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Abstract

Central Asia (referred to as CA) is one of the climate change Hot-Spots due to the fragile

ecosystems, frequent natural hazards, strained water resources, and accelerated glacier

melting, which underscores the need of high-resolution climate projection datasets for
application to vulnerability, impacts, and adaption assessments-in-ecelogical-and-hydrologieal
systems_in this region. In this study, a high-resolution (9km) climate projection dataset over
CA (the HCPD-CA dataset) is derived from dynamically downscaled results based on multiple

bias-corrected global climate models; and contains four geostatic variables and ten

meteorological elements that are widely used to drive ecological and hydrological models.
The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon
emission scenario is Representative Concentration Pathway (RCP) 4.5. The results-evaluation
shows that the data product has good quality in describing the climatology of all the elements

in CA_despite some systematic biases, which ensures the suitability of the dataset for future

research. Fhe-mMain features of projected climate changes i#n-over CA in the near-term future
is-are strong warming (annual mean temperature increasing by 1.62-2.02°C) and significant
increase in downward shortwave and longwave flux at surface, with minor changes in other
elements (e.-g., precipitation, relative humidity at 2m, and wind speed at 10m). The HCPD-
CA dataset presented here serves as a scientific basis for assessing the potential impacts of

projected climate changes over CA on many sectors, especially on ecological and

hydrological systems. It has the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu,
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1. Introduction

Central Asia (referred to as CA, Fig. 1a) has complex terrain and diverse climates and is
among the most vulnerable regions to climate change due to fragile ecosystems (Zhang et al.,

2016;Seddon et al.,, 2016;Gessner et al., 2013), frequent natural hazards (Thurman,

2011;Burunciuc, 2020), strained water resources (Frenken, 2013), and accelerated glacier
melting (Narama et al., 2010;Sorg et al., 2012), which underscores the need to achieve high-
resolution climate projection datasets for application to vulnerability, impacts, and adaption
assessments—in—ecological-and-hydrelogical-systems. Global climate models (GCMs) can
describe the response of the global circulation to large-scale forcing, such as greenhouse gases
and solar radiation (Giorgi, 2019). But their horizontal resolutions are too coarse to account
for the effects of local-scale forcing and processes, such as complex topography, land cover
distribution, and dynamical processes occurring at the mesoscale_(Giorgi et al., 2016;Qiu et

al., 2017;Torma et al., 2015). Regional-To obtain the accurate information on region-scale

climate change, dynamical downscaling has been developed and widely applied in regional

climate projections over many areas, like East Asia (Zou and Zhou, 2016;Tang et al.,

2016;Jung et al., 2015;Jiang et al., 2021;Ji and Kang, 2013;Hong et al., 2017;Guo et al.,
2021;Bao et al., 2015;Zou and Zhou, 2017), North America (Wang and Kotamarthi,

2015;Racherla et al., 2012;Pierce et al., 2013;Giorgi et al., 1994;Di Luca et al., 2013,
2012;Wang et al., 2015), and Europe (Vautard et al., 2013;Jacob et al., 2014;Kotlarski et al.,
2014;Fischer et al., 2015;Kotlarski et al., 2015;Torma et al., 2015;Giorgi et al., 2016;Zittis et
al.,2019;Jacob et al., 2020;Déqué et al., 2007;Gao et al., 2006;Im et al., 2010). ehimate-models

alesSome efforts have

also been devoted on regional climate projection in CA with the dynamical downscaling

method (Zhu et al., 2020;0zturk et al., 2017;Mannig et al., 2013). However, their resolutions
are still low (=30km), especially for the mountainous areas in the southeast. Moreover, most

of the previous RCM simulations in CA used a single GCM as the lateral boundary conditions,

which harbor high uncertainties in the projected climate changes.

The present authors carried out a study that involves the dynamical downscaling of
multiple bias-corrected GCMs for the CA region with an unprecedented horizontal resolution
of 9km. The future simulation period is set as 2031-2050 under Representative Concentration

Pathway (RCP) 4.5, with the reference period of 1986-2005. The simulated surface air

2
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temperature and precipitation have been evaluated in a recent study (Qiu et al., 2021) and
meanwhile basic features of the projected climate changes have been demonstrated. The
results show that the high-resolution RCMs driven by bias-corrected GCMs are excellent in
simulating the local temperature and precipitation in CA and detect significant warming,
severer heatwaves, and drier conditions in this region in the near-term future.

To satisfy the urgent need of high-resolution climate data for assessing the potential

impacts of the projected climate changes on many sectors eecelogical-and hydrological
appheations-in CA, especially on ecological and hydrological systems, the HCPD-CA (High-

resolution Climate Projection Dataset in CA) dataset is derived from the 9-km resolution

downscaled results, which includes four geostatic (time-invariant) variables and ten
meteorological elements (Table 1) that are widely used to drive ecological and hydrological

models. The geostatic variables are terrain height (HGT, m), land use category (LU_INDEX,

21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category

(ISLTYP, 16 categories). They meteorological elements are daily precipitation (PREC,

mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN,
K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward
wind at 10m (UIOMEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux
at surface (SWD/LWD, W/m?), and daily mean surface pressure (PSFC, Pa). The present
paper is to introduce this dataset to the community. Sect. 2 describes the regional model and

experiments. Model evaluation and projected changes in the meteorologicalse elements are in

Sect. 3. Added values of using 9-km resolution respect to using coarser resolutions are

discussed in Sect. 4 as well as uncertainties of the evaluation and the HCPD-CA dataset. Sect.

5 describes access to the data product and all codes and tools. Main results are concluded in

Sect. 6.

2 Model and experiments

2.1 Regional model

The Weather Research and Forecasting (WRF) model with version 3.8.1 (Skamarock et
al., 2008) is used to downscale the GCMs. It has two domains (Fig. 1b). The outer one covers
a large region, with a 27-km resolution and 290x205 grids. The inner one covers the CA

region, with a 9-km resolution and 409x295 grids. The model has 33 levels in the vertical

3
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direction with its top fixed at 50 hPa. Its physical schemes are set based on our previous work
about the sensitivity study of different physical parameterizations of the WRF model in
simulating the local climate in CA (Wang et al., 2020)._Details about them are in Qiu et al.
(2021).= Spectral nudging with a weak coefficient of 3x107 is applied in the outer domain
(not in the inner one), which prevents possible model drift during the long-term integration
by relaxing the model simulations of wind, temperature, and moisture toward the driving
conditions. In addition to greenhouse gases and solar constant, the WRF model also considers
other external forcing, such as aerosols, volcanoes, and ozone, to make its inner external
forcing consistent with the driving GCMs.

The geogrid program in the WRF model is to define the simulation domains, and

interpolate various terrestrial datasets to the model grids (Wang et al., 2007). (Wang-et-al;

200 First, geogrid computes the latitude, longitude, and map scale factors at every grid point.

Then, it interpolates terrain height. land use category, soil category and other time-invariant

data to the model grides. Global datasets of each of these fields are provided through the WRF

download page

(https://www?2.mmm.ucar.edu/wrf/users/download/get _sources_wps_geog.html). The

HCPD-CA dataset contains four of the geostatic variables. In them, the terrain height (HGT)

data (Fig. S1) is from the United States Geological Survey (USGS) GTOPO30 elevation

dataset, the land use category (LU_INDEX) data (Table S1 and Fig. S2) is from the Moderate

Resolution Imaging Spectroradiometer (MODIS) 21 category land dataset, the soil category

(ISLTYP) data (Table S2 and Fig. S3) is from the global 5-minute United Nation FAO soil

category dataset, and the land mask (LANDMASK) data (Fig. S4) is calculated based on

LU_INDEX with the condition that the value of a grid cell is set as 1 (0) if land (water) area

at least accounts for 50%.

2.2 Bias-correction technique

MPI-ESM-MR (referred to as MPI, Table 2), CCSM4 (referred—to—as—CCSM), and
HadGEM2-ES (referredto—as-Had) from Phase 5 of the Coupled Model Intercomparison

Project (CMIPY) are selected to drive the regional model. The reasons why we chose these

three GCMs are as below: they can provide all the variables that are needed to drive the

regional model; they have relatively high horizontal resolution (Table 2) among the CMIP5

models; they have fairly good performance in simulating the local temperature and

4
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precipitation in CA (see Fig. S1 and S3 in Qiu et al., 2021), though systematic biases exist

partially due to their coarse resolutions. Since all GCMs suffer from some forms of bias (Done

etal., 2015;Ehret et al., 2012;Liang et al., 2008;Xu and Yang, 2012) that may propagate down
to the RCM outputs, the bias-correction technique developed by Bruyére et al. (2014) is
applied in this study to correct the climatology of the GCMs and allow synoptic and climate
variability to change.

Six-hourly GCM data in a 25-year base/future period (1981-2005/2026-2050), hereafter
referred to as GCMgp/GCMpp, are broken down into the 25-year mean 6-hourly annual cycle
over the base period (GCMpp) plus a 6-hourly perturbation term (GCMgp' /GCMgp'):

GCMgp = GCMpgp + GCMpgp' (1)
GCMpp = GCMgp + GCMpp' (2)

The ERA-Interim reanalysis data (Dee et al., 2011, Table 2) as “observations” (0Obs) is

similarly broken down into the mean annual cycle (Obs) and a perturbation term (Obs'):
Obs = Obs + Obs’ 3)

The bias corrected GCM data for the base/future period, GCMgp"/GCMgp", is then
constructed by replacing GCMpp from Eq. 1/2 with Obs from Eq. 3:

GCMpgp" = Obs + GCMpgp' 4)
GCMgp" = Obs + GCMpp' (5)

Eq. 1-5 are applied to all the variables required to generate the initial and lateral boundary
conditions for the WRF model: zonal and meridional wind, geopotential height, air
temperature, relative humidity, sea surface temperature, mean sea level pressure, etc. In a

recent study (Qiu et al., 2021), we conducted the sensitivity experiments of using the bias-

correction technique, to quantify its contribution to improving the RCM simulation. The

results show that using the bias-correction technique largely reduced the biases in the

simulated annual and seasonal precipitation over CA respect to not using it and slightly

improved the model’s skill in simulating the spatial pattern of precipitation (see Fig. 4 in Qiu

etal., 2021).
The bias-corrected CCSM4 outputs (DOI: https://doi.org/10.5065/D6DJ5SCN4) is

produced by Bruyeére et al. (2014) with a 25-year base period (1981-2005) during the bias

correction. In this study, we produced the bias-corrected MPI-ESM-MR and HadGEM2-ES

outputs with the same base period as them. Note that the base period used during the bias
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correction is not necessary to be consistent with the reference period (1986-2005) of the RCM

simulations.
2.3 Experiments

The RCM simulations with the bias-corrected GCMs (MPI, CCSM, and Had) as the
driving data are referred to as WRF_MPI _COR, WRF_CCSM_COR, and WRF Had COR,
respectively (“COR” means using the bias-correction technique). The reference-period
simulations are from December 1, 1985 to December 31, 2005 and the future runs are from
December 1, 2030 to the end of 2050 under a moderate carbon emission scenario RCP 4.5,
which is arguably the most policy-relevant scenario as the Nationally Determined
Contributions (NDCs) greenhouse gas emissions framework would produce similar
temperatures trajectories (Gabriel and Kimon, 2015). The first month in each simulation is
discarded as spin up. Fig. 2 shows the flow chart to produce the HCPD-CA dataset. The

procedure can be divided into four steps. First, multiple-source observational data is used to

evaluate the WRF model with different combinations of physical schemes and then we found

the optimal combination of physical schemes for the WRF model. Second, the original GCMs

are bias corrected and the bias-corrected GCMs are used to drive the WRF model with the

optimal combination of physical schemes. Third, we conducted the dynamical downscaling

over CA and produced 9-km resolution downscaled results. At last, the HCPD-CA dataset

with certain variables and standard file formats is derived from the downscaled results.

3 Results

3.1 Model evaluation

In Qiu et al. (2021), the key meteorological elements, surface air temperature and

precipitation_in the RCM simulations, have been evaluated with both gridded observations

and stations’ data (see Sect. 3.1 in the paper) and the results show good skills of the regional
model in simulating the local temperature and precipitation in CA during the reference period
(1986-2005). Accordingly, the ten meteorological elements (including surface air temperature
and precipitation) in the HCPD-CA dataset are evaluated here, to show the validity and
applicability of the dataset. Note that daily mean wind speed at 10m (referred to as
WS10MEAN) instead of UIOMEAN and VIOMEAN is evaluated.
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Version 4 of the Climatic Research Units gridded Times Series (CRU TS v4, Harris et
al., 2020, Table 2) is applied to evaluate T2MEAN/T2MAX/T2MIN and the land component

of the fifth generation of EuropeanECMWE(European—Center—forMedium—Weather
Foreecasting)atmespherie reanalysis (ERAS5-Land, Hersbach et al., 2020, Table 2) land

monthly-averaged-data(referred-to-as ERA-Land)-is used as “observations’ to evaluate other

elements. Before the evaluation, the RCM outputs are interpolated to the grides of CRU TS

v4 (ERAS5-Land) with the distance-weighted average (bilinear) method. We found that both
on the annual and seasonal scales, the interpolation methods conserved the area averaged
values in the model outputs with a bias of less than 1-2% between the original and new grids.
We thus concluded that our choice of interpolation procedure does not affect the main
conclusions of our work.

The high-resolution downscaled results (WRF _MPI COR, WRF _CCSM_COR, and
WRF _Had COR) are very close to the observational data in simulating the climatology of all
the elements in CA on the-both annual and seasonal scales (Fig. 3-5, seasonal results not

shown-here). For instance, the spatial correlation coefficients (SCCs) of all the elements

annual mean values (except WS10MEAN) over CA are larger than 0.80. The SCCs of annual
mean WS10MEAN over CA are relatively small, in a range of 0.54-0.6064. The simulated

annual mean T2MEAN over the very north of Kazakhstan and the Pamirs has cold bias and

that over other areas generally has warm bias (Fig. 5Sa-c). However, the bias over most of

CA is within -2~2°C. The annual mean RH2MEAN is generally underestimated over CA
except some areas in the northern part and the Aral Sea (Fig. 6Sa-c). Theregional-model
overestimatedThe RCM simulations commonly overestimate the annual mean WS10MEAN

over the mountainous areas (Fig. 6Sd-f). —Stronger annual mean SWD prevails in CA in each

simulation (Fig. 7Sa-c), with the mean errors (MEs) over the whole region in a range of

26-617.72-29.7731.43 W/m?. Meanwhile, the regional model slightly underestimates annual

mean LWD (Fig. 7Sd-f). The bias in annual mean PSFC is very small over the majority of CA

(Fig. 7Sg-1). Table S3 summarizes the statistic metrics [SCCs, RMSEs. and mean errors (MEs)]

of all the annual mean variables over both CA and its climate subregions [northern CA (NCA),

middle CA (MCA), southern CA (SCA), and the mountainous areas (MT), see their scopes in

Fig. 1c], to help the readers easily check the quality of this data product in the areas they are

interested.
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Fig. 6 shows mean annual cycle of the monthly values averaged over CA. It is seen that

the model outputs are generally close to the observations. The warm bias in T2ZMEAN mainly

occurs during May-August (Fig. 6a). The overestimation of SWD occurs throughout the year,

with the bias larger in the warm seasons than in the cold seasons (Fig. 6e). The results of
T2MAX and T2MIN are similar to those of T2ZMEAN (not shown here).

To sum up, the medel-evaluation shows that the HCPD-CA dataset has good quality in
describing the climatology of all the ten—meteorological elements in CA_despite some

systematic biases (e.g., stronger SWD), which ensures the suitability of the dataset for

ecological-and-hydrological-applicationsassessment of future risk from climate change in CA.

3.2 Projected climate changes

Fig. 7 shows projected changes of the annual mean values in CA during 2031-2050,
relative to 1986-2005. All the RCM simulations exhibit significant warming over CA in the
near-term future, with the annual mean T2ZMEAN increasing by 1.62-2.02°C (Fig. 7a-c, range

depending on the simulation). Pronounced warming is found in the north, which is attributed

to the snow and surface albedo feedback (Qiu et al., 2021). Interestingly, enhanced warming
projected in many mountains in the world (Palazzi et al., 2019;Pepin et al., 2015;Rangwala et
al., 2013) is not found in CA (also see Fig. 7-8 in Qiu et al. (2021)). It poses a question if the
responses of ecological and hydrological systems to future warming in the Tien Shan and
Pamirs differ from those in other mountains, like Tibetan Plateau/Himalayas and Alps.

The annual mean precipitation (PREC) is projected to sightly increase by 0.01-0.02
mm/day (Fig. 7d-f). However, changes in few areas passed the significance test. The annual
mean RH2MEAN is prejeeted-simulated to sightly decrease by 0.68-1.28% (Fig. 7g-i), which
suggests a drier condition in CA in the coming decades and may affect the physical and
chemical properties of the local vegetations. Changes in wind speed (WS10MEAN) are
inconsistent among the RCM simulations (Fig. 7j-1). WRF_MPI_COR shows a slight increase

of 0.02m/s while others show a slight decrease, which highlights the uncertainties in the

projected changes. Downward shortwave/longwave flux (SWD/LWD) are projected to

significantly increase by 3.47-4.28 W/m? (Fig. 7m-0) and 7.13-9.61 W/m?_(Fig. 7p-1),
respectively-(Fig—7m-r). Surface pressure (PSFC) is simulated to slightly increase by 0.15-
0.70 hPa in CA (Fig. 7s-u).

To sum up, the-main features of projected climate changes in CA in the near-term future
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is-are strong warming and significant increases in downward shortwave and longwave flux,
with minor changes in other elements. Therefore, the HCPD-CA dataset provides
extraordinary warming scenarios for assessing the impacts of future warming on many sectors

(e.g., agriculture, theteeal-ecological and hydrological systemss) in CA. Details about

changes in these meteorological elements (e.g., changes at-on the seasonal scale) are out of
the scope of the present paper and will be presented in further studies. Systematic analyses of

changes in surface air temperature, heatwaves and droughts are in Qiu et al. (2021).

4 Discussion

4.1 Uncertainties in the evaluation

To prove if considering the elevation differences between the observations and the model

orids during the evaluation will give a fairer assessment of the model’s skills, we take

T2MEAN as an example and adjusted the simulated T2MEAN to the elevation of the

observations and then compared the adjusted T2MEAN with the observations. Here, we use

the records of T2MEAN on 58 stations across CA (see the stars in Fig. 1a) as observations,

which as well as the records of PREC on 52 stations (which is used in sect. 4.2, see the circles

in Fig. 1a) are from Global Historical Climatology Network (GHCN) of NOAA National

Climatic Data Center and have been quality controlled (Qiu et al., 2021). Note that a station

1s compared with the model grid on which it is located. Fig. 8S shows the SCCs and RMSEs

of the simulated annual and seasonal T2ZMEAN over CA before and after adjusting. It is seen

that the simulated T2MEAN is more consistent with the observations after vertically

interpolating the model data to the elevation of the stations by the standard moist lapse rate

of 6.5 °C/km (Qiu et al., 2017). For instance, after adjusting the SCC of the annual T2ZMEAN

increases from 0.93 to 0.96 and its RMSE decreases from 2.52 to 2.25°C. This proves that the

regional model’s skills may be underestimated if the elevation differences between the

observations and the model grids is not considered.

4.214 9km vs 27km

As discussed above, most of the previous RCM simulations in CA have horizontal
resolutions not higher than 30km. To show the added values of using 9-km resolution in this

study respect to using coarser resolutions, the evaluation metrics (SCC and RMSE) of the



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

simulated 9-km resolution precipitation in the inner domain of the WRF model are compared
with those of 27-km resolution precipitation in the outer domain (Fig. 8). As the gridded
observations (CRU TS v4, and ERA5-Land) have potential limitations in depicting the

climatology of the-elementsprecipitation in CA, the metrics are calculated based on 58-the
aforementioned 52 stations’ data across CA-(seered-dots-inFig—ta). which-have beenquality

ontrolled (O3 o A Nate th on at bl ad
» %y N N . . i a Vv

Compared with the 27-km resolution data, the 9-km resolution data largely increases
SCCs and reduces RMSEs, especially over the mountainous areas (see the scope of subregion
“MT” in Fig. 1c). For instance, over the mountainous areas, the ensemble-mean SCC of
annual precipitation increases from 0.38 to 0.58 (Fig. 8c) and the ensemble-mean RMSE of
annual precipitation decreases from 1.30 to 1.14 mm/day (Fig. 8d). This highlights the
necessity of improving the model resolution from >30km to 9km and the advantages of using

the HCPD-CA dataset for researches in CA.

4.32 Uncertainties of the HCPD-CA dataset

With the limitation of the computational and time cost, this study used three bias-
corrected GCMs from CMIP5 to do the dynamical downscaling over CA, which is an
improvement relative to using a single original GCM. However, it still harbors uncertainties
in the projected climate changes. As reported in the 1.5°C special report of the
Intergovernmental Panel on Climate Chane (IPCC), we are on track to exceed 1.5°C warming
between 2030 and 2052 based on the current warming rate, and hence the near-term future
projection becomes more critical to human development than that for the end of this century.
Therefore, this study focuses on projected climate changes over CA in the near-term future
(2031-2050). Long-term continuous (e.g., 1986-2100) regional climate projections in CA are
more useful for studies in this region and will be conducted in the next stage. Land-use and
land-cover (LULC) in the WRF model both in the historical and future simulations is derived

from the Mederate ReselutiontmagingSpeetroradiometer{MODIS) data of 2002 (Wang et

al., 2007). Dramatic changes in land-use and land-cover have happened in CA and are very

likely to be ongoing in the future (Micklin, 2007;Ma et al., 2021;Chen et al., 2013;Li et al.,

2019), such as water-extentthe shrinking of the Aral Sea (Mieklin, 2007 and the expansion of

croplands and urbans. The land-use and land-cover changes (LULUCC) are not taken into
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account during-in the—our simulations, which brings uncertainties in simulating the leeal
historical climate in this area as well as projecting the climate changes in the future-eaused-by

changes—inEUEC. A study about assessing the effects of the future LULCC on the local

climate in CA is in process and the model outputs from this study will be openly published as

a complement to the HCPD-CA dataset.

5. Data and code availability

The HCPD-CA datasethas the DOI https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu,

e6e346dd4Hd0/(Q1;202D). The files are stored in netCDF4 format and compiled using the

Climate and Forecast (CF) conventions. It contains four geostatic variables and ten

meteorological elements from three RCM  simulations (WRF _CCSM _COR,
WRF_MPI COR, and WRF _Had COR) for a spatial domain covering the CA region (which
is consisted of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) and its
surrounding areas (see the domain “D02” in Fig. 1b). The dataset covers two continuous 20-
year periods, 1986-2005 and 2031-2050. Each year has 365 days (there is no leap year). We
provide smaller-size (monthly and annual) files as surrogates for larger-size (daily) files. The

names of the files containing the geostatic variables follow the order: [dataset name] [variable

name].nc. For example, the file name, HCPD-CA_ISLTYP.nc, represents the soil category in

the HCPD-CA dataset. The names of the files containing the meteorological elements follow

the order: [dataset name] [experiment name] [element name] [year].[time frequency].nc.
For example, the file name, HCPD-CA WRF CCSM_COR T2MAX 2004.mon.nc,
represents the monthly mean T2MAX of 2004 from the experiment WRF _CCSM_COR in
the HCPD-CA dataset.

The WRF model is available at

https://www2.mmm.ucar.edu/wrf/users/download/get source.html. The source code to do the

bias correction is available at https://rda.ucar.edu/datasets/ds316.1/#!software. The Climate

Data Operators (CDO, https://code.mpimet.mpg.de/projects/cdo), Python modules (like

netCDF4, Xarray, and Numpy), and NCAR Command Languages (NCL,

https://www.ncl.ucar.edu/) are recommended to do operations on the netCDF files.

11



332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

6. Conclusions

A high-resolution (9km) projection climate dataset in CA (the HCPD-CA dataset),

containing four geostatic variables and ten meteorological elements, is derived from

dynamically downscaled results based on three bias-corrected GCMs (MPI-ESM-MR,
CCSM4, and HadGEM2-ES) from CMIPS5 for eeelogical-and-hydrelogieal-applications_to

vulnerability, impacts, and adaption assessments in this region. The reference and future

periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5.
The medel-estimation-evaluation shows good quality of the data product in describing the

climatology of all the meteorological elements in CA_despite some systematic biases (e.g.,

stronger downward shortwave radiation throughout the year), which ensures the suitability of

the dataset. The RCM simulations commonly suggest strong warming over CA in the near-
term future, with the annual mean T2MEAN increasing by 1.62-2.02°C, and significant
increase in downward shortwave and longwave flux. Changes in other elements (e. g.,
precipitation, relative humidity at 2m, and wind speed at 10m) are minor. The HCPD-CA
dataset presented here serves as a scientific basis for assessing the impacts of climate change

over CA on many sectors, especially on ecological and hydrological systems.
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Tables

Table 1 Geostatic variables and meteorological elements in the HCPD-CA dataset

Name Description Unit
HGT Terrain height m
LU _INDEX Land use category -
LANDMASK Land mask (1 for land, 0 for water) -
ISLTYP Soil category -
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Daily precipitation
Daily mean temperature at 2m
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Table 2 Information about the datasets used in the study.

Dataset Run Spatial Temporal Link
Resolution Resolution
MPI-ESM-MR rlilpl 1.9°%1.9° 6-hourly https://esgf-
node.llnl.gov/projects/cmip5/
HadGEM2-ES rlilpl 1.3°%x1.9° 6-hourly https://esgf-
node.llnl.gov/projects/cmip5/
CCSM4 b40.[20th\RCP  0.9°x1.3° 6-hourly https://rda.ucar.edu/datasets/
4.5].trackl.1de ds316.0/#!access
g.012.cam2.h4
ERA-Interim - 0.75°%0.75° Synoptic https://apps.ecmwf.int/datase
monthly means ts/data/interim-full-
mnth/levtype=sfc/
CRU TS v4 - 0.5°x0.5° monthly https://crudata.uea.ac.uk/cru/
data/hrg/cru_ts 4.00/
ERA5-Land - 0.1°x0.1° monthly https://cds.climate.copernicu

s.eu/cdsapp#!/dataset/reanaly
sis-era5-land-monthly-

means?tab=form
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Fig. 1 Central Asia (referred to as CA) and its surrounding (a), nested domains in the WRF
model (b), and climate subregions in CA (c). In subplot a, stations with records of daily mean
temperature and precipitation are marked by stars and circles, respectively. In subplot c,
according to Qiu et al. (2021), the CA region is divided into four climate sub-regions: northern

CA (NCA), middle CA (MCA), southern CA (SCA), and the mountainous areas (MT).
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Fig. 2 Flow chart for the HCPD-CA dataset.
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Fig. 3 The observed and simulated annual mean T2ZMEAN and PREC in Central Asia during

the reference period (1986-2005). The spatial correlation coefficient (SCC), mean error (ME),

and root mean square error (RMSE) are listed.
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Fig. 4 Same as Fig. 3, but for annual mean RH2ZMEAN and WS10MEAN.
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Fig. 5 Same as Fig. 3, but fort annual mean SWD, LWD, and PSFC.
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619  Fig. 6 Mean annual cycle of the monthly values averaged over Central Asia in the
620  observations and RCM simulations.
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623  Fig. 7 Projected changes of the annual mean values over Central Asia during 2031-2050,
624  relative to 1986-2005. The regional mean (upper), minimum and maximum value (in
625  parentheses) are listed. The slashed areas indicate where the changes passed the significance

626  test at the 95% confidence level using the two-tailed Student’s t test.
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Fig. 8 Spatial correlation coefficients (SCCs) and root mean square errors (RMSEs) of the
simulated annual (ANN), summer (JJA: June-July-August), and winter (DJF: December-
January-February) mean precipitation over CA and the mountainous areas (MT) in the 9-km
and 27-km resolution downscaled results. The metrics are calculated based on 52 stations’

data across CA.
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