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Abstract. As-a-majer-oiseed-crop;-ILarge-scale, -and-high-resolution maps of rapeseed (Brassica napus L.), a major oilseed
crop, are critical for predicting annual production and ensuring global energy security, but —However-such free-maps are still
not freely unavailable_-forin large-many areas. In this study, w'/e designed-developed a new pixel- and phenology-based
algorithm and produced a new data product for rapeseed planting areas (2017—2019) ever-in 33 countries at 10_m spatial
resolution based on multiple data. Fhe-Our product shewed-is strongly geed-consistentey at the national level with the-official
statistics-_of the {Food and Agricultural Organization of the United Nations,-FAO}-at-the-nratienal-level. Our rRapeseed maps
achieve achieved F1 spatial consistency scores ofé at least 0.81 Fl-scores-of-spatial-censistency-when compareding with the
the-Cropland Data Layer{€BL)} in the United States-of- America(USA), the Annual Crop Inventory {ACH-in Canada, the Crop
Map of England{CROME), and the Land Cover Map of France-(LCMF). Moreover, -theirF1 scores based on independent
validation samples ranged from 0.84 to 0.912 based-on-the-independent-validation-samples, implying a good consistency with
ground truth. In almost all countries covered in this study, tFhe rapeseed crop rotation_interval wasis at least 2 years-in-akmost
alcountriesinthisstudy. Our derived maps with-reasonable-aceuracy-suggest, with reasonable accuracy, the robustness of the
algorithm in identifying rapeseed over large regions with various climates and landscapes. Scientists and local growers can
use tFhe freely downloadable, derived rapeseed planting areas freely-dewnloaded-witl-benefit-scientists-and-localfarmersto
help— te—predict rapeseed production and optimize planting structu/res. The product is avatable—publicly available at
http://dx.doi.org/10.17632/ydf3m7pd4j.3 -(Han et al., 2021).

1 Introduction

Currenthy,—fAlthough fossil fuels are currently the main source of energy (Fang et al., 2016; Shafiee and Topal, 2009), -
However—their overexploitation ising—fossi—fuels witl-increasing variouse risks-threats tofer human survival, such as

greenhouse gas emission; and environmental pollution (Fang et al., 2016; H&k and Tang, 2013). Biofuel energy seems to be

a promising alternative energy source (Hassan and Kalam, 2013). Rapeseed (Brassica napus L.) is an important source of

biofuels, edible oil, animal feed, and plant protein powder-plants (Firrisa et al., 2014; MalG and Freire, 2009; Sulik and Long,
1
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2016). Data products abeut-on the-rapeseed planting densities, growth conditions, and productivity of rapeseed-are dependent

on precise and accurate planting area maps (Zhang et al., 2019), but- However,-such maps are yet-still unavailable.

Global agricultural statistics on rapeseed in many regions ceme-are derived from field surveys, field sampling, and producer
reports (Arata et al., 2020; Fuglie, 2010). Ground-based methods, which are time---consuming and labor—--intensive, and-fail

toin deseribing-theprovide detailed spatial information onf rapeseed fields (Wang et al., 2020a). In contrast, - rRemote sensing

technology plays an important role in agricultural monitoring and -yieldsgreviding accurate, -and-objective spatial—-temporal
crop information (Dong et al., 2016; Salmon et al., 2015).

Atpresent-mMany current land cover products frem-obtained by remote sensing have a publicly previded-available a-cropland

layer. Examples include —e-g--the Fine Resolution Observation and Monitoring of Global Land Cover project (Gong et al.,
2013), the Global Land Cover 2000 (GLC2000) map (Bartholoméand Belward, 2005), ChinaCropPhenlkm (Luo et al., 2020),
and Global Food Security-support data at 30 m (GFSAD30) (Phalke et al., 2020; Xiong et al., 2017). Nevertheless, cHewever;
cropland identified by these products_is -either unfated-in-distinguishingdifferentiated as to different-crop type,s er-hase a
coarse spatiotemporal resolution (Teluguntla et al., 2018), or excluded-does not include rapeseed-infermation. THi-newadays;
there-are-fFew large-scale rapeseed maps-on-a-targe-scale, especially at 10_m_-resolution, are currently available. A decision

tree classification method based on a large number of training samples has been used to classify various crops for tThe 30-m

-resolution Cropland Data Layer (Boryan et al., 2011) infor the USA and the Annual Crop Inventory in Canada (Fisette et al.,
2013) did asstfvvarioy ops-usina-the -decision-tree assification-method-based-on-alarae numbero aining-samples.-
Hewever-thebut this method is hard to apply to other developing regions due-because to-a-tack-ef-ground training samples are
lacking (Xiong et al., 2017). A new method is-highhy-reguired-to map large-scale annual maps with a high spatial resolution;
which-that witl-would be widely applicable for-to the-regions with seare-few ground training samples _is thus strongly needed.

Five remote sensing-based methods for rapeseed mapping have been developed in recent decades: 12a) machine learning
methods (Griffiths et al., 2019; Preidl et al., 2020; She et al., 2015; Tao et al., 2020),; 2b) a-classificationer based on time
series data (Ashourloo et al., 2019),; 3¢) a-threshold segmentation based on phenology (Tian et al., 2019),; 4¢) mMulti-rRange
sSpectral freature Ffitting—(MRSEF} (Pan et al., 2013),; and 5e) mapping based on HSV (hue, saturation, and value)

transformation and sSpectral frFeatures (Wang et al., 2018). Hewever,-Mmost of these methods, however, only produce

rapeseed maps_-for a small area based-using on-very limited imageries taken on the-rapeseed peaking flowering dates
(Ashourloo et al., 2019; She et al., 2015). Rapeseed-The peak flowering dates vary by area and cultivar because of differences
in natural conditions and cultivation habits, especially over a-large regions (d’Andrimont et al., 2020; Ashourloo et al., 2019;
McNairn et al., 2018). Using the above methods to Fhus-itis-stitba-big-chalenge-te-aautomaticallyathy map_-rapeseed areas
with a finer resolution over a large region by-apphyingthe-abeve-methedsis thus still a huge challenge.
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Taking into cConsiderationing the unique phenological characteristics of different crops, many-various researchersstudies have
indicated-developed the-potentially useful phenology-based methods ways-based-on-phenolegy-for crop identificationying
overin large areas (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2018b, 2020a; Zhang et al., 2020). These algorithms,

which based-on-phenclogy-developsgenerate classification rules through-by analyzing the unique characteristics of the studied
crop, which-have been successfully applied forte mapping rice (Dong et al., 2016), soybean (Zhong et al., 2014), corn (Zhong

et al., 2016), and sugarcane (Wang et al., 2020a); but_have rarely been applied to rapeseed. Rapeseed has unique reflectance
and scattering characteristics (Ashourloo et al., 2019; McNairn et al., 2018; Sulik and Long, 2015, 2016); and undergoes-has
_based ony; including-leaves, yellow petals, and
pods/branches_(Ashourloo et al., 2019; Rondanini et al., 2014). Each canopy shape strongly influences how solar radiation is

4

three canopy morphologies-&

intercepteds (Sulik and Long, 2016). Thus-the specific features of reflectance values and scattering coefficients of rapeseed
from S-1/2 data wit-can thus provide information for_the automatic mapping of rapeseed over larger areas and with a finer

resolution.

Another relevant aspect of rapeseed imaging concerns Alse—<crop rotation, which is -is-beneficial forte the-management-of
pests and disease_managements in crop production -(Harker et al., 2015; Liu et al., 2018a) and- Previeus-studies-have-shown

that-crop-rotation-is-one-ef the-maina major causesfactor in ef-yield-change-in-rapeseed_ yield preduction-(Harker et al., 2015;
Renetal., 2015). The physical and chemical properties of-the soil will-changeare altered during crop rotation, and these changes

will-affect rapeseed growth (Ren et al., 2015). Most of-the-current studies are-have been limited to field observations (Peng et
al., 2015). TheFhe spatial distribution nfermation-of rapeseed rotation in different regions is still net-unclear gue-because to

the-lack-of-high-resolution rapeseed maps_are lacking. To aid cultivation and management, the characteristics of H-is-necessary
to-explore-therrapeseed rotation_need to be explored-forcultivationand-management.

FhusTaking into account the above-mentioned issues, we integrated multi-source data to 1)-develop a new method for
identifying rapeseed. We then: 2}-appliedy ourthe new method to generate rapeseed maps with a spatial resolution of 10 m
from-2017-to-2019-across the main planting areas of 33 countries_from 2017 to 2019 and :-3}-analyzed the geographical

characteristics of rapeseed planting-cultivation and crop rotation.

2 Materials and Methods
2.1 Study area

We identified rapeseed planting areas for-in 33 countries, the world’s main rapeseed producers, onin three continents: (North

America, South America, and Europe) (-as-they-are-the-main-rapeseed-producers-in-the-world(Fig. 1). The_largest areas of

rapeseed cultivation planting-areas-and-production-of rapeseed-are located large-in Canada and the European Unlon{EU) (Carré
and Pouzet, 2014; van Duren et al., 2015; Rondanini et al., 2012).
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every-year—In 2008, 79% of the-biodiesel feedstock crops in Europe, which produces a large amount of biodiesel for export

every year, were rapeseed (van Duren et al., 2015). In Alse-Chile, is-the main rapeseed producer in South America, and-the
country-with-a-highthe yield of rapeseed in 2018 was (38,877 kg_/ha=L). Rapeseed agriculture-cultivation in these countries is
important forin food and energy security (Carréand Pouzet, 2014). The climates ofin these three continents are different
because of factors such as latitude and topography (Peel et al., 2007).- The rapeseed planting season varies among countries
because of these differences in climate and other natural conditions Rapeseed-planting-seasens-are-distinctive-because—of
differences-in-natural-conditions{such-as-climate)-in-different-countries-(Singha et al., 2019; Wang et al., 2018), which-thus
brings-posing great challenges to the mapping_of rapeseed.
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Figure 1. ThelLocations of 10 km radius sample blocks for phenological monitoring in the 33 countries and-the-sample-blocks

} i in this study. The 33 countries include Canada (CAN), United States of

America (USA), Chile (CHL), Ireland (IRL), United Kingdom of Great Britain and Northern Ireland (GBR), France (FRA),

Spain (ESP), Netherlands (NLD), Belgium (BEL), Luxembourg (LUX), Germany (DEU), Switzerland (CHE), Denmark

(DNK), Sweden (SWE), Poland (POL), Czechia (CZE), Austria (AUT), Slovenia (SVN), Croatia (HRV), Slovakia (SVK),

Hungary (HUN), Estonia (EST), Latvia (LVA), Lithuania (LTU), Belarus (BLR), Ukraine (UKR), Republic of Moldova
4
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(MDA), Romania (ROU), Bulgaria (BGR), Serbia (SRB), North Macedonia (MKD), Greece (GRC), Turkey (TUR). {a-¢)-
CountryFhe names and codes of the-country-are-preparedare the same as those used by -by-the Statistics Division of the United
Nations Secretariat. The three-digit alphabetical codes assigned by the International Organization for Standardization-(tSG)

can be found at https://unstats.un.org/unsd/methodology/m49/.

2.2 Data
2.2.1 Remote sensing data

We collected imagery from the-Sentinel-2 (S2) and Sentinel-1 (S1) imagery-satellites (Table 1): The S1/2 satellitesare-launched
by the European Space Agency (ESA) (Drusch et al., 2012; Torres et al., 2012). We used red (b4), green (b3), and blue (b2)
spectral bands with 10 =m spatial resolution tFop-0©f-aAtmosphere (TOA) reflectance observations. The S2 TOA product
includes the gQuality aAssessment (QA) band, which was used to remove most of the poorbad-quality images (e.g. cloud-
obscureds information) in this study. However-itisdifficultterRemovale of all elouds-such information was difficult, however,
because of due-te-the quality of the QA band (Wang et al., 2020a; Zhu et al., 2015). We used the itnterferometric w\A/ide

sSwath mode of S1, which provides dual-band cross-polarization (VV) and vertical transmit/horizontal receive (VH) with a

12--day or 6-day repeat cycle and 10 m spatialee resolution (Torres et al., 2012). The S-1/2 images were obtained usingen the
Google-google eEarth eEngine (GEE) (Gorelick et al., 2017). In additionAlse, we used QA bands to remove most of the
poorbad-quality images on GEE. (S—f(sample code
https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FCOPERNICUS_S2).  Further  details are
provided inSee Table 1-for-more-details.

can be found at

2.2.2 Digital elevation model

We used a spatial resolution of one arc-second (approximately 30 m) elevation data from the Space Shuttle Radar Terrain
Mission (Table 1) (Farr et al., 2007). WFhen-we then calculated the spatial distribution of slope usingen GEE (sSample code
can—be—found—at https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FUSGS_SRTMGL1 003).
LaterFinally, we extracted areas with a slope of less than 10°to mask hilly terrain (Jarasiunas, 2016).

2.2.3 Cropland and agricultural statisticals data

In this study, cropland data from the GFSAD30 were used to identify major farming areas in different countries (Phalke et al.,
2020; Xiong et al., 2017). Existing The-existing-crop data products containing rapeseed information include-comprise four
datasets: 1) the 30-m Annual Crop Inventory (ACI) in Canada (Fisette et al., 2013)_and; 2) the 30-m Cropland Data Layer
(CDL) in the USA (Boryan et al., 2011), both of which {EBLand-ACHayers-wereare downloaded from GEE),- 3) the Crop
Map of England (CROME) was-generated in GBR, and- 4) the 10-m Land Cover Map of France (LCMF) in France (Inglada

et al., 2017). These four crop layer products wereare generated based-enfrom satellite images and a large number of training
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sample collections. In this study, rapeseed maps in ACI, CDL, CROME, and LCMF were used for accuracy verification at the
pixel level. For accuracy verification, we selected statistics The FAO-releases-annual-statistics-on major cropthe areas-for-major
crops in different countries eandr regions_released annually by the Food and Agricultural Organization of the United Nations

(FAQ)-every-year. We-selected-the statistics- from-FAO-foraceuracy-verificationPlease-seeDetails are provided in Table 1-for
mere-details,

2.2.4 Crop calendars

We used two crop phenological data-sets to assist in the extraction ofng rapeseed phenological parameters: ;-crop calendars in

different countries (https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx), -and field records of the-crop phenology in Germany.

The crop calendars eemeoriginated from the United States Department of Agriculture, ~which only records rapeseedthe
planting and harvest times-efrapeseed forin seme-selected countries. The crop phenology field records ef-the-crop-phenslogy
in Germany are-were in_-situ observations from crop phenological records shared by the Deutscher Wetterdienst (DWD) in
Germany (Kaspar et al., 2015). The DWD provides field observations of crop phenological periods throughout Germany
following the Biologische Bundesanstalt, Bundessortenamt, and Chemical (BBCH) scale througheut-Germany—(Table 1).
DWD records include thethe start date-and the-end dates of rapeseed flowering (d’Andrimont et al., 2020; Kaspar et al., 2015).

Neitherete the twoat beth-crop calendars ane-nor the DWD records de-ret-contain information on rapeseedthe peak flowering

dates-of rapeseed. To extract rapeseed phenological parameters, w\A/e used all stations that fully recorded the-start and end

dates of the flowering periods from 2017 to 2019, namely, -for-extractingrapeseed-phenological-parameters—Finaly;-281, 269,
and 253 stations are-avatable-in 2017, 2018, and 2019, respectively.
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2.3 Methods
2.3.1 Optical and SAR characteristics during the rapeseed growing period-ef-rapeseed

We selected available rapeseed parcels and in-situ observations of the DWD from different climate regions and different years
to analyze the optical (reflectance and vegetation index) and SAR (VV _and; VH) characteristics of rapeseed aleng-over time.
As anFer example, Fig. 2 shows the time series of one rapeseed parcel around athe DWD station (station id: 13126) in 2018.
Thise rapeseed parcel shews-exhibited unique visual characteristics during the flowering period (Fig. 2e). When rapeseed

approached peak flowering, tThe flowers becacmes yellow whenrapeseed-is-approaching peak flowering-(d’ Andrimont et al.,
2020; Pan et al., 2013; Tao et al., 2020; Wang et al., 2018). Rapeseed wasis yellow—--green on the true color images of S2 and

Google Earth during the flowering period (Fig. S1). The reflectance of the green-band and red bands separately increased—
from 0.09 and 0.06, respectively, (2018/4/17-before flowering_(17 Apr 2018) to 0.16 and 0.14 at peak flowering (7 May
2018/5/7peak-flowering),—and then decreased-afterflowering (Fig. 2a). The reflectance of the blue band wasis lower than
that of the red and green bands during flowering. This outcomeis is similar to the results of previous research resulis-(Ashourloo
et al., 2019; Sulik and Long, 2015). We also calculated t+he nNormalized dBifference y*/ellow itndex (NDY I,-E¢-1), which
can capture the-increasing yellowness in athe time series (d’Andrimont et al., 2020; Sulik and Long, 2016), as follows:—Alse;

green—blue
P o))

NDYI =

green+blue

where green is the TOA reflectance of the green band (b3) of the S2 imagery, and blue is the blue band (b2) reflectance. NDY
increased from —0.03 on 17 April to 0.21 on 7 May (Fig. 2b) and reached a peak during rapeseed flowering. This unique

spectral feature of rapeseed during the flowering period was due to the yellow petals.

S1 backscattering changes with rapeseedthe growth-efrapeseed. We used the-VV and VH time series smoothed by the
Savitzky—Golay (SG) filter (window size 3) (Chen et al., 2004) as inputs to identify the phenological parameters of rapeseed
parcels. We usedran the SG filter algorithm ien MATLAB 2020b, which uncovered —TFhe-resultsshow-that-there-are-local
minimaums in both the VV (=-11.20, 8 May-8) and VH (—-15.60, 5 May-5) time series during rapeseed flowering (Fig. 2c,-d).

Furthermore, VH reacheds athe maximum (=-9.64, 1 June-1) during the pod period. Unlike other crops, rapeseed has two
distinct green-up phases: the flowering period and the pod period (Ashourloo et al., 2019; Bargiel, 2017; Mercier et al., 2020;
Veloso et al., 2017). The petals of rapeseed decrease the scattering of VV and VH, while the pods increase the scattering
intensity of VH (d’Andrimont et al., 2020; Bargiel, 2017; McNairn et al., 2009; Mercier et al., 2020). The NDYI and
backscattering (VV_and -VVH) time series of rapeseed in different climate regions (Fig. S1) alse-shew-exhibited the same
characteristics. Therefore, w\W/Henee-we therefore-used the-features-in-both Optical and SAR features to identify the-rapeseed
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flowering and pod periods in this study. Bue-toBecause of the-differences in the revisit timesperieds of the S1/2 satellites,

rapeseed peak flowering dates are-were defined as the median dates extracted usingby optical and SAR indicators.
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Figure 2. The-time-series profiles of four features of the-rapeseed pixels around one DWD station (id = 13126;; l-ongitude:
11.333268424 < |Latitude: 52.200000463<) in Germany in 2018. (a); Mthe-mean reflectance values (red, green, and blue).; (b);
Mmean NDYL.; (¢) Mmean VH.; and-(d) Mmean VV.; Tthe light-shadedfitled eclorareas indicatefer the standard deviation.;
The BBCH scale was used for the-in_-situ observations of rapeseed phenology, with BBCH61 and BBCH69_respectively
corresponding to for-the start efflewering-and the-end of flowering,+espectively. (e); The rapeseed parcel around the DWD
station is shewn-bybounded in red-beundaries (image source: Copernicus Sentinel-2 data 2018).
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2.3.2 Sample blocks collected for phenological monitoring

As a prerequisite to large-scale mapping+apeseed-ata-large-scale, the phenology of rapeseed in different countries needstemust
be identified and delineated (Dong et al., 2016; Zhang et al., 2020), but —Hewever—not enough observational records of
rapeseed phenology are available on a large scale. Referring—teln accordance with the DWD method of phenological

observationing-pheneclogy (Kaspar et al., 2015), we created sample blocks with a radius of 10 km over rapeseed--producing
areas of different countries and randomly sampled 10 rapeseed parcels foreachper block. The rapeseed plots were identified

by their phenological characteristics, which were obtained from-by the-visual interpretation and analysis of reference data,

including high-resolution images available in S2 and Google Earth as well as sSpectral reflectance (red-band and green bands),
and-spectral index -(NDY ), and scattering coefficient profiles (VV and VH) from the S1/2 time series. H-sheuld-be-noted-that
the-Google Earth images taken during rapeseed flowering were used to assist with the visual interpretation of rapeseed parcels.
RFherapeseed parcels with no availablest high-quality time-series imagery avattable-were omitted. Finally, 75 sample blocks
in 2017, 84 sample blocks in 2018, and 84 sample blocks in 2019 were uniformly and randomly collected (Fig. 1).

2.3.3 Detection of fFlowering and pod phases-detection in different countries

To find-determine out-the flowering dates of rapeseed in different countries, we evaluated each phenological sample block
from 2017 to 2019 (Fig. 3). First, we calculated the average values of all pixels_-in the the-10 previously selected rapeseed
parcels in each block we-selected-before-during the rapeseed growth period foreach-block-in conjunction with the crop calendar.
VV and VH time series for each sampled rapeseed parcels were smoothed using the SG filter. Second, these-S1/2 peak

flowering dates and pod dates were derived for all sample blocks based-enaccording to the method in Section 2.3.1. We found
that the peak flowering dates of rapeseed, especially in Europe, followedhave an obvious latitudinale gradient ;-especiathy-in
Eurepe-(Fig. 3)).
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Figure 3. The spatial distribution of rapeseed flowering dates-(Jutian-day). (a—i) Flowering dates (Julian day) was-menitored
byin different sample blocks in 2017, 2018, and 2019-(a-1. (j) Characteristics of tThe latitudinal e-gradient characteristics-in
Europe-(}}. The peak flowering date_for each latitudinal interval is -was-calculated-by-the mean of the flowering dates of all
sample blocks in-different-latitude-intervalswithin that interval.}

Also-wWe also found-observed that the signal with the maximum VH occurredidentified-the-signal-with-the-maximum-of \VH
is-within 45 days after-of the peak flowering date of flowering-(Fig. S2). W hen-we then calculated the difference in the peak
flowering date of each sample block betweenin different years, which revealed- that the Theresulis showed-that the-flowering
peak dates of most sample parcels were advanced or delayed by only 10 days (Fig. 4d). Thereforeitisreasonable-to-uUsinge
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the same period foerrapeseed-identification-forin different years inin the-a same-given area was thus considered to be reasonable

for rapeseed identification in this study. Previous studies and field observation records have indicated shew-that the flowering

period of rapeseed is aboutapproximately 30 days (d’ Andrimont et al., 2020; Chen et al., 2019; Kaspar et al., 2015; She et al.,
2015). Therefore, W/ Thereforewe therefore divided each month into two time periods, with {the 15th_day serving asis the
dividing line}. Two consecutive half-months wereare defined as a suitable periods for classifying flowering dates (Fig. 4a-c).
Finally, we designated the flowering period for each administrative unit based on the sample blocks. —Firathy-we-designated
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255  Figure 4. Flowering phenology of rapeseed. (a—c) The spatial distribution of rapeseed flowering periods for-among sample

blocks. (d) Fhe-bBoxplot showing the-changes in peak flowering dates of each-sample blocks overin three-3 years.

2.3.4 Development of aing phenology- and pixel-based algorithm for mapping rapeseed

Fhe-Our analysis-eftemporal profiling ofe atrapeseed parcels in-thisstudy-togetherwithalong with the results of many previous
studies indicated that the spectrum at the flowering stage and the scattering signal at the pod stage are the-key features forte
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identifyingy rapeseed (Ashourloo et al., 2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020; Sulik and Long, 2015;
Veloso et al., 2017). We developed one-a single phenology- and pixel-based rapeseed mapping algorithm that usingrelies on
four features:; spectral bands (red and green), spectral indices (NDY]), polarization bands (VH), and terrain (slope). Four

primary steps were cenducted-used to for-mapping annual planting areas (Fig. 6).

In the first sStep, we-1: determineding the threshold of the feature indicators. We analyzed the histograms of the-random
samples selected from different countries as_suggested by surthe-previous study (Zou et al., 2018)-suggested. \We-found-the
similarities-of-gGreen banandéd; blue bands; and NDYI (Fig. S3) were similar during the flowering stage for-in all samples
during-the-flowering-stage-from_the different regions. Most {98%)-of the-rapeseed pixels (98%) shewed-had the following
values: red > 0.07, green > 0.11, and NDY1 > 0.05.

Hewever-wWe found-observed some pixels, however, with a relatively high NDY|_due to contamination by a cloud with a

“rainbow” appearance, Which would cause them to be misclassified nte-as rapeseed because-they-are-potuted-by-thecloud
i “rad z (Fig. 5). Because of the limited quality of the QA band and the simple cloud score algorithm,

sSuch misclassifications eaused-byarising from -seme-poorbad-quality observations from the S2 image cannot’t be removed
due-to-the Hmited-gqualityefthe QA -band-and-simple-cloud-score-algerithm-(Wang et al., 2020c; Zhu et al., 2015). The “rainbow”
inef the cloud eomes-is the result of frem-the push-broom design of S2 (Fig. 5a) and spectral misregistration (for~er more
details, please—refer—tosee ESA, 2015a, and ESA, 2015b). Based-en—theprineiple—of-Taking into account the relative
displacement of each spectral channel sensor in the S2 push-broom design (Frantz et al., 2018; Liu et al., 2020b; Zhao et al.,
2018), we developed a new spectral index (NRGBI) to reduce the influence of the “rainbow" (Eq. 2):- FaeseatterplotetNDY]

red—blue green—blue

NRGBI =

red+blue  green+blue (2)
where red, green, and blue are the TOA reflectance values of the red-band (b4), green-band (b3), and blue-band (b2) bands of

the S2 imagery, respectively. FheA scatter plot of NDY vs.and NRGBI of rapeseed parcel samples and ““rainbow” “samples

around clouds (visual interpretation) sheweddemonstrated that the NRGBI (threshold =is —-0.05) can effectively distinguish
rapeseed from the the—"rainbow" (Fig. 5h). The GEE code for NRGBI index calculations can be found at
https://code.earthengine.google.com/a39fc699a276d018778d59¢5b085d960. Alseln addition, NRGBI can be calculated based
onusing Eq._2 in other GIS software_programs (e.g. QGIS and ArcGIS) on the-a local computer.
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Figure 5. “Rainbow” cloud effect originsCauses, examples, and solutions—fer—the“rainbowcloud-effect. () Sstaggered
detector configuration of S2 (ESA, 2015a).; (b—f) eExamples of spectral misregistration effects and the performance of cloud-

masking methods. E{each image was masked withby the quality assurance band (QA60)} for the Sentinel-2 TOA image.; Twith

the red arrows indicateing the cloud-“rainbow” appearing around cloudsanee at high altitudes in the S2 image (itmage source:

Copernicus Sentinel-2 data).; (g) Sentinel-2 TOA image of rapeseed at the flowering stage.; Twith-the yellow arrow

indicatesfer the-rapeseed fields.; (h) Sscatter plots of NDY1 vs.and NRGBI of rapeseed field samples and_samples with a
““rainbow”" around clouds samplesfromin the S2 images.; with-Relative pixel density is indicated by the color density-forthe

number-of pixelsscale on the right.

The second sStep 2:-was the identification ofying all rapeseed pixels from different images during the flowering period and

their subsequent aggregationng-them into annual rapeseed planting areas (Fig. 6). Because the-peak flowering dates and the

number of available images of rapeseed fields_vary within a region-are-different (Fig. S4), rapeseed classifications based on a
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single image could—may fail toin captureing rapeseed flowering dynamics (Ashourloo et al., 2019). To avoid the
misclassification due tofrem poorbad-quality observations during the rapeseed flowering stage, we aggregated all the-classified
results classified from available S2 images -during the-floweringhis period. HereeThe use of; a larger number of images -will

resulted in better performance (Fig. S4).

In the third sStep, we-3: combineding optical_data with SAR images to ensure the accuracy of the rapeseed maps. HThe-high
VH values during the pod stage are another distinct feature that can distinguish rapeseed from other crops (Mercier et al., 2020;
Tian et al., 2019; Van Tricht et al., 2018; Veloso et al., 2017). Taking into cSonsiderationing the variability of flowering in
different fields and the duration of the pod stage (Section 2.3.2), we calculated the maximum VH between the second half of

the flowering stage and the next 30 days after-the-flowering-stage-(ca. =45 days;} see {See-the-graey boxpart in Fig. 6). Within
this 45--day intervals, at least three S1 satellite images are-were available in the study areas. Alseln addition, the-areas with a

slope > 10°were removed (Jarasiunas, 2016). All pixels that-meeting these requirements are-were defined as rapeseed.

In the fourth sStep, we-4: removeding the-““salt and pepper” noise according-by applying a threshold based onte the number of

connected components (objects)-thresheld, that is,{ the size of the neighborhood in pixels,} and then filling the gaps inside the
parcels (Hirayama et al., 2019). We used an 8-connected rules, which means that the edges or corners of the pixels wereare

connected. If two adjacent pixels are—were connected, they are—were considered as part of the same object

(https://www.mathworks.com/help/images/ref/bwareaopen.html). The bwareaopen function in MATLAB 2020b seftware-was
used to remove the-objects which-are-less-thannot meeting the-a given threshold. The thresholds of different indicators in
different regions ean-be-foundare given in Table S1.
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Figure 6. The-w\Workflow for mapping rapeseed areas using the proposed phenology- and pixel-based algorithm. GFSAD30
Global Food Security-Support Analysis Data at 30 m-(GFSAD30); NDY1, normalized difference yellowness index-(NBY1;
NRGBI, tFhe new spectral index;-(NRGBH; DWD, Deutscher Wetterdienst;{(2/2); FAO, Food and Agriculture Organization
of the United Nations; RMSE ,-(FAQ); rRoot mMean sSquare eError; MAE,(RMSE); mMean aAbsolute eError-(MAE); R?,
R-squared; CDL,R?); Cropland Data Layer; ACI,-{CBL); Annual Crop Inventory; CROME,{ACH- Crop Map of England;
LCMF,{CROME); Land Cover Map of France; UA{LCEMF)}, user’s accuracy; PA,(JA); producer’s accuracy;{(PA); andFiL,
F1 score-(F1).

2.4 Accuracy assessment

To test the accuracy of our proposed algorithm, First-we first compared the-rapeseed areas retrieved usingby the new method

with FAO statistics. Our rapeseed data constitutedis a binary (0 or 1) map with a spatial resolution of 10 m. We then-can

calculated the total area of rapeseed maps in each country and compared these numbersm with theFAQO national rapeseed
statistics. To verify the accuracy of rapeseed mapping, we used t+he RMSE (Eq._3),; and-the- MAE (Eq. 4), and the-coefficient

of determination (R?, Eq..5), which wereare usedcalculated as follows-te-verify-the-accuracy-of rapeseed-mapping.-
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where n is the total number of countries, y; is the mapped rapeseed planting area for country is, ¥, is the corresponding mean

value, f; is the records-rapeseed planting areas recorded by the frem-FAO for country i, and £, is the corresponding mean

value.

Alse-w\We also compared the-our rapeseed maps with four open-access datasets that include rapeseed layers at the pixel level:
{ACI, CDL, CROME, and LCMF,; in Canada, the USA, GBR, and France-, respectivelyat-thepixel-evel. We used the data
from 2018 and 2019 in these datasets as a referencethese-datasetsm-as-thereferences-data-for 2018-and-2019 (Boryan et al.,
2011; Fisette et al., 2013). To unify the spatial resolution of ourthe rapeseed maps, we resampled CDL, ACI, and CROME

wereresampled to 10 m resolution to allowfor comparison. To check the accuracy of our classification, we calculated UA (Eqg.
6), PA (Eq._.7), and F1 (Eq._8) werecaleulated-based on confusion matrices (Table S2)-to-measure-theclassification-accuracy.

FhirdhywWe also randomly selected verification samples based on the-previous studies (Pekel et al., 2016; Wang et al., 2020b)

to validate the-our rapeseed maps. A 0.2 °x 0.2 “latitude—-longitude grid {0-2-latitudes by-0.2 longitudes)-was generated-within

thesuperimposed on our 2018 rapeseed map -2018-acquired-by-eur-method-(Fig. S5). Two points—one {rapeseed and the
other non-rapeseed—)-were generated-randomly generated in each grid by visually interpreting images available from S2 and

Google Earth; together-along with spectral reflectance (red and green bands), spectral index (NDY1), and scattering coefficient
(VV and VH) profiles from the S-1/2 time series. CTFhe-confusion matrices were similarly used to assess the-accuracy according
to Eqgs. 6—38:-

T
UA = - (6)
o
PA=" )
Xi
F1=2x @

In the above equations, Where-x;; is the value of the i-th row and j-th column,; x; is the sum of the i-th row, and; x; is the sum

of the j-th column. Although the statistical data and existing products are-did not completely the-samereflect as-the real-actual
areas and locations of cultivated rapeseed-planted-on-the-ground, these datasets weredo still beneficialt forte validating the
accuracy of our rapeseed maps at different-scales{national and pixel _scaless).
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3 Results
3.1 Accuracy assessment

We compared the-our derived rapeseed areas with those from the-FAO statistics. The total planting areas of rapeseed are
exhibited good well-consistencyt with the agricultural statistics at the national level, with a RMSE of 1459.64 km?, a MAE of
785.25 km?, and an R? of 0.88 (Fig. 7). We found that the derived areas in 2017-2018and-2019 are-werewere larger than those
in 20182017 and 2019, especially for-in the-countries with the-relatively small rapeseed areas. The greatermere availability of
S2 images tegether-and with-higherbetter--quality ef-data in 2018 could-may have contributed to the_derivation of the larger
rapeseed-areas derived-by the-our new method (Liu et al., 2020a).
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Figure 7. Comparison of rapeseed areas with the-FAQ statistics at the national level. The-names-of-al33-countries-can-be

As indicated by their higherlevel-efaccuracy based on confusion matrix values, Fhe-comparison-of-our rapeseed maps were
consistent at the pixel level with these-maps of the AmericanJdSA CDL in 2018 and 2019 and ;-the Canadiana ACI,
British6BR CROME, and Frenchanee LCMF in 2018 wa i i indi i i

to-the-confusion-matrix-values(Table S3). As shown in Fig. 8a, shews-thatthe rapeseed areas calculated from our maps wereare

consistently more comparable to FAO statistics than were those from existing products. Fhe-UA, PA, and F1, which varied by
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country, ranged from; 0.93-0.97, with-PA-610.70-0.80, and,-JA-0f0-93-0.57and-F1-of 0.81-0.86, respectively (Fig. 8b).
The rapeseed areas obtained-determined using our algorithm by-us-accounted for areund-approximately 71% of the 2018 CDL,
71% of the 2018 ACI, and-80% of the 2018 CROME, and-70% of the 2018 LCMF, and 79% of the 2019 CDL. Furthermoreln
addition, the distributions on our rapeseed maps were our-resultsshowed-consistent distributions-between-ourrapeseed-maps
and-thewith those of existing products at the pixel level (Figs. S7_and -S8). The dThe-differences in accuracy might-may have

been caused-due toby the varied number of high-quality images available in different regions (Dong et al., 2016). Despite the
varieus-different ground conditions, methods, images, and spatial resolutions among the-products, the comparisen-results_of
our comparison further verify the accuracy of our rapeseed maps (Gong et al., 2020; Singha et al., 2019).
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Figure 8. Classification v\/alidation results-of the-classificationsresults. (a) PThe-percentage of the-rapeseed areas based on
FAO statistics classified as such inef the-existing products and classification—resulis-in-the FAO-statisticsour rapeseed map

database. (b) Accuracy of our classifications The-user’s-aceuracy{(UA)producer’s—aceuracy—{PA)—and-F1-score(F1)-of
classifications-in four countries (Canada, USA, GBR, and France)_using- Fhe-existing products were-used-as a reference-data.

UA., user’s accuracy; PA, producer’s accuracy; F1}, F1 score.
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According to Fhe-confusion matrix values (Table S4) based on random sampling points, shew-that-the accuracy of the-our
rapeseed maps varieds in different regions. We_obtained the highest-found-zene-H-shows-the-highest accuracy (F1, 0.91)_in
zone |1, followed by zone 111 (F1, 0.9), and zone | (F1, 0.84). TheseSuch disparitiesy in-accuracy-mightmay be aseribed-due to
the-differences in theent availability of high-gualityS1/2 images amongin the studied areas. OurTheresults showed-indicate

3.2 Mere-Additional detailsfeatures of rapeseed maps derived usingby ourthe new method

To sheow-further mere-details-of characterize the rapeseed maps derived-generated frem-in this studyeur-methed, we selected
some-various images in seme-several areas of each country. The rapeseed maps showed good spatial consistency with the
theactual areas of rapeseed cultivation on the ground actualrapeseed-planted-on-the-ground-(Figs. 9 and Fig-S6). Fields with
various planting densities—ranging fFrom densely planted the-areas denselyplanted-by—rapeseed-in Canada (Fig. 9-a) to
relatively sparse planting-ones, such as in Chile (Fig. 9-b) and European countries (e.g. Fig. 9-c,d) (Lowder et al., 2016),

various shapes—ranging -from regular rectangles (e.g. Fig. 9-a,-h) to irregular parcels (Fig. 9-c,-d), and different climatic

conditions—ranging from a frem-temperate oceanic climate (Fig. 9-c—¢) to temperate sub-continental (Fig. 9-a,-f); or even
subtropical elimate-(Fig. 9-b) ones, aH-field-detatls-were clearly and comprehensively indicated elearby-inon oureur maps. The
fFragmented pattern of atien-ef-land in some European countries, especially_that -in Eastern and Central Europe after-due to
land reform in 1989 (Hartvigsen, 2013, 2014), such-a onia—{Fig:9 genson-and-Rasva; 2020
clearly elearhy-evident; Fig. 9f shows land in Estonia as an example (JUrgenson and Rasva, 2020; Looga et al., 2018).- Altheugh
Although the algorithm was applied to underdifferent climates, terrains, and landscapes; and-over a a-very larger region,-the

its-algorithm classification accuracy shewed-a-satishying-classification-accuracy-across 33 countries was satisfactory. OurFhus;

the rapeseed maps can thus effectively identify the-fields in detail with high spatial resolution and clear field boundaries. More

- L oogaetal-2018)was

rapeseed classification details can be found in Fig. S6.
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Figure 9. Spatially explicit details of rapeseed maps in eight countries with diverse crop structures in different years. The

names of climate zones are given in{the yellow-words-show-the-chmaticzenes). RGB composite images use-comprise the-red
(b4), green_(b3), and blue (b2) bands from Sentinel-2 with-good-quality observations during the rapeseed flowering period of

rapeseed-(image source: Copernicus Sentinel-2 data). —CThe-climate zone data areis from the Food Insecurity, Poverty and

Environment Global GIS Database{(FGGD).

3.3 Spatial patterns of rapeseed planting areas

In our maps, the largest total area of rapeseed cultivation worldwide was in Canada-shews-the-largestrapeseed-planting-area;

higherthanthese-in-Eurepe. Along with GBR, Poland, and Ukraine, Franece-and-Germany-are-the two leading rapeseed growing
countries in Europe—France and Germany—-accounteding for areund-approximately 66.3% of European rapeseed areas

. The_3-year spatial-patterns-of threeyears-(2017—2019)
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spatial patterns wereare consistent at the national level (Fig. S9). Mereover—wWe also plotted the geographic characteristies

distribution of rapeseed areas along latitudinale and longitudinal gradientse fe+in the study areas (Fig. 10). With the exception

of steep mountainous regions and cold northern areas, rRapeseed in-Europe-is widely planted in European countries in-the
countries-witath latitudes of 4546—=563N and longitudes of —2W—=4E, 9==19E, and 22==27 E; with-exception-of the
steep-mountainous-areas-and-the-cold-northern-areas-(Fig. 10a)-(van-Duren-et-al—2015). In Canada and the USA, the-areas
with the-latitudes of 44—=44.5N;5149-~554 N, and 56—=57N and longitudes of —-1187 W to —~-1178 W and; —11498 IV
to —~-98114 W have highare densities ofely distributed-planted by-rapeseed (Fig. 10b).
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435 Figure 10. Spatial distribution of rapeseed areas at 10_m resolution along latitudinale and longitudinale gradients in 2018. (a)
Europe and Turkey. (b) Canada and the USA.
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4 Discussion
4.1 Investigation ofrg the-rapeseed rotation systems

We obtained 3three-year rapeseed maps at a spatial resolution ofat a-10 =m spatialreselution-whoseand with-a-higher accuracy

which-was validated by annual national statistics books, open--accessed public products, and random sampling points. These
rapeseed maps; provided a new opportunity to investigate rapeseed rotation systems (Liu et al., 2018a). Crop rotation
information is considered-an important factor infor crop yield_management (Harker et al., 2015; Liu et al., 2018a; Ren et al.,
2015; Rudiyanto et al., 2019; Zhou et al., 2015). To analyze rapeseed rotation patternsThus, we therefore selected 25
representative areas (Fig. S10) to-anabyze the rapeseed-rotation-patterns-according-tothat met the following-the three criteria:-
Firsthythe-high image quality, -of images-is-high-Secondhy;the-high rapeseed classification accuracy-efrapeseed-is-high, and-
Fhirdly-thelarge extent of planted rapeseed-area-efrapeseed-is-large. RThe-rapeseed rotation_in these areas was calculated
based onby the frequency ofin each rapeseed pixel (Fig. 11).
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Figure 11. Spatial distribution of three types-of-rotation scheduless in different areas from 2017—2019.
450
Because only 3 years (2017-2019) of rapeseed maps were available, Please-note-that-tthe longest observable rapeseed rotation
break that-can-be-ebserved-iswas 2 years-be e. Thus—o
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more accurately express-discern the pattern of pattern-of rapeseed rotation-break, we thus classified the-rapeseed rotation breaks

in this study into three types: > 2 years, 1 year, and 0 years-ia-this-study, M\We-found-most countries, especially European ones,
show-were characterized by a-rotation breaks greaterthan-oregualthat were >te 2 years (mostlythe-highestratios-of green areas

parts)-{in Fig. 12),-especially-for-European-countries{Fig—12-b). In Canada, 70% of fields were subjected to The-rotation
breaks of > 2 years-in-Canada-accountsfor 70%, follewed-with the remainder (30%) following aby: 1-year break pattern-(30%)

(Fig. 12-a). As shown in tThe histogram_in Fig. 12d, we identified confirmed-that rotation-breaks-6f-20 locations have-been
identifiedwith >-2--year rotation breaks, which corresponds to 90% s The-percentage-of planting areas-with-rotation-break =2

years-is-higher-than-90% (Fig—12-d). Many previous studies have found that a 2two- or 3three-year rotation break will
significantly reduces -the number of fungal spores, especially those of Rrhizoctoniames solani and blacklegsLeptosphaeria

maculans, thus suggesting that a rotation system is an important step-component of disease #-control_in rapeseedting-diseases
(Gill, 2018; Harker et al., 2015; Ren et al., 2015; Zhou et al., 2015). RMereover-rapeseed rotation witl-also benefit-improves
yield-insects, moisture, and fertility; and reducesing weeds and pest insectss (Bernard et al., 2012; Harker et al., 2015; Pardo
et al., 2015; Peng et al., 2015; Ren et al., 2015). Fhus—mAdditional efforts toere effortsshould-be-tnput-to-producee longer
time-series rapeseed maps and ebtain-acquire detailed rotation information are thus neededin-the-future.
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Figure 12. Rapeseed cCrop rotation. (a—c) PFhe-proportions of the-rapeseedtotal area-planting areas ed-byrapeseed-for
subjected to threerapeseed-rotation breaks of 0, 1, or >2 years. (d) The numbers of areas in a—c subjected to breaks of with-at

least =2 -year-breaks-in-Fig—12-a-€.

4.2 Uncertainty-analysis

The gGeneration ofag annual high-resolution maps foref a specific crop over a larger region is a majorbig challenge (Gong et
al., 2020; Liu et al., 2018b, 2020a). Pixel-and phenological-based algorithms, multisource remote sensing data, and the GEE

are useful forte mapping rapeseed at high resolution and over large_r-areas. BesidesIn addition to these advantages, our-the

proposed algorithm does not need-require a-large number-amounts of training sample data and reduces disturbance frem-due
to agronomicy differences by combining images fromef multiple dates. HoweverNevertheless, the-uncertainty still existsis
from-due to severalthe-follewing- aspectsissues. The first of these factors is the 1)-cCropland layer. We used the-GFSAD30
datasets to identify croplands;- hHowever, the GFSAD30 has is-limitations, such as classification errors (Phalke et al., 2020).

A second contributory aspect is 2}-tFhe number of satellite images available.- Although our annual rapeseed maps are
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consistent with FAO statistics and show higher accuracy compareding with existing products, the-mapsthey are limited by the
goed-quality of the observations during-the critical growth stages. For example, Fig. 13a shows that-there-is-an error in anthe
area of France in 2017 that; which-couldcan be attributed to the lack of clear S2 images during the rapeseed flowering period
(Fig. 13b). Because tThe rapeseed flowering period is generally characterized by high NDY1_and high -red-band; and green
band reflectance, thus-rapeseed pixels are likely to be misclassified if the-images are missing during the flowering stage-were
missing (Fig. 13c). A third issue concerns the t3)Thresholds for different indicators, which- The-threshold-is a the-key factor

for mapping crops (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2020a; Wang et al., 2020a; Zhang et al., 2015).
Although-the reference thresholds for the three regions-continents in this study are given-providedin-this-study, they it-should

be applied with caution us-when-applying-them-to other regions. Finally, 4)-Ththe complexity of the ground environment_can
contribute to uncertainty. For example, landscape types might impact the accuracy of rapeseed maps (Wang et al., 2020a).
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Figure 13. Deseriptions-Example showing the effect of low-quality observations on forthe-classification Hmitationaccuracy.
(a) Rapeseed map of an area of France in 2017 that -containswith an error-a-France-i-2047 (Iongitude:- 2.059824 <; | -atitude:-

46.7349879. (b) Availability of time--series Sentinel-2 images during rapeseed flowering phases. (c) Comparison of the time

series of different sites indicating-showing how the peak NDY | has beenis missed.

5 Data availability

The rapeseed maps produced with 10 m resolution preducedin this study areis accessible at Mendeley Data
(http://dx.doi.org/10.17632/ydf3m7pd4j.3) (Han et al., 2021). The rapeseed-maps-with-10-m-resolution-are-provided-in-thi
study-The dataset includes a set of GeoTIFF images in the ESPG: 4326 spatial reference system. The values 1 and 0 represent

rapeseed and non-rapeseed, respectively. We encourage users to independently verify the rapeseed maps. Alseln addition,

Sentinel 1/2 images, CDL, ACI, and SRTM are available on GEE (https://developers.google.com/earth-engine/datasets/). For

more detailed information about the data collected in this work, -please-see Table 1.
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6 Conclusions

Large-scale, -and-high-resolution rapeseed maps are the basis for crop growth monitoring and production-yield prediction. We
designed-developed a new method for mapping rapeseed based on the-spectral and polarization features and multi-source data.
We used theThe new algorithm has-to produced three annual rapeseed maps (2017—=2019) at 10_m spatial resolution in 33
countries. According to the results of tThree different verification methods, indicated-that-our rapeseed maps have-are

reasonablye accuratecy. Compared with existing products at the pixel level in Canada, USA, GBR, and France, PA, UA, and
F1 wereare 0.70-0.80, 0.93-0.97, and 0.81-0.86, respectively. Alseln addition, the-F1 ranged from 0.84 to 0.912 based on the
independent validation samples. Our approach reduces misclassificationsdisturbances from-due to different planting times and
lowbad-quality observations to some degree. The 10-m rapeseed maps de-provide more spatial details of rapeseed. Finally, we
found-observed that the rapeseed crop rotation_interval is at least 2 years er-longerin almost all countries in this study. Our

proposedFhe rapeseed mapping method preposed-inthiswork-couldcan be applied to other regions. The derived rapeseed data
product is useful for many purposes, including crop growth monitoring and production_and; rotation system planning.
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Abstract. As a major oilseed crop, large-scale and high-resolution maps of rapeseed (Brassica napus L.) are critical for
predicting annual production and ensuring global energy security. However, such free maps are still unavailable in large areas.
We designed a new pixel- and phenology-based algorithm and produced a new data product for rapeseed planting area (2017-
2019) over 33 countries at 10m spatial resolution based on multiple data. The product showed good consistency with the
official statistics (Food and Agricultural Organization of the United Nations, FAO) at the national level. Rapeseed maps
achieved at least 0.81 F1 scores of spatial consistency when comparing with the Cropland Data Layer (CDL) in United States
of America (USA)Awmerica, Annual Crop Inventory (ACI) in Canada, Crop Map of England (CROME), and Land Cover Map

of France (LCMF). Moreover, their F1 scores ranged from 0.84 to 0.92 based on the independent validation samples, implying

a good consistency with ground truth. The rapeseed crop rotation is at least 2 years in almost all countries in this study. Our
derived maps with reasonable accuracy suggest the robustness of pixel-—and-phenology-based-the algorithm in identifying

rapeseed over large regions with various climate and landscapes. Fhe-propesed-algerithm-and-its derived products-may-bene

iy-The derived rapeseed planting areas freely
downloaded will benefit scientists and local farmers ean-be-apphied to predict rapeseed production and optimize planting
structu/re. The product is available publicly at http://dx.doi.org/10.17632/ydf3m7pd4j.3 (Han et al., 2021).

1 Introduction

Currently, fossil fuels are the main source of energy (Fang et al., 2016; Shafiee and Topal, 2009). However, overexploiting
fossil fuels will increase risks for human survival such as greenhouse gas emission, and environmental pollution (Fang et al.,
2016; H&X and Tang, 2013). Biofuel energy seems to be a promising alternative energy source-and-has-becomea-key-concern
(Hassan and Kalam, 2013). Rapeseed is an important source of biofuels, edible oil, animal feed, and protein powder plants
(Firrisa et al., 2014; Mal@ and Freire, 2009; Sulik and Long, 2016). A i

oduction-has-been-inereasingrapidhy-inthe past-few-decades-Data products about the planting densities, growth conditions,
and productivity of rapeseed are dependent on precise and accurate planting area maps (Zhang et al., 2019). However, such

maps are yet unavailable.
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Global agricultural statistics on rapeseed in many regions come from field surveys, field sampling, and producer reports (Arata

et al., 2020; Fuglie, 2010). Ground-based methods are time-consuming and labor-intensive and fail in describing the detailed

spatial information of rapeseed fields (Wang et al., 2020a). Remote sensing technology plays an important role in agricultural

At present, many land cover products from remote sensing have publicly provided a cropland layer, e.g. the Fine Resolution

Observation and Monitoring of Global Land Cover {(FROM-GLC)-project (Gong et al., 2013), the GLOBCOVER fand-cover
maps{Arine-etal-2008),the Global Land Cover 2000 (GLC2000) map (Bartholomé&and Belward, 2005), ChinaCropPhenlkm
(Luo et al., 2020), and Global Food Security-support data at 30 m (GFSAD30) (Phalke et al., 2020; Xiong et al., 2017).

However, cropland identified by these products either failed in distinguishing different crop types or had a coarse
spatiotemporal resolution (Teluguntla et al., 2018) or excluded rapeseed information. Till nowadays, there are few rapeseed
maps on a large scale, especially at 10m-resolution. The 30m-resolution Cropland Data Layer (Boryan et al., 2011) for the
USAAmerica and Annual Crop Inventory in Canada (Fisette et al., 2013) did classify various crops using the decision tree
classification method based on a large number of training samples. However, the method is hard to apply to other developing
regions due to a lack of ground training samples (Xiong et al., 2017). A new method is highly required to map large-scale
annual maps with high spatial resolution, which will be widely applicable for the regions with scare ground training samples.

Five remote sensing-based methods for rapeseed mapping have been developed in recent decades: a) machine learning methods:
supervised-classifiers-such-as-Random-Forest{RF) (Griffiths et al., 2019; Preidl et al., 2020)-and-unsupervised-classifiers-such
as—Herative-Sel-Organizing-Data-Analysis Technigue{; She et al., 2015; Tao et al., 2020); b) a classifier based on time series

data:—e-g—an—automa apeseed—¢la ation—method-using-sentine mages (Ashourloo et al., 2019); c) a threshold
segmentation based on phenology (Tian et al., 2019); d) Multi-Range Spectral Feature Fitting (MRSFF) (Pan et al., 2013); and
e) HSV transformation and Spectral Features (Wang et al., 2018). However, most methods only produce rapeseed maps for a
small area based on very limited imageries taken on the rapeseed peaking flowering dates (Ashourloo et al., 2019; She et al.,
2015). The peak flowering dates vary by area and cultivar because of differences in natural conditions and cultivation habits,

especially over a large region (d’Andrimont et al., 2020; Ashourloo et al., 2019; McNairn et al., 2018). Thus, it is still a big

challenge to automatically map rapeseed areas with a finer resolution over a large region by applying the above methods.
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Considering the unique phenological characteristics of crops, many studies have indicated the potential ways based on
phenology for crop identifying in large areas (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2018b, 2020a; Zhang et al.,
2020). The algorithm based on phenology develops classification rules through analyzing the unique characteristics of the crop,
which have been successfully applied to mapping rice (Dong et al., 2016), soybean (Zhong et al., 2014), corn (Zhong et al.,
2016), and sugarcane (Wang et al., 2020a), but rarely applied to rapeseed. Rapeseed has unique reflectance and scattering
characteristics (Ashourloo et al., 2019; McNairn et al., 2018; Sulik and Long, 2015, 2016), and undergoes three canopy

morphologies (Ashourloo et al., 2019; Rondanini et al., 2014), including leaves, yellow petals, and pods/branches. Each canopy

shape strongly influences how solar radiation intercepts (Sulik and Long, 2016). Compared-with-ethercrops,rapeseed-is-mere

Thus we-are-sure-the specific features of reflectance values and scattering coefficients of rapeseed from S—1/2 data will provide

information for automatic mapping of rapeseed over larger areas and with a finer resolution.

Also, crop rotation is beneficial to the management of pests and diseases in crop production (Harker et al., 2015; Liu et al.,
2018a). Previous studies have shown that crop rotation is one of the main causes of yield change in rapeseed production
(Harker et al., 2015; Ren et al., 2015). The physical and chemical properties of the soil will change during crop rotation, and
these changes will affect rapeseed growth (Ren et al., 2015). Most of the current studies are limited to field observations (Peng
et al., 2015). The spatial distribution information of rapeseed rotation in different regions is still not clear due to the lack of
high-resolution rapeseed maps. It is necessary to explore the rapeseed rotation for cultivation and management.

Thus, we integrated multi-source data to 1) develop a new method for identifying rapeseed; 2) apply the new method to

generate rapeseed maps with a spatial resolution of 10 m from 2017 to 2019 across the main planting areas of 33 countries; 3)

2 Materials
2.1 Study area

We identified rapeseed planting areas for 33 countries in three continents (North America, South America, and Europe) as
they are the main rapeseed producers in the world (Fig. 1). The planting areas and production of rapeseed are large in Canada
and the European Union (EU) (Carréand Pouzet, 2014; van Duren et al., 2015; Rondanini et al., 2012). Accordingto-thereport

0)-Europe produces a large amount of
biodiesel for the world every year. In 2008, 79% of the biodiesel feedstock crops in Europe were rapeseed (van Duren et al.,

3



95 2015). Also, Chile is the main rapeseed producer in South America and the country with a high yield of rapeseed in 2018
(38877 kg/ha). Rapeseed agriculture in these countries is important in food and energy security (Carréand Pouzet, 2014). The

climates in these three continents are different because of factors such as latitude and topography_(Peel et al., 2007). Eurepe

100 Sie)-Rapeseed planting seasons are distinctive because of differences in natural conditions (such as climate) in different
countries (Singha et al., 2019; Wang et al., 2018), which brings great challenges to mapping rapeseed.
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Figure 1. The locations of 33 countries and the sample blocks for phenological monitoring with a radius of 10 km (a-d). The
33 countries include Canada (CAN), United States of AmericaAmerica (USA), Chile (CHL), Ireland_(IRL), United Kingdom
of Great Britain and Northern Ireland (GBR)Enrgland, France (FRA), Spain_(ESP), Netherlands_(NLD), Belgium_(BEL),
Luxembourg_(LUX), Germany_ (DEU), Switzerland_(CHE), Denmark_(DNK), Sweden_(SWE), Poland_(POL), Czechia
(CZE)Czeech-Republie, Austria_(AUT), Slovenia_(SVN), Croatia_(HRV), Slovakia_(SVK), Hungary (HUN), Estonia (EST),
Latvia (LVA), Lithuania (LTU), Belarus_(BLR), Ukraine (UKR), Republic of MoldovaMeldeva (MDA), Romania_(ROU),

Bulgaria_(BGR), Serbia_(SRB), North MacedoniatheFermer—Yugeslav-Republic—of-Macedonia_(MKD), Greece_(GRC),

Turkey (TUR). The name and code of the country are prepared by the Statistics Division of the United Nations Secretariat.

The three-digit alphabetical codes assigned by the International Organization for Standardization (ISO) can be found at

https://unstats.un.org/unsd/methodology/m49/.

2.2 Data
2.2.1 Remote sensing data

We collected the Sentinel-2 (S2) and Sentinel-1 (S1) imagery (Table 1). The S1/2 satellites are launched by the European
Space Agency (ESA) (Drusch et al., 2012; Torres et al., 2012). The-highest-spatialresolution-of S2 images-is-10-m-We used
6
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red (b4), green (b3), and blue (b2) spectral bands with 10—m spatial resolution Top-Of-Atmosphere (TOA) reflectance
observations. The S2 TOA product includes the Quality Assessment (QA) band, which was used to remove most of the bad-
quality images (e.g. clouds information) in this study. However, it is difficult to remove all clouds due to the quality of the QA
band (Wang et al., 2020a; Zhu et al., 2015). i - Wi
Extra-Wide-Swath-(EWW),and-Wave (WA {Torreset-al;2012)-We used the Interferometric Wide Swath PA/~mode_of S1,

which provides dual-band cross-polarization (VV) and vertical transmit/horizontal receive (VH) with a 12 day or 6-day repeat

cycle and 10m space resolution (Torres et al., 2012). The S-1/2 images were obtained on Google Earth Engine (GEE) (Gorelick
et al., 2017)GEE. Also, we used QA bands to remove most of the bad-quality images on GEE (Sample code can be found at
https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FCOPERNICUS_S2). See Table 1 for more
details.

2.2.2 Digital elevation model

We used a spatial resolution of one arc-second (approximately 30 m) elevation data from the Space Shuttle Radar Terrain
Mission (Table 1) (Farr et al., 2007). Then we calculated the spatial distribution of slope on GEE (Sample code can be found
at https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FUSGS_SRTMGL1_003)-{Fig—Sid-f}. Later,

we extracted areas with a slope less than 10°to mask hilly terrain where-rapeseed-is-untikely-to-be-planted-(Jarasiunas, 2016).

2.2.3 Cropland and agricultural statistics data

In this study, cropland data from the GFSAD30 were used to identify major farming areas in different countries (Phalke et al.,
2020; Xiong et al., 2017). The existing crop data products containing rapeseed information include four datasets: 1) the 30-m
Annual Crop Inventory (ACI) in Canada (Fisette et al., 2013), 2) the 30-m Cropland Data Layer (CDL) in America-USA
(Boryan et al., 2011) (CDL and ACI layers are downloaded from GEE). 3) the Crop Map of England (CROME) was generated
in GBREngland. 4) the 10-m Land Cover Map of France (LCMF) in France (Inglada et al., 2017). These four crop layer
products are generated based on satellite images and a large number of training sample collections. In this study, rapeseed
maps in ACI, CDL, CROME, and LCMF were used for accuracy verification at the pixel level. The FAO releases annual
statistics on the area for major crops in different countries or regions every year. We selected the statistics from FAO for

accuracy verification. Please see Table 1 for more details.

2.2.4 Crop calendars

We used two crop phenological data sets to assist in extracting rapeseed phenological parameters, crop calendars in different

countries (https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx) and field records of the crop phenology in Germany. The crop

calendars come from the United States Department of Agriculture {JSBA)-which only records the planting and harvest time

of rapeseed in some countries{Fable-S1). The field records of the crop phenology in Germany are tnin-situ observations from


https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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crop phenological records shared by the Deutsche Wetterdienst (DWD) in Germany (Kaspar et al., 2015). The DWD provides
field observations of crop phenological periods following the Biologische Bundesanstalt, Bundessortenamt, and Chemical
(BBCH) scale throughout Germany (Table 1). DWD records the start date and the end date of rapeseed flowering (d’ Andrimont
et al., 2020; Kaspar et al., 2015). Note that both crop calendars and DWD do not contain information on the peak flowering
dates of rapeseed. We used all stations that fully recorded the start and end of the flowering periods from 2017 to 2019 for
extracting rapeseed phenological parameters. Finally, 281, 269, and 253 stations are available in 2017, 2018, and 2019,

respectively.-(the-spatial-¢ bution-of-the-DWD-rapeseed-stations-can-be-foune-in-Fig:
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2.3 Methods
2.3.1 Optical and SAR characteristics during the growing period of rapeseed

We selected available rapeseed parcels and in-situ observations of DWD from different climate regions and different years to
analyze the optical (reflectance and vegetation index) and SAR (VV, VH) characteristics of rapeseed along time. For example,
Fig. 2 shows the time series of one rapeseed parcel around the DWD station (station id: 13126) in 2018. The rapeseed parcel
shows unique visual characteristics during the flowering period (Fig. S32¢). The flower becomes yellow when rapeseed is
approaching peak flowering (d’Andrimont et al., 2020; Pan et al., 2013; Tao et al., 2020; Wang et al., 2018). Rapeseed is
yellow-green on the true color images of S2 and Google Earth during the flowering period (Fig. S4S1). The reflectance of the
green band and red band separately increased from 0.09 and 0.06 (2018/4/17, before flowering) to 0.16 and 0.14 (2018/5/7,
peak flowering), and decreased after flowering (Fig. 2a). The reflectance of the blue band is lower than red and green bands
during flowering. i i
peried-This is similar to previous research results (Ashourloo et al., 2019; Sulik and Long, 2015). The Normalized Difference

Yellow Index (NDY1, Eq.1) can capture the increasing yellowness in the time series (d’Andrimont et al., 2020; Sulik and Long,
2016). Also, the NDY I increased from -0.03 on April 17 to 0.21 on May 7 (Fig. 2b). NDY I reaches a peak during the flowering

time of rapeseed. This unique spectral feature of rapeseed in the flowering period is caused by the yellow petals.

green—blue

Nyl = e biue &)
where green is the TOA reflectance of the green band (b3) of the S2 imagery, blue is the blue band (b2) reflectance.
S1 backscattering changes with the growth of rapeseed. We used the VV and VH time series smoothed by the Savitzky—Golay
(SG) filter (window size 3) (Chen et al., 2004) as input to identify the phenological parameters of rapeseed parcels. We ran the
SG filter algorithm on MATLAB 2020b. The results show that there are local minimums in both the VV (-11.20, May 8) and
VH (-15.60, May 5) time series during rapeseed flowering (Fig. 2c-d). Furthermore, VH reaches the maximum (-9.64, June 1)
during the pod period-{Fig—2¢3}. Unlike other crops, rapeseed has two distinct green-up phases: the flowering period and the
pod period (Ashourloo et al., 2019; Bargiel, 2017; Mercier et al., 2020; Veloso et al., 2017). The petals of rapeseed decrease
the scattering of VV and VH, while the pods increase the scattering intensity of VH (d’ Andrimont et al., 2020; Bargiel, 2017,
McNairn et al., 2009; Mercier et al., 2020). The NDY I and backscattering (VV, VH) time series of rapeseed in different climate
regions (Fig. S4S1) also show the same characteristics. Hence, we used the features in both Optical and SAR to identify the
rapeseed flowering and pod period in this study. Due to the difference in the revisit periods of S1/2 satellites, rapeseed peak

flowering dates are defined as the median dates extracted by optical and SAR indicators.

10
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2.3.2 Sample blocks collected for phenological monitoring

11

Figure 2. The time-series profiles of four features of the rapeseed pixels around one DWD station (id = 13126, Longitude:
11.333268424< Latitude: 52.200000463<) in Germany in 2018. (a), the mean reflectance values (red, green, and blue); (b),
mean NDY]; (c) mean VH; and (d) mean VV; the filled color areas for standard deviation; BBCH for the in-situ observations
of rapeseed phenology, with BBCH61 and BBCH®69 for the start of flowering and the end of flowering, respectively. (e), The

rapeseed parcel around the DWD station is shown by red boundaries (image source: Copernicus Sentinel-2 data 2018).

As a prerequisite to mapping rapeseed at a large scale, the phenology of rapeseed in different countries needs to be identified
and delineated (Dong et al., 2016; Zhang et al., 2020). However, not enough observation records of rapeseed phenology are
available on a large scale. Referring to the DWD method of observing phenology (Kaspar et al., 2015), we created sample
blocks with a- radius of 10 km over rapeseed producing areas of different countries and randomly sampled 10 rapeseed parcels
for each block—{Fig—S5). The rapeseed plots were identified by phenological characteristics obtained from the visual



225
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235

interpretation and reference data including high-resolution images available in S2 and Google Earth as well as Spectral
reflectance (red band and green band) and spectral index (NDY) and scattering coefficient profiles (VV and VH) from the
S1/2 time series. It should be noted that the Google Earth images during rapeseed flowering were used to assist with the visual
interpretation of rapeseed parcels. The rapeseed parcels without high-quality time-series imagery available were omitted.
Finally, 75 sample blocks in 2017, 84 sample blocks in 2018, and 84 sample blocks in 2019 were uniformly and randomly

CO"eCted !Flg 1’ AE-Sapte—+0 ae-SHeWHh g—L—\Wfe-e actea—+tRe-growtn-pReRcogy—1HoHRatdonR-o apesSeea——mY

2.3.3 Flowering and pod phase detection in different countries

Fhe-phenology-ofrapeseed-is-differentameng-regions—To find out the flowering dates of rapeseed in different countries, we

evaluated each phenological sample block from 2017 to 2019 _(Fig. 3). First, we calculated the average values of all pixels in
the 10 rapeseed parcels we selected before during the rapeseed growth period for each block in conjunction with the crop
calendar. VV and VH time series for each sample rapeseed parcels were smoothed using the SG filter. Second, these S1/2 peak
flowering dates and pod dates were derived for all sample blocks based on the method in Section 2.3.1. We found the peak

flowering dates of rapeseed have an obvious latitude gradient, especially in Europe (Fig. S&3)).

12
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Figure 3. The spatial distribution of flowering dates (Julian day) was monitored by different sample blocks in 2017, 2018, and

2019 (a-i). The latitude gradient characteristics in Europe (j). The date was calculated by the mean of the flowering date of all

sample blocks in different latitude intervals)

13

Also, we found the signal with the maximum of VH is within 45 days after the peak date of flowering (Fig. S#2). Then we
calculated the difference in the peak flowering date of each sample block in different years. The results showed that the
flowering peak dates of most sample parcels were advanced or delayed by 10 days (Fig. 3d4d). Therefore, it is reasonable to
use the same period for rapeseed identification in different years in the same area in this study. Previous studies and field
observation records show that the flowering period of rapeseed is about 30 days (d’ Andrimont et al., 2020; Chen et al., 2019;
Kaspar et al., 2015; She et al., 2015). Therefore, we divided each month into two time periods (the 15th is the dividing line).

Two consecutive half-months are defined as suitable periods for classifying flowering dates (Fig. 4a-c). Finally, we designated



the flowering period for each administrative unit fereach-sample-block-based on the peak-flowering-datessample blocks{Fig-
250 3a-¢).

14
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Figure 34. Flowering phenology of rapeseed. (a-c) The spatial distribution of rapeseed flowering periods for sample blocks.
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2.3.4 Developing phenology- and pixel-based algorithm for mapping rapeseed

The analysis of temporal profile at rapeseed parcels in this study together with many previous studies indicated that the
spectrum at flowering stage and the scattering signal at pod stage are the key features to identify rapeseed (Ashourloo et al.,
2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020; Sulik and Long, 2015; Veloso et al., 2017). Previeusstudies-have

oHnad-the Mah-retle aVaValal a asS 0 na oreen -hand-anad-red-hangd na owering aValallk a anasead-are the maln na 3
oo g c avyge o g o > o—gad S g g S ct ot c 9 ct

factors-to-distinguish-from-ethercrops{Asheurloo—et-al—2019)-We developed one phenology- and pixel-based rapeseed

mapping algorithm using four features, spectral bands (red and green), spectral indices (NDY1), polarization bands (VH), and
terrain (slope). Four primary steps were conducted for mapping annual planting areas (Fig. 65).

Step 1: determining the threshold of the feature indicators. Fhreshelds-of-indicators-are-the key-parameters-to-determine-the
area-aceuracy—We analyzed the histograms of the random samples selected from different countries as the previous studyies
(Zou et al., 2018) suggested. We found the similarities of green band, blue band, and NDY1 (Fig. S39) for all samples during
the flowering stage from different regions. Most (98%) of the rapeseed pixels showed red > 0.07, green > 0.11, and NDY| >
0.05.

16
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However, we found some pixels with a relatively high NDY1, which would be misclassified into rapeseed because they are
polluted by the cloud with a “rainbow” appearance (Fig. 5). Such misclassifications caused by some bad-quality observations
from the S2 image can’t be removed due to the limited quality of the QA band and simple cloud score algorithm (Wang et al.,
2020c; Zhu et al., 2015). The “rainbow” of the cloud comes from the push-broom design of S2 (Fig. 4a5a) and spectral
misregistration (For more details, please refer to ESA, 2015a, and ESA, 2015b). Based on the principle of the relative
displacement of each spectral channel sensor in the S2 push-broom design (Frantz et al., 2018; Liu et al., 2020b; Zhao et al.,
2018), we developed a new spectral index (NRGBI) to reduce the influence of "rainbow" (Eq.2). The scatter plot of NDY| and
NRGBI of rapeseed parcel samples and "rainbow" samples around clouds (visual interpretation) showed that the NRGBI

(threshold is -0.05) can effectively distinguish rapeseed from the "rainbow" (Fig. 4h5h).

NRGBI = red—blue _ green—blue (2)

red+blue green+blue

where red, green, and blue are the TOA reflectance values of the red band (b4), green band (b3), and blue band (b2) of the S2
imagery,  respectively. The GEE code for NRGBI index calculation can be found at
https://code.earthengine.google.com/a39fc699a276d018778d59c¢5b085d960. Also, NRGBI can be calculated based on Eq.2 in
other GIS software (e.g. QGIS and ArcGIS) on the local computer.

17
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Figure 45. Causes, examples, and solutions for the “rainbow” cloud effect. (a) staggered detector configuration of S2 (ESA,
2015a); (b-f) examples of spectral misregistration effects and performance of cloud masking methods (each image was masked
by quality assurance band (QA60)) for Sentinel-2 TOA image, with the red arrows indicating the cloud “rainbow” appearance
at high altitude in the S2 image (Image source: Copernicus Sentinel-2 data); (g) Sentinel-2 TOA image of rapeseed at the
flowering stage, with the yellow arrow for the rapeseed fields; (h) scatter plots of NDY| and NRGBI of rapeseed field samples

and "rainbow" around clouds samples from the S2 images, with the color density for the number of pixels.

Step 2: identifying all rapeseed pixels from different images during the flowering period and aggregating them into annual
rapeseed planting areas (Fig. 56). Because the peak flowering dates and the number of available images of rapeseed fields in
aregion are different (Fig. S10S4), rapeseed classifications based on a single image could fail in capturing rapeseed flowering
dynamics (Ashourloo et al., 2019). To avoid the misclassification from bad-quality observations during the rapeseed flowering
stage, we aggregated all the classified results from available S2 images during the flowering period. Hence, a larger number

of images will result in better performance (Fig. S1054).
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Step 3: combining optical with SAR images to ensure the accuracy of the rapeseed maps. The high VH values during the pod
stage are another distinct feature that can distinguish rapeseed from other crops (Mercier et al., 2020; Tian et al., 2019; Van
Tricht et al., 2018; Veloso et al., 2017). Considering the variability of flowering in different fields and the duration of the pod
stage (Section 2.3.2), we calculated the maximum VH between the second half of the flowering stage and the next 30 days
after the flowering stage (~ 45 days) (See the grey part in Fig. 56). Within 45 days, at least three S1 satellite images are
available in the study areas. Also, the areas with a slope >> 10<={whererapeseed-is-unlikely-to-be-planted)- were removed
(Jarasiunas, 2016). All pixels that meet the requirements are defined as rapeseed.

Step 4: removing the “salt and pepper” noise according to the connected components (objects) threshold (the size of the
neighborhood in pixels) and filling the gaps inside the parcels (Hirayama et al., 2019). #a-this-study-w\We used 8-connected
rules, which means that the edges or corners of the pixels are connected. If two adjacent pixels are connected, they are part of
the same object (https://www.mathworks.com/help/images/ref/owareaopen.html). The bwareaopen function in MATLAB
2020b software was used to remove the objects which are less than the threshold. The thresholds of different indicators in

different regions can be found in Table S3S1.
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Figure 56. The workflow for mapping rapeseed areas using the proposed phenology- and pixel-based algorithm. Global Food

Security-Support Analysis Data at 30m (GFSAD30); normalized difference yellowness index (NDY); The new spectral index
(NRGBI), Deutsche Wetterdienst (DWD), Food and Agriculture Organization of the United Nations (FAQ), Root Mean Square
315 Error (RMSE), Mean Absolute Error (MAE), R-squared (R?), Cropland Data Layer (CDL), Annual Crop Inventory (ACI),
Crop Map of England (CROME), Land Cover Map of France (LCMF), user’s accuracy (UA), producer’s accuracy (PA), and

F1 score (F1).

2.4 Accuracy assessment

First, we compared the rapeseed areas retrieved by the new method with FAO statistics. Our rapeseed data is a binary (0 or 1)

320 map with a spatial resolution of 10 m. We then can calculate the total area of rapeseed maps in each country and compare

them with the national rapeseed statistics. The RMSE (Eq.3), and the MAE (Eq.4), and the coefficient of determination (R?,

Eq.5) are used to verify the accuracy of rapeseed mapping.
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where n is the total number of countries. y; is the mapped rapeseed planting areas, ¥, is the corresponding mean value, f; is
the records rapeseed planting areas from FAO, f, is the corresponding mean value.

Also, we compared the rapeseed maps with four open-access datasets that include rapeseed layers (ACI, CDL, CROME, and
LCMF) in Canada, AmericaUSA, GBREngland, and France at the pixel level. We used them as the reference data for 2018,
2019 (Boryan et al., 2011; Fisette et al., 2013). To unify the spatial resolution of the rapeseed maps, CDL, ACI, and CROME
were resampled to 10m resolution for comparison. UA (Eq.6), PA (Eq.7), and F1 (Eq.8) were calculated based on confusion
matrices (Table S22) to measure the classification accuracy.

Thirdly, we also randomly selected verification samples based on the previous studies (Pekel et al., 2016; Wang et al., 2020b)
to validate the rapeseed maps. A grid (0.2 latitudes by 0.2 longitudes) was generated within the rapeseed map in 2018 acquired
by our method_(Fig. S5). Two points (rapeseed and non-rapeseed) were generated randomly in each grid by visually
interpreting images available from S2 and Google Earth, together with spectral reflectance (red and green bands), spectral
index (NDYI), and scattering coefficient (VV and VH) profiles from the S-1/2 time series. The confusion matrices were
similarly used to assess the accuracy according to Egs 6~8.

—~ij
va = ©)
PA = % )
Fi- 2t ®

Where x;j is the value of the i-th row and j-th column; x; is the sum of the i-th row; x; is the sum of the j-th column. Although
the statistical data and existing products are not completely the same as the real areas and locations of rapeseed planted on the

ground, these datasets do benefit to validating the accuracy of rapeseed maps at different scales (national and pixels).

3 Results
3.1 Accuracy assessment

We compared the derived rapeseed areas with those from the FAO statistics. The total planting areas of rapeseed are well
consistent with the agricultural statistics at the national level, with RMSE of 1459.64 km?, MAE of 785.25 km?, and R? of 0.88
(Fig. 67). We found the derived areas in 2017 and 2019 are larger than those in 2018, especially for the countries with the
relatively small rapeseed areas-{e-g—many-European-countries-indicated-by the-subgraph-located-at-the-bottom-right of Fig--6.
The more availability of S2 images together with better quality of data in 2018 could contribute to the larger rapeseed areas
derived by the new method (Liu et al., 2020a).
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Figure 67. Comparison of rapeseed areas with the FAO statistics at the national level. The names of all countries can be found
in Section 2.1.
The comparison of our rapeseed maps with those of America-USA CDL in 2018, 2019, Canada ACI, England-GBR CROME,
France LCMF in 2018 was consistent at pixel level indicated by a higher accuracy according to the confusion matrix values
(Table S4S3). Fig. 7a-8a shows that the rapeseed areas calculated from our maps are consistently more comparable to FAO
statistics than those from existing products. The UA, PA, and F1 varied by country, with PA of 0.70-0.80, UA of 0.93-0.97,
and F1 of 0.81-0.86 (Fig. #b8b). The rapeseed areas obtained by us accounted for around 71% of 2018 CDL, 71% of 2018
ACI, and 80% of 2018 CROME, and 70% of 2018 LCMF, and 79% of 2019 CDL._Furthermore, our results showed consistent

distributions between our rapeseed maps and the existing products at the pixel level (Fig. S7-S8). The difference in accuracy

might be caused by the number of high-quality images available in different regions (Dong et al., 2016). Despite the various

ground conditions, methods, images, and spatial resolutions among the products, the comparison results further verify the

accuracy of our rapeseed map (Gong et al., 2020; Singha et al., 2019).
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Figure 78. Validation results of the classifications. (a) The percentage of the rapeseed area of the existing products and
classification results in the FAO statistics. (b) The user’s accuracy (UA), producer’s accuracy (PA), and F1 score (F1) of
classifications in four countries (Canada, AmericaUSA, EnglandGBR, and France). The existing products were used as
reference data. i 55 %5 [H 45 5 1

The confusion matrix values (Table S554) based on random sampling points show that the accuracy of the rapeseed
maps varies in different regions. We found zone Il1Eurepe shows the highest accuracy (F1, 0.91), followed by zone 111Chie
(F1, 0.9), and zone INerth-America (F1, 0.84). Such disparity in accuracy might be ascribed to the different availability of
high-quality images in the studied areas. The results showed that the rapeseed maps derived by our method had a satisfying
accuracy.

3.2 More details of rapeseed maps derived by the new method

To show more details of rapeseed maps derived from our method, we selected some images in some areas of each country.
The rapeseed maps show good spatial consistency with the actual rapeseed planted on the ground (Fig. 89 and Fig. S6). From
the area densely planted by rapeseed in Canada (Fig. 89--a) to relatively sparse planting ones such as in Chile (Fig. 89-b) and
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European countries (e.g. Fig. 89-c,d) (Lowder et al., 2016), from regular rectangles (e.g. Fig. 89-a, h) to irregular parcels (Fig.

89-c, d), from temperate oceanic climate (Fig. 89- c-e) to temperate sub-continental (Fig. 89-a, f), or even subtropic climate

(Fig. 89-b), all field details were indicated clearly in our maps. Fragmentation of land in some European countries, especially
in Eastern and Central Europe after land reform in 1989 (Hartvigsen, 2013, 2014), such as Estonia (Fig.8f9f) (JUrgenson and
Rasva, 2020; Looga et al., 2018). Although under different climates, terrain, landscapes, and over a very larger region, the
algorithm preposed-in-eur-study-showed a satisfying classification accuracy across 33 countries. Thus, the rapeseed maps
based-on-S-1/2-data-can effectively identify the fields in detail with high spatial resolution and clear field boundaries. Meore
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Figure 89. Spatially explicit details of rapeseed maps in eight countries with diverse crop structures in different years (the
yellow words show the climatic zones). RGB composite images use the red (b4), green(b3), and blue (b2) bands from Sentinel-
2 with good-quality observations during the flowering period of rapeseed (image source: Copernicus Sentinel-2 data). The

400 climate zone data is from the Food Insecurity, Poverty and Environment Global GIS Database (FGGD).

3.3 Spatial patterns of rapeseed planting areas

Canada shows the largest rapeseed planting area-{Fig-—9,-Fig—S15)with-a-total-area-0f 118.489.73 km*in-2018, higher than
those in Europe-{(106,814-67-km?). France and Germany are two leading rapeseed growing countries in Europe, accounting for
around 66.3% of European rapeseed areas together with the other three countries (EnglandGBR, Poland, and Ukraine). Fhe

ountrv-wide raneseed-areas—in ountrias wara her normalized-to-show-clearh/ the spatial pattern 0 _The

405

spatial patterns of three years (2017~2019) are consistent at the national level (Fig. S9). Moreover, we also plotted the
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geographic characteristics of rapeseed areas along latitude and longitude for three-regionsthe study areas -(Fig. 210). Rapeseed
in Europe is widely planted in the countries with latitudes of 45~56 N and longitudes of -2%4< 9=19< and 2227 < with
exception of the steep mountainous areas and the cold northern areas (Fig. 9a10a) (van Duren et al., 2015). In_-Canada and

410 USANerth-America, the areas with the latitudes of 44~44.5N, 51~55N, 56~57 N and longitudes of -118-117< -114<-98<
are densely distributed by rapeseed (Fig. 2510b).
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4 Discussion
4.1 Investigating the rapeseed rotation systems

We obtained three-year rapeseed maps at a 10—m spatial resolution, and with a higher accuracy which was validated by annual
national statistic books, open accessed public products, and random sampling points-at-8-2=<0.2grids. These rapeseed maps,
with-good-guality-for-three-consecutive-years,-provide a new opportunity to investigate rapeseed rotation systems (Liu et al.,
2018a). Crop rotation information is considered an important factor for crop yield (Harker et al., 2015; Liu et al., 2018a; Ren
et al., 2015; Rudiyanto et al., 2019; Zhou et al., 2015). Thus, we selected 25 representative areas (Fig. S16S10) to analyze the
rapeseed rotation patterns according to the three criteria. Firstly,- the quality of images is high. Secondly, the classification
accuracy of rapeseed is high. Thirdly, the area of rapeseed is large. The rapeseed rotation was calculated by the frequency in
each rapeseed pixel (Fig. S17-181).
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Figure 11. Spatial distribution of three types of rotations in different areas from 2017~2019.

430 Please note that the longest rapeseed rotation break that can be observed is 2 years because there are only three years (2017-
2019) of rapeseed maps available. Thus, to more accurately express the pattern of rapeseed rotation break, we classified the
rapeseed rotation break into three types: > 2 years, 1 year, 0 years in this study-{Fig—10-and-Fig—S17-18}. We found most
countries show a rotation break greater than or equal to 2 years (the highest ratios of green parts) (Fig. £812), especially for
European countries (Fig. £612-b). The rotation break > 2 years in Canada accounts for 70%, followed by 1-year break (30%)

435 (Fig. 1812-a). The histogram confirmed that rotation breaks of 20 locations have been identified > 2 years. The percentage of
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planting areas with rotation break > 2 years is higher than 90% (Fig. 4612-d). Many previous studies have found that a two-
or three-year rotation break will significantly reduce the number of spores, especially rhizomes and blacklegs, suggesting
rotation system is an important step in controlling diseases (Gill, 2018; Harker et al., 2015; Ren et al., 2015; Zhou et al., 2015).
Moreover, rapeseed rotation will also benefit yield, insects, moisture, fertility, and reducing weeds (Bernard et al., 2012; Harker
et al., 2015; Pardo et al., 2015; Peng et al., 2015; Ren et al., 2015). Thus, more efforts should be input to produce longer time-

series rapeseed maps and obtain detailed rotation information in the future.
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Figure 1012. Crop rotation. (a-c) The proportions of the total area planted by rapeseed for three rapeseed rotation breaks.-Fhe

sample-blocksselected-foreach-area-arered-in-Fig—S16- (d) The numbers of areas with > 2-year break in Fig. 20-12 a-c.

4.2 Uncertainty analysis

Generating annual high-resolution maps of a specific crop over a larger region is a big challenge (Gong et al., 2020; Liu et al.,
2018b, 2020a). Pixel-and phenological-based algorithms, multisource remote sensing data, and the GEE are useful to map
rapeseed at high resolution and over larger areas. Besides, the proposed algorithm does not need a large number of training
sample data and reduces disturbance from agronomy differences by combining images of multiple dates. However, the
uncertainty is from the following aspects. 1) Cropland layer. We used the GFSAD30 datasets to identify croplands. However,
GFSAD30 has its limitations such as classification error (Phalke et al., 2020). 2) The number of satellite images available.
Although our annual rapeseed maps are consistent with FAO statistics and show higher accuracy comparing with existing
products, the maps are limited by the good-quality observations during the critical growth stages. For example, Fig. 11a-13a
shows that there is an error in the area of France in 2017, which could be attributed to the lack of clear S2 images during the
rapeseed flowering period (Fig. £2b13b). The rapeseed flowering period is generally characterized by high NDY], red band,

and green band reflectance, thus rapeseed pixels are likely to be misclassified if the images during the flowering stage were
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missing (Fig. 1e13c). 3) 7hresholds for different indicators. The threshold is the key for mapping crops (Ashourloo et al.,
2019; Dong et al., 2016; Liu et al., 2020a; Wang et al., 2020a; Zhang et al., 2015). Although the reference thresholds for three
regions are given in this study, it should be cautious when applying them to other regions. 4) 7he complexity of the ground

environment. For example, landscape types might impact the accuracy of rapeseed maps (Wang et al., 2020a).
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Figure £113. Descriptions for the classification limitation. (a) Rapeseed map with an error in France in 2017 (Lon. 2.059824<
Lat. 46.7349879. (b) Availability of time series Sentinel-2 images during rapeseed flowering phases. (¢) Comparison of the
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475

480

485

490

495

500

5 Data availability

The rapeseed map produced is accessible at Mendeley Data (http://dx.doi.org/10.17632/ydf3m7pd4j.3) (Han et al., 2021). The

rapeseed maps with 10 m resolution are provided in this study. The dataset includes a set of GeoTIFF images in the ESPG:

4326 spatial reference system. The values 1 and 0 represent rapeseed and non-rapeseed, respectively. We encourage users to
independently verify the rapeseed map. Also, Sentinel 1/2 images, CDL, ACI, and SRTM are available on GEE

(https://developers.google.com/earth-engine/datasets/). For more detailed information about the data collected in this work,

please see Table 1.

6 Conclusions

Large-scale and high-resolution rapeseed maps are the basis for crop growth monitoring and production prediction. We
designed a new method for mapping rapeseed based on the spectral and polarization features and multi-source data. The new
algorithm has produced three annual rapeseed maps (2017~2019) at 10m spatial resolution in 33 countries. Three different
verification methods indicated that our rapeseed maps have reasonable accuracy. Compared with existing products at the pixel
level in Canada, AmericaUSA, EnglandGBR, and France, PA, UA, and F1 are 0.70-0.80, 0.93-0.97, and 0.81-0.86,
respectively. Also, the F1 ranged from 0.84 to 0.92 based on the independent validation samples. Our approach reduces
disturbances from different planting times and bad-quality observations to some degree. The 10m rapeseed maps do provide
more spatial details of rapeseed. Finally, we found that rapeseed crop rotation is 2 years or longer in almost all countries in
this study. The rapeseed mapping method proposed in this work could be applied to other regions. The derived rapeseed data

product is useful for many purposes including crop growth monitoring and production, rotation system planning.
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