Answer to Reviewer 2 comments

In the text below, the reviewer comments are in regular characters and our answers in italic.

The authors provide a description of a new sea level anomaly dataset based on Altika, Jason3 and
Sentinel3 along-track observations filtered using the EMD method. Overall I found the paper exhaustive
and well written. EMD is a novel filtering method with lots of potential for geophysical application and
the retrieval of mesoscale information from satellite altimetry an important topic for current as well as
future missions. The manuscript represent a valid and important contribution to the field, but there are

some aspects that [ would like to have better clarified before the manuscript is finally published.

Thank you for reviewing our manuscript and for providing positive feedback. We are responding to the
various points below, and the manuscript will be modified appropriately to address the reviewer’s

comments.

Major remarks

I found that one of the main limitations of this paper is the lack of a good term of comparison against
which to evaluate the performance of the EMD filtering. The authors remark several times how current
filtering methods remove almost entirely the altimetry signal at scales below ~70 km and how for that
reason EMD should be preferred. However, a comparison between the official filtered CMEMS products
and the EMD ones is never presented. I think that the addition of a spectral comparison between the two
as well as between across-track SLA signal for the two tracks showed in Fig 1 would further strengthen

the author’s conclusions.

Originally, we intended to show the results of the comparison between EMD-denoised (SASSA) and
official CMEMS products, as well as with the experimental SSALTO/DUACS 5Hz products, but we felt
that this would have resulted in too long an article if an in-depth comparison had been performed. Given
the reviewer’s comment and suggestion, we propose to add a short subsection before the “Data
availability” section to provide an illustration of the salient features that make our approach different
and more attractive. In the revised manuscript to be submitted after this interactive discussion part, the
content of the new section will be related to what is discussed below. However, it should be clear that
we cannot perform a thorough comparison of the different approaches, a task that should eventually be
the subject of a separate paper. As the data set is freely available, any interested scientist/user will

eventually be able to make such a comparison.

1t is useful to compare our approach with CMEMS products but also with the 5SHz experimental DUACS
products proposed by Aviso, as the latter products include, among several differences from CMEMS

processing, a high-frequency noise correction (Tran et al., 2019) that also aims to better retrieve



mesoscale information in the 120-40 km wavelength range. For illustration, a selection of AltiKa passes
in the Gulf Stream region is shown below. Panel a) shows (same pass as in Figure 1 of the manuscript,
right panels) that EMD is best suited for analyzing strongly nonlinear signals to accurately map the
large SLA gradient (more than 40 cm in less than 50 km), while CMEMS has the expected
limitations/artifacts due to low-pass filtering, e.g. smoothing of gradients and poor localization of
extrema. Panels b) and c) show two passes for which small mesoscale features (highlighted in the insets)
are recovered, and match well, for the SASSA and DUACS products, while the ~70 km cutoff applied in
the CMEMS products suppresses this information. Note that the SASSA result is based on a local signal-
to-noise ratio (SNR) analysis and is associated with an uncertainty estimate. In panel c), the significant
wave height (Hs, from Sea State CCI) is displayed. It shows that this mesoscale variability in SLA is not
associated with significant variability in Hs and thus may well be of geophysical origin, and not an
artefact resulting from the HFA correction. Indeed, the HFA correction applied in DUACS products is
based on a statistical relationship between the SLA and Hs retracking errvors, at scales < ~120 km for
which Hs variability is assumed to be only noise, in order to estimate the high-frequency SLA errors to
be removed. Panel d) presents a common case where the DUACS result is exposed to contain many
more errors associated with the HFA correction. Indeed, a large variability of Hs at the < 100 km scale
is observed in the vicinity of the Gulf Stream front, which is known to be the result of interactions
between surface waves and current gradients (many studies show this). In these and many other cases
(see left side of panel d), the HFA correction likely induces errors in the SLA signature, due to the

wave/current interactions that shape the Hs field at scales down to a few kms.
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Figure 1: CMEMS unfiltered (dotted blue), SASSA (black), DUACS 5Hz (red), and CMEMS filtered
(green) Sea Level Anomalies (SLA, m) for different AltiKa passes: a) cycle 106 pass 597; b) cycle 101
pass 184, ¢) cycle 102 pass 941, d) cycle 103 pass 655. The magenta curve on right axis in panels c)
and d) shows the Hs from the Sea State Climate Change Initiative products.



Figure 2 shows the power spectral density (PSD) for the same products and the Gulf Stream
region. For the CMEMS and DUACS products, the low-pass filter applied at about 65 km
(CMEMS) and 40 km (DUACS) wavelengths results in a sharp decrease in PSD with increasing

wavenumber, whereas the SASSA PSD is in close agreement with the PSD obtained by

removing white Gaussian noise (computed as the average PSD between 15 and 30 km

wavelength) from the unfiltered SLAs. The fact that SASSA products can provide a “realistic /

physical” representation of the SLA variance distribution over the entire resolved wavenumber

spectrum is a direct result of the chosen approach. For DUACS products, it is unclear whether

the variance between 40 km and 120 km wavelength corresponds to variance of unfiltered data

or to variance of both unfiltered data and errors associated with HFA corrections resulting

from the geophysical variability of Hs at these scales, as discussed above.
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Figure 2: Mean Power Spectral Density (PSD) of Saral SLA along-track measurements: CMEMS
unfiltered (blue), SASSA (black), DUACS 5Hz (ved), CMEMS filtered (green), CMEMS unfiltered minus

an mean white gaussian noise (WGN) computed over 15-30 km wavelength. The PSDs are computed as

the average of PSDs obtained for all individual data segments covering the year 2017 and the Gulf
Stream region (72° W-60° W, 44° N-32° N).



My second major remark, regards the Bayesian/wavelet filtering of the IMF1. It seems a quite
complex step to be included in the analysis, for which not too many details are provided (for
instance which wavelet base is used?) and it does not seem to give a big return. The examples
in Figure 4 both show that only a one peck of the IMF1 is retained as significant signal, while
the rest of the points are discarded. All the spectra shown indicate, that the IMF1 filtered energy
retained at longer wavelengths is only a very small percentage of the total reconstructed signal
(at least one order of magnitude smaller). Given the examples shown in figure 4 it is unclear to
me how the spectra shown in figure 6 can be obtained and what the associated filtered IMF1
would look like. While the examples shown in figure 4 are appropriate to explain the variations
in the signal and signal noise as a function of varying SWH conditions, they do very little to
convince the reader on why such IMF1 denoising step should be included in the analysis. The
author mention (lines 204-205) that “processing IMF1 using wavelet analysis is an important
step to separate, as much as possible, the possible useful geophysical signal in IMF1 from
outliers”, but I’'m not convinced by the examples they showed and I found much more
convincing their comments regarding the importance of data editing in those situations (e.g.
lines 122-125 or 480-485). Thus, I encourage the authors to provide a bit more evidence to
justify the inclusion of such complex step in an already fairly complex (and novel) filtering

method.

Inspired by the work of Kopsinis and McLaughin (2009), based on numerical experiments, the
proposed EMD-denoising algorithm has been adapted to altimetry data for which the SNR
varies greatly and may have locally non-stationary noise statistics, and which are often affected
by outliers. Managing these non-friendly features as well as possible indeed introduces a
certain degree of complexity in the process (compared to the simple low-pass filtering applied
in CMEMS products), and the specific processing of IMF1 by wavelet analysis (or by some
other means) is indeed an important feature that brings a great return, with two main

objectives:

1) In cases where the SNR is locally high, at the sampling rate of the analyzed data, the
sifting process used to derive IMFs likely results in the inclusion of geophysical
information in the IMF1 because it is based on the detection of the two extrema
envelopes (maxima and minima). The two examples in Figure 4 of the manuscript were
not chosen to illustrate this feature. Instead, the examples in Figure 3 below are

frequent and typical cases that show the need for IMF'I processing (as well as the two



examples showing insets in Figure 1 above). It shows a comparison between the
simplest approach of removing IMF1 from the unfiltered data to obtain a high-
frequency noise-free signal, and the full denoising process. As can be seen, IMF1 is
significantly modulated in amplitude and phase in regions with well-defined mesoscale
variability, which may be geophysical in origin, or with large gradients. By removing
the IMF1 entirely from the unfiltered SLAs, it is clear that features potentially of
geophysical origin can be missing and that this degrades the representation of large
gradients. One of the main goals of this work is to be able to retrieve this small
mesoscale variability and associate it with an estimate of the uncertainty. The reason it
does not appear as a significant contribution in the averaged PSDs is that the PSDs are
averaged over a large sample of data segments, not all of which showing such
variability, which is furthermore often limited to small portions of the track. However,
the examples below show the improved mapping of SLA variability when associated
with sufficient SNR, and the better mapping of large gradients. Note that if one were to
process AltiKa data from 5Hz waveforms, the IMF1 would certainly be all noise and
the methodology adapted to that. There is indeed a great deal of flexibility in the method,
which makes it, if not very simple, very adaptable. However, as noted in the manuscript,

better editing of the data before denoising step will make it even more effective.
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Figure 3: Three AltiKa passes; top panels: unfiltered (blue), unfiltered minus IMF1 (black), EMD-
filtered (red) SLAs (m); bottom panels: SLA’s IMF1 (red, m), denoised SLA’s uncertainty (black, m)



2) The other main reason for processing IMF1 using wavelet analysis is to estimate the
high-frequency noise series from the IMF 1, that would correspond to the IMFI of a
Gaussian noise. The noise series is used in two ways to process a data segment. First,
to estimate the variance of the IMF 1 Gaussian noise, to calculate the noise variance of
higher order IMFs and the derived threshold values. If the IMF1 contains too much
geophysical information or outlier signature to significantly shape the IMF I amplitude
distribution, the noise variance estimated for all IMFs would be biased even though the
Median Absolute Deviation is expected to be a robust estimator. Second, and perhaps
more importantly, the noise series is used to generate a set of noisy series to obtain a
robust estimate of the denoised SLA associated with an uncertainty value. This assumes
that the noise is Gaussian. Figure 4 below, as well as Figures 2 and 3 in the manuscript,
show that IMFI denoising does a good job of testing this assumption since the PSD of
the noise estimated from IMF I and Huang and Cressie’s wavelet denoising (blue curve)
is very close to the PSD of IMF I for white Gaussian noise (red curve), which is not the
case for the SLA IMF'1’s PSD (dashed black curve). For information, several denoising
schemes using wavelets have been tested with Matlab functions (green curves) and the
one of Cressie and Huang (not included in Matlab) gave better results as shown in
Figure 4. This has already been discussed in lines 233-243 of the manuscript. The
wavelet basis used is Symlet 8. Different bases were tested, but this has much less impact
on the results than the choice of wavelet denoising scheme. It is now informed in the

new version of the manuscript that will be provided.
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Figure 4: Mean Power Spectral Density (PSD) of IMF1 for white noise (red curve) and SARAL SLA
along-track measurements (dashed black curve), and mean PSD of the corresponding noisy (thick black
line) and denoised (thin black line) SLA measurements. The green and blue lines is for the PSD of the
SLA high-frequency noise estimated from the SLA’s IMF1 with different Matlab denoising schemes and
with the Huang and Cressie (2000) scheme, respectively . The PSD is the average of PSDs computed
over all data segments covering the year 2017, and the Agulhas region (10° W-35° W; 33°5-45°S).



Finally, the authors mention that Sentinel-3 provides observations in both SARM and LRM,
describing the latter as “same processing as Jason-3 and AltiKa”. That is incorrect and should
be modified. The SRAL mission is always operated at High Resolution Mode (commonly called
SAR mode). Low Resolution Mode (LRM) is a back-up mode only. (see
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-altimetry/overview/modes

). 1Hz observations from Sentinel-3 are from the so called pseudo-low resolution mode (PLRM)
which was designed to be as analogous as possible to the Jason-3 low-resolution processing,
but it is not exactly the same (for instance less individual waveforms are averaged together in

PLRM, so that it is characterized by slightly higher noise than Jason-3).

Our description of the Sentinel-3 data may indeed be confusing. We have modified it as follows:

“The altimeter on board Sentinel-3 is a dual-frequency Ku-C altimeter that differs from
conventional pulse-limited altimeter in that it operates in Delay Doppler mode, also known as
Synthetic Aperture Radar Mode (SARM). SARM is the primary mode of operation which

provides ~ 300 m resolution along the track.”

However, it is our understanding that AVISO L2p products are used as input to Sentinel-3 1-
Hz products provided by CMEMS and that “the sea level anomaly considered in Sentinel-3 L2P
products is always based on Synthetic Aperture Radar (or if not available on Low Resolution
Mode) data, but never on Pseudo LRM data” as stated in the L2p products Handbook. Please

correct us if we are wrong.

Minor Remarks

Since in Flandrin et al. (2004) alpha is defined as 2H-1, shouldn’t its value in equation (1) be

0? This would make the error variance vary as 2"-n rather than being constant (20=1).

Thank you for pointing out this typo in the alpha value, line 188. For white noise, H=0.5

alpha=0, which effectively gives the variance of noise to vary as 2"-n.



Legends should be included in Figures 3 and 6

Done in the revised manuscript.

Please explicitly indicate in the paragraph between lines 220 and 224 if any further editing or
gap filling has been applied to the input data

The following text will be provided in the revised version: ‘Data denoising is performed on data
segments of 128 continuous measurements to limit large variations in noise statistics due to
high sea state conditions. No gap filling is performed for missing values. In addition to the data
editing performed for CMEMS products, additional outlier detection is performed to remove
the remaining isolated peak values for the SLA. For each data point in a segment, the difference
in SLA with neighboring values is tested, within a sliding window of 5 points, and its SLA value
is replaced by the average of neighboring values if the difference is greater than 4.5 times the
standard deviation of the IMFI of the segment.’

Section 4.2 could be improved : the initial impression is that the parameter “A” should be
defined according to seasons/region, but then the authors show that this is not the case and a
mean value specific for each satellite mission should be used. This sort of pulls the rug under
the reader feet. I think it would be easier for the reader if this conclusion was introduced at the

beginning of the section to better guide him through the text.

We describe in the introductory part of section 4.2 how the value of parameter A is defined, see

lines 345-357. To address the reviewer’s concern, we have modified the text as follows:

“The proposed denoising approach can efficiently adapt to the local SNR, allowing a single
global value for the control constant A in “Eq. (4)”. However, since the noise statistics vary
greatly with the average sea-state conditions, it is useful to show how such variability can
impact the results when a single value of A is used in the global SLA processing. A two-step
sensitivity study is performed below, which first determines specific A values for different

regions, and then shows how the use of an overalll A value impacts the results.”



Lines 360 to 375: Please explain the meaning of the WGN acronym in the text. Furthermore,
text and figure 5 legend are not consistent (“Best-fit” and “Fitted-PSD”). Please correct that.

The acronym White Gaussian Noise (WGN) is now defined in the text and the inconsistency

between the text and the Figure 5 legend corrected.

Why are the green PSD curves in figure 5 not continuous but show gaps at small wavelengths?

This is because the average noise PSD is calculated as the average PSD between 15 and 30
km, negative values are obtained at some wavenumbers in this range when removed from the

actual PSD values. These values are therefore ignored when plotting the logarithm .

Lines 471-472: shouldn’t that be red dotted and red dashed lines, instead of “black and red
dashed?

Indeed, this is not correct and not so simple. In fact, the total noise in IMFs of rank > 1
should be: dashed black — (dotted red — dashed red). The sentence has been removed because
it is not important for what we want to discuss in this section.



