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Abstract  7 

Central Asia (referred to as CA) is one of the climate change Hot-Spots due to the fragile 8 

ecosystems, frequent natural hazards, strained water resources, and accelerated glacier 9 

melting, which underscores the need of high-resolution climate projection datasets for 10 

application to vulnerability, impacts, and adaption assessments in ecological and hydrological 11 

systems in this region. In this study, a high-resolution (9km) climate projection dataset over 12 

CA (the HCPD-CA dataset) is derived from dynamically downscaled results based on multiple 13 

bias-corrected global climate models, and contains four geostatic variables and ten 14 

meteorological elements that are widely used to drive ecological and hydrological models. 15 

The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon 16 

emission scenario is Representative Concentration Pathway (RCP) 4.5. The results evaluation 17 

shows that the data product has good quality in describing the climatology of all the elements 18 

in CA despite some systematic biases, which ensures the suitability of the dataset for future 19 

research. The mMain features of projected climate changes in over CA in the near-term future 20 

is are strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant 21 

increase in downward shortwave and longwave flux at surface, with minor changes in other 22 

elements (e. g., precipitation, relative humidity at 2m, and wind speed at 10m). The HCPD-23 

CA dataset presented here serves as a scientific basis for assessing the potential impacts of 24 

projected climate changes over CA on many sectors, especially on ecological and 25 

hydrological systems. It has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu, 26 

2021)is publicly available at http://data.tpdc.ac.cn/en/disallow/24c7467c-44a6-44ab-bbcf-27 

e6e346dd41d0/ (Qiu, 2021). 28 
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1. Introduction 29 

Central Asia (referred to as CA, Fig. 1a) has complex terrain and diverse climates and is 30 

among the most vulnerable regions to climate change due to fragile ecosystems (Zhang et al., 31 

2016;Seddon et al., 2016;Gessner et al., 2013), frequent natural hazards (Thurman, 32 

2011;Burunciuc, 2020), strained water resources (Frenken, 2013), and accelerated glacier 33 

melting (Narama et al., 2010;Sorg et al., 2012), which underscores the need to achieve high-34 

resolution climate projection datasets for application to vulnerability, impacts, and adaption 35 

assessments in ecological and hydrological systems. Global climate models (GCMs) can 36 

describe the response of the global circulation to large-scale forcing, such as greenhouse gases 37 

and solar radiation (Giorgi, 2019). But their horizontal resolutions are too coarse to account 38 

for the effects of local-scale forcing and processes, such as complex topography, land cover 39 

distribution, and dynamical processes occurring at the mesoscale (Giorgi et al., 2016;Qiu et 40 

al., 2017;Torma et al., 2015). Regional To obtain the accurate information on region-scale 41 

climate change, dynamical downscaling has been developed and widely applied in regional 42 

climate projections over many areas, like East Asia (Zou and Zhou, 2016;Tang et al., 43 

2016;Jung et al., 2015;Jiang et al., 2021;Ji and Kang, 2013;Hong et al., 2017;Guo et al., 44 

2021;Bao et al., 2015;Zou and Zhou, 2017), North America (Wang and Kotamarthi, 45 

2015;Racherla et al., 2012;Pierce et al., 2013;Giorgi et al., 1994;Di Luca et al., 2013, 46 

2012;Wang et al., 2015), and Europe (Vautard et al., 2013;Jacob et al., 2014;Kotlarski et al., 47 

2014;Fischer et al., 2015;Kotlarski et al., 2015;Torma et al., 2015;Giorgi et al., 2016;Zittis et 48 

al., 2019;Jacob et al., 2020;Déqué et al., 2007;Gao et al., 2006;Im et al., 2010). climate models 49 

(RCMs) have been applied to downscale the GCM outputs to finer scalesSome efforts have 50 

also been devoted on regional climate projection in CA with the dynamical downscaling 51 

method (Zhu et al., 2020;Ozturk et al., 2017;Mannig et al., 2013). However, their resolutions 52 

are still low (≥30km), especially for the mountainous areas in the southeast. Moreover, most 53 

of the previous RCM simulations in CA used a single GCM as the lateral boundary conditions, 54 

which harbor high uncertainties in the projected climate changes.  55 

The present authors carried out a study that involves the dynamical downscaling of 56 

multiple bias-corrected GCMs for the CA region with an unprecedented horizontal resolution 57 

of 9km. The future simulation period is set as 2031-2050 under Representative Concentration 58 

Pathway (RCP) 4.5, with the reference period of 1986-2005. The simulated surface air 59 
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temperature and precipitation have been evaluated in a recent study (Qiu et al., 2021) and 60 

meanwhile basic features of the projected climate changes have been demonstrated. The 61 

results show that the high-resolution RCMs driven by bias-corrected GCMs are excellent in 62 

simulating the local temperature and precipitation in CA and detect significant warming, 63 

severer heatwaves, and drier conditions in this region in the near-term future. 64 

To satisfy the urgent need of high-resolution climate data for assessing the potential 65 

impacts of the projected climate changes on many sectors ecological and hydrological 66 

applications in CA, especially on ecological and hydrological systems, the HCPD-CA (High-67 

resolution Climate Projection Dataset in CA) dataset is derived from the 9-km resolution 68 

downscaled results, which includes four geostatic (time-invariant) variables and ten 69 

meteorological elements (Table 1) that are widely used to drive ecological and hydrological 70 

models. The geostatic variables are terrain height (HGT, m), land use category (LU_INDEX, 71 

21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category 72 

(ISLTYP, 16 categories). They meteorological elements are daily precipitation (PREC, 73 

mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, 74 

K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward 75 

wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux 76 

at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The present 77 

paper is to introduce this dataset to the community. Sect. 2 describes the regional model and 78 

experiments. Model evaluation and projected changes in the meteorologicalse elements are in 79 

Sect. 3. Added values of using 9-km resolution respect to using coarser resolutions are 80 

discussed in Sect. 4 as well as uncertainties of the evaluation and the HCPD-CA dataset. Sect. 81 

5 describes access to the data product and all codes and tools. Main results are concluded in 82 

Sect. 6. 83 

2 Model and experiments 84 

2.1 Regional model 85 

The Weather Research and Forecasting (WRF) model with version 3.8.1 (Skamarock et 86 

al., 2008) is used to downscale the GCMs. It has two domains (Fig. 1b). The outer one covers 87 

a large region, with a 27-km resolution and 290×205 grids. The inner one covers the CA 88 

region, with a 9-km resolution and 409×295 grids. The model has 33 levels in the vertical 89 
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direction with its top fixed at 50 hPa. Its physical schemes are set based on our previous work 90 

about the sensitivity study of different physical parameterizations of the WRF model in 91 

simulating the local climate in CA (Wang et al., 2020). Details about them are in Qiu et al. 92 

(2021).. Spectral nudging with a weak coefficient of 3×10-5 is applied in the outer domain 93 

(not in the inner one), which prevents possible model drift during the long-term integration 94 

by relaxing the model simulations of wind, temperature, and moisture toward the driving 95 

conditions. In addition to greenhouse gases and solar constant, the WRF model also considers 96 

other external forcing, such as aerosols, volcanoes, and ozone, to make its inner external 97 

forcing consistent with the driving GCMs.  98 

The geogrid program in the WRF model is to define the simulation domains, and 99 

interpolate various terrestrial datasets to the model grids (Wang et al., 2007). (Wang et al., 100 

2007)First, geogrid computes the latitude, longitude, and map scale factors at every grid point. 101 

Then, it interpolates terrain height, land use category, soil category and other time-invariant 102 

data to the model grides. Global datasets of each of these fields are provided through the WRF 103 

download page 104 

(https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html). The 105 

HCPD-CA dataset contains four of the geostatic variables. In them, the terrain height (HGT) 106 

data (Fig. S1) is from the United States Geological Survey (USGS) GTOPO30 elevation 107 

dataset, the land use category (LU_INDEX) data (Table S1 and Fig. S2) is from the Moderate 108 

Resolution Imaging Spectroradiometer (MODIS) 21 category land dataset, the soil category 109 

(ISLTYP) data (Table S2 and Fig. S3) is from the global 5-minute United Nation FAO soil 110 

category dataset, and the land mask (LANDMASK) data (Fig. S4) is calculated based on 111 

LU_INDEX with the condition that the value of a grid cell is set as 1 (0) if land (water) area 112 

at least accounts for 50%. 113 

2.2 Bias-correction technique 114 

MPI-ESM-MR (referred to as MPI, Table 2), CCSM4 (referred to as CCSM), and 115 

HadGEM2-ES (referred to as Had) from Phase 5 of the Coupled Model Intercomparison 116 

Project (CMIP5) are selected to drive the regional model. The reasons why we chose these 117 

three GCMs are as below: they can provide all the variables that are needed to drive the 118 

regional model; they have relatively high horizontal resolution (Table 2) among the CMIP5 119 

models; they have fairly good performance in simulating the local temperature and 120 
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precipitation in CA (see Fig. S1 and S3 in Qiu et al., 2021), though systematic biases exist 121 

partially due to their coarse resolutions. Since all GCMs suffer from some forms of bias (Done 122 

et al., 2015;Ehret et al., 2012;Liang et al., 2008;Xu and Yang, 2012) that may propagate down 123 

to the RCM outputs, the bias-correction technique developed by Bruyère et al. (2014) is 124 

applied in this study to correct the climatology of the GCMs and allow synoptic and climate 125 

variability to change.  126 

Six-hourly GCM data in a 25-year base/future period (1981-2005/2026-2050), hereafter 127 

referred to as 𝐺𝐶𝑀!"/𝐺𝐶𝑀#", are broken down into the 25-year mean 6-hourly annual cycle 128 

over the base period (𝐺𝐶𝑀!"''''''''') plus a 6-hourly perturbation term (𝐺𝐶𝑀!"
$/𝐺𝐶𝑀#"

$): 129 

𝐺𝐶𝑀!" =	𝐺𝐶𝑀!"''''''''' + 𝐺𝐶𝑀!"
$                         (1) 130 

𝐺𝐶𝑀#" =	𝐺𝐶𝑀!"''''''''' + 𝐺𝐶𝑀#"
$																																																								(2) 131 

The ERA-Interim reanalysis data (Dee et al., 2011, Table 2) as “observations” (𝑂𝑏𝑠) is 132 

similarly broken down into the mean annual cycle (𝑂𝑏𝑠''''') and a perturbation term (𝑂𝑏𝑠$): 133 

𝑂𝑏𝑠 = 	𝑂𝑏𝑠''''' + 𝑂𝑏𝑠$                                 (3) 134 

The bias corrected GCM data for the base/future period, 𝐺𝐶𝑀!"
∗/𝐺𝐶𝑀#"

∗ , is then 135 

constructed by replacing 𝐺𝐶𝑀!"''''''''' from Eq. 1/2 with 𝑂𝑏𝑠''''' from Eq. 3: 136 

𝐺𝐶𝑀!"
∗ =	𝑂𝑏𝑠''''' + 𝐺𝐶𝑀!"

$                           (4) 137 

𝐺𝐶𝑀#"
∗ =	𝑂𝑏𝑠''''' + 𝐺𝐶𝑀#"

$                           (5) 138 

Eq. 1-5 are applied to all the variables required to generate the initial and lateral boundary 139 

conditions for the WRF model: zonal and meridional wind, geopotential height, air 140 

temperature, relative humidity, sea surface temperature, mean sea level pressure, etc. In a 141 

recent study (Qiu et al., 2021), we conducted the sensitivity experiments of using the bias-142 

correction technique, to quantify its contribution to improving the RCM simulation. The 143 

results show that using the bias-correction technique largely reduced the biases in the 144 

simulated annual and seasonal precipitation over CA respect to not using it and slightly 145 

improved the model’s skill in simulating the spatial pattern of precipitation (see Fig. 4 in Qiu 146 

et al., 2021). 147 

The bias-corrected CCSM4 outputs (DOI: https://doi.org/10.5065/D6DJ5CN4) is 148 

produced by Bruyère et al. (2014) with a 25-year base period (1981-2005) during the bias 149 

correction. In this study, we produced the bias-corrected MPI-ESM-MR and HadGEM2-ES 150 

outputs with the same base period as them. Note that the base period used during the bias 151 
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correction is not necessary to be consistent with the reference period (1986-2005) of the RCM 152 

simulations. 153 

2.3 Experiments 154 

The RCM simulations with the bias-corrected GCMs (MPI, CCSM, and Had) as the 155 

driving data are referred to as WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR, 156 

respectively (“COR” means using the bias-correction technique). The reference-period 157 

simulations are from December 1, 1985 to December 31, 2005 and the future runs are from 158 

December 1，2030 to the end of 2050 under a moderate carbon emission scenario RCP 4.5, 159 

which is arguably the most policy-relevant scenario as the Nationally Determined 160 

Contributions (NDCs) greenhouse gas emissions framework would produce similar 161 

temperatures trajectories (Gabriel and Kimon, 2015). The first month in each simulation is 162 

discarded as spin up. Fig. 2 shows the flow chart to produce the HCPD-CA dataset. The 163 

procedure can be divided into four steps. First, multiple-source observational data is used to 164 

evaluate the WRF model with different combinations of physical schemes and then we found 165 

the optimal combination of physical schemes for the WRF model. Second, the original GCMs 166 

are bias corrected and the bias-corrected GCMs are used to drive the WRF model with the 167 

optimal combination of physical schemes. Third, we conducted the dynamical downscaling 168 

over CA and produced 9-km resolution downscaled results. At last, the HCPD-CA dataset 169 

with certain variables and standard file formats is derived from the downscaled results. 170 

3 Results 171 

3.1 Model evaluation 172 

In Qiu et al. (2021), the key meteorological elements, surface air temperature and 173 

precipitation in the RCM simulations, have been evaluated with both gridded observations 174 

and stations’ data (see Sect. 3.1 in the paper) and the results show good skills of the regional 175 

model in simulating the local temperature and precipitation in CA during the reference period 176 

(1986-2005). Accordingly, the ten meteorological elements (including surface air temperature 177 

and precipitation) in the HCPD-CA dataset are evaluated here, to show the validity and 178 

applicability of the dataset. Note that daily mean wind speed at 10m (referred to as 179 

WS10MEAN) instead of U10MEAN and V10MEAN is evaluated.  180 



 7 

Version 4 of the Climatic Research Units gridded Times Series (CRU TS v4, Harris et 181 

al., 2020, Table 2) is applied to evaluate T2MEAN/T2MAX/T2MIN and the land component 182 

of the fifth generation of EuropeanECMWF (European Center for Medium Weather 183 

Forecasting) atmospheric reanalysis (ERA5-Land, Hersbach et al., 2020, Table 2) land 184 

monthly averaged data (referred to as ERA-Land) is used as “observations” to evaluate other 185 

elements. Before the evaluation, the RCM outputs are interpolated to the grides of CRU TS 186 

v4 (ERA5-Land) with the distance-weighted average (bilinear) method. We found that both 187 

on the annual and seasonal scales, the interpolation methods conserved the area averaged 188 

values in the model outputs with a bias of less than 1-2% between the original and new grids. 189 

We thus concluded that our choice of interpolation procedure does not affect the main 190 

conclusions of our work. 191 

The high-resolution downscaled results (WRF_MPI_COR, WRF_CCSM_COR, and 192 

WRF_Had_COR) are very close to the observational data in simulating the climatology of all 193 

the elements in CA on the both annual and seasonal scales (Fig. 3-5, seasonal results not 194 

shown here). For instance, the spatial correlation coefficients (SCCs) of all the elements 195 

annual mean values (except WS10MEAN) over CA are larger than 0.80. The SCCs of annual 196 

mean WS10MEAN over CA are relatively small, in a range of 0.54-0.6064. The simulated 197 

annual mean T2MEAN over the very north of Kazakhstan and the Pamirs has cold bias and 198 

that over other areas generally has warm bias (Fig. 5Sa-c). However, the bias over most of 199 

CA is within -2~2℃. The annual mean RH2MEAN is generally underestimated over CA 200 

except some areas in the northern part and the Aral Sea (Fig. 6Sa-c). The regional model 201 

overestimatedThe RCM simulations commonly overestimate the annual mean WS10MEAN 202 

over the mountainous areas (Fig. 6Sd-f).  Stronger annual mean SWD prevails in CA in each 203 

simulation (Fig. 7Sa-c), with the mean errors (MEs) over the whole region in a range of 204 

26.617.72-29.7731.43 W/m2. Meanwhile, the regional model slightly underestimates annual 205 

mean LWD (Fig. 7Sd-f). The bias in annual mean PSFC is very small over the majority of CA 206 

(Fig. 7Sg-i). Table S3 summarizes the statistic metrics [SCCs, RMSEs, and mean errors (MEs)] 207 

of all the annual mean variables over both CA and its climate subregions [northern CA (NCA), 208 

middle CA (MCA), southern CA (SCA), and the mountainous areas (MT), see their scopes in 209 

Fig. 1c], to help the readers easily check the quality of this data product in the areas they are 210 

interested. 211 
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Fig. 6 shows mean annual cycle of the monthly values averaged over CA. It is seen that 212 

the model outputs are generally close to the observations. The warm bias in T2MEAN mainly 213 

occurs during May-August (Fig. 6a). The overestimation of SWD occurs throughout the year, 214 

with the bias larger in the warm seasons than in the cold seasons (Fig. 6e). The results of 215 

T2MAX and T2MIN are similar to those of T2MEAN (not shown here). 216 

To sum up, the model evaluation shows that the HCPD-CA dataset has good quality in 217 

describing the climatology of all the ten meteorological elements in CA despite some 218 

systematic biases (e.g., stronger SWD), which ensures the suitability of the dataset for 219 

ecological and hydrological applicationsassessment of future risk from climate change in CA.  220 

3.2 Projected climate changes 221 

Fig. 7 shows projected changes of the annual mean values in CA during 2031-2050, 222 

relative to 1986-2005. All the RCM simulations exhibit significant warming over CA in the 223 

near-term future, with the annual mean T2MEAN increasing by 1.62-2.02℃ (Fig. 7a-c, range 224 

depending on the simulation). Pronounced warming is found in the north, which is attributed 225 

to the snow and surface albedo feedback (Qiu et al., 2021). Interestingly, enhanced warming 226 

projected in many mountains in the world (Palazzi et al., 2019;Pepin et al., 2015;Rangwala et 227 

al., 2013) is not found in CA (also see Fig. 7-8 in Qiu et al. (2021)). It poses a question if the 228 

responses of ecological and hydrological systems to future warming in the Tien Shan and 229 

Pamirs differ from those in other mountains, like Tibetan Plateau/Himalayas and Alps.  230 

The annual mean precipitation (PREC) is projected to sightly increase by 0.01-0.02 231 

mm/day (Fig. 7d-f). However, changes in few areas passed the significance test. The annual 232 

mean RH2MEAN is projected simulated to sightly decrease by 0.68-1.28% (Fig. 7g-i), which 233 

suggests a drier condition in CA in the coming decades and may affect the physical and 234 

chemical properties of the local vegetations. Changes in wind speed (WS10MEAN) are 235 

inconsistent among the RCM simulations (Fig. 7j-l). WRF_MPI_COR shows a slight increase 236 

of 0.02m/s while others show a slight decrease, which highlights the uncertainties in the 237 

projected changes. Downward shortwave/longwave flux (SWD/LWD) are projected to 238 

significantly increase by 3.47-4.28 W/m2 (Fig. 7m-o) and 7.13-9.61 W/m2 (Fig. 7p-r), 239 

respectively (Fig. 7m-r). Surface pressure (PSFC) is simulated to slightly increase by 0.15-240 

0.70 hPa in CA (Fig. 7s-u).  241 

To sum up, the main features of projected climate changes in CA in the near-term future 242 
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is are strong warming and significant increases in downward shortwave and longwave flux, 243 

with minor changes in other elements. Therefore, the HCPD-CA dataset provides 244 

extraordinary warming scenarios for assessing the impacts of future warming on many sectors 245 

(e.g., agriculture, the local ecological and hydrological systemss) in CA. Details about 246 

changes in these meteorological elements (e.g., changes at on the seasonal scale) are out of 247 

the scope of the present paper and will be presented in further studies. Systematic analyses of 248 

changes in surface air temperature, heatwaves and droughts are in Qiu et al. (2021). 249 

4 Discussion 250 

4.1 Uncertainties in the evaluation 251 

To prove if considering the elevation differences between the observations and the model 252 

grids during the evaluation will give a fairer assessment of the model’s skills, we take 253 

T2MEAN as an example and adjusted the simulated T2MEAN to the elevation of the 254 

observations and then compared the adjusted T2MEAN with the observations. Here, we use 255 

the records of T2MEAN on 58 stations across CA (see the stars in Fig. 1a) as observations, 256 

which as well as the records of PREC on 52 stations (which is used in sect. 4.2, see the circles 257 

in Fig. 1a) are from Global Historical Climatology Network (GHCN) of NOAA National 258 

Climatic Data Center and have been quality controlled (Qiu et al., 2021). Note that a station 259 

is compared with the model grid on which it is located. Fig. 8S shows the SCCs and RMSEs 260 

of the simulated annual and seasonal T2MEAN over CA before and after adjusting. It is seen 261 

that the simulated T2MEAN is more consistent with the observations after vertically 262 

interpolating the model data to the elevation of the stations by the standard moist lapse rate 263 

of 6.5 ℃/km (Qiu et al., 2017). For instance, after adjusting the SCC of the annual T2MEAN 264 

increases from 0.93 to 0.96 and its RMSE decreases from 2.52 to 2.25℃. This proves that the 265 

regional model’s skills may be underestimated if the elevation differences between the 266 

observations and the model grids is not considered. 267 

4.21 9km vs 27km 268 

As discussed above, most of the previous RCM simulations in CA have horizontal 269 

resolutions not higher than 30km. To show the added values of using 9-km resolution in this 270 

study respect to using coarser resolutions, the evaluation metrics (SCC and RMSE) of the 271 
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simulated 9-km resolution precipitation in the inner domain of the WRF model are compared 272 

with those of 27-km resolution precipitation in the outer domain (Fig. 8). As the gridded 273 

observations (CRU TS v4, and ERA5-Land) have potential limitations in depicting the 274 

climatology of the elementsprecipitation in CA, the metrics are calculated based on 58 the 275 

aforementioned 52 stations’ data across CA (see red dots in Fig. 1a). which have been quality 276 

controlled (Qiu et al., 2021). Note that a station is compared with the model grid on which it 277 

is located.  278 

Compared with the 27-km resolution data, the 9-km resolution data largely increases 279 

SCCs and reduces RMSEs, especially over the mountainous areas (see the scope of subregion 280 

“MT” in Fig. 1c). For instance, over the mountainous areas, the ensemble-mean SCC of 281 

annual precipitation increases from 0.38 to 0.58 (Fig. 8c) and the ensemble-mean RMSE of 282 

annual precipitation decreases from 1.30 to 1.14 mm/day (Fig. 8d). This highlights the 283 

necessity of improving the model resolution from ≥30km to 9km and the advantages of using 284 

the HCPD-CA dataset for researches in CA. 285 

4.32 Uncertainties of the HCPD-CA dataset 286 

With the limitation of the computational and time cost, this study used three bias-287 

corrected GCMs from CMIP5 to do the dynamical downscaling over CA, which is an 288 

improvement relative to using a single original GCM. However, it still harbors uncertainties 289 

in the projected climate changes. As reported in the 1.5℃ special report of the 290 

Intergovernmental Panel on Climate Chane (IPCC), we are on track to exceed 1.5℃ warming 291 

between 2030 and 2052 based on the current warming rate, and hence the near-term future 292 

projection becomes more critical to human development than that for the end of this century. 293 

Therefore, this study focuses on projected climate changes over CA in the near-term future 294 

(2031-2050). Long-term continuous (e.g., 1986-2100) regional climate projections in CA are 295 

more useful for studies in this region and will be conducted in the next stage. Land-use and 296 

land-cover (LULC) in the WRF model both in the historical and future simulations is derived 297 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) data of 2002 (Wang et 298 

al., 2007). Dramatic changes in land-use and land-cover have happened in CA and are very 299 

likely to be ongoing in the future (Micklin, 2007;Ma et al., 2021;Chen et al., 2013;Li et al., 300 

2019), such as water extentthe shrinking of the Aral Sea (Micklin, 2007)and the expansion of 301 

croplands and urbans. The land-use and land-cover changes (LULUCC) are not taken into 302 
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account during in the our simulations, which brings uncertainties in simulating the local 303 

historical climate in this area as well as projecting the climate changes in the future caused by 304 

changes in LULC. A study about assessing the effects of the future LULCC on the local 305 

climate in CA is in process and the model outputs from this study will be openly published as 306 

a complement to the HCPD-CA dataset. 307 

5. Data and code availability 308 

The HCPD-CA dataset has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu, 309 

2021)is available at http://data.tpdc.ac.cn/en/disallow/24c7467c-44a6-44ab-bbcf-310 

e6e346dd41d0/ (Qiu, 2021). The files are stored in netCDF4 format and compiled using the 311 

Climate and Forecast (CF) conventions. It contains four geostatic variables and ten 312 

meteorological elements from three RCM simulations (WRF_CCSM_COR, 313 

WRF_MPI_COR, and WRF_Had_COR) for a spatial domain covering the CA region (which 314 

is consisted of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) and its 315 

surrounding areas (see the domain “D02” in Fig. 1b). The dataset covers two continuous 20-316 

year periods, 1986-2005 and 2031-2050. Each year has 365 days (there is no leap year). We 317 

provide smaller-size (monthly and annual) files as surrogates for larger-size (daily) files. The 318 

names of the files containing the geostatic variables follow the order: [dataset name]_[variable 319 

name].nc. For example, the file name, HCPD-CA_ISLTYP.nc, represents the soil category in 320 

the HCPD-CA dataset. The names of the files containing the meteorological elements follow 321 

the order: [dataset name]_[experiment name]_[element name]_[year].[time frequency].nc. 322 

For example, the file name, HCPD-CA_WRF_CCSM_COR_T2MAX_2004.mon.nc, 323 

represents the monthly mean T2MAX of 2004 from the experiment WRF_CCSM_COR in 324 

the HCPD-CA dataset.  325 

The WRF model is available at 326 

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The source code to do the 327 

bias correction is available at https://rda.ucar.edu/datasets/ds316.1/#!software. The Climate 328 

Data Operators (CDO, https://code.mpimet.mpg.de/projects/cdo), Python modules (like 329 

netCDF4, Xarray, and Numpy), and NCAR Command Languages (NCL, 330 

https://www.ncl.ucar.edu/) are recommended to do operations on the netCDF files. 331 
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6. Conclusions 332 

A high-resolution (9km) projection climate dataset in CA (the HCPD-CA dataset), 333 

containing four geostatic variables and ten meteorological elements, is derived from 334 

dynamically downscaled results based on three bias-corrected GCMs (MPI-ESM-MR, 335 

CCSM4, and HadGEM2-ES) from CMIP5 for ecological and hydrological applications to 336 

vulnerability, impacts, and adaption assessments in this region. The reference and future 337 

periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. 338 

The model estimation evaluation shows good quality of the data product in describing the 339 

climatology of all the meteorological elements in CA despite some systematic biases (e.g., 340 

stronger downward shortwave radiation throughout the year), which ensures the suitability of 341 

the dataset. The RCM simulations commonly suggest strong warming over CA in the near-342 

term future, with the annual mean T2MEAN increasing by 1.62-2.02℃, and significant 343 

increase in downward shortwave and longwave flux. Changes in other elements (e. g., 344 

precipitation, relative humidity at 2m, and wind speed at 10m) are minor. The HCPD-CA 345 

dataset presented here serves as a scientific basis for assessing the impacts of climate change 346 

over CA on many sectors, especially on ecological and hydrological systems. 347 
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Tables 581 

Table 1 Geostatic variables and meteorological elements in the HCPD-CA dataset 582 

Name Description Unit 

HGT Terrain height m 

LU_INDEX Land use category - 

LANDMASK Land mask (1 for land, 0 for water) - 

ISLTYP Soil category - 



 18 

PREC Daily precipitation mm/day 

T2MEAN Daily mean temperature at 2m K 

T2MAX Daily maximum temperature at 2m K 

T2MIN Daily minimum temperature at 2m K 

RH2MEAN Daily mean relative humidity at 2m % 

U10MEAN Daily mean eastward wind at 10m m/s 

V10MEAN Daily mean northward wind at 10m m/s 

SWD Daily mean downwelling shortwave flux at bottom W/m2 

LWD Daily mean downwelling longwave flux at bottom W/m2 

PSFC Daily mean surface pressure Pa 

 583 

 584 

 585 

 586 

  587 
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Table 2 Information about the datasets used in the study.  588 

Dataset Run Spatial 

Resolution 

Temporal 

Resolution 

Link 

MPI-ESM-MR r1i1p1 1.9°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

HadGEM2-ES r1i1p1 1.3°×1.9° 6-hourly https://esgf-

node.llnl.gov/projects/cmip5/ 

CCSM4 b40.[20th\RCP

4.5].track1.1de

g.012.cam2.h4 

0.9°×1.3° 6-hourly https://rda.ucar.edu/datasets/

ds316.0/#!access 

ERA-Interim - 0.75°×0.75° Synoptic 

monthly means 

https://apps.ecmwf.int/datase

ts/data/interim-full-

mnth/levtype=sfc/ 

CRU TS v4 - 0.5°×0.5° monthly https://crudata.uea.ac.uk/cru/

data/hrg/cru_ts_4.00/ 

ERA5-Land - 0.1°×0.1° monthly https://cds.climate.copernicu

s.eu/cdsapp#!/dataset/reanaly

sis-era5-land-monthly-

means?tab=form 

 589 

 590 
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 592 

 593 

 594 

 595 

 596 

 597 
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Figures 599 

 600 

Fig. 1 Central Asia (referred to as CA) and its surrounding (a), nested domains in the WRF 601 

model (b), and climate subregions in CA (c). In subplot a, stations with records of daily mean 602 

temperature and precipitation are marked by stars and circles, respectively. In subplot c, 603 

according to Qiu et al. (2021), the CA region is divided into four climate sub-regions: northern 604 

CA (NCA), middle CA (MCA), southern CA (SCA), and the mountainous areas (MT). 605 

  606 
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 607 
Fig. 2 Flow chart for the HCPD-CA dataset. 608 



 22 

 609 

Fig. 3 The observed and simulated annual mean T2MEAN and PREC in Central Asia during 610 

the reference period (1986-2005). The spatial correlation coefficient (SCC), mean error (ME), 611 

and root mean square error (RMSE) are listed. 612 
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 613 

Fig. 4 Same as Fig. 3, but for annual mean RH2MEAN and WS10MEAN. 614 
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 615 

Fig. 5 Same as Fig. 3, but fort annual mean SWD, LWD, and PSFC. 616 

 617 
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 618 

Fig. 6 Mean annual cycle of the monthly values averaged over Central Asia in the 619 

observations and RCM simulations. 620 

 621 
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 622 

Fig. 7 Projected changes of the annual mean values over Central Asia during 2031-2050, 623 

relative to 1986-2005. The regional mean (upper), minimum and maximum value (in 624 

parentheses) are listed. The slashed areas indicate where the changes passed the significance 625 

test at the 95% confidence level using the two-tailed Student’s t test. 626 



 27 

 627 

 628 

Fig. 8 Spatial correlation coefficients (SCCs) and root mean square errors (RMSEs) of the 629 

simulated annual (ANN), summer (JJA: June-July-August), and winter (DJF: December-630 

January-February) mean precipitation over CA and the mountainous areas (MT) in the 9-km 631 

and 27-km resolution downscaled results. The metrics are calculated based on 52 stations’ 632 

data across CA. 633 
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