2MAX and T2MIN are similar to those of T2MEAN (not shown 179 

here). 180 

To sum up, the evaluation shows that the HCPD-CA dataset has good quality in describing the 181 

climatology of all the meteorological elements in CA despite some systematic biases (e.g., stronger SWD), 182 

which ensures the suitability of the dataset for assessment of future risks from climate change in CA.  183 
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3.2 Projected climate changes 184 

Fig. 7 shows projected changes of the annual mean values in CA during 2031-2050, relative to 1986-185 

2005. All the RCM simulations exhibit significant warming over CA in the near-term future, with the annual 186 

mean T2MEAN increasing by 1.62-2.02℃ (Fig. 7a-c, range depending on the simulation). Pronounced 187 

warming is found in the north, which is attributed to the snow and surface albedo feedback (Qiu et al., 2021). 188 

Interestingly, enhanced warming projected in many mountainous regions around the world (Palazzi et al., 189 

2019;Pepin et al., 2015;Rangwala et al., 2013) is not found in CA (also see Fig. 7-8 in Qiu et al. (2021)). It 190 

poses a question if the responses of ecological and hydrological systems to future warming in the Tien Shan 191 

and Pamirs differ from those in other mountains, like Tibetan Plateau/Himalayas and Alps.  192 

The annual mean precipitation (PREC) is projected to sightly increase by 0.01-0.02 mm/day (Fig. 7d-f). 193 

However, changes in few areas passed the significance test. The annual mean RH2MEAN is simulated to 194 

sightly decrease by 0.68-1.28% (Fig. 7g-i), which suggests a drier condition in CA in the coming decades and 195 

may affect the physical and chemical properties of the local vegetations. Changes in wind speed (WS10MEAN) 196 

are inconsistent among the RCM simulations (Fig. 7j-l). WRF_MPI_COR shows a slight increase of 0.02m/s 197 

while others show a slight decrease, which highlights the uncertainties in the projected changes. Downward 198 

shortwave/longwave flux (SWD/LWD) are projected to significantly increase by 3.47-4.28 W/m2 (Fig. 7m-o) 199 

and 7.13-9.61 W/m2 (Fig. 7p-r), respectively. Surface pressure (PSFC) is simulated to slightly increase by 200 

0.15-0.70 hPa in CA (Fig. 7s-u).  201 

To sum up, main features of projected climate changes in CA in the near-term future are strong warming 202 

and significant increases in downward shortwave and longwave flux, with minor changes in other elements. 203 

Therefore, the HCPD-CA dataset provides extraordinary warming scenarios for assessing the impacts of future 204 

warming on many sectors (e.g., agriculture, ecological and hydrological systems) in CA. Details about 205 

changes in these meteorological elements (e.g., changes on the seasonal scale) are out of the scope of the 206 

present paper and will be presented in further studies. Systematic analyses of changes in surface air 207 

temperature, heatwaves and droughts are in Qiu et al. (2021). 208 

4 Discussion 209 

4.1 Uncertainties in the evaluation 210 

To prove if considering the elevation differences between the observations and the model grids during 211 

the evaluation will give a fairer assessment of the model’s skills, we take T2MEAN as an example and adjusted 212 
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the simulated T2MEAN to the elevation of the observations and then compared the adjusted T2MEAN with 213 

the observations. Here, we use the records of T2MEAN on 58 stations across CA (see the stars in Fig. 1a) as 214 

observations, which as well as the records of PREC on 52 stations (which is used in sect. 4.2, see the circles 215 

in Fig. 1a) are from Global Historical Climatology Network (GHCN) of NOAA National Climatic Data Center 216 

and have been quality controlled (Qiu et al., 2021). Note that a station is compared with the model grid on 217 

which it is located. Fig. S8 shows the SCCs and RMSEs of the simulated annual and seasonal T2MEAN over 218 

CA before and after adjusting. It is seen that the simulated T2MEAN is more consistent with the observations 219 

after vertically interpolating the model data to the elevation of the stations by the standard moist lapse rate of 220 

6.5 ℃/km (Qiu et al., 2017). For instance, after adjusting the SCC of the simulated annual T2MEAN increases 221 

from 0.93 to 0.96 and its RMSE decreases from 2.52 to 2.25℃. This proves that the regional model’s skills 222 

may be underestimated if the elevation differences between the observations and the model grids is not 223 

considered. 224 

4.2 9km vs 27km 225 

As discussed above, most of the previous RCM simulations in CA have horizontal resolutions not higher 226 

than 30km. To show the added values of using 9-km resolution in this study respect to using coarser resolutions, 227 

the evaluation metrics (SCC and RMSE) of the simulated 9-km resolution precipitation in the inner domain 228 

of the WRF model are compared with those of 27-km resolution precipitation in the outer domain (Fig. 8). As 229 

the gridded observations (CRU TS v4, and ERA5-Land) have potential limitations in depicting the climatology 230 

of precipitation in CA, the metrics are calculated based on the aforementioned 52 stations’ data across CA.  231 

Compared with the 27-km resolution data, the 9-km resolution data largely increases SCCs and reduces 232 

RMSEs, especially over the mountainous areas (see the scope of subregion “MT” in Fig. 1c). For instance, 233 

over the mountainous areas, the ensemble-mean SCC of annual precipitation increases from 0.38 to 0.58 (Fig. 234 

8c) and the ensemble-mean RMSE of annual precipitation decreases from 1.30 to 1.14 mm/day (Fig. 8d). This 235 

highlights the necessity of improving the model resolution from ≥30km to 9km and the advantages of using 236 

the HCPD-CA dataset for researches in CA. 237 

4.3 Uncertainties of the HCPD-CA dataset 238 

With the limitation of the computational and time cost, this study used three bias-corrected GCMs from 239 

CMIP5 to do the dynamical downscaling over CA, which is an improvement relative to using a single original 240 

GCM. However, it still harbors uncertainties in the projected climate changes. As reported in the 1.5℃ special 241 

report of the Intergovernmental Panel on Climate Chane (IPCC), we are on track to exceed 1.5℃ warming 242 
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between 2030 and 2052 based on the current warming rate, and hence the near-term future projection becomes 243 

more critical to human development than that for the end of this century. Therefore, this study focuses on 244 

projected climate changes over CA in the near-term future (2031-2050). Long-term continuous (e.g., 1986-245 

2100) regional climate projections in CA are more useful for studies in this region and will be conducted in 246 

the next stage. Land-use and land-cover (LULC) in the WRF model both in the historical and future 247 

simulations is derived from the MODIS data of 2002 (Wang et al., 2007). Dramatic changes in land-use and 248 

land-cover have happened in CA and are very likely to be ongoing in the future (Micklin, 2007;Ma et al., 249 

2021;Chen et al., 2013;Li et al., 2019), such as the shrinking of the Aral Sea and the expansion of croplands 250 

and urbans. The land-use and land-cover changes (LULUCC) are not taken into account in our simulations, 251 

which brings uncertainties in simulating the historical climate in this area as well as projecting the climate 252 

changes in the future. A study about assessing the effects of the future LULCC on the local climate in CA is 253 

in process and the model outputs from this study will be openly published as a complement to the HCPD-CA 254 

dataset. 255 

5. Data and code availability 256 

The HCPD-CA is hosted at National Tibetan Plateau Data Center (Li et al., 2020;Pan et al., 2021) and 257 

has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu, 2021). The files are stored in netCDF4 258 

format and compiled using the Climate and Forecast (CF) conventions. It contains four geostatic variables and 259 

ten meteorological elements from three RCM simulations (WRF_CCSM_COR, WRF_MPI_COR, and 260 

WRF_Had_COR) for a spatial domain covering the CA region (which is consisted of Kazakhstan, Kyrgyzstan, 261 

Tajikistan, Turkmenistan, and Uzbekistan) and its surrounding areas (see the domain “D02” in Fig. 1b). The 262 

dataset covers two continuous 20-year periods, 1986-2005 and 2031-2050. Each year has 365 days (there is 263 

no leap year). We provide smaller-size (monthly and annual) files as surrogates for larger-size (daily) files. 264 

The names of the files containing the geostatic variables follow the order: [dataset name]_[variable name].nc. 265 

For example, the file name, HCPD-CA_ISLTYP.nc, represents the soil category in the HCPD-CA dataset. The 266 

names of the files containing the meteorological elements follow the order: [dataset name]_[experiment 267 

name]_[element name]_[year].[time frequency].nc. For example, the file name, HCPD-268 

CA_WRF_CCSM_COR_T2MAX_2004.mon.nc, represents the monthly mean T2MAX of 2004 from the 269 

experiment WRF_CCSM_COR in the HCPD-CA dataset.  270 

The WRF model is available at https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The 271 

source code to do the bias correction is available at https://rda.ucar.edu/datasets/ds316.1/#!software. The 272 

Climate Data Operators (CDO, https://code.mpimet.mpg.de/projects/cdo), Python modules (like netCDF4, 273 
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Xarray, and Numpy), and NCAR Command Languages (NCL, https://www.ncl.ucar.edu/) are recommended 274 

to do operations on the netCDF files. 275 

6. Conclusions 276 

A high-resolution (9km) projection climate dataset in CA (the HCPD-CA dataset), containing four 277 

geostatic variables and ten meteorological elements, is derived from dynamically downscaled results based 278 

on three bias-corrected GCMs (MPI-ESM-MR, CCSM4, and HadGEM2-ES) from CMIP5 for application to 279 

vulnerability, impacts, and adaption assessments in this region. The reference and future periods are 1986-280 

2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The evaluation shows good 281 

quality of the data product in describing the climatology of all the meteorological elements in CA despite 282 

some systematic biases (e.g., stronger downward shortwave radiation throughout the year), which ensures the 283 

suitability of the dataset. The RCM simulations commonly suggest strong warming over CA in the near-term 284 

future, with the annual mean T2MEAN increasing by 1.62-2.02℃, and significant increase in downward 285 

shortwave and longwave flux. Changes in other elements (e. g., precipitation, relative humidity at 2m, and 286 

wind speed at 10m) are minor. The HCPD-CA dataset presented here serves as a scientific basis for assessing 287 

the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems. 288 
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 493 

Tables 494 

Table 1 Geostatic variables and meteorological elements in the HCPD-CA dataset 495 

Name Description Unit 

HGT Terrain height m 

LU_INDEX Land use category - 

LANDMASK Land mask (1 for land, 0 for water) - 

ISLTYP Soil category - 

PREC Daily precipitation mm/day 

T2MEAN Daily mean temperature at 2m K 

T2MAX Daily maximum temperature at 2m K 

T2MIN Daily minimum temperature at 2m K 

RH2MEAN Daily mean relative humidity at 2m % 

U10MEAN Daily mean eastward wind at 10m m/s 

V10MEAN Daily mean northward wind at 10m m/s 

SWD Daily mean downwelling shortwave flux at bottom W/m2 

LWD Daily mean downwelling longwave flux at bottom W/m2 

PSFC Daily mean surface pressure Pa 

 496 

  497 
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Table 2 Information about the datasets used in the study.  498 

Dataset Run Spatial 

Resolution 

Temporal 

Resolution 

Link 

MPI-ESM-MR r1i1p1 1.9°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

HadGEM2-ES r1i1p1 1.3°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

CCSM4 b40.[20th\RCP

4.5].track1.1de

g.012.cam2.h4 

0.9°×1.3° 6-hourly https://rda.ucar.edu/datasets/

ds316.0/#!access 

ERA-Interim - 0.75°×0.75° Synoptic 

monthly means 

https://apps.ecmwf.int/datase

ts/data/interim-full-

mnth/levtype=sfc/ 

CRU TS v4 - 0.5°×0.5° monthly https://crudata.uea.ac.uk/cru/

data/hrg/cru_ts_4.00/ 

ERA5-Land - 0.1°×0.1° monthly https://cds.climate.copernicu

s.eu/cdsapp#!/dataset/reanaly

sis-era5-land-monthly-

means?tab=form 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 
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Figures 509 

 510 

Fig. 1 Central Asia (referred to as CA) and its surroundings (a), nested domains in the WRF model (b), and 511 

climate subregions in CA (c). In subplot a, stations with records of daily mean temperature and precipitation 512 

are marked by stars and circles, respectively. In subplot c, according to Qiu et al. (2021), the CA region is 513 

divided into four climate sub-regions: northern CA (NCA), middle CA (MCA), southern CA (SCA), and the 514 

mountainous areas (MT). 515 

  516 
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 517 

 518 
Fig. 2 Flow chart for the HCPD-CA dataset. 519 
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 520 

Fig. 3 The observed and simulated annual mean T2MEAN and PREC in Central Asia during the reference 521 

period (1986-2005). The spatial correlation coefficient (SCC), mean error (ME), and root mean square error 522 

(RMSE) are listed. 523 



 20 

 524 

Fig. 4 Same as Fig. 3, but for annual mean RH2MEAN and WS10MEAN. 525 
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 526 

Fig. 5 Same as Fig. 3, but fort annual mean SWD, LWD, and PSFC. 527 

 528 
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 529 

Fig. 6 Mean annual cycle of the monthly values averaged over Central Asia in the observations and RCM 530 

simulations. 531 

 532 
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 533 

Fig. 7 Projected changes of the annual mean values over Central Asia during 2031-2050, relative to 1986-534 



 24 

2005. The regional mean (upper), minimum and maximum value (in parentheses) are listed. The slashed areas 535 

indicate where the changes passed the significance test at the 95% confidence level using the two-tailed 536 

Student’s t test. 537 

 538 

 539 

Fig. 8 Spatial correlation coefficients (SCCs) and root mean square errors (RMSEs) of the simulated annual 540 

(ANN), summer (JJA: June-July-August), and winter (DJF: December-January-February) mean precipitation 541 

over CA and the mountainous areas (MT) in the 9-km and 27-km resolution downscaled results. The metrics 542 

are calculated based on 52 stations’ data across CA. 543 
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