
Response to Anonymous Referee #1 

We greatly appreciate your valuable suggestions and comments. We studied your comments carefully 

and made substantial revisions accordingly. We hope that our corrections meet the requirements. The 

revised contents are marked in red in the manuscript. Our modifications and responses to the reviewers’ 

comments are listed as follows. The reviewers' comments are in blue text, while the authors’ responses 

are in black text. All revisions in the revised manuscript are in red text. 

 

The idea of the paper is to combine various data records on snow water equivalent (SWE) with ridge 

regression model (RRM) technique. This is an interesting and welcomed approach that possibly 

provides improved estinates on SWE of the northern hemisphere. However there are some issues that 

need further consideration and clarification. 

Reply: We greatly appreciate your careful revision of our manuscript. 

 

1.Apperently, the paper applies point-wise observations on snow cover, not distributed observations 

from snow courses. Thus the reference data does not directly describe the SWE on the scale of data 

products. Moreover, the NOAA GHCN data does not include direct measurements on SWE (they are 

evidently based on snow depth observations at meteorological stations). Thus, the applied reference 

data may include systematic errors due to inadeqate consideration of temporally and spatially varying 

snow bulk density. 

Reply: Thank you for your very helpful suggestion. 

We fully agree with your opinion that the NOAA GHCN SWE data do have some systematic errors. 

Therefore, we discarded the NOAA GHCN SWE data. In addition, the Russian snow survey data 

(RSSD) are also a snow course data type. Therefore, we retrained, tested, and validated the model using 

new hemispheric-scale snow course observational (HSSC) data and RSSD to generate a new version of 

the RRM SWE product and re-evaluated the product. 

 

Most of the contents in the article have been revised due to the replacement of training data, and 

the detailed changes have been marked in red in the revised manuscript. 

 

Abstract: 

“We evaluated the accuracy of the RRM SWE product using hemispheric-scale snow course (HSSC) 

observational data and Russian snow survey data. The MAE, RMSE, R, and R² between the RRM 

SWE products and observed SWEs are 0.21, 25.37 mm, 0.89, and 0.79, respectively. The accuracy of 

the RRM SWE dataset is improved by 28%, 22%, 37%, 11%, and 11% compared with the original 

AMSR-E/AMSR2 (SWE), ERA-Interim SWE, Global Land Data Assimilation System (GLDAS) SWE, 

GlobSnow SWE, and ERA5-land SWE datasets, respectively, and it has a higher spatial resolution.” 

“The average MAE and RMSE of the RRM SWE products are 0.22 and 19.92 mm at different altitude 

intervals and 0.21 and 27.00 mm at different regions, respectively. This method has good stability, it is 

extremely suitable for the production of snow datasets with large spatial scales, and it can be easily 

extended to the preparation of other snow datasets.” 

 

Section 2.4.1: 

“Hemispheric-scale snow course (hereinafter referred to as HSSC) observational data are contained in a 

hemispheric-scale SWE database based on SWE observational datasets from the former Soviet 



Union/Russia (FSU), Finland, and Canada developed by Pulliainen et al (Pulliainen et al., 2020; 

Bronnimann et al., 2018; Brown et al., 2019). This dataset is from the website of the Finnish 

Meteorological Institute (FMI) (https://www.globsnow.info/swe/archive_v3.0/auxiliary_data/). The 

dataset provides data from 2687 distributed regional snow course observations and contains 343,241 

SWE observational data points from 1979 to 2018. The dataset is a manually sampled transect, which 

can effectively solve the problem of spatial scale uncertainty of SWE observational data.” 
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Section 3.1: 

According to the verification results in Fig. 3 and Table 2, the RRM SWE data have the best overall 

accuracy, and the MAE, RMSE, R, and R² between the observed SWEs are 0.21, 25.37 mm, 0.89, and 

0.79, respectively. The overall accuracy of the GlobSnow SWE and ERA5-land SWE products is 

higher than that of other SWE products. The overall deviation of the ERA5-land SWE products is the 

smallest except for the RRM SWE data, with MAE and RMSE values of 0.32 and 37.02 mm, 

respectively. The correlation between the ERA5-land SWE and observed SWE is the highest, except 

for the RRM SWE data, with R and R² values of 0.84 and 0.71, respectively. Although the overall 

deviation between the GlobSnow SWE dataset and the measured SWE is small, its correlation with the 

measured value is low. The overall deviation between the ERA5-land SWE dataset and the measured 

SWE is higher than that of the GlobSnow SWE dataset, but its estimation accuracy for the high-value 

region of the SWE is low. 

The MAE ranking order is RRM SWE < GlobSnow SWE = ERA5-land SWE < ERA-Interim SWE 

< multisource data average SWE < AMSR-E/AMSR2 SWE < GLDAS SWE. 

The RMSE ranking order is RRM SWE < ERA5-land SWE < GlobSnow SWE < ERA-Interim SWE 

< multisource data average SWE < AMSR-E/AMSR2 SWE < GLDAS SWE. 

The R ranking order is RRM SWE > ERA5-land SWE > GlobSnow SWE > ERA-Interim SWE > 

GLDAS SWE > multisource data average SWE > AMSR-E/AMSR2 SWE. 

The R² ranking order is RRM SWE > ERA5-land SWE > GlobSnow SWE > ERA-Interim SWE > 

GLDAS SWE > multisource data average SWE > AMSR-E/AMSR2 SWE. 

Compared with the ERA-Interim SWE, AMSR-E/AMSR2 SWE, GLDAS SWE, GlobSnow SWE, 



ERA5-land SWE, and multisource data average SWE, the MAE of the RRM SWE and observed SWE 

is reduced by 0.22, 0.28, 0.37, 0.11, 0.11 and 0.23, respectively. The RMSE of the RRM SWE and 

observed SWE is reduced by 21.44 mm, 27.02 mm, 39.88 mm, 15.62 mm, 11.65 mm, and 26.63 mm, 

respectively. The correlation coefficient of the RRM SWE and observed SWE is improved by 0.20, 

0.42, 0.37, 0.19, 0.05, and 0.38, respectively. The coefficient of determination of the RRM SWE and 

observed SWE is improved by 0.31, 0.57, 0.52, 0.30, 0.08, and 0.53, respectively. 

Table 2: Error list for the station data and grid snow water equivalent products. 

Error type MAE RMSE (mm) R R2 

ERA-Interim 0.43 46.81 0.69 0.48 

AMSR-E/AMSR2 0.49 52.39 0.47 0.22 

GLDAS 0.58 65.25 0.52 0.27 

GlobSnow 0.32 40.99 0.70 0.49 

ERA5-land 0.32 37.02 0.84 0.71 

Multisource data 

average 
0.44 52.00 0.51 0.26 

RRM SWE 0.21 25.37 0.89 0.79 

 
Figure 3: Accuracy comparison of various SWE products. The upper left sector represents the MAE, the 

upper right sector represents the RMSE, the lower-left sector represents R, and the lower right sector 

represents R2. The sector axis represents the size of the error, and the color represents different SWE 

datasets. 



 

Figure 4: Error verification density diagram (a total of 38807 sample points were used for verification). The 

color bar represents the value of kernel density estimation. The closer the high-density area is to the 1:1 line, 

the higher the verification accuracy of the dataset is at most of the measuring stations. 

 

Section 3.2: 

The above verification results show that the MAEs between the RRM SWE dataset and measured SWE 

are 0.16, 0.21, 0.24, 0.23, 0.22, 0.18, 0.23, 0.19, 0.29, 0.27, and 0.18; the RMSEs are 5 mm, 21 mm, 27 

mm, 25 mm, 25 mm, 12 mm, 9 mm, 6 mm, 28 mm, 29 mm, and 31 mm; the R values are 0.97, 0.88, 

0.88, 0.82, 0.85, 0.96, 0.88, 0.84, 0.90, 0.81, and 0.83; and the R2 values are 0.95, 0.77, 0.78, 0.67, 0.73, 

0.91, 0.77, 0.70, 0.81, 0.66, and 0.70 at altitude gradients of <100 m, 100-200 m, 200-300 m, 300-400 

m, 400-500 m, 500-600 m, 600-700 m, 700-800 m, 800-900 m, 900-1000 m and >1000 m, respectively 

(Fig. 5). 



 

Figure 5: Comparison of the error between the RRM SWE and AMSR-E/AMSR2 SWE, ERA-Interim SWE, 

GLDAS SWE, GlobSnow SWE, and ERA5-land SWE at different altitudes (the abscissa represents the 

altitude gradient, and the ordinate represents different SWE datasets). The color bar indicates the error in 

each SWE dataset. The closer to red the color is, the higher the accuracy is. MAE: mean absolute error, 

RMSE: root mean square error, R: Pearson’s correlation coefficient, R2: coefficient of determination). 

 

Section 3.3: 

Overall, the annual average relative differences in the RRM SWE data and AMSR2 SWE, ERA-Interim 

SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE are 37%, 41%, 54%, 25%, and 29%, 

respectively (Fig. 7). 



 

Figure 6: Comparison of the spatial distribution characteristics between the RRM SWE and 

AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE (the 

four columns of images represent the comparison results in 2014, 2015, 2016, and 2017, respectively). 

 



 
Figure 7: Temporal and spatial distributions of relative differences (RD%) between the RRM SWE and 

AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE. 

Lower-right subgraph: Comparison of annual average relative differences between the RRM SWE and 

AMSR2 SWE (A), ERA-Interim SWE (B), GLDAS SWE (C), GlobSnow SWE (D), and ERA5-land SWE 

(E). 

 

Section 3.4: 

The test values of the AMSR-E/AMSR2 annual average SWE, GlobSnow annual average SWE, 

ERA5-land annual average SWE, and RRM annual average SWE are -3.26, -2.54, -3.43, and -3.00, 

respectively, and these four SWEs showed a significantly decreasing trend at the significance test level 

of 0.05. 

 



Figure 8: Annual variation tendency in the AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, 

GlobSnow SWE, ERA5-land SWE and RRM SWE products from 1979 to 2019 (the dotted line is the trend 

line calculated based on the Mann-Kendall method). 

 

Conclusions: 

The accuracy ranking of the SWE dataset verified by the test dataset is described as follows: RRM 

SWE > ERA5-land SWE > GlobSnow SWE > ERA-Interim SWE > multisource data average SWE > 

AMSR-E/AMSR2 SWE > GLDAS SWE. 

 

2.The authors should also note a limitation that reanalysis data-based products (that are used here 

together with obsrvational data-based products) on SWE do not provide model-independent data 

(results here are not independent on models). 

Reply: The text has been modified to improve clarity. 

Yes, we fully agree with your comments. The reanalyzed data based on the gridded SWE product do 

suffer from the problem that the data and the model are not independent. The reason for this is that the 

model estimation is distorted or difficult to estimate accurately due to the existence of an exact 

correlation or high correlation between the SWE target variable and SWE predictor variables in the 

training model, namely, the so-called multicollinearity problem. The ridge regression model can solve 

this multicollinearity problem well, i.e., the independence of models and SWE products based on 

observational data. The reason why the ridge regression model is selected for RRM SWE product 

preparation in this study is to solve this problem. 

 

We have provided detailed supplementary explanations in Section 2.3. 

“The ridge regression model is flexible in the choice of predictor variables and does not require the 

predictor and target variable to be independent of each other. It can effectively solve the 

multicollinearity problem of predictor and target variables as well as reduce the impact of this problem 

on the training model (Duzan and Shariff, 2015; Saleh et al., 2019). Generally, since the reanalysis data 

based on SWE products cannot make the products and models independent of each other, i.e., they are 

prone to the multicollinearity problem, which leads to distorted model estimation or difficulty in 

performing accurate estimations. In contrast, the ridge regression model can successfully solve the 

multicollinearity problem, i.e., the independence of training products and models. In addition, when 

integrating multiple SWE products, the accuracy of each SWE dataset is likely to differ. A small change 

in one of the SWE products involved in the training will cause a significant error in the final 

calculation results, while the ridge regression model has high accuracy and stability for this 

"ill-conditioned" SWE data”. 
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Detailed comments: 

3. Title: Since the study region includes all land areas north of the latitude of 45 degrees, the term 



Pan-Arctic is not good. 

Reply: This suggestion has been accepted, and the text has been modified. 

We have modified ‘Pan-Arctic’ as ‘land region above 45° N’. 

 

4.Lines 59-61 and 96-98: The authors should note that a recent investigation (Pulliainen et al. 2020) 

applied a bias correction to GlobSnow and reanalysis data products to obtain improved estimates on 

peak annual regional and hemispehric snow mass/SWE. This was done using hemispheric snow course 

obervations. 

Reply: The text has been modified to improve clarity. 

We have noted this very interesting study and used the latest version of the GlobSnow SWE data. In 

addition, we have added a description of this study to the Introduction and Data sections. 

“An effective method was applied in a study by Pulliainen et al (Pulliainen et al., 2020), who applied a 

bias correction to GlobSnow and reanalysis data products based on SWE snow course measurements to 

obtain improved estimates on annual peak snow mass and SWE in the Northern Hemisphere.” 

 

Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, 

M., Cohen, J.,Smolander, T., and Norberg, J.: Patterns and trends of Northern Hemisphere snow mass 

from 1980 to 2018 (vol 41, pg 861,2020), Nature, 10.1038/s41586-020-2416-4, 2020. 

 

5.Lines 139-166: The method should be explained in more detail. In Eq. (1) p probably includes as 

variables the applied five SWE products, but how is the DEM considered? What is the number of 

samples N in the training data set? How is the training and testing data set defined/selected? 

Reply: Thank you for your good suggestion. We have added details to the methods section. 

In this study, the DEM was used as an important environmental feature information input to the ridge 

regression model and was utilized in the model training. The DEM is an auxiliary terrain feature 

variable in addition to the five SWE prediction feature variables, namely, AMSR-E/AMSR2 SWE, 

ERA-Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE. 

 

The total number of samples N in the training dataset was 271651. The sample sizes of the training 

dataset, validation dataset and test dataset were divided according to the ratio of 7:2:1, where the 

training, validation, and test set sample numbers were 271651, 77614 and 38807, respectively. 

 

We have made detailed modifications in Section 2.3. 

“DEM was used as an important environmental feature input to the ridge regression model and was 

included in the model training. DEM is an auxiliary terrain feature variable in addition to the five SWE 

prediction feature variables, AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, GlobSnow 

SWE, and ERA5-land SWE.” 

2

2

0

1 1 1

ˆ argmin
p pN

ridge

i ij j j

i j j

y x


    
= = =

   
= − − +  

   
   ,                              (1) 

where ˆ ridge is the extremum solution function of ridge regression and p is the number of gridded 

SWE product variables involved in training. ix are the prediction feature variables, which contain two 
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function terms. The total number of samples N in the training dataset is 271651. The sample sizes of 

the training data set, validation data set and test data set are divided according to the ratio of 7:2:1, 

where the numbers of training set, validation set and test set samples are 271651, 77614 and 38807, 

respectively.” 

 

6.Lines 278-279 and 306-308: How is the annual average SWE calculatated, mean value across the 

whole year? 

Reply: This suggestion has been accepted, and the text has been modified accordingly. 

The "annual average SWE" in Lines 278-279 represents the spatially annual average SWE over the 

land region above 45° N. 

The "annual average SWE" of Lines 306-308 represents a further averaging of the annual average SWE 

across the land region above 45° N over all pixels. Here, the "annual average SWE" SWE  can be 

expressed by the following formula: 

N

i

i

S N
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n

=


 

where
iS is the spatially annual average SWE over the land region above 45° N, N is the year, and n is 

all the image elements in the land region above 45° N. 

To avoid confusion, we changed the "annual average SWE" on Lines 278-279 to "spatially distributed 

annual average SWE". In Lines 306-308, "annual average SWE" was modified to "region-wide annual 

average SWE". 

 

7.Lines 467-468 (Fig. 1): Some data stations (RSSD) are located in the open Norwegian Sea, and 

transect of stations in Canada is odd. Are these observations from some campaign? 

Reply: This suggestion has been accepted, and Figure 1 has been modified accordingly. 

We double-checked the station locations in the RSSD dataset and found that observational sites do exist 

on some of the islands in the Norwegian Sea, so the locations of the stations in Figure 1 are reasonable. 

According to your suggestion, we have switched to using “hemispheric-scale snow course 

observational data”, so the issue of the “transect of stations” in the Canadian region has been resolved. 



 

Figure 1: The DEM and snow survey stations of the research region. The right subgraph shows the DEM 

and the left subgraph shows the SWE observational stations. HSSC, hemispheric-scale snow course; RSSD, 

the Russian snow survey station. The spatial range of the RRM SWE product is consistent with that of 

DEM). 

 

8.Lines 508-510: The wide spread of range is y-axis is odd. 

Reply: Thank you for your suggestion, and Figure 8 has been modified accordingly. 

 

Figure 8: Annual variation tendency in the AMSR-E/AMSR2 SWE, ERA-Interim SWE, GLDAS SWE, 

GlobSnow SWE, ERA5-land SWE and RRM SWE products from 1979 to 2019 (the dotted line is the trend 

line calculated based on the Mann-Kendall method). 

 

9.References: 

Pulliainen, J,, Luojus, K., Derksen, C., et al. Patterns and trends of Northern Hemisphere snow mass 

from 1980 to 2018, Nature, 581: 294-298, 2020. 

Reply: Thank you for providing this reference, which we have cited in the manuscript. We 

studied the reference carefully and discussed it in detail in the manuscript. 

 

 

 



Response to Anonymous Referee #2 

We greatly appreciate your valuable suggestions and comments. We studied your comments carefully 

and made substantial revisions accordingly. We hope that our revisions meet the requirements. The 

revised contents are marked in red in the manuscript. Our modifications and responses to the reviewer’s 

comments are listed as follows. The reviewer’s comments are in blue text, while the authors’ responses 

are in black text. All revisions in the revised manuscript are in red text. 

 

A very interesting paper to develop an improved SWE dataset based on existing multi-source SWE 

products using machine learning. However, there are some points which need to be well addressed. 

Please see following comments: 

Reply: We greatly appreciate your careful review of our manuscript. 

 

1. The ridge regression machine learning algorithm in Section 2.3 needs to be better described. 

◼ Why ridge regression is selected among so many machine learning algorithms? The advantages of 

using ridge regression over others for this application need to be highlighted. 

Reply: The text has been modified to improve clarity. 

The advantages of the ridge regression model are the following: 

1) The ridge regression algorithm can effectively solve the multicollinearity problem, i.e., the 

independence of training products and models. In this study, the reanalysis data based on SWE 

products cannot make the products and models independent of each other, i.e., they are prone to 

the multicollinearity problem, which leads to distorted model estimation or difficulty in accurate 

estimation. It is, therefore, a good way to use the ridge regression algorithm to address this 

problem. 

2) The ridge regression model has high accuracy and stability for "ill-conditioned" data. In this study, 

we used various forms of gridded SWE datasets, and the accuracy of each gridded SWE dataset 

varied. A small change in one of the SWE products involved in the training will cause a large 

error in the final calculation results. Therefore, using the ridge regression algorithm to address 

"ill-conditioned" SWE data is an effective method. 

 

In addition, we provide an additional explanation of the advantages of the ridge regression model 

in Section 2.3. 

“Generally, since the reanalysis data based on SWE products cannot make the products and models 

independent of each other, i.e., they are prone to the multicollinearity problem, which leads to distorted 

model estimation or difficulty in performing accurate estimations. In contrast, the ridge regression 

model can successfully solve the multicollinearity problem, i.e., the independence of training products 

and models. In addition, when integrating multiple SWE products, the accuracy of each SWE dataset is 

likely to differ. A small change in one of the SWE products involved in the training will cause a 

significant error in the final calculation results, while the ridge regression model has high accuracy and 

stability for this "ill-conditioned" SWE data”. 

 

◼ What is the requirement of ridge regression in terms of variable dependence? Does it require 

predictor variables and target variable independent? Are the station data from GHCN or Russian 

snow survey used (or partially used) for generating the gridded SWE products used in this paper? 

If so, the target variable and predictor variables are intrinsically related. How does this impact this 



algorithm? Please provide more information to explain and justify. 

Reply: The text has been modified to improve clarity. 

Regarding the question “What is the requirement of ridge regression in terms of variable dependence? 

Does it require predictor variables and target variable independent?, the ridge regression model is 

flexible in the choice of predictor variables and does not require the predictor and target variable to be 

independent of each other. It is effective in solving machine learning problems with correlations 

between predictor and target variables (Duzan and Shariff, 2015; Saleh et al., 2019). 

 

Regarding the question “Are the station data from GHCN or Russian snow survey used (or partially 

used) for generating the gridded SWE products used in this paper?”, a few of the gridded SWE 

products used in this paper use hemispheric-scale snow course (HSSC) observations (in this revised 

version, the GHCN data have been replaced by HSSC data) data and Russian snow survey data (RSSD), 

and the predictor and target variables are intrinsically related. 

 

Regarding the question “How does this impact this algorithm?”, this "intrinsically related" does 

reduce the accuracy of SWE estimates and leads to a reduction in the stability of SWE estimates. 

However, most of the current SWE observations are inevitably subject to such a multicollinearity 

problem. The ridge regression model is a biased estimation method specifically designed for the 

problem of multicollinearity data (Duzan and Shariff, 2015; Saleh et al., 2019). It has good tolerance to 

"ill-conditioned" data (Hoerl and Kennard, 1970b; Guilkey and Murphy, 1975). The ridge regression 

model can solve the multicollinearity problem of predictor and target variables and effectively reduce 

the impact of this problem on the preparation accuracy of the RRM SWE product. 

 

We have provided detailed supplementary explanations in the Introduction and Section 2.3. 

Introduction: 

“The ridge regression model is a biased estimation method specifically designed to address the problem 

of multicollinear data (Duzan and Shariff, 2015; Saleh et al., 2019). It has good tolerance to 

"ill-conditioned" data and has a good effect in using SWE data to address the multicollinearity problem  

(Hoerl and Kennard, 1970b; Guilkey and Murphy, 1975).” 

 

Section 2.3.: 

“The ridge regression model is flexible in the choice of predictor variables and does not require the 

predictor and target variable to be independent of each other. It can effectively solve the 

multicollinearity problem of predictor and target variables as well as reduce the impact of this problem 

on the training model (Duzan and Shariff, 2015; Saleh et al., 2019). Generally, since the reanalysis data 

based on SWE products cannot make the products and models independent of each other, i.e., they are 

prone to the multicollinearity problem, which leads to distorted model estimation or difficulty in 

performing accurate estimations. In contrast, the ridge regression model can successfully solve the 

multicollinearity problem, i.e., the independence of training products and models. In addition, when 

integrating multiple SWE products, the accuracy of each SWE dataset is likely to differ. A small change 

in one of the SWE products involved in the training will cause a significant error in the final 

calculation results, while the ridge regression model has high accuracy and stability for this 

"ill-conditioned" SWE data”. 
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◼ It is unclear how DEM is used in the ridge regression. Is it used as a predictor variable in addition 

to AMSR-E/AMSR2, ERA-Interim, GLDAS, GlobSnow, ERA5-land SWE or just used to 

evaluate different model performances related to elevation? There are many important factors 

impacting the SWE estimation in addition to DEM. Have you also considered adding more 

variables to further improve the model? Please provide more information to explain. 

Reply: The text has been modified to improve clarity. 

In this study, the DEM was used as an important environmental feature information input to the ridge 

regression model and was included in the model training. The DEM is an auxiliary terrain feature 

variable in addition to the five SWE prediction feature variables AMSR-E/AMSR2 SWE, ERA-Interim 

SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE. 

 

In addition to the DEM, meteorological elements, NDVI, land type, and other factors will affect the 

SWE estimation. Unfortunately, our current training model does not consider these factors in detail, 

which is a limitation of the current RRM SWE product. Currently, there are two main reasons why we 

do not consider these impact factors. The uncertainty of the model will be greater after adding these 

impact factors, and the accuracy of the RRM SWE product may not be improved. However, an 

investigation considering these impact factors in detail is a significant workload and cannot currently 

be performed. In future studies, we will carefully consider these factors in detail to further improve the 

accuracy of the RRM SWE product. 

 

We added a description of the role of DEM data in Section 2.3. 

“The digital elevation model (DEM) was used as an important environmental feature input to the ridge 

regression model and was included in the model training. The DEM is an auxiliary terrain feature 

variable in addition to the five SWE prediction feature variables, AMSR-E/AMSR2 SWE, 

ERA-Interim SWE, GLDAS SWE, GlobSnow SWE, and ERA5-land SWE.” 
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where ˆ ridge is the extremum solution function of ridge regression and p is the number of gridded 

SWE product variables involved in training. ix are the prediction feature variables, which contain two 

parts, one set contains the main feature variables of the gridded SWE products, and the other part 



consists of the DEM auxiliary feature variables.
iy  is the observed snow water equivalent, and  , 

 , j  and 0  are the parameters to be solved.1, , N  is the sample of the training dataset.
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 is the penalty function terms. 

 

We added limitations of the RRM SWE product and directions for future improvement in the 

Results and Discussion sections. 

“Then, in addition to the DEM, meteorological elements, NDVI, land type, and other factors will affect 

the SWE estimation. Unfortunately, our current training model does not consider these factors in detail, 

which is a limitation of the current RRM SWE product.” 

 

◼ The authors mentioned in the model training process, ‘‘... reduced the training data appropriately 

for the regions with denser training data, and make it close to the amount of training data in the 

sparse region’’ Please be more specific how this is done. Is it through randomly selecting training 

data in the regions with denser data? If so, what is the amount of the training samples used? 

Please provide more information. 

Reply: This suggestion has been accepted, and the text has been modified accordingly. 

For the region with dense training data, the training data were not simply selected randomly, but 

sample points that were spatially uniformly distributed were selected for the training as much as 

possible based on the latitude and longitude information of the observational points. The sample sizes 

of the training, validation and test datasets were divided according to the ratio of 7:2:1, where the 

numbers of training, validation and test set samples were 271651, 77614 and 38807, respectively. 

 

We have provided detailed supplementary explanations in Section 2.3. 

“The sample points that were spatially uniformly distributed were selected for training as much as 

possible based on the latitude and longitude information of the observational points.” 

“The total number of samples N in the training dataset is 271651. The sample sizes of the training data 

set, validation data set and test data set are divided according to the ratio of 7:2:1, where the numbers 

of training set, validation set and test set samples are 271651, 77614 and 38807, respectively.” 

 

2. What is the range of the generated SWE product? Would be nice to see the range of generated SWE, 

and also the performances of SWE at different ranges. In Figure 4, it shows the data all below 400mm. 

What is the capability of this RRM product for capturing deeper snow? Please add more descriptions or 

discussions on this. 

Reply: This suggestion has been accepted, and the text has been modified. 

Regarding the question of “What is the range of the generated SWE product?”, the range of the RRM 

SWE product is all land regions north of 45° N. The spatial range of the RRM SWE product is 

consistent with that of the DEM. In Figure 1, we labeled the range of the RRM SWE product in detail. 



 

Figure 1: The DEM and snow survey stations of the research region. The right subgraph shows 

the DEM, and the left subgraph shows the SWE observational stations. HSSC, hemispheric-scale 

snow course; RSSD, the Russian snow survey station. The spatial range of the RRM SWE 

product is consistent with that of DEM.). 

 

Regarding the question of “Would be nice to see the range of generated SWE, and the performances 

of SWE at different ranges,” we evaluated the performances of the RRM SWE product in three 

representative regions: Russia, Canada, and Finland. 

We have made the following changes in the Abstract: 

“The average MAE and RMSE of the RRM SWE products are 0.22 and 19.92 mm at different altitude 

intervals and 0.21 and 27.00 mm at different regions, respectively.” 

We have made the following changes in Section 2.4.2: 

“In addition, we also evaluated the performances of the RRM SWE product in three representative 

regions: Russia, Canada, and Finland.” 

We have made the following changes in Section 3.2: 

Table 3: Error list for the station data and RRM SWE product in different regions. 

Region MAE RMSE (mm) R R2 

Russia 0.20 26.39 0.89 0.79 

Canada 0.23 29.31 0.87 0.76 

Finland 0.21 25.29 0.89 0.79 

“The RRM SWE product has good performance in different regions, and its RMSE in Russia, Canada, 

and Finland are 26.39 mm, 29.31 mm, and 25.29 mm, respectively; additionally, the performance of the 

RRM SWE product in different regions is basically similar (Table 3). The RRM SWE product not only 

performs well at different altitudes but also in different regions, and it has good stability.” 

 



Regarding “In Figure 4, it shows the data all below 400mm. What is the capability of this RRM 

product for capturing deeper snow? Please add more descriptions or discussions on this,” we retrained 

the model using hemispheric-scale snow course observational data to generate the new RRM SWE 

product. In Figure 4, the evaluation results for the SWE above 400 mm were added. The results show 

that the RRM SWE product still has a higher ability to capture the SWE above 400 mm than other 

products. 

 

We modified Figure 4 and added a discussion of the related content in the revised manuscript. 

 

Figure 4: Error verification density diagram (a total of 38807 sample points were used for verification). The 

color bar represents the value of kernel density estimation. The closer the high-density area is to the 1:1 line, 

the higher the verification accuracy of the dataset is at most of the measuring stations. 

 

“For an SWE above 400 mm, the MAE and RMSE of the RRM SWE product and the measured SWE 

are 0.35 and 43.57 mm, respectively. Although the RRM SWE product is better than other products in 

capturing the SWE above 400 mm, it is still not as good at capturing the SWE below 400 mm relative 

to itself.” 

 



3. In Figure 1, the stations block the DEM information, making it difficult for the audiences. I would 

suggest to change figure 1 into a two-panel figure, with one for stations and the other for DEM. 

Reply: Thank you for your suggestion. Figure 1 has been modified. 

 

Figure 1: The DEM and snow survey stations of the research region. The right subgraph shows 

the DEM, and the left subgraph shows the SWE observational stations. HSSC, hemispheric-scale 

snow course; RSSD, the Russian snow survey station. The spatial range of the RRM SWE 

product is consistent with that of the DEM. 

 

4. From Table 2, the improvement of the RRM product is not so big as compared to ERA5-land and 

GlobSnow SWE alone. It would also be nice to see the comparisons with other fusion methods, such as 

the simple multi-source data average or regular linear regression. Also, it shows that GLDAS SWE has 

poor performance as compared to other products. Have you considered to leave it out and further 

improve the machine learning model? 

Reply: Thank you for your suggestion; the text has been modified accordingly. 

Because of systematic errors in the NOAA GHCN SWE data, we retrained, tested, and validated the 

model using the new hemispheric-scale snow course (HSSC) observational data and Russian snow 

survey data (RSSD) to generate a new version of the RRM SWE product and re-evaluated the product. 

In addition, we compared the RRM SWE product with the SWE dataset obtained by the multisource 

data average method. The evaluation results are shown in Table 2 and Figure 3. 

The new evaluation results show that the accuracy of the RRM SWE product is significantly improved 

compared to that of the ERA5-land SWE and GlobSnow SWE products. In addition, although the 

multisource data average method can improve the accuracy of SWE products to some extent (better 

than AMSR-E/AMSR2 SWE and GLDAS SWE), the improvement of this method is still very limited. 

The RRM SWE product has a significant advantage over the multisource data average method, and its 

accuracy is much higher than that of the simple multisource data average method. 

 

Regarding “Additionally, it shows that GLDAS SWE has poor performance compared to other 

products. Have you considered to leave it out and further improve the machine learning model?”, in 

preparing the RRM SWE product, the machine learning algorithm we constructed can automatically 

select the better-performing SWE training product based on the validation dataset. Therefore, although 



the accuracy of the GLDAS SWE product is poor, it does not affect the training results of machine 

learning algorithms or the accuracy of the RRM SWE product. 

 

We have added specific content to the revised manuscript. 

“In addition, we compared the RRM SWE product with the SWE dataset obtained by the multisource 

data average method.” 

Table 2: Error list for the station data and grid snow water equivalent products. 

Error type MAE RMSE (mm) R R2 

ERA-Interim 0.43 46.81 0.69 0.48 

AMSR-E/AMSR2 0.49 52.39 0.47 0.22 

GLDAS 0.58 65.25 0.52 0.27 

GlobSnow 0.32 40.99 0.70 0.49 

ERA5-land 0.32 37.02 0.84 0.71 

Multisource data 

average 
0.44 52.00 0.51 0.26 

RRM SWE 0.21 25.37 0.89 0.79 

 

 



Figure 3: Accuracy comparison of various snow water equivalent products. The upper left sector represents 

the MAE, the upper right sector represents the RMSE, the lower-left sector represents R, and the lower 

right sector represents R2. The sector axis represents the size of the error, and the color represents different 

SWE datasets. 

 

“Although the multisource data average method can improve the accuracy of SWE products to some 

extent (better than AMSR-E/AMSR2 SWE and GLDAS SWE), the improvement of this method is still 

very limited. The RRM SWE product has a significant advantage over the multisource data average 

method, and its accuracy is much higher than that of the simple multisource data average method.” 

 


