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Author’s responses to referees/public comments on essd-2021-352 

 
In the text below, the referees/public comments are in regular type and our responses are in italics. 

  

 5 

Responses to referees comments 

 

1) Responses to referee#1 comments 

Dear all, 

After revising the article “Towards improved analysis of short mesoscale sea level signals from 10 

satellite altimetry” (Authors: Yves Quilfen, Jean-François Piolle, and Bertrand Chapron), my 

opinion is that the manuscript can be published as it is. 

I found this paper very relevant and complete. 

Best regards, 

The authors thank the reviewer for agreeing to review the manuscript and for her positive 15 

criticism. 

Best regards 

 

2) Responses to referee#2 comments 

The authors provide a description of a new sea level anomaly dataset based on Altika, Jason3 and 20 
Sentinel3 along-track observations filtered using the EMD method. Overall I found the paper exhaustive 

and well written. EMD is a novel filtering method with lots of potential for geophysical application and 

the retrieval of mesoscale information from satellite altimetry an important topic for current as well as 

future missions. The manuscript represent a valid and important contribution to the field, but there are 

some aspects that I would like to have better clarified before the manuscript is finally published. 25 
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Thank you for reviewing our manuscript and for providing positive feedback. We are responding to the 

various points below, and the manuscript will be modified appropriately to address the reviewer’s 

comments. 

Major remarks 

I found that one of the main limitations of this paper is the lack of a good term of comparison against 30 
which to evaluate the performance of the EMD filtering. The authors remark several times how current 

filtering methods remove almost entirely the altimetry signal at scales below ~70 km and how for that 

reason EMD should be preferred. However, a comparison between the official filtered CMEMS 

products and the EMD ones is never presented. I think that the addition of a spectral comparison between 

the two as well as between across-track SLA signal for the two tracks showed in Fig 1 would further 35 
strengthen the author’s conclusions. 

Originally, we intended to show the results of the comparison between EMD-denoised (SASSA) and 

official CMEMS products, as well as with the experimental SSALTO/DUACS 5Hz products, but we felt 

that this would have resulted in too long an article if an in-depth comparison had been performed. Given 

the reviewer’s comment and suggestion, we propose to add a short subsection before the “Data 40 
availability” section to provide an illustration of the salient features that make our approach different 

and more attractive. In the revised manuscript to be submitted after this interactive discussion part, the 

content of the new section will be related to what is discussed below. However, it should be clear that 

we cannot perform a thorough comparison of the different approaches, a task that should eventually be 

the subject of a separate paper. As the data set is freely available, any interested scientist/user will 45 
eventually be able to make such a comparison.  

It is useful to compare our approach with CMEMS products but also with the 5Hz experimental DUACS 

products proposed by Aviso, as the latter products include, among several differences from CMEMS 

processing, a high-frequency noise correction (Tran et al., 2019) that also aims to better retrieve 

mesoscale information in the 120-40 km wavelength range.  For illustration, a selection of AltiKa passes 50 
in the Gulf Stream region is shown below. Panel a) shows (same pass as in Figure 1 of the manuscript, 

right panels) that EMD is best suited for analyzing strongly nonlinear signals to accurately map the 

large SLA gradient (more than 40 cm in less than 50 km), while CMEMS has the expected 

limitations/artifacts due to low-pass filtering, e.g. smoothing of gradients and poor localization of 

extrema. Panels b) and c) show two passes for which small mesoscale features (highlighted in the insets) 55 
are recovered, and match well, for the SASSA and DUACS products, while the ~70 km cutoff applied in 

the CMEMS products suppresses this information. Note that the SASSA result is based on a local signal-

to-noise ratio (SNR) analysis and is associated with an uncertainty estimate. In panel c), the significant 

wave height (Hs, from Sea State CCI) is displayed. It shows that this mesoscale variability in SLA is not 
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associated with significant variability in Hs and thus may well be of geophysical origin, and not an 60 
artefact resulting from the HFA correction. Indeed, the HFA correction applied in DUACS products is 

based on a statistical relationship between the SLA and Hs retracking errors, at scales <  ~120 km for 

which Hs variability is assumed to be only noise, in order to estimate the high-frequency SLA errors to 

be removed. Panel d) presents a common case where the DUACS result is exposed to contain many 

more errors associated with the HFA correction. Indeed, a large variability of Hs at the < 100 km scale 65 
is observed in the vicinity of the Gulf Stream front, which is known to be the result of interactions 

between surface waves and current gradients (many studies show this). In these and many other cases 

(see left side of panel d), the HFA correction likely induces errors in the SLA signature, due to the 

wave/current interactions that shape the Hs field at scales down to a few kms. 
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 70 

Figure 1: CMEMS unfiltered (dotted blue), SASSA (black), DUACS 5Hz (red),  and CMEMS filtered 

(green) Sea Level Anomalies (SLA, m) for different AltiKa passes: a) cycle 106 pass 597; b) cycle 101 

pass 184; c) cycle 102 pass 941; d) cycle 103 pass 655. The magenta curve on right axis in panels c) 

and d) shows the Hs from the Sea State Climate Change Initiative products.  

 75 
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Figure 2 shows the power spectral density (PSD) for the same products and the Gulf Stream 

region. For the CMEMS and DUACS products, the low-pass filter applied at about 65 km 

(CMEMS) and 40 km (DUACS) wavelengths results in a sharp decrease in PSD with increasing 

wavenumber, whereas the SASSA PSD is in close agreement with the PSD obtained by 80 

removing white Gaussian noise (computed as the average PSD between 15 and 30 km 

wavelength) from the unfiltered SLAs. The fact that SASSA products can provide a “realistic / 

physical” representation of the SLA variance distribution over the entire resolved wavenumber 

spectrum is a direct result of the chosen approach. For DUACS products, it is unclear whether 

the variance between 40 km and 120 km wavelength corresponds to variance of unfiltered data 85 

or to variance of both unfiltered data and errors associated with HFA corrections resulting 

from the geophysical variability of Hs at these scales, as discussed above.      

 

Figure 2: Mean Power Spectral Density (PSD) of Saral SLA along-track measurements: CMEMS 

unfiltered (blue), SASSA (black), DUACS 5Hz (red), CMEMS filtered (green), CMEMS unfiltered minus 90 
an mean white gaussian noise (WGN) computed over 15-30 km wavelength. The PSDs are computed as 

the average of PSDs obtained for all individual data segments covering the year 2017 and the Gulf 

Stream region (72º W-60º W; 44º N-32º N). 
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My second major remark, regards the Bayesian/wavelet filtering of the IMF1. It seems a quite 

complex step to be included in the analysis, for which not too many details are provided (for 95 

instance which wavelet base is used?) and it does not seem to give a big return. The examples 

in Figure 4 both show that only a one peck of the IMF1 is retained as significant signal, while 

the rest of the points are discarded. All the spectra shown indicate, that the IMF1 filtered energy 

retained at longer wavelengths is only a very small percentage of the total reconstructed signal 

(at least one order of magnitude smaller). Given the examples shown in figure 4 it is unclear to 100 

me how the spectra shown in figure 6 can be obtained and what the associated filtered IMF1 

would look like. While the examples shown in figure 4 are appropriate to explain the variations 

in the signal and signal noise as a function of varying SWH conditions, they do very little to 

convince the reader on why such IMF1 denoising step should be included in the analysis. The 

author mention (lines 204-205) that “processing IMF1 using wavelet analysis is an important 105 

step to separate, as much as possible, the possible useful geophysical signal in IMF1 from 

outliers”, but I’m not convinced by the examples they showed and I found much more 

convincing their comments regarding the importance of data editing in those situations (e.g. 

lines 122-125 or 480-485). Thus, I encourage the authors to provide a bit more evidence to 

justify the inclusion of such complex step in an already fairly complex (and novel) filtering 110 

method. 

Inspired by the work of Kopsinis and McLaughin (2009), based on numerical experiments, the 

proposed EMD-denoising algorithm has been adapted to altimetry data for which the SNR 

varies greatly and may have locally non-stationary noise statistics, and which are often affected 

by outliers. Managing these non-friendly features as well as possible indeed introduces a 115 

certain degree of complexity in the process (compared to the simple low-pass filtering applied 

in CMEMS products), and the specific  processing of IMF1 by wavelet analysis (or by some 

other means) is indeed an important feature that brings a great return, with two main 

objectives: 

1) In cases where the SNR is locally high, at the sampling rate of the analyzed data, the 120 

sifting process used to derive IMFs likely results in the inclusion of geophysical 

information in the IMF1 because it is based on the detection of the two extrema 

envelopes (maxima and minima).  The two examples in Figure 4 of the manuscript were 

not chosen to illustrate this feature. Instead, the examples in Figure 3 below are 

frequent and typical cases that show the need for IMF1 processing (as well as the two 125 
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examples showing insets in Figure 1 above). It shows a comparison between the 

simplest approach of  removing IMF1 from the unfiltered data to obtain a high-

frequency noise-free signal, and the full denoising process. As can be seen, IMF1 is 

significantly modulated in amplitude and phase in regions with well-defined mesoscale 

variability, which may be geophysical in origin, or with large gradients. By removing 130 

the IMF1 entirely from the unfiltered SLAs, it is clear that features potentially of 

geophysical origin can be missing and that this degrades the representation of large 

gradients.  One of the main goals of this work is to be able to retrieve this small 

mesoscale variability and associate it with an estimate of the uncertainty. The reason it 

does not appear as a significant contribution in the averaged PSDs is that the PSDs are 135 

averaged over a large sample of data segments, not all of which showing such 

variability, which is furthermore often limited to small portions of the track. However, 

the examples below show the improved mapping of SLA variability when associated 

with sufficient SNR, and the better mapping of large gradients. Note that if one were to 

process AltiKa data from 5Hz waveforms, the IMF1 would certainly be all noise and 140 

the methodology adapted to that. There is indeed a great deal of flexibility in the method, 

which makes it, if not very simple, very adaptable.  However, as noted in the manuscript, 

better editing of the data before denoising step  will make it even more effective.  

 

 145 
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Figure 3: Three AltiKa passes; top panels: unfiltered (blue), unfiltered minus IMF1 (black), EMD-

filtered (red) SLAs (m); bottom panels: SLA’s IMF1 (red, m), denoised SLA’s uncertainty (black, m) 

2) The other main reason for processing IMF1 using wavelet analysis is to estimate the 

high-frequency noise series from the IMF1, that would correspond to the IMF1 of a 

Gaussian noise. The noise series is used in two ways to process a data segment. First, 155 

to estimate the variance of the IMF1 Gaussian noise, to calculate the noise variance of 

higher order IMFs and the derived threshold values. If the IMF1 contains too much 

geophysical information or outlier signature to significantly shape the IMF1 amplitude 

distribution, the noise variance estimated for all IMFs would be biased even though the 

Median Absolute Deviation is expected to be a robust estimator. Second, and perhaps 160 

more importantly, the noise series is used to generate a set of noisy series to obtain a 

robust estimate of the denoised SLA associated with an uncertainty value. This assumes 

that the noise is Gaussian. Figure 4 below, as well as Figures 2 and 3 in the manuscript, 

show that IMF1 denoising does a good job of testing this assumption since the PSD of 

the noise estimated from IMF1 and Huang and Cressie’s wavelet denoising (blue curve) 165 

is very close to the PSD of IMF1 for white Gaussian noise (red curve), which is not the 

case for the SLA IMF1’s PSD (dashed black curve).  For information, several denoising 

schemes using wavelets have been tested with Matlab functions (green curves) and the 

one of Cressie and Huang (not included in Matlab) gave better results as shown in 

Figure 4. This has already been discussed in lines 233-243 of the manuscript. The 170 

wavelet basis used is Symlet 8. Different bases were tested, but this has much less impact 

on the results than the choice of wavelet denoising scheme. It is now informed in the 

new version of the manuscript, that includes an Appendix to detail the denoising scheme 

and explain why IMF1 denoising is necessary.   
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Figure 4: Mean Power Spectral Density (PSD) of IMF1 for white noise (red curve) and SARAL SLA 

along-track measurements (dashed black curve), and mean PSD of the corresponding noisy (thick black 

line) and denoised (thin black line) SLA measurements. The green and blue lines is for the PSD of the 

SLA high-frequency noise estimated from the SLA’s IMF1 with different Matlab denoising schemes and 

with the Huang and Cressie (2000) scheme, respectively . The PSD is the average of PSDs computed 180 
over all data segments covering the year 2017, and the Agulhas region (10º W-35º W; 33º S-45º S). 

 

 

 

 185 

 

 



 11 

Finally, the authors mention that Sentinel-3 provides observations in both SARM and LRM, 

describing the latter as “same processing as Jason-3 and AltiKa”. That is incorrect and should 

be modified. The SRAL mission is always operated at High Resolution Mode (commonly called 190 

SAR mode). Low Resolution Mode (LRM) is a back-up mode only. (see 

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-altimetry/overview/modes 

). 1Hz observations from Sentinel-3 are from the so called pseudo-low resolution mode (PLRM) 

which was designed to be as analogous as possible to the Jason-3 low-resolution processing, 

but it is not exactly the same (for instance less individual waveforms are averaged together in 195 

PLRM, so that it is characterized by slightly higher noise than Jason-3). 

 

Our description of the Sentinel-3 data may indeed be confusing. We have modified it as follows: 

 

“The altimeter on board Sentinel-3 is a dual-frequency Ku-C altimeter that differs from 200 

conventional pulse-limited altimeter in that it operates in Delay Doppler mode, also known as 

Synthetic Aperture Radar Mode (SARM). SARM is the primary mode of operation which 

provides ~ 300 m resolution along the track.” 

 

However, it is our  understanding that AVISO L2p products are used as input to Sentinel-3 1-205 

Hz products provided by CMEMS and that “the sea level anomaly considered in Sentinel-3 

L2P products is always based on Synthetic Aperture Radar (or if not available on Low 

Resolution Mode) data, but never on Pseudo LRM data” as stated in the L2p products 

Handbook. Please correct us if we are wrong. 

 210 

 

Minor Remarks 

Since in Flandrin et al. (2004) alpha is defined as 2H-1, shouldn’t its value in equation (1) be 

0? This would make the error variance vary as 2^-n rather than being constant (2^0=1). 

Thank you for pointing out this typo in the alpha value, line 188. For white noise, H=0.5 215 

alpha=0, which effectively gives the variance of noise to vary as 2^-n. 
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Legends should be included in Figures 3 and 6 

Done in the revised manuscript. 

 220 

Please explicitly indicate in the paragraph between lines 220 and 224 if any further editing or 

gap filling has been applied to the input data 

The following text will be provided in the revised version: ‘Data denoising is performed on data 

segments of 128 continuous measurements to limit large variations in noise statistics due to 

high sea state conditions. No gap filling is performed for missing values. In addition to the data 225 

editing performed for CMEMS products, additional outlier detection is performed to remove 

the remaining isolated peak values for the SLA. For each data point in a segment, the difference 

in SLA with neighboring values is tested, within a sliding window of 5 points, and its SLA value 

is replaced by the average of neighboring values  if the difference is greater than 4.5 times the 

standard deviation of the IMF1 of the segment.’ 230 

 

Section 4.2 could be improved : the initial impression is that the parameter “A” should be 

defined according to seasons/region, but then the authors show that this is not the case and a 

mean value specific for each satellite mission should be used. This sort of pulls the rug under 

the reader feet. I think it would be easier for the reader if this conclusion was introduced at the 235 

beginning of the section to better guide him through the text. 

We describe in the introductory part of section 4.2 how the value of parameter A is defined, see 

lines 345-357. To address the reviewer’s concern, we have modified the text as follows: 

“The proposed denoising approach can efficiently adapt to the local SNR, allowing a single 

global value for the control constant A in “Eq. (4)”. However, since the noise statistics vary 240 

greatly with the average sea-state conditions, it is useful to show how such variability can 

impact the results when a single value of A is used in the global SLA processing. A two-step 

sensitivity study is performed below, which first determines specific A values for different 

regions, and then shows how the use of an overalll A value impacts the results.” 
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 245 

Lines 360 to 375: Please explain the meaning of the WGN acronym in the text. Furthermore, 

text and figure 5 legend are not consistent (“Best-fit” and “Fitted-PSD”). Please correct that. 

The acronym White Gaussian Noise (WGN) is now defined in the text and the inconsistency 

between the text and the Figure 5 legend corrected.  

 250 

Why are the green PSD curves in figure 5 not continuous but show gaps at small wavelengths? 

This is because the average noise PSD is calculated as the average PSD between 15 and 30 

km, negative values are obtained at some wavenumbers in this range when removed from the 

actual PSD values. These values are therefore ignored when plotting the logarithm .    

 255 

Lines 471-472: shouldn’t that be red dotted and red dashed lines, instead of “black and red 

dashed”? 

Indeed, this is not correct and not so simple. In fact, the total noise in IMFs of rank > 1 should 

be: dashed black – (dotted red – dashed red).  The sentence has been removed because it is not 

important for what we want to discuss in this section. 260 

 

 

 

 

 265 
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Responses to public comments 
 

3) Responses to Hui Feng comments 275 

 

This is an extended study to the one (Quilfen and Chapron (2021) to present a thorough assess 

a set of denoised SLA measurements from three altimeters of J3, S3 and AltiKa, to capture 

short-scale surface signal.  Well recognized due to low SNR by altimeter data, retrieving fine-

scale ocean dynamics thus requires preliminary noise filtering.  Smoothing low-pass filters 280 

(e.g., running mean, loess or other filters) are often adopted. These filters can smoothen 

altimeter signals, but maybe result in somewhat loss of small-scale geophysical signals. 

 Apparently, this EMD approach can be used to design an effective and objective filter to 

generate denoised surface signals (SSHA, SWH, etc.).    I have a few comments and 

suggestions on this manuscript.      285 

• There are duplicated contents in the method section very similar to the one (Quilfen and 

Chapron 2021). Maybe need a rewriting in the revision.   

This ESSD paper aims to publish the denoised SLA dataset, which is the main focus 

here rather than the presentation of the method. The methodology section is necessary 

for a proper understanding of the results and to assess the specificity of the approach, 290 

and it refers to the paper by Quilfen and Chapron (2021)  which is entirely devoted to 

the EMD denoising method. Note that the 2021 paper presents the EMD denoising 

method applied to significant wave height while it is applied to sea level in this 

manuscript with some improvements (e.g. determination of the A parameter). However, 

as suggested by Hui Feng, we can indeed shorten this section and we have thus moved 295 

a part of the method description in an Appendix.. 

• The paper at page 510 states “the adjustment of the EMD denoising process for Jason-

3 and Sentinel-3 was performed by using the AltiKa results as reference”. Is this 

objective way to do such an adjustment 
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The reason for such an adjustment is explained on page 17. Rather than discuss whether 300 

this is an objective way to proceed, we can argue that it is our choice to provide a 

combined data set of three altimeters showing consistency in their mean power spectral 

density. AltiKa and Sentinel-3 show very similar noise content and PSD shape, so the 

approach is easily justified. This is not the case for Jason-3 where the sea level 

measurements are significantly noisier. However, the strength of the methodology also 305 

lies in the fact that each denoised data is attached with its locally estimated uncertainty. 

Therefore, Jason-3 denoised measurements are attached with larger uncertainty 

estimates. We believe this is an advantage for ocean modelers, for example, to have 

both consistency in PSDs and a supply with a meaningful uncertainty estimate.    

• It looks EMD, a data-driven method, leads to a more complicated design process for 310 

any specific applications, such as a specific coast/shelf region.  The two-step analysis 

should be completed using regional altimeter data to determine an optimal value of A. 

In addition, One single value of A in a region may not well represent the 

seasonality.  Look forward to seeing any comments on this by the authors. 

This is not the case, the EMD denoising process does not lead to a different or more 315 

complicated design process for a specific application. It can be applied in the same way, 

with the same algorithms for different data sets (SSH, SWH,Sigma0) and different 

environmental conditions or ocean basins, including coastal areas. This is because it is 

a data-driven, self-consistent method that relies on local noise estimation  and signal 

thresholding if the signal to noise ratio is too low, see Equations 3 and 4. In Equation 320 

4, the main term that makes the rule is En, the locally estimated noise energy. A is only 

a global parameter to allow a global adjustment of the method according to criteria to 

be defined by the developer. We detail how we derived the value of A, and show that 

one can indeed obtain slightly different values if one varies the data set used to tune it, 

but this can be considered as a kind of noise on the estimation of A. So we chose an 325 

average value that can be used everywhere, every time.        

• It will be nice if the datasets used in this paper, and processing codes can be available 

for the readers and potential users who are interested in using the EMD 

The dataset is already available, as indicated in section 5: Data availability, and the 

Matlab code is now available as indicated in the new Code availability section.. 330 
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4) Responses to Sergei Badulin comments: 

 

The paper addresses the burning problem of extending results of altimetry to studies of Ocean 335 

variability. The authors combine techniques of empirical mode decomposition and adaptive 

noise filtering to generate noise-free data to better resolve scales 30-100 km. These scales 

contain essential information on ocean dynamics, first of all, on coupling waves and currents. 

The new approach provides a useful tool to attack many problems of mesoscale dynamics of 

Ocean dynamics. Additionally, the authors are developing an open-access database 340 

https://doi.org/10.12770/1126742b-a5da-4fe2-b687-e64d585e138c for the altimetry 

community to play with. 

The paper is essentially based on Quilfen Y., Chapron B.Advances in Space Research, 68. 

https://doi.org/10.1016/j.asr.2020.01.005, 2021. In my opinion, it would be useful to 

accompany the text with extractions from the cited paper or to provide as an appendix a scheme 345 

of the de-noising technique in a spirit of sect.4.2. 

Thank you for reading and commenting our manuscript. We agree that we can do better to 

clarify the methodology section and focus on the main results. We have therefore added an 

Appendix in the revised manuscript. 

 350 

 

 

5) Responses to Lotfi Aouf comments: 

 

First I congratulate the authors for this work. After using of EMD technique to denoise 355 

Significant wave height from altimeters, this work describes the implementation of such 

technique to improve sea level shorter mesoscale up to 30 km of wavelength. The methodology 

is clearly detailed and the application to 3 altimeters missions is successfully achieved. The 

spectral analysis clearly indicated the improvement of the power spectrum of sea level for small 

scale. the implementation of this technique seems easy to set with effort of explanation from 360 

the authors, however it is difficult to follow the process of threshold, iterations and ensemble. 
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When the authors say "ensemble" it means portion of the data ? I need to clarify this point 

because I am a bot confused with ensemble using external random perturbations. This work 

open a very interesting perspective of better estimate the geostrophic currents for smaller scale. 

It will be good if the author say few words, which can suggest how far this technique improve 365 

the estimate of geostrophic currents. 

Overall the paper is well written and open very promising applications for wave-currents 

interactions. 

 

The authors are grateful for the positive feedback and are pleased to respond to the two main 370 

points raised: 

1)  We understand that our description of the denoising process may be not that clear, as 

described lines 246-257. We can try to summarize as follows. For a given data segment 

typically  covering several hundreds km along the satellite track, denoising is performed 

in several steps, the first being an initial EMD expansion of the signal, SGN, into a 375 

series of IMF. The first IMF, IMF1, derived from this EMD expansion is the high-

frequency component of the signal along the track, mainly associated with the high-

frequency noise (HFN). HFN is estimated in a second step by a wavelet analysis of 

IMF1.  As HFN is only a particular realisation of the noise, to make the full denoising 

scheme more robust, a third step is to generate a set of N=20 new realisations of the 380 

noisy signal, SGN(1:20), by random perturbation of HFN, HFN(i=1:20). Each new 

noisy signal, SGN(i=1:20)= SGN – HFN + HFN(1:20),  is then denoised separately 

using the thresholding process to provide a set, or an ensemble, of N denoised signals. 

Finally, the result is the average of the ensemble of denoised signals and the standard 

deviation provides an estimate of the uncertainty which is function to the actual signal 385 

to noise ratio. Note that random noise perturbation, to provide new noise series, is 

performed in windows of about 140 km width, as the noise statistics are unlikely to be 

stationary along-track, mainly due to their dependence on the significant wave height. 

Hope this makes things clearer. 

 390 

2)  Improving the regularity of sea surface height estimates will certainly help the 

determination of along-track gradients. It shall then serve to better estimate the across-

track geostrophic balance. It will also provide more reliable statistics, e.g. occurrences 
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of large along-track SSH gradients. The impacts of these large SSH gradients can then 

be possibly traced, and more reliably related to sea state SWH gradients. At high 395 

latitudes, where the altimeter tracks intersect, these more regular SSH estimates can be 

combined to map 2D field, leading to better resolved geostrophic surface currents. 

However, the proposed technique will improve the observation of both balanced and un 

balanced motions. 

 400 


