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Abstract. As a major oilseed crop, lLarge-scale,  and high-resolution maps of rapeseed (Brassica napus L.), a major oilseed 

crop, are critical for predicting annual production and ensuring global energy security, but . However, such free maps are still 

not freely unavailable  forin large many areas. In this study, wWe designed developed a new pixel- and phenology-based 10 

algorithm and produced a new data product for rapeseed planting areas (2017–-2019) over in 33 countries at 10 m spatial 

resolution based on multiple data. The Our product showed is strongly good consistentcy at the national level with the official 

statistics  of the (Food and Agricultural Organization of the United Nations, FAO) at the national level. Our rRapeseed maps 

achieve achieved F1 spatial consistency scores ofd at least 0.81 F1 scores of spatial consistency when compareding with the 

the Cropland Data Layer (CDL) in the United States of America (USA), the Annual Crop Inventory (ACI) in Canada, the Crop 15 

Map of England (CROME), and the Land Cover Map of France (LCMF). Moreover,  their F1 scores based on independent 

validation samples ranged from 0.84 to 0.912 based on the independent validation samples, implying a good consistency with 

ground truth. In almost all countries covered in this study, tThe rapeseed crop rotation interval wasis at least 2 years in almost 

all countries in this study. Our derived maps with reasonable accuracy suggest, with reasonable accuracy, the robustness of the 

algorithm in identifying rapeseed over large regions with various climates and landscapes. Scientists and local growers can 20 

use tThe freely downloadable, derived rapeseed planting areas freely downloaded will benefit scientists and local farmersto 

help  to predict rapeseed production and optimize planting structu/res. The product is available publicly available at 

http://dx.doi.org/10.17632/ydf3m7pd4j.3  (Han et al., 2021). 

1 Introduction 

Currently, fAlthough fossil fuels are currently the main source of energy (Fang et al., 2016; Shafiee and Topal, 2009), . 25 

However, their overexploitation ising fossil fuels will increasing variouse risks threats tofor human survival, such as 

greenhouse gas emission, and environmental pollution (Fang et al., 2016; Höök and Tang, 2013). Biofuel energy seems to be 

a promising alternative energy source (Hassan and Kalam, 2013). Rapeseed (Brassica napus L.) is an important source of 

biofuels, edible oil, animal feed, and plant protein powder plants (Firrisa et al., 2014; Malça and Freire, 2009; Sulik and Long, 

http://dx.doi.org/10.17632/ydf3m7pd4j.3
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2016). Data products about on the rapeseed planting densities, growth conditions, and productivity of rapeseed are dependent 30 

on precise and accurate planting area maps (Zhang et al., 2019), but. However, such maps are yet still unavailable. 

 

Global agricultural statistics on rapeseed in many regions come are derived from field surveys, field sampling, and producer 

reports (Arata et al., 2020; Fuglie, 2010). Ground-based methods, which are time --consuming and labor --intensive, and fail 

toin describing theprovide detailed spatial information onf rapeseed fields (Wang et al., 2020a). In contrast, . rRemote sensing 35 

technology plays an important role in agricultural monitoring and , yieldsproviding accurate,  and objective spatial–--temporal 

crop information (Dong et al., 2016; Salmon et al., 2015).  

 

At present, mMany current land cover products from obtained by remote sensing have a publicly provided available a cropland 

layer. Examples include , e.g. the Fine Resolution Observation and Monitoring of Global Land Cover project (Gong et al., 40 

2013), the Global Land Cover 2000 (GLC2000) map (Bartholomé and Belward, 2005), ChinaCropPhen1km (Luo et al., 2020), 

and Global Food Security-support data at 30 m (GFSAD30) (Phalke et al., 2020; Xiong et al., 2017). Nevertheless, cHowever, 

cropland identified by these products is  either unfailed in distinguishingdifferentiated as to different crop type,s or hasd a 

coarse spatiotemporal resolution (Teluguntla et al., 2018), or excluded does not include rapeseed information. Till nowadays, 

there are fFew large-scale rapeseed maps on a large scale, especially at 10 m -resolution, are currently available. A decision 45 

tree classification method based on a large number of training samples has been used to classify various crops for tThe 30-m 

-resolution Cropland Data Layer (Boryan et al., 2011) infor the USA and the Annual Crop Inventory in Canada (Fisette et al., 

2013) did classify various crops using the decision tree classification method based on a large number of training samples,. 

However, thebut this method is hard to apply to other developing regions due because to a lack of ground training samples are 

lacking (Xiong et al., 2017). A new method is highly required to map large-scale annual maps with a high spatial resolution, 50 

which that will would be widely applicable for to the regions with scare few ground training samples is thus strongly needed. 

 

Five remote sensing-based methods for rapeseed mapping have been developed in recent decades: 1a) machine learning 

methods (Griffiths et al., 2019; Preidl et al., 2020; She et al., 2015; Tao et al., 2020),; 2b) a classificationer based on time  

series data (Ashourloo et al., 2019),; 3c) a threshold segmentation based on phenology (Tian et al., 2019),; 4d) mMulti-rRange 55 

sSpectral fFeature Ffitting (MRSFF) (Pan et al., 2013),; and 5e) mapping based on HSV (hue, saturation, and value) 

transformation and sSpectral fFeatures (Wang et al., 2018). However, Mmost of these methods, however, only produce 

rapeseed maps  for a small area based using on very limited imageries taken on the rapeseed peaking flowering dates 

(Ashourloo et al., 2019; She et al., 2015). Rapeseed The peak flowering dates vary by area and cultivar because of differences 

in natural conditions and cultivation habits, especially over a large regions (d’Andrimont et al., 2020; Ashourloo et al., 2019; 60 

McNairn et al., 2018). Using the above methods to Thus, it is still a big challenge to aautomaticallyally map  rapeseed areas 

with a finer resolution over a large region by applying the above methodsis thus still a huge challenge. 
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Taking into cConsiderationing the unique phenological characteristics of different crops, many various researchersstudies have 

indicated developed the potentially useful phenology-based methods ways based on phenology for crop identificationying 65 

overin large areas (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2018b, 2020a; Zhang et al., 2020). These algorithms, 

which based on phenology developsgenerate classification rules through by analyzing the unique characteristics of the studied 

crop, which have been successfully applied forto mapping rice (Dong et al., 2016), soybean (Zhong et al., 2014), corn (Zhong 

et al., 2016), and sugarcane (Wang et al., 2020a), but have rarely been applied to rapeseed. Rapeseed has unique reflectance 

and scattering characteristics (Ashourloo et al., 2019; McNairn et al., 2018; Sulik and Long, 2015, 2016), and undergoes has 70 

three canopy morphologies (Ashourloo et al., 2019; Rondanini et al., 2014 based on), including leaves, yellow petals, and 

pods/branches (Ashourloo et al., 2019; Rondanini et al., 2014). Each canopy shape strongly influences how solar radiation is 

intercepteds (Sulik and Long, 2016). Thus the specific features of reflectance values and scattering coefficients of rapeseed 

from S-1/2 data will can thus provide information for the automatic mapping of rapeseed over larger areas and with a finer 

resolution. 75 

 

Another relevant aspect of rapeseed imaging concerns Also, ccrop rotation, which is  is beneficial forto the management of 

pests and disease managements in crop production  (Harker et al., 2015; Liu et al., 2018a) and. Previous studies have shown 

that crop rotation is one of the maina major causesfactor in of yield change in rapeseed yield production (Harker et al., 2015; 

Ren et al., 2015). The physical and chemical properties of the soil will changeare altered during crop rotation, and these changes 80 

will affect rapeseed growth (Ren et al., 2015). Most of the current studies are have been limited to field observations (Peng et 

al., 2015). TheThe spatial distribution information of rapeseed rotation in different regions is still not unclear due because to 

the lack of high-resolution rapeseed maps are lacking. To aid cultivation and management, the characteristics of It is necessary 

to explore the rrapeseed rotation need to be explored for cultivation and management. 

 85 

ThusTaking into account the above-mentioned issues, we integrated multi-source data to 1) develop a new method for 

identifying rapeseed. We then; 2) appliedy ourthe new method to generate rapeseed maps with a spatial resolution of 10 m 

from 2017 to 2019 across the main planting areas of 33 countries from 2017 to 2019 and ; 3) analyzed the geographical 

characteristics of rapeseed planting cultivation and crop rotation.  

2 Materials and Methods 90 

2.1 Study area 

We identified rapeseed planting areas for in 33 countries, the world’s main rapeseed producers, onin three continents:  (North 

America, South America, and Europe) ( as they are the main rapeseed producers in the world (Fig. 1). The largest areas of 

rapeseed cultivation planting areas and production of rapeseed are located large in Canada and the European Union (EU) (Carré 

and Pouzet, 2014; van Duren et al., 2015; Rondanini et al., 2012). Europe produces a large amount of biodiesel for the world 95 
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every year. In 2008, 79% of the biodiesel feedstock crops in Europe, which produces a large amount of biodiesel for export 

every year, were rapeseed (van Duren et al., 2015). In Also, Chile, is the main rapeseed producer in South America, and the 

country with a highthe yield of rapeseed in 2018 was (38,877 kg /ha−1). Rapeseed agriculture cultivation in these countries is 

important forin food and energy security (Carré and Pouzet, 2014). The climates ofin these three continents are different 

because of factors such as latitude and topography (Peel et al., 2007).  The rapeseed planting season varies among countries 100 

because of these differences in climate and other natural conditions Rapeseed planting seasons are distinctive because of 

differences in natural conditions (such as climate) in different countries (Singha et al., 2019; Wang et al., 2018), which thus 

brings posing great challenges to the mapping of rapeseed. 

   

Figure 1. The lLocations of 10 km radius sample blocks for phenological monitoring in the 33 countries and the sample blocks 105 

for phenological monitoring with a radius of 10 kmin this study. The 33 countries include Canada (CAN), United States of 

America (USA), Chile (CHL), Ireland (IRL), United Kingdom of Great Britain and Northern Ireland (GBR), France (FRA), 

Spain (ESP), Netherlands (NLD), Belgium (BEL), Luxembourg (LUX), Germany (DEU), Switzerland (CHE), Denmark 

(DNK), Sweden (SWE), Poland (POL), Czechia (CZE), Austria (AUT), Slovenia (SVN), Croatia (HRV), Slovakia (SVK), 

Hungary (HUN), Estonia (EST), Latvia (LVA), Lithuania (LTU), Belarus (BLR), Ukraine (UKR), Republic of Moldova 110 
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(MDA), Romania (ROU), Bulgaria (BGR), Serbia (SRB), North Macedonia (MKD), Greece (GRC), Turkey (TUR).  (a-d). 

CountryThe names and codes of the country are preparedare the same as those used by  by the Statistics Division of the United 

Nations Secretariat. The three-digit alphabetical codes assigned by the International Organization for Standardization (ISO) 

can be found at https://unstats.un.org/unsd/methodology/m49/. 

2.2 Data 115 

2.2.1 Remote sensing data 

We collected imagery from the Sentinel-2 (S2) and Sentinel-1 (S1) imagery satellites (Table 1). The S1/2 satellites are launched 

by the European Space Agency (ESA) (Drusch et al., 2012; Torres et al., 2012). We used red (b4), green (b3), and blue (b2) 

spectral bands with 10 -m spatial resolution tTop-oOf-aAtmosphere (TOA) reflectance observations. The S2 TOA product 

includes the qQuality aAssessment (QA) band, which was used to remove most of the poorbad-quality images (e.g. cloud-120 

obscureds information) in this study. However, it is difficult to rRemovale of all clouds such information was difficult, however, 

because of due to the quality of the QA band (Wang et al., 2020a; Zhu et al., 2015). We used the iInterferometric wWide 

sSwath mode of S1, which provides dual-band cross-polarization (VV) and vertical transmit/horizontal receive (VH) with a 

12- day or 6-day repeat cycle and 10 m spatialce resolution (Torres et al., 2012). The S-1/2 images were obtained usingon the 

Google google eEarth eEngine (GEE) (Gorelick et al., 2017). In additionAlso, we used QA bands to remove most of the 125 

poorbad-quality images on GEE. (S (Sample code  can be found at 

https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FCOPERNICUS_S2). Further details are 

provided inSee Table 1 for more details. 

2.2.2 Digital elevation model 

We used a spatial resolution of one arc-second (approximately 30 m) elevation data from the Space Shuttle Radar Terrain 130 

Mission (Table 1) (Farr et al., 2007). WThen we then calculated the spatial distribution of slope usingon GEE (sSample code 

can be found at https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FUSGS_SRTMGL1_003). 

LaterFinally, we extracted areas with a slope of less than 10° to mask hilly terrain (Jarasiunas, 2016). 

2.2.3 Cropland and agricultural statisticals data 

In this study, cropland data from the GFSAD30 were used to identify major farming areas in different countries (Phalke et al., 135 

2020; Xiong et al., 2017). Existing The existing crop data products containing rapeseed information include comprise four 

datasets: 1) the 30-m Annual Crop Inventory (ACI) in Canada (Fisette et al., 2013) and, 2) the 30-m Cropland Data Layer 

(CDL) in the USA (Boryan et al., 2011), both of which (CDL and ACI layers wereare downloaded from GEE),. 3) the Crop 

Map of England (CROME) was generated in GBR, and. 4) the 10-m Land Cover Map of France (LCMF) in France (Inglada 

et al., 2017). These four crop layer products wereare generated based onfrom satellite images and a large number of training 140 
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sample collections. In this study, rapeseed maps in ACI, CDL, CROME, and LCMF were used for accuracy verification at the 

pixel level. For accuracy verification, we selected statistics The FAO releases annual statistics on major cropthe areas for major 

crops in different countries oandr regions released annually by the Food and Agricultural Organization of the United Nations 

(FAO) every year. We selected the statistics from FAO for accuracy verification. Please seeDetails are provided in Table 1 for 

more details. 145 

2.2.4 Crop calendars 

We used two crop phenological data sets to assist in the extraction ofng rapeseed phenological parameters: , crop calendars in 

different countries (https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx),  and field records of the crop phenology in Germany. 

The crop calendars comeoriginated from the United States Department of Agriculture,  which only records rapeseedthe 

planting and harvest times of rapeseed forin some selected countries. The crop phenology field records of the crop phenology 150 

in Germany are were in -situ observations from crop phenological records shared by the Deutscher Wetterdienst (DWD) in 

Germany (Kaspar et al., 2015). The DWD provides field observations of crop phenological periods throughout Germany 

following the Biologische Bundesanstalt, Bundessortenamt, and Chemical (BBCH) scale throughout Germany (Table 1). 

DWD records include thethe start date and the end dates of rapeseed flowering (d’Andrimont et al., 2020; Kaspar et al., 2015). 

Neitherote the twoat both crop calendars and nor the DWD records do not contain information on rapeseedthe peak flowering 155 

dates of rapeseed. To extract rapeseed phenological parameters, wWe used all stations that fully recorded the start and end 

dates of the flowering periods from 2017 to 2019, namely,  for extracting rapeseed phenological parameters. Finally, 281, 269, 

and 253 stations are available in 2017, 2018, and 2019, respectively. 

 

 160 

 

 

 

 

 165 

 

 

 

 

 170 

 

 

 

https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx


7 

 

 

T
ab

le
 1

 D
et

ai
le

d
 i

n
fo

rm
at

io
n
 a

b
o

u
t 

th
e 

d
at

a 
co

ll
ec

te
d

 i
n

 t
h

is
 w

o
rk

. 

D
es

cr
ip

ti
o

n
s 

E
x

tr
ac

ti
n
g

 t
h
e 

b
ac

k
sc

at
te

r 

co
ef

fi
ci

en
t 

ch
ar

ac
te

ri
st

ic
s 

o
f 

ra
p

es
ee

d
 

C
al

cu
la

ti
n
g

 t
h

e 
sp

ec
tr

al
 

in
d
ic

es
 a

ft
er

 r
em

o
v

in
g

 t
h
e 

cl
o

u
d
 

Id
en

ti
fy

in
g
 c

ro
p

 g
ro

w
in

g
 

ar
ea

s 

C
al

cu
la

ti
n
g

 s
lo

p
e 

m
ap

 

A
cc

u
ra

cy
 v

er
if

ic
at

io
n

 o
f 

ra
p

es
ee

d
 m

ap
 a

t 
p

ix
el

 l
ev

el
 

A
cc

u
ra

cy
 v

er
if

ic
at

io
n

 o
f 

ra
p

es
ee

d
 m

ap
 a

t 
p

ix
el

 l
ev

el
 

A
cc

u
ra

cy
 v

er
if

ic
at

io
n

 o
f 

ra
p

es
ee

d
 m

ap
 a

t 
p

ix
el

 l
ev

el
 

A
cc

u
ra

cy
 v

er
if

ic
at

io
n

 o
f 

ra
p

es
ee

d
 m

ap
 a

t 
p

ix
el

 l
ev

el
 

Id
en

ti
fy

in
g
 t

h
e 

p
h

en
o
lo

g
ic

al
 

ch
ar

ac
te

ri
st

ic
s 

o
f 

ra
p
es

ee
d

 

V
er

if
y
in

g
 t

h
e 

ac
cu

ra
cy

 o
f 

ra
p

es
ee

d
 m

ap
 a

t 
n

at
io

n
al

 

sc
al

e 

A
u

x
il

ia
ry

 r
ef

er
en

ce
 d

at
a 

fo
r 

id
en

ti
fy

in
g

 t
h
e 

fl
o
w

er
in

g
 

p
er

io
d
 o

f 
ra

p
es

ee
d
 

D
at

e 
o

f 
re

ce
n
t 

ac
ce

ss
 

2
0
2
0
/1

1
/1

5
 

2
0
2
0
/1

1
/1

5
 

2
0
2
0
/1

1
/5

 

2
0
2
0
/1

0
/1

 

2
0
2
0
/1

2
/1

 

2
0
2
0
/1

2
/1

 

2
0
2
1
/1

/1
5
 

2
0
2
1
/3

/2
2
 

2
0
2
0
/1

0
/1

 

2
0
2
0
/1

2
/1

 

2
0
2
0
/1

0
/1

 

D
at

a 
ac

ce
ss

 

h
tt

p
s:

//
d

ev
el

o
p
er

s.
g

o
o
g
le

.c
o
m

/e
ar

th
-

en
g

in
e/

d
at

as
et

s/
ca

ta
lo

g
/C

O
P

E
R

N
IC

U
S

_
S

1

_
G

R
D

 

h
tt

p
s:

//
d

ev
el

o
p
er

s.
g

o
o
g
le

.c
o
m

/e
ar

th
-

en
g

in
e/

d
at

as
et

s/
ca

ta
lo

g
/C

O
P

E
R

N
IC

U
S

_
S

2
 

h
tt

p
s:

//
se

ar
ch

.e
ar

th
d

at
a.

n
as

a.
g

o
v
/s

ea
rc

h
?q

=

G
F

S
A

D
3
0

  

h
tt

p
s:

//
d

ev
el

o
p
er

s.
g

o
o
g
le

.c
o
m

/e
ar

th
-

en
g

in
e/

d
at

as
et

s/
ca

ta
lo

g
/U

S
G

S
_

S
R

T
M

G
L

1

_
0
0
3

 

h
tt

p
s:

//
d

ev
el

o
p
er

s.
g

o
o
g
le

.c
o
m

/e
ar

th
-

en
g

in
e/

d
at

as
et

s/
ca

ta
lo

g
/U

S
D

A
_

N
A

S
S

_
C

D

L
 

h
tt

p
s:

//
d

ev
el

o
p
er

s.
g

o
o
g
le

.c
o
m

/e
ar

th
-

en
g

in
e/

d
at

as
et

s/
ca

ta
lo

g
/A

A
F

C
_
A

C
I 

h
tt

p
s:

//
d

at
a.

g
o
v

.u
k

/d
at

as
et

/f
b
1
9
d

3
4

f-
5
9

e6
-

4
8
e7

-8
2
0

a-
fe

5
fd

a3
0
1
9

e5
/c

ro
p
-m

ap
-o

f-

en
g

la
n
d

-c
ro

m
e-

2
0
1

8
  

h
tt

p
s:

//
w

w
w

.t
h

ei
a-

la
n

d
.f

r/
en

/2
0
1

8
-l

an
d

-

co
v

er
-p

ro
d
u

ct
/?

co
v

er
-p

ro
d
u

ct
%

2
F

 

h
tt

p
s:

//
w

w
w

.d
w

d
.d

e/
D

E
/l

ei
st

u
n
g

en
/c

d
c/

cl
i

m
at

e-
d
at

a-

ce
n
te

r.
h
tm

l?
n
n
=

5
7
5
6

2
0

&
ls

b
Id

=
6
4

6
2
5
2

  

h
tt

p
:/

/w
w

w
.f

ao
.o

rg
/f

ao
st

at
/e

n
/#

d
at

a/
Q

C
  

h
tt

p
s:

//
ip

ad
.f

as
.u

sd
a.

g
o
v

/o
g

am
ap

s/
cr

o
p

ca
le

n
d
ar

.a
sp

x
 

V
er

si
o
n
 

- L
ev

el
-1

C
 

V
0

0
1
 

V
3
 

- - V
.0

9
 

V
1

-0
 

- - - 

In
st

it
u
ti

o
n
 

E
u

ro
p
ea

n
 S

p
ac

e 

A
g

en
cy

 (
E

S
A

) 

E
S

A
 

U
n

it
ed

 S
ta

te
s 

G
eo

lo
g
ic

al
 S

u
rv

ey
 

(U
S

G
S

),
 N

A
S

A
.,

 e
t 

al
. 

 N
A

S
A

 J
et

 P
ro

p
u

ls
io

n
 

L
ab

o
ra

to
ry

 (
JP

L
) 

U
n

it
ed

 S
ta

te
s 

D
ep

ar
tm

en
t 

o
f 

A
g

ri
cu

lt
u
re

 (
U

S
D

A
) 

A
g

ri
cu

lt
u
re

 a
n
d

 A
g

ri
-

F
o
o

d
 C

an
ad

a 
(A

A
F

C
) 

R
u

ra
l 

P
ay

m
en

ts
 A

g
en

cy
 

(R
P

A
) 

C
N

E
S

/D
N

O
/O

T
/P

E
 

D
eu

ts
ch

e 
W

et
te

rd
ie

n
st

 

(D
W

D
) 

F
o
o

d
 a

n
d

 A
g

ri
cu

lt
u
re

 

O
rg

an
iz

at
io

n
 (

F
A

O
) 

U
n

it
ed

 S
ta

te
s 

D
ep

ar
tm

en
t 

o
f 

A
g

ri
cu

lt
u
re

 (
U

S
D

A
) 

R
es

o
lu

t

io
n
 

1
0
m

 

1
0
m

 

3
0
m

 

3
0
m

 

3
0
m

 

3
0
m

 

h
ex

ag
o

n
 c

el
ls

 

1
0
m

 

- - - 

T
im

e 

2
0
1
7

-2
0

1
9
 

2
0
1
7

-2
0

1
9
 

2
0
1
5
 

- 2
0
1
7

, 
2
0
1
9
 

2
0
1
7

, 
2
0
1
8
 

2
0
1
8
 

2
0
1
8
 

2
0
1
7

-2
0

1
9
 

2
0
1
7

-2
0

1
9
 

- 

D
at

a 

S
en

ti
n
el

-1
 S

A
R

 G
R

D
 

S
en

ti
n
el

-2
 M

S
I 

G
lo

b
al

 F
o
o
d

 S
ec

u
ri

ty
-

S
u
p

p
o

rt
 A

n
al

y
si

s 
D

at
a 

at
 3

0
 m

 (
G

F
S

A
D

3
0

) 

T
h

e 
S

h
u
tt

le
 R

ad
ar

 

T
o

p
o
g

ra
p
h

y
 M

is
si

o
n
 

(S
R

T
M

) 

C
ro

p
la

n
d
 D

at
a 

L
ay

er
 

(C
D

L
) 

A
n

n
u

al
 C

ro
p
 I

n
v
en

to
ry

 

(A
C

I)
 

C
ro

p
 M

ap
 o

f 
E

n
g

la
n
d
 

(C
R

O
M

E
) 

L
an

d
 C

o
v

er
 M

ap
 o

f 

F
ra

n
ce

 (
L

C
M

F
) 

P
h

en
o

lo
g
ic

al
 d

at
ab

as
e 

o
f 

G
er

m
an

y
 

A
g

ri
cu

lt
u
ra

l 
st

at
is

ti
cs

 

d
at

a 

C
ro

p
 C

al
en

d
ar

s 

 175 
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https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
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https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
http://www.fao.org/faostat/en/#data/QC
http://www.fao.org/faostat/en/#data/QC
http://www.fao.org/faostat/en/#data/QC
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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2.3 Methods 

2.3.1 Optical and SAR characteristics during the rapeseed growing period of rapeseed 

We selected available rapeseed parcels and in -situ observations of the DWD from different climate regions and different years 

to analyze the optical (reflectance and vegetation index) and SAR (VV and, VH) characteristics of rapeseed along over time. 180 

As anFor example, Fig. 2 shows the time series of one rapeseed parcel around athe DWD station (station id: 13126) in 2018. 

Thise rapeseed parcel shows exhibited unique visual characteristics during the flowering period (Fig. 2e). When rapeseed 

approached peak flowering, tThe flowers becaomes yellow when rapeseed is approaching peak flowering (d’Andrimont et al., 

2020; Pan et al., 2013; Tao et al., 2020; Wang et al., 2018). Rapeseed wasis yellow–--green on the true color images of S2 and 

Google Earth during the flowering period (Fig. S1). The reflectance of the green band and red bands separately increased— 185 

from 0.09 and 0.06, respectively, (2018/4/17, before flowering (17 Apr 2018) to 0.16 and 0.14 at peak flowering (7 May 

2018/5/7, peak flowering),— and then decreased after flowering (Fig. 2a). The reflectance of the blue band wasis lower than 

that of the red and green bands during flowering. This outcomeis is similar to the results of previous research results (Ashourloo 

et al., 2019; Sulik and Long, 2015). We also calculated tThe nNormalized dDifference yYellow iIndex (NDYI, Eq.1), which 

can capture the increasing yellowness in athe time series (d’Andrimont et al., 2020; Sulik and Long, 2016), as follows:. Also, 190 

the NDYI increased from -0.03 on April 17 to 0.21 on May 7 (Fig. 2b). NDYI reaches a peak during the flowering time of 

rapeseed. This unique spectral feature of rapeseed in the flowering period is caused by the yellow petals. 

𝑁𝐷𝑌𝐼 =
𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                                                    (1) 

where green is the TOA reflectance of the green band (b3) of the S2 imagery, and blue is the blue band (b2) reflectance. NDYI 

increased from −0.03 on 17 April to 0.21 on 7 May (Fig. 2b) and reached a peak during rapeseed flowering. This unique 195 

spectral feature of rapeseed during the flowering period was due to the yellow petals. 

 

S1 backscattering changes with rapeseedthe growth of rapeseed. We used the VV and VH time series smoothed by the 

Savitzky–Golay (SG) filter (window size 3) (Chen et al., 2004) as inputs to identify the phenological parameters of rapeseed 

parcels. We usedran the SG filter algorithm ion MATLAB 2020b, which uncovered . The results show that there are local 200 

minimaums in both the VV (−-11.20, 8 May 8) and VH (−-15.60, 5 May 5) time series during rapeseed flowering (Fig. 2c,-d). 

Furthermore, VH reacheds athe maximum (−-9.64, 1 June 1) during the pod period. Unlike other crops, rapeseed has two 

distinct green-up phases: the flowering period and the pod period (Ashourloo et al., 2019; Bargiel, 2017; Mercier et al., 2020; 

Veloso et al., 2017). The petals of rapeseed decrease the scattering of VV and VH, while the pods increase the scattering 

intensity of VH (d’Andrimont et al., 2020; Bargiel, 2017; McNairn et al., 2009; Mercier et al., 2020). The NDYI and 205 

backscattering (VV and , VH) time series of rapeseed in different climate regions (Fig. S1) also show exhibited the same 

characteristics. Therefore, wWHence, we therefore used the features in both Optical and SAR features to identify the rapeseed 
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flowering and pod periods in this study. Due toBecause of the differences in the revisit timesperiods of the S1/2 satellites, 

rapeseed peak flowering dates are were defined as the median dates extracted usingby optical and SAR indicators. 

  210 

Figure 2. The time-series profiles of four features of the rapeseed pixels around one DWD station (id = 13126;, lLongitude: 

11.333268424°, lLatitude: 52.200000463°) in Germany in 2018. (a), Mthe mean reflectance values (red, green, and blue).; (b), 

Mmean NDYI.; (c) Mmean VH.; and (d) Mmean VV.; Tthe light-shadedfilled color areas indicatefor the standard deviation.; 

The BBCH scale was used for the in -situ observations of rapeseed phenology, with BBCH61 and BBCH69 respectively 

corresponding to for the start of flowering and the end of flowering, respectively. (e), The rapeseed parcel around the DWD 215 

station is shown bybounded in red boundaries (image source: Copernicus Sentinel-2 data 2018). 
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2.3.2 Sample blocks collected for phenological monitoring 

As a prerequisite to large-scale mapping rapeseed at a large scale, the phenology of rapeseed in different countries needs tomust 

be identified and delineated (Dong et al., 2016; Zhang et al., 2020), but . However, not enough observational records of 

rapeseed phenology are available on a large scale. Referring toIn accordance with the DWD method of phenological 220 

observationing phenology (Kaspar et al., 2015), we created sample blocks with a radius of 10 km over rapeseed- producing 

areas of different countries and randomly sampled 10 rapeseed parcels for eachper block. The rapeseed plots were identified 

by their phenological characteristics, which were obtained from by the visual interpretation and analysis of reference data, 

including high-resolution images available in S2 and Google Earth as well as sSpectral reflectance (red band and green bands), 

and spectral index  (NDYI), and scattering coefficient profiles (VV and VH) from the S1/2 time series. It should be noted that 225 

the Google Earth images taken during rapeseed flowering were used to assist with the visual interpretation of rapeseed parcels. 

RThe rapeseed parcels with no availableout high-quality time-series imagery available were omitted. Finally, 75 sample blocks 

in 2017, 84 sample blocks in 2018, and 84 sample blocks in 2019 were uniformly and randomly collected (Fig. 1).  

2.3.3 Detection of fFlowering and pod phases detection in different countries 

To find determine out the flowering dates of rapeseed in different countries, we evaluated each phenological sample block 230 

from 2017 to 2019 (Fig. 3). First, we calculated the average values of all pixels  in the the 10 previously selected rapeseed 

parcels in each block we selected before during the rapeseed growth period for each block in conjunction with the crop calendar. 

VV and VH time series for each sampled rapeseed parcels were smoothed using the SG filter. Second, these S1/2 peak 

flowering dates and pod dates were derived for all sample blocks based onaccording to the method in Section 2.3.1. We found 

that the peak flowering dates of rapeseed, especially in Europe, followedhave an obvious latitudinale gradient , especially in 235 

Europe (Fig. 3j).  
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Figure 3. The spatial distribution of rapeseed flowering dates (Julian day). (a–i) Flowering dates (Julian day) was monitored 

byin different sample blocks in 2017, 2018, and 2019 (a-i). (j) Characteristics of tThe latitudinal e gradient characteristics in 

Europe (j). The peak flowering date for each latitudinal interval is  was calculated by the mean of the flowering dates of all 240 

sample blocks in different latitude intervalswithin that interval.) 

 

Also, wWe also found observed that the signal with the maximum VH occurredidentified the signal with the maximum of VH 

is within 45 days after of the peak flowering date of flowering (Fig. S2). WThen we then calculated the difference in the peak 

flowering date of each sample block betweenin different years, which revealed. that the The results showed that the flowering 245 

peak dates of most sample parcels were advanced or delayed by only 10 days (Fig. 4d). Therefore, it is reasonable to uUsinge 
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the same period for rapeseed identification forin different years inin the a same given area was thus considered to be reasonable 

for rapeseed identification in this study. Previous studies and field observation records have indicated show that the flowering 

period of rapeseed is about approximately 30 days (d’Andrimont et al., 2020; Chen et al., 2019; Kaspar et al., 2015; She et al., 

2015). Therefore, wWTherefore, we therefore divided each month into two time periods, with  (the 15th day serving asis the 250 

dividing line). Two consecutive half-months wereare defined as a suitable periods for classifying flowering dates (Fig. 4a-c). 

Finally, we designated the flowering period for each administrative unit based on the sample blocks.. Finally, we designated 

the flowering period on the basised ofn the peak flowering dates (Fig. 4a–-c). 

   

Figure 4. Flowering phenology of rapeseed. (a–-c) The spatial distribution of rapeseed flowering periods for among sample 255 

blocks. (d) The bBoxplot showing the changes in peak flowering dates of each sample blocks overin three 3 years.  

2.3.4 Development of aing phenology- and pixel-based algorithm for mapping rapeseed 

The Our analysis of temporal profiling ofe at rapeseed parcels in this study together withalong with the results of many previous 

studies indicated that the spectrum at the flowering stage and the scattering signal at the pod stage are the key features forto 
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identifyingy rapeseed (Ashourloo et al., 2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020; Sulik and Long, 2015; 260 

Veloso et al., 2017). We developed one a single phenology- and pixel-based rapeseed mapping algorithm that usingrelies on 

four features:, spectral bands (red and green), spectral indices (NDYI), polarization bands (VH), and terrain (slope). Four 

primary steps were conducted used to for mapping annual planting areas (Fig. 6). 

 

In the first sStep, we 1: determineding the threshold of the feature indicators. We analyzed the histograms of the random 265 

samples selected from different countries as suggested by ourthe previous study (Zou et al., 2018) suggested. We found the 

similarities of gGreen banandd, blue bands, and NDYI (Fig. S3) were similar during the flowering stage for in all samples 

during the flowering stage from the different regions. Most (98%) of the rapeseed pixels (98%) showed had the following 

values: red > 0.07, green > 0.11, and NDYI > 0.05.  

However, wWe found observed some pixels, however, with a relatively high NDYI due to contamination by a cloud with a 270 

“rainbow” appearance, which would cause them to be misclassified into as rapeseed because they are polluted by the cloud 

with a “rainbow” appearance(Fig. 5). Because of the limited quality of the QA band and the simple cloud score algorithm, 

sSuch misclassifications caused byarising from  some poorbad-quality observations from the S2 image cannot’t be removed 

due to the limited quality of the QA band and simple cloud score algorithm (Wang et al., 2020c; Zhu et al., 2015). The “rainbow” 

inof the cloud comes is the result of from the push-broom design of S2 (Fig. 5a) and spectral misregistration (forFor more 275 

details, please refer tosee ESA, 2015a, and ESA, 2015b). Based on the principle of Taking into account the relative 

displacement of each spectral channel sensor in the S2 push-broom design (Frantz et al., 2018; Liu et al., 2020b; Zhao et al., 

2018), we developed a new spectral index (NRGBI) to reduce the influence of the "rainbow" (Eq. 2):. The scatter plot of NDYI 

and NRGBI of rapeseed parcel samples and "rainbow" samples around clouds (visual interpretation) showed that the NRGBI 

(threshold is -0.05) can effectively distinguish rapeseed from the "rainbow" (Fig. 5h). 280 

𝑁𝑅𝐺𝐵𝐼 =
𝑟𝑒𝑑−𝑏𝑙𝑢𝑒

𝑟𝑒𝑑+𝑏𝑙𝑢𝑒
−

𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                               (2) 

where red, green, and blue are the TOA reflectance values of the red band (b4), green band (b3), and blue band (b2) bands of 

the S2 imagery, respectively. TheA scatter plot of NDYI vs.and NRGBI of rapeseed parcel samples and “"rainbow” " samples 

around clouds (visual interpretation) showeddemonstrated that the NRGBI (threshold =is −-0.05) can effectively distinguish 

rapeseed from the the "rainbow" (Fig. 5h). The GEE code for NRGBI index calculations can be found at 285 

https://code.earthengine.google.com/a39fc699a276d018778d59c5b085d960. AlsoIn addition, NRGBI can be calculated based 

onusing Eq. 2 in other GIS software programs (e.g. QGIS and ArcGIS) on the a local computer.  
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Figure 5. “Rainbow” cloud effect originsCauses, examples, and solutions for the “rainbow” cloud effect. (a) Sstaggered 

detector configuration of S2 (ESA, 2015a).; (b–-f) eExamples of spectral misregistration effects and the performance of cloud- 290 

masking methods. E(each image was masked withby the quality assurance band (QA60)) for the Sentinel-2 TOA image., Twith 

the red arrows indicateing the  cloud “rainbow” appearing around cloudsance at high altitudes in the S2 image (iImage source: 

Copernicus Sentinel-2 data).; (g) Sentinel-2 TOA image of rapeseed at the flowering stage., Twith the yellow arrow 

indicatesfor the rapeseed fields.; (h) Sscatter plots of NDYI vs.and NRGBI of rapeseed field samples and samples with a 

“"rainbow”" around clouds samples fromin the S2 images., with Relative pixel density is indicated by the color density for the 295 

number of pixelsscale on the right. 

 

The second sStep 2: was the identification ofying all rapeseed pixels from different images during the flowering period and 

their subsequent aggregationng them into annual rapeseed planting areas (Fig. 6). Because the peak flowering dates and the 

number of available images of rapeseed fields vary within a region are different (Fig. S4), rapeseed classifications based on a 300 
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single image could may fail toin captureing rapeseed flowering dynamics (Ashourloo et al., 2019). To avoid the 

misclassification due tofrom poorbad-quality observations during the rapeseed flowering stage, we aggregated all the classified 

results classified from available S2 images  during the floweringhis period. HenceThe use of, a larger number of images  will 

resulted in better performance (Fig. S4). 

 305 

In the third sStep, we 3: combineding optical data with SAR images to ensure the accuracy of the rapeseed maps. HThe high 

VH values during the pod stage are another distinct feature that can distinguish rapeseed from other crops (Mercier et al., 2020; 

Tian et al., 2019; Van Tricht et al., 2018; Veloso et al., 2017). Taking into cConsiderationing the variability of flowering in 

different fields and the duration of the pod stage (Section 2.3.2), we calculated the maximum VH between the second half of 

the flowering stage and the next 30 days after the flowering stage (ca. ~ 45 days;) see (See the graey boxpart in Fig. 6). Within 310 

this 45- day intervals, at least three S1 satellite images are were available in the study areas. AlsoIn addition, the areas with a 

slope ≥ 10° were removed (Jarasiunas, 2016). All pixels that meeting these requirements are were defined as rapeseed. 

 

In the fourth sStep, we 4: removeding the “salt and pepper” noise according by applying a threshold based onto the number of 

connected components (objects) threshold, that is, ( the size of the neighborhood in pixels,) and then filling the gaps inside the 315 

parcels (Hirayama et al., 2019). We used an 8-connected rules, which means that the edges or corners of the pixels wereare 

connected. If two adjacent pixels are were connected, they are were considered as part of the same object 

(https://www.mathworks.com/help/images/ref/bwareaopen.html). The bwareaopen function in MATLAB 2020b software was 

used to remove the objects which are less thannot meeting the a given threshold. The thresholds of different indicators in 

different regions can be foundare given in Table S1. 320 
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Figure 6. The wWorkflow for mapping rapeseed areas using the proposed phenology- and pixel-based algorithm. GFSAD30, 

Global Food Security-Support Analysis Data at 30 m (GFSAD30); NDYI, normalized difference yellowness index (NDYI); 

NRGBI, tThe new spectral index; (NRGBI), DWD, Deutscher Wetterdienst; (DWD), FAO, Food and Agriculture Organization 

of the United Nations; RMSE, (FAO), rRoot mMean sSquare eError; MAE, (RMSE), mMean aAbsolute eError; (MAE), R2, 325 

R-squared; CDL, (R2), Cropland Data Layer; ACI, (CDL), Annual Crop Inventory; CROME, (ACI), Crop Map of England; 

LCMF, (CROME), Land Cover Map of France; UA (LCMF), user’s accuracy; PA, (UA), producer’s accuracy; (PA), andFI1, 

F1 score (F1). 

2.4 Accuracy assessment 

To test the accuracy of our proposed algorithm, First, we first compared the rapeseed areas retrieved usingby the new method 330 

with FAO statistics. Our rapeseed data constitutedis a binary (0 or 1) map with a spatial resolution of 10 m. We then can 

calculated the total area of rapeseed maps in each country and compared these numbersm with theFAO national rapeseed 

statistics. To verify the accuracy of rapeseed mapping, we used tThe RMSE (Eq. 3),, and the MAE (Eq. 4), and the coefficient 

of determination (R2, Eq. 5), which wereare usedcalculated as follows to verify the accuracy of rapeseed mapping:. 



17 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑓𝑖)

2

𝑛

𝑛
𝑖=1                                                                                                                                                              (3) 335 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|
𝑛
𝑖=1                                                                                                                                                               (4) 

𝑅2 =
(∑ (𝑦𝑖−𝑦𝑖̅̅̅)(𝑓𝑖−𝑓𝑖̅)

𝑛
𝑖=1 )2

∑ (𝑦𝑖−𝑦𝑖̅̅̅)
2𝑛

𝑖=1 ∑ (𝑓𝑖−𝑓𝑖̅)
2𝑛

𝑖=1

                                                                                                                                                       (5) 

where n is the total number of countries,. 𝑦𝑖  is the mapped rapeseed planting area for country is, 𝑦𝑖̅ is the corresponding mean 

value, 𝑓𝑖 is the records rapeseed planting areas recorded by the from FAO for country i, and 𝑓𝑖̅  is the corresponding mean 

value.  340 

 

Also, wWe also compared the our rapeseed maps with four open-access datasets that include rapeseed layers at the pixel level: 

(ACI, CDL, CROME, and LCMF,) in Canada, the USA, GBR, and France , respectivelyat the pixel level. We used the data 

from 2018 and 2019 in these datasets as a referencethese datasetsm as the references data for 2018 and , 2019 (Boryan et al., 

2011; Fisette et al., 2013). To unify the spatial resolution of ourthe rapeseed maps, we resampled CDL, ACI, and CROME 345 

were resampled to 10 m resolution to allowfor comparison. To check the accuracy of our classification, we calculated UA (Eq. 

6), PA (Eq. 7), and F1 (Eq. 8) were calculated based on confusion matrices (Table S2) to measure the classification accuracy. 

 

Thirdly, wWe also randomly selected verification samples based on the previous studies (Pekel et al., 2016; Wang et al., 2020b) 

to validate the our rapeseed maps. A 0.2°  0.2° latitude–-longitude grid (0.2 latitudes by 0.2 longitudes) was generated within 350 

thesuperimposed on our 2018 rapeseed map in 2018 acquired by our method (Fig. S5). Two points—one  (rapeseed and the 

other non-rapeseed—) were generated randomly generated in each grid by visually interpreting images available from S2 and 

Google Earth, together along with spectral reflectance (red and green bands), spectral index (NDYI), and scattering coefficient 

(VV and VH) profiles from the S-1/2 time series. CThe confusion matrices were similarly used to assess the accuracy according 

to Eqs. 6–~8:. 355 

𝑈𝐴 =
𝑥𝑖𝑗

𝑥𝑗
                                                                                                                                                                                     (6) 

𝑃𝐴 =
𝑥𝑖𝑗

𝑥𝑖
                                                                                                                                                                                     (7) 

𝐹1 = 2 ×
𝑈𝐴×𝑃𝐴

𝑈𝐴+𝑃𝐴
                                                                                                                                                                         (8) 

In the above equations, Where xij is the value of the i-th row and j-th column,; xi is the sum of the i-th row, and; xj is the sum 

of the j-th column. Although the statistical data and existing products are did not completely the samereflect as the real actual 360 

areas and locations of cultivated rapeseed planted on the ground, these datasets weredo still beneficialt forto validating the 

accuracy of our rapeseed maps at different scales (national and pixel scaless). 
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3 Results 

3.1 Accuracy assessment 

We compared the our derived rapeseed areas with those from the FAO statistics. The total planting areas of rapeseed are 365 

exhibited good well consistencyt with the agricultural statistics at the national level, with a RMSE of 1459.64 km2, a MAE of 

785.25 km2, and an R2 of 0.88 (Fig. 7). We found that the derived areas in 2017 2018and 2019 are werewere larger than those 

in 20182017 and 2019, especially for in the countries with the relatively small rapeseed areas. The greatermore availability of 

S2 images together and with higherbetter- quality of data in 2018 could may have contributed to the derivation of the larger 

rapeseed areas derived by the our new method (Liu et al., 2020a).  370 

  

Figure 7. Comparison of rapeseed areas with the FAO statistics at the national level. The names of all33 countries can be 

foundare listed in Section 2.1.  

 

As indicated by their higher level of accuracy based on confusion matrix values, The comparison of our rapeseed maps were 375 

consistent at the pixel level with those maps of the AmericanUSA CDL in 2018 and , 2019 and , the Canadiana ACI, 

BritishGBR CROME, and Frenchance LCMF in 2018 was consistent at pixel level indicated by a higher accuracy according 

to the confusion matrix values (Table S3). As shown in Fig. 8a, shows that the rapeseed areas calculated from our maps wereare 

consistently more comparable to FAO statistics than were those from existing products. The UA, PA, and F1, which varied by 
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country, ranged from, 0.93–0.97, with PA of 0.70–0.80, and, UA of 0.93–0.97, and F1 of 0.81–0.86, respectively (Fig. 8b). 380 

The rapeseed areas obtained determined using our algorithm by us accounted for around approximately 71% of the 2018 CDL, 

71% of the 2018 ACI, and 80% of the 2018 CROME, and 70% of the 2018 LCMF, and 79% of the 2019 CDL. FurthermoreIn 

addition, the distributions on our rapeseed maps were our results showed consistent distributions between our rapeseed maps 

and thewith those of existing products at the pixel level (Figs. S7 and -S8). The dThe differences in accuracy might may have 

been caused due toby the varied number of high-quality images available in different regions (Dong et al., 2016). Despite the 385 

various different ground conditions, methods, images, and spatial resolutions among the products, the comparison results of 

our comparison further verify the accuracy of our rapeseed maps (Gong et al., 2020; Singha et al., 2019). 

  

Figure 8. Classification vValidation results of the classificationsresults. (a) PThe percentage of the rapeseed areas based on 

FAO statistics classified as such inof the existing products and classification results in the FAO statisticsour rapeseed map 390 

database. (b) Accuracy of our classifications The user’s accuracy (UA), producer’s accuracy (PA), and F1 score (F1) of 

classifications in four countries (Canada, USA, GBR, and France) using. The existing products were used as a reference data.  

UA, user’s accuracy; PA, producer’s accuracy; F1I, F1 score. 
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According to The confusion matrix values (Table S4) based on random sampling points, show that the accuracy of the our 395 

rapeseed maps varieds in different regions. We obtained the highest found zone II shows the highest accuracy (F1, 0.91) in 

zone II, followed by zone III (F1, 0.9), and zone I (F1, 0.84). TheseSuch disparitiesy in accuracy mightmay be ascribed due to 

the differences in theent availability of high-qualityS1/2 images amongin the studied areas. OurThe results showed indicate 

that the accuracy of our newly derived rapeseed maps derived by our method ishad a satisfactoryying accuracy. 

3.2 More Additional details features of rapeseed maps derived usingby ourthe new method 400 

To show further more details of characterize the rapeseed maps derived generated from in this studyour method, we selected 

some various images in some several areas of each country. The rapeseed maps showed good spatial consistency with the 

theactual areas of rapeseed cultivation on the ground actual rapeseed planted on the ground (Figs. 9 and Fig. S6). Fields with 

various planting densities—ranging fFrom densely planted the areas densely planted by rapeseed in Canada (Fig. 9-a) to 

relatively sparse planting ones, such as in Chile (Fig. 9-b) and European countries (e.g. Fig. 9-c,d) (Lowder et al., 2016), 405 

various shapes—ranging  from regular rectangles (e.g. Fig. 9-a, h) to irregular parcels (Fig. 9-c, d), and different climatic 

conditions—ranging from a from temperate oceanic climate (Fig. 9- c–-e) to temperate sub-continental (Fig. 9-a, f), or even 

subtropical climate (Fig. 9-b) ones, all field details were clearly and comprehensively indicated clearly inon ourour maps. The 

fFragmented pattern of ation of land in some European countries, especially that  in Eastern and Central Europe after due to 

land reform in 1989 (Hartvigsen, 2013, 2014), such as Estonia (Fig.9f) (Jürgenson and Rasva, 2020; Looga et al., 2018)was 410 

clearly clearly evident; Fig. 9f shows land in Estonia as an example (Jürgenson and Rasva, 2020; Looga et al., 2018).. Although 

Although the algorithm was applied to under different climates, terrains, and landscapes, and over a a very larger region, the 

its algorithm classification accuracy showed a satisfying classification accuracy across 33 countries was satisfactory. OurThus, 

the rapeseed maps can thus effectively identify the fields in detail with high spatial resolution and clear field boundaries. More 

rapeseed classification details can be found in Fig. S6. 415 
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Figure 9. Spatially explicit details of rapeseed maps in eight countries with diverse crop structures in different years. The 

names of climate zones are given in(the yellow words show the climatic zones). RGB composite images use comprise the red 

(b4), green (b3), and blue (b2) bands from Sentinel-2 with good-quality observations during the rapeseed flowering period of 

rapeseed (image source: Copernicus Sentinel-2 data).  CThe climate zone data areis from the Food Insecurity, Poverty and 420 

Environment Global GIS Database (FGGD). 

3.3 Spatial patterns of rapeseed planting areas 

In our maps, the largest total area of rapeseed cultivation worldwide was in Canada shows the largest rapeseed planting area, 

higher than those in Europe. Along with GBR, Poland, and Ukraine, France and Germany are the two leading rapeseed growing 

countries in Europe—France and Germany—, accounteding for around approximately 66.3% of European rapeseed areas 425 

together with the other three countries (GBR, Poland, and Ukraine). The 3-year spatial patterns of three years (2017–~2019) 
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spatial patterns wereare consistent at the national level (Fig. S9). Moreover, wWe also plotted the geographic characteristics 

distribution of rapeseed areas along latitudinale and longitudinal gradientse for in the study areas (Fig. 10). With the exception 

of steep mountainous regions and cold northern areas, rRapeseed in Europe is widely planted in European countries in the 

countries witath latitudes of 4546–~563°N and longitudes of −-2°W–~4°E, 9°–~19°E, and 22°–~27°E, with exception of the 430 

steep mountainous areas and the cold northern areas (Fig. 10a) (van Duren et al., 2015). In Canada and the USA, the areas 

with the latitudes of 44–~44.5°N, 5149–~554°N, and 56–~57°N and longitudes of −-1187°W to −~-1178°W and, −-11498°W 

to −~-98114°W have highare densities ofely distributed planted by rapeseed (Fig. 10b).  



23 

 

  

Figure 10. Spatial distribution of rapeseed areas at 10 m resolution along latitudinale and longitudinale gradients in 2018. (a) 435 

Europe and Turkey. (b) Canada and the USA. 
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4 Discussion 

4.1 Investigation ofng the rapeseed rotation systems 

We obtained 3three-year rapeseed maps at a spatial resolution ofat a 10 -m spatial resolution, whoseand with a higher accuracy 

which was validated by annual national statistics books, open- accessed public products, and random sampling points. These 440 

rapeseed maps, provided a new opportunity to investigate rapeseed rotation systems (Liu et al., 2018a). Crop rotation 

information is considered an important factor infor crop yield management (Harker et al., 2015; Liu et al., 2018a; Ren et al., 

2015; Rudiyanto et al., 2019; Zhou et al., 2015). To analyze rapeseed rotation patternsThus, we therefore selected 25 

representative areas (Fig. S10) to analyze the rapeseed rotation patterns according tothat met the following the three criteria:. 

Firstly, the high image quality,  of images is high. Secondly, the high rapeseed classification accuracy of rapeseed is high, and. 445 

Thirdly, thelarge extent of planted rapeseed area of rapeseed is large. RThe rapeseed rotation in these areas was calculated 

based onby the frequency ofin each rapeseed pixel (Fig. 11).  
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Figure 11. Spatial distribution of three types of rotation scheduless in different areas from 2017–~2019. 

 450 

Because only 3 years (2017–2019) of rapeseed maps were available, Please note that tthe longest observable rapeseed rotation 

break that can be observed iswas 2 years because there are only three years (2017-2019) of rapeseed maps available. Thus, to 
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more accurately express discern the pattern of pattern of rapeseed rotation break, we thus classified the rapeseed rotation breaks 

in this study into three types: ≥ 2 years, 1 year, and 0 years in this study. MWe found most countries, especially European ones, 

show were characterized by a rotation breaks greater than or equalthat were ≥to 2 years (mostlythe highest ratios of green areas 455 

parts) (in Fig. 12), especially for European countries (Fig. 12-b). In Canada, 70% of fields were subjected to The rotation 

breaks of ≥ 2 years in Canada accounts for 70%, followed with the remainder (30%) following aby 1-year break pattern (30%) 

(Fig. 12-a). As shown in tThe histogram in Fig. 12d, we identified confirmed that rotation breaks of 20 locations have been 

identifiedwith ≥ 2- year rotation breaks, which corresponds to 90% s. The percentage of planting areas with rotation break ≥ 2 

years is higher than 90% (Fig. 12-d). Many previous studies have found that a 2two- or 3three-year rotation break will 460 

significantly reduces  the number of fungal spores, especially those of Rrhizoctoniames solani and blacklegsLeptosphaeria 

maculans, thus suggesting that a rotation system is an important step component of disease in control in rapeseedling diseases 

(Gill, 2018; Harker et al., 2015; Ren et al., 2015; Zhou et al., 2015). RMoreover, rapeseed rotation will also benefit improves 

yield, insects, moisture, and fertility, and reducesing weeds and pest insectss (Bernard et al., 2012; Harker et al., 2015; Pardo 

et al., 2015; Peng et al., 2015; Ren et al., 2015). Thus, mAdditional efforts toore efforts should be input to producee longer 465 

time-series rapeseed maps and obtain acquire detailed rotation information are thus neededin the future. 
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Figure 12. Rapeseed cCrop rotation. (a–-c) PThe proportions of the rapeseedtotal area planting areas ed by rapeseed for 

subjected to three rapeseed rotation breaks of 0, 1, or ≥2 years. (d) The numbers of areas in a–c subjected to breaks of with at 

least  ≥ 2 -year breaks in Fig. 12 a-c. 470 

4.2 Uncertainty analysis 

The gGeneration ofng annual high-resolution maps forof a specific crop over a larger region is a majorbig challenge (Gong et 

al., 2020; Liu et al., 2018b, 2020a). Pixel-and phenological-based algorithms, multisource remote sensing data, and the GEE 

are useful forto mapping rapeseed at high resolution and over large r areas. BesidesIn addition to these advantages, our the 

proposed algorithm does not need require a large number amounts of training sample data and reduces disturbance from due 475 

to agronomicy differences by combining images fromof multiple dates. HoweverNevertheless, the uncertainty still existsis 

from due to severalthe following  aspectsissues. The first of these factors is the 1) cCropland layer. We used the GFSAD30 

datasets to identify croplands;. hHowever, the GFSAD30 has its limitations, such as classification errors (Phalke et al., 2020). 

A second contributory aspect is 2) tThe number of satellite images available.. Although our annual rapeseed maps are 
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consistent with FAO statistics and show higher accuracy compareding with existing products, the mapsthey are limited by the 480 

good-quality of the observations during the critical growth stages. For example, Fig. 13a shows that there is an error in anthe 

area of France in 2017 that, which couldcan be attributed to the lack of clear S2 images during the rapeseed flowering period 

(Fig. 13b). Because tThe rapeseed flowering period is generally characterized by high NDYI and high , red band, and green 

band reflectance, thus rapeseed pixels are likely to be misclassified if the images are missing during the flowering stage were 

missing (Fig. 13c). A third issue concerns the t3)Thresholds for different indicators, which. The threshold is a the key factor 485 

for mapping crops (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2020a; Wang et al., 2020a; Zhang et al., 2015). 

Although the reference thresholds for the three regions continents in this study are given providedin this study, they it should 

be applied with caution us when applying them to other regions. Finally, 4) Ththe complexity of the ground environment can 

contribute to uncertainty. For example, landscape types might impact the accuracy of rapeseed maps (Wang et al., 2020a). 

 490 

Figure 13. Descriptions Example showing the effect of low-quality observations on for the classification limitationaccuracy.  

(a) Rapeseed map of an area of France in 2017 that  containswith an error in France in 2017 (lLongitude:. 2.059824°;, lLatitude:. 

46.734987°). (b) Availability of time- series Sentinel-2 images during rapeseed flowering phases. (c) Comparison of the time 

series of different sites indicating showing how the peak NDYI has beenis missed.  

 495 

5 Data availability 

The rapeseed maps produced with 10 m resolution producedin this study areis accessible at Mendeley Data 

(http://dx.doi.org/10.17632/ydf3m7pd4j.3) (Han et al., 2021). The rapeseed maps with 10 m resolution are provided in this 

study. The dataset includes a set of GeoTIFF images in the ESPG: 4326 spatial reference system. The values 1 and 0 represent 

rapeseed and non-rapeseed, respectively.  We encourage users to independently verify the rapeseed maps. AlsoIn addition, 500 

Sentinel 1/2 images, CDL, ACI, and SRTM are available on GEE (https://developers.google.com/earth-engine/datasets/). For 

more detailed information about the data collected in this work,  please see Table 1. 

http://dx.doi.org/10.17632/ydf3m7pd4j.3
https://developers.google.com/earth-engine/datasets/
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6 Conclusions  

Large-scale,  and high-resolution rapeseed maps are the basis for crop growth monitoring and production yield prediction. We 

designed developed a new method for mapping rapeseed based on the spectral and polarization features and multi-source data. 505 

We used theThe new algorithm has to produced three annual rapeseed maps (2017–~2019) at 10 m spatial resolution in 33 

countries. According to the results of tThree different verification methods, indicated that our rapeseed maps have are 

reasonablye accuratecy. Compared with existing products at the pixel level in Canada, USA, GBR, and France, PA, UA, and 

F1 wereare 0.70–0.80, 0.93–0.97, and 0.81–0.86, respectively. AlsoIn addition, the F1 ranged from 0.84 to 0.912 based on the 

independent validation samples. Our approach reduces misclassificationsdisturbances from due to different planting times and 510 

lowbad-quality observations to some degree. The 10-m rapeseed maps do provide more spatial details of rapeseed. Finally, we 

found observed that the rapeseed crop rotation interval is at least 2 years or longer in almost all countries in this study. Our 

proposedThe rapeseed mapping method proposed in this work couldcan be applied to other regions. The derived rapeseed data 

product is useful for many purposes, including crop growth monitoring and production and, rotation system planning. 
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Abstract. As a major oilseed crop, large-scale and high-resolution maps of rapeseed (Brassica napus L.) are critical for 

predicting annual production and ensuring global energy security. However, such free maps are still unavailable in large areas. 

We designed a new pixel- and phenology-based algorithm and produced a new data product for rapeseed planting area (2017-

2019) over 33 countries at 10m spatial resolution based on multiple data. The product showed good consistency with the 10 

official statistics (Food and Agricultural Organization of the United Nations, FAO) at the national level. Rapeseed maps 

achieved at least 0.81 F1 scores of spatial consistency when comparing with the Cropland Data Layer (CDL) in United States 

of America (USA)America, Annual Crop Inventory (ACI) in Canada, Crop Map of England (CROME), and Land Cover Map 

of France (LCMF). Moreover, their F1 scores ranged from 0.84 to 0.92 based on the independent validation samples, implying 

a good consistency with ground truth. The rapeseed crop rotation is at least 2 years in almost all countries in this study. Our 15 

derived maps with reasonable accuracy suggest the robustness of pixel- and phenology-based the algorithm in identifying 

rapeseed over large regions with various climate and landscapes. The proposed algorithm and its derived products may benefit 

scientists, decision-makers, and local farmers to ensure food and energy security.The derived rapeseed planting areas freely 

downloaded will benefit scientists and local farmers can be applied to predict rapeseed production and optimize planting 

structu/re. The product is available publicly at http://dx.doi.org/10.17632/ydf3m7pd4j.3  (Han et al., 2021). 20 

1 Introduction 

Currently, fossil fuels are the main source of energy (Fang et al., 2016; Shafiee and Topal, 2009). However, overexploiting 

fossil fuels will increase risks for human survival such as greenhouse gas emission, and environmental pollution (Fang et al., 

2016; Höök and Tang, 2013). Biofuel energy seems to be a promising alternative energy source and has become a key concern 

(Hassan and Kalam, 2013). Rapeseed is an important source of biofuels, edible oil, animal feed, and protein powder plants 25 

(Firrisa et al., 2014; Malça and Freire, 2009; Sulik and Long, 2016). As a widely grown winter or spring crop, global rapeseed 

production has been increasing rapidly in the past few decades. Data products about the planting densities, growth conditions, 

and productivity of rapeseed are dependent on precise and accurate planting area maps (Zhang et al., 2019). However, such 

maps are yet unavailable. 

http://dx.doi.org/10.17632/ydf3m7pd4j.3
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Global agricultural statistics on rapeseed in many regions come from field surveys, field sampling, and producer reports (Arata 30 

et al., 2020; Fuglie, 2010). Ground-based methods are time-consuming and labor-intensive and fail in describing the detailed 

spatial information of rapeseed fields (Wang et al., 2020a). Remote sensing technology plays an important role in agricultural 

monitoring, providing accurate and objective spatial-temporal crop information (Dong et al., 2016; Salmon et al., 2015). In 

previous literature, MODIS and Landsat were used to identify different crop types over large scales (Dong et al., 2016; Gong 

et al., 2013; Salmon et al., 2015; Xiao et al., 2006; Zhang et al., 2020). With a higher spatial resolution than MODIS and 35 

Landsat data, Sentinel-1/2 (S1/2) show a greater power for high-resolution crop mapping (Malenovský et al., 2012; Singha et 

al., 2019). 

At present, many land cover products from remote sensing have publicly provided a cropland layer, e.g. the Fine Resolution 

Observation and Monitoring of Global Land Cover (FROM-GLC) project (Gong et al., 2013), the GLOBCOVER land-cover 

maps (Arino et al., 2008), the Global Land Cover 2000 (GLC2000) map (Bartholomé and Belward, 2005), ChinaCropPhen1km 40 

(Luo et al., 2020), and Global Food Security-support data at 30 m (GFSAD30) (Phalke et al., 2020; Xiong et al., 2017). 

However, cropland identified by these products either failed in distinguishing different crop types or had a coarse 

spatiotemporal resolution (Teluguntla et al., 2018) or excluded rapeseed information. Till nowadays, there are few rapeseed 

maps on a large scale, especially at 10m-resolution. The 30m-resolution Cropland Data Layer (Boryan et al., 2011) for the 

USAAmerica and Annual Crop Inventory in Canada (Fisette et al., 2013) did classify various crops using the decision tree 45 

classification method based on a large number of training samples. However, the method is hard to apply to other developing 

regions due to a lack of ground training samples (Xiong et al., 2017). A new method is highly required to map large-scale 

annual maps with high spatial resolution, which will be widely applicable for the regions with scare ground training samples. 

Five remote sensing-based methods for rapeseed mapping have been developed in recent decades: a) machine learning methods: 

supervised classifiers such as Random Forest (RF) (Griffiths et al., 2019; Preidl et al., 2020), and unsupervised classifiers such 50 

as  Iterative Self-Organizing Data Analysis Technique (; She et al., 2015; Tao et al., 2020); b) a classifier based on time series 

data: e.g. an automatic rapeseed classification method using sentinel 2 images (Ashourloo et al., 2019); c) a threshold 

segmentation based on phenology (Tian et al., 2019); d) Multi-Range Spectral Feature Fitting (MRSFF) (Pan et al., 2013); and 

e) HSV transformation and Spectral Features (Wang et al., 2018). However, most methods only produce rapeseed maps for a 

small area based on very limited imageries taken on the rapeseed peaking flowering dates (Ashourloo et al., 2019; She et al., 55 

2015). The peak flowering dates vary by area and cultivar because of differences in natural conditions and cultivation habits, 

especially over a large region (d’Andrimont et al., 2020; Ashourloo et al., 2019; McNairn et al., 2018). Thus, it is still a big 

challenge to automatically map rapeseed areas with a finer resolution over a large region by applying the above methods. 

Cloud computing technology is developing rapidly as its powerful computing capability (Gorelick et al., 2017) and has made 

high-resolution rapeseed maps possible over large areas.  Google Earth Engine (GEE) can provide unprecedented opportunities 60 

to process large amounts of remote sensing data with the most advanced cloud computing and storage capabilities (Gorelick 

et al., 2017). 
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Considering the unique phenological characteristics of crops, many studies have indicated the potential ways based on 

phenology for crop identifying in large areas (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2018b, 2020a; Zhang et al., 

2020). The algorithm based on phenology develops classification rules through analyzing the unique characteristics of the crop, 65 

which have been successfully applied to mapping rice (Dong et al., 2016), soybean (Zhong et al., 2014), corn (Zhong et al., 

2016), and sugarcane (Wang et al., 2020a), but rarely applied to rapeseed. Rapeseed has unique reflectance and scattering 

characteristics (Ashourloo et al., 2019; McNairn et al., 2018; Sulik and Long, 2015, 2016), and undergoes three canopy 

morphologies (Ashourloo et al., 2019; Rondanini et al., 2014), including leaves, yellow petals, and pods/branches. Each canopy 

shape strongly influences how solar radiation intercepts (Sulik and Long, 2016). Compared with other crops, rapeseed is more 70 

easily to be identified, of which the yellow flowers significantly increase the reflectance of red and green bands (Pan et al., 

2013; Sulik and Long, 2015). Additionally, when rapeseed grows, the backscatter signal increases because of the rough canopy 

structure formed by the intertwined pods (McNairn et al., 2018; Mercier et al., 2020; Tian et al., 2019; Veloso et al., 2017). 

Thus we are sure the specific features of reflectance values and scattering coefficients of rapeseed from S-1/2 data will provide 

information for automatic mapping of rapeseed over larger areas and with a finer resolution. 75 

Also, crop rotation is beneficial to the management of pests and diseases in crop production (Harker et al., 2015; Liu et al., 

2018a). Previous studies have shown that crop rotation is one of the main causes of yield change in rapeseed production 

(Harker et al., 2015; Ren et al., 2015). The physical and chemical properties of the soil will change during crop rotation, and 

these changes will affect rapeseed growth (Ren et al., 2015). Most of the current studies are limited to field observations (Peng 

et al., 2015). The spatial distribution information of rapeseed rotation in different regions is still not clear due to the lack of 80 

high-resolution rapeseed maps. It is necessary to explore the rapeseed rotation for cultivation and management. 

Thus, we integrated multi-source data to 1) develop a new method for identifying rapeseed; 2) apply the new method to 

generate rapeseed maps with a spatial resolution of 10 m from 2017 to 2019 across the main planting areas of 33 countries; 3) 

analyze the geographic characteristics of rapeseed planting and crop rotation. The proposed algorithm and its derived products 

may benefit scientists, decision-makers, and local farmers to ensure food and energy security. 85 

2 Materials 

2.1 Study area 

We identified rapeseed planting areas for 33 countries in three continents (North America, South America, and Europe) as 

they are the main rapeseed producers in the world (Fig. 1). The planting areas and production of rapeseed are large in Canada 

and the European Union (EU) (Carré and Pouzet, 2014; van Duren et al., 2015; Rondanini et al., 2012). According to the report 90 

by Statistics Canada, from 2000 to 2019, the sown area of rapeseed in Canada increased by 1.7 times, and the production 

increased by 2.7 times (https://www.canolacouncil.org/). Rapeseed is grown in most European countries. The EU's rapeseed 

production of 2017 was approximately 1.92 times that in 2000 (d’Andrimont et al., 2020). Europe produces a large amount of 

biodiesel for the world every year. In 2008, 79% of the biodiesel feedstock crops in Europe were rapeseed (van Duren et al., 
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2015). Also, Chile is the main rapeseed producer in South America and the country with a high yield of rapeseed in 2018 95 

(38877 kg/ha). Rapeseed agriculture in these countries is important in food and energy security (Carré and Pouzet, 2014). The 

climates in these three continents are different because of factors such as latitude and topography (Peel et al., 2007). Europe 

includes three climatic types: subtropics, boreal, and temperate (Fig. S1b) (Peel et al., 2007). The climate in the rapeseed 

growing areas in Canada and northern America is temperate and boreal (Fig. S1a). Chile has the main subtropics climate (Fig. 

S1c). Rapeseed planting seasons are distinctive because of differences in natural conditions (such as climate) in different 100 

countries (Singha et al., 2019; Wang et al., 2018), which brings great challenges to mapping rapeseed. 
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Figure 1. The locations of 33 countries and the sample blocks for phenological monitoring with a radius of 10 km (a-d). The 

33 countries include Canada (CAN), United States of AmericaAmerica (USA), Chile (CHL), Ireland (IRL), United Kingdom 105 

of Great Britain and Northern Ireland (GBR)England, France (FRA), Spain (ESP), Netherlands (NLD), Belgium (BEL), 

Luxembourg (LUX), Germany (DEU), Switzerland (CHE), Denmark (DNK), Sweden (SWE), Poland (POL), Czechia 

(CZE)Czech Republic, Austria (AUT), Slovenia (SVN), Croatia (HRV), Slovakia (SVK), Hungary (HUN), Estonia (EST), 

Latvia (LVA), Lithuania (LTU), Belarus (BLR), Ukraine (UKR), Republic of MoldovaMoldova (MDA), Romania (ROU), 

Bulgaria (BGR), Serbia (SRB), North MacedoniaThe Former Yugoslav Republic of Macedonia (MKD), Greece (GRC), 110 

Turkey (TUR). The name and code of the country are prepared by the Statistics Division of the United Nations Secretariat. 

The three-digit alphabetical codes assigned by the International Organization for Standardization (ISO) can be found at 

https://unstats.un.org/unsd/methodology/m49/. 

2.2 Data 

2.2.1 Remote sensing data 115 

We collected the Sentinel-2 (S2) and Sentinel-1 (S1) imagery (Table 1). The S1/2 satellites are launched by the European 

Space Agency (ESA) (Drusch et al., 2012; Torres et al., 2012). The highest spatial resolution of S2 images is 10 m. We used 
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red (b4), green (b3), and blue (b2) spectral bands with 10-m spatial resolution Top-Of-Atmosphere (TOA) reflectance 

observations. The S2 TOA product includes the Quality Assessment (QA) band, which was used to remove most of the bad-

quality images (e.g. clouds information) in this study. However, it is difficult to remove all clouds due to the quality of the QA 120 

band (Wang et al., 2020a; Zhu et al., 2015). The S1 includes four modes: Stripmap (SM), Interferometric Wide Swath (IW), 

Extra Wide Swath (EW), and Wave (WV) (Torres et al., 2012). We used the Interferometric Wide Swath IW mode of S1, 

which provides dual-band cross-polarization (VV) and vertical transmit/horizontal receive (VH) with a 12 day or 6-day repeat 

cycle and 10m space resolution (Torres et al., 2012). The S-1/2 images were obtained on Google Earth Engine (GEE) (Gorelick 

et al., 2017)GEE. Also, we used QA bands to remove most of the bad-quality images on GEE (Sample code can be found at 125 

https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FCOPERNICUS_S2). See Table 1 for more 

details. 

2.2.2 Digital elevation model 

We used a spatial resolution of one arc-second (approximately 30 m) elevation data from the Space Shuttle Radar Terrain 

Mission (Table 1) (Farr et al., 2007). Then we calculated the spatial distribution of slope on GEE (Sample code can be found 130 

at https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FUSGS_SRTMGL1_003) (Fig. S1d-f). Later, 

we extracted areas with a slope less than 10° to mask hilly terrain where rapeseed is unlikely to be planted (Jarasiunas, 2016). 

2.2.3 Cropland and agricultural statistics data 

In this study, cropland data from the GFSAD30 were used to identify major farming areas in different countries (Phalke et al., 

2020; Xiong et al., 2017). The existing crop data products containing rapeseed information include four datasets: 1) the 30-m 135 

Annual Crop Inventory (ACI) in Canada (Fisette et al., 2013), 2) the 30-m Cropland Data Layer (CDL) in America USA 

(Boryan et al., 2011) (CDL and ACI layers are downloaded from GEE). 3) the Crop Map of England (CROME) was generated 

in GBREngland. 4) the 10-m Land Cover Map of France (LCMF) in France (Inglada et al., 2017). These four crop layer 

products are generated based on satellite images and a large number of training sample collections. In this study, rapeseed 

maps in ACI, CDL, CROME, and LCMF were used for accuracy verification at the pixel level. The FAO releases annual 140 

statistics on the area for major crops in different countries or regions every year. We selected the statistics from FAO for 

accuracy verification. Please see Table 1 for more details. 

2.2.4 Crop calendars 

We used two crop phenological data sets to assist in extracting rapeseed phenological parameters, crop calendars in different 

countries (https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx) and field records of the crop phenology in Germany. The crop 145 

calendars come from the United States Department of Agriculture (USDA) which only records the planting and harvest time 

of rapeseed in some countries (Table S1). The field records of the crop phenology in Germany are Inin-situ observations from 

https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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crop phenological records shared by the Deutsche Wetterdienst (DWD) in Germany (Kaspar et al., 2015). The DWD provides 

field observations of crop phenological periods following the Biologische Bundesanstalt, Bundessortenamt, and Chemical 

(BBCH) scale throughout Germany (Table 1). DWD records the start date and the end date of rapeseed flowering (d’Andrimont 150 

et al., 2020; Kaspar et al., 2015). Note that both crop calendars and DWD do not contain information on the peak flowering 

dates of rapeseed. We used all stations that fully recorded the start and end of the flowering periods from 2017 to 2019 for 

extracting rapeseed phenological parameters. Finally, 281, 269, and 253 stations are available in 2017, 2018, and 2019, 

respectively. (the spatial distribution of the DWD rapeseed stations can be found in Fig. S2. 
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http://www.fao.org/faostat/en/#data/QC
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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2.3 Methods 

2.3.1 Optical and SAR characteristics during the growing period of rapeseed 

We selected available rapeseed parcels and in-situ observations of DWD from different climate regions and different years to 

analyze the optical (reflectance and vegetation index) and SAR (VV, VH) characteristics of rapeseed along time. For example, 185 

Fig. 2 shows the time series of one rapeseed parcel around the DWD station (station id: 13126) in 2018. The rapeseed parcel 

shows unique visual characteristics during the flowering period (Fig. S32e). The flower becomes yellow when rapeseed is 

approaching peak flowering (d’Andrimont et al., 2020; Pan et al., 2013; Tao et al., 2020; Wang et al., 2018). Rapeseed is 

yellow-green on the true color images of S2 and Google Earth during the flowering period (Fig. S4S1). The reflectance of the 

green band and red band separately increased from 0.09 and 0.06 (2018/4/17, before flowering) to 0.16 and 0.14 (2018/5/7, 190 

peak flowering), and decreased after flowering (Fig. 2a). The reflectance of the blue band is lower than red and green bands 

during flowering. The reflectance of the red band increased again and higher than the green band during the rapeseed harvest 

period. This is similar to previous research results (Ashourloo et al., 2019; Sulik and Long, 2015). The Normalized Difference 

Yellow Index (NDYI, Eq.1) can capture the increasing yellowness in the time series (d’Andrimont et al., 2020; Sulik and Long, 

2016). Also, the NDYI increased from -0.03 on April 17 to 0.21 on May 7 (Fig. 2b). NDYI reaches a peak during the flowering 195 

time of rapeseed. This unique spectral feature of rapeseed in the flowering period is caused by the yellow petals. 

𝑁𝐷𝑌𝐼 =
𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                                                    (1) 

where green is the TOA reflectance of the green band (b3) of the S2 imagery, blue is the blue band (b2) reflectance. 

S1 backscattering changes with the growth of rapeseed. We used the VV and VH time series smoothed by the Savitzky–Golay 

(SG) filter (window size 3) (Chen et al., 2004) as input to identify the phenological parameters of rapeseed parcels. We ran the 200 

SG filter algorithm on MATLAB 2020b. The results show that there are local minimums in both the VV (-11.20, May 8) and 

VH (-15.60, May 5) time series during rapeseed flowering (Fig. 2c-d). Furthermore, VH reaches the maximum (-9.64, June 1) 

during the pod period (Fig. 2d). Unlike other crops, rapeseed has two distinct green-up phases: the flowering period and the 

pod period (Ashourloo et al., 2019; Bargiel, 2017; Mercier et al., 2020; Veloso et al., 2017). The petals of rapeseed decrease 

the scattering of VV and VH, while the pods increase the scattering intensity of VH (d’Andrimont et al., 2020; Bargiel, 2017; 205 

McNairn et al., 2009; Mercier et al., 2020). The NDYI and backscattering (VV, VH) time series of rapeseed in different climate 

regions (Fig. S4S1) also show the same characteristics. Hence, we used the features in both Optical and SAR to identify the 

rapeseed flowering and pod period in this study. Due to the difference in the revisit periods of S1/2 satellites, rapeseed peak 

flowering dates are defined as the median dates extracted by optical and SAR indicators. 
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  210 

Figure 2. The time-series profiles of four features of the rapeseed pixels around one DWD station (id = 13126, Longitude: 

11.333268424°, Latitude: 52.200000463°) in Germany in 2018. (a), the mean reflectance values (red, green, and blue); (b), 

mean NDYI; (c) mean VH; and (d) mean VV; the filled color areas for standard deviation; BBCH for the in-situ observations 

of rapeseed phenology, with BBCH61 and BBCH69 for the start of flowering and the end of flowering, respectively. (e), The 

rapeseed parcel around the DWD station is shown by red boundaries (image source: Copernicus Sentinel-2 data 2018). 215 

2.3.2 Sample blocks collected for phenological monitoring 

As a prerequisite to mapping rapeseed at a large scale, the phenology of rapeseed in different countries needs to be identified 

and delineated (Dong et al., 2016; Zhang et al., 2020). However, not enough observation records of rapeseed phenology are 

available on a large scale. Referring to the DWD method of observing phenology (Kaspar et al., 2015), we created sample 

blocks with a  radius of 10 km over rapeseed producing areas of different countries and randomly sampled 10 rapeseed parcels 220 

for each block (Fig. S5). The rapeseed plots were identified by phenological characteristics obtained from the visual 
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interpretation and reference data including high-resolution images available in S2 and Google Earth as well as Spectral 

reflectance (red band and green band) and spectral index (NDYI) and scattering coefficient profiles (VV and VH) from the 

S1/2 time series. It should be noted that the Google Earth images during rapeseed flowering were used to assist with the visual 

interpretation of rapeseed parcels. The rapeseed parcels without high-quality time-series imagery available were omitted. 225 

Finally, 75 sample blocks in 2017, 84 sample blocks in 2018, and 84 sample blocks in 2019 were uniformly and randomly 

collected (Fig. 1). The sample blocks are shown in Fig. 1. We extracted the growth phenology information of rapeseed by 

calculating the average of the pixels of all rapeseed parcels in each block for different regions. 

 

2.3.3 Flowering and pod phase detection in different countries 230 

The phenology of rapeseed is different among regions. To find out the flowering dates of rapeseed in different countries, we 

evaluated each phenological sample block from 2017 to 2019 (Fig. 3). First, we calculated the average values of all pixels in 

the 10 rapeseed parcels we selected before during the rapeseed growth period for each block in conjunction with the crop 

calendar. VV and VH time series for each sample rapeseed parcels were smoothed using the SG filter. Second, these S1/2 peak 

flowering dates and pod dates were derived for all sample blocks based on the method in Section 2.3.1. We found the peak 235 

flowering dates of rapeseed have an obvious latitude gradient, especially in Europe (Fig. S63j).  
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Figure 3. The spatial distribution of flowering dates (Julian day) was monitored by different sample blocks in 2017, 2018, and 

2019 (a-i). The latitude gradient characteristics in Europe (j). The date was calculated by the mean of the flowering date of all 

sample blocks in different latitude intervals) 240 

 

Also, we found the signal with the maximum of VH is within 45 days after the peak date of flowering (Fig. S72). Then we 

calculated the difference in the peak flowering date of each sample block in different years. The results showed that the 

flowering peak dates of most sample parcels were advanced or delayed by 10 days (Fig. 3d4d). Therefore, it is reasonable to 

use the same period for rapeseed identification in different years in the same area in this study. Previous studies and field 245 

observation records show that the flowering period of rapeseed is about 30 days (d’Andrimont et al., 2020; Chen et al., 2019; 

Kaspar et al., 2015; She et al., 2015). Therefore, we divided each month into two time periods (the 15th is the dividing line). 

Two consecutive half-months are defined as suitable periods for classifying flowering dates (Fig. 4a-c). Finally, we designated 
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the flowering period for each administrative unit for each sample block based on the peak flowering datessample blocks (Fig. 

3a-c). 250 
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Figure 34. Flowering phenology of rapeseed. (a-c) The spatial distribution of rapeseed flowering periods for sample blocks. 

(d) The boxplot showing the changes in peak flowering dates of each sample block in three years. 还需要写国家缩写吗 

2.3.4 Developing phenology- and pixel-based algorithm for mapping rapeseed 255 

The analysis of temporal profile at rapeseed parcels in this study together with many previous studies indicated that the 

spectrum at flowering stage and the scattering signal at pod stage are the key features to identify rapeseed (Ashourloo et al., 

2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020; Sulik and Long, 2015; Veloso et al., 2017). Previous studies have 

found the high reflectance values of the green band and red band at the flowering stage for rapeseed are the main spectral 

factors to distinguish from other crops (Ashourloo et al., 2019). We developed one phenology- and pixel-based rapeseed 260 

mapping algorithm using four features, spectral bands (red and green), spectral indices (NDYI), polarization bands (VH), and 

terrain (slope). Four primary steps were conducted for mapping annual planting areas (Fig. 65). 

Step 1: determining the threshold of the feature indicators. Thresholds of indicators are the key parameters to determine the 

area accuracy. We analyzed the histograms of the random samples selected from different countries as the previous studyies 

(Zou et al., 2018) suggested. We found the similarities of green band, blue band, and NDYI (Fig. S39) for all samples during 265 

the flowering stage from different regions. Most (98%) of the rapeseed pixels showed red > 0.07, green > 0.11, and NDYI > 

0.05. 
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However, we found some pixels with a relatively high NDYI, which would be misclassified into rapeseed because they are 

polluted by the cloud with a “rainbow” appearance (Fig. 5). Such misclassifications caused by some bad-quality observations 

from the S2 image can’t be removed due to the limited quality of the QA band and simple cloud score algorithm (Wang et al., 270 

2020c; Zhu et al., 2015). The “rainbow” of the cloud comes from the push-broom design of S2 (Fig. 4a5a) and spectral 

misregistration (For more details, please refer to ESA, 2015a, and ESA, 2015b). Based on the principle of the relative 

displacement of each spectral channel sensor in the S2 push-broom design (Frantz et al., 2018; Liu et al., 2020b; Zhao et al., 

2018), we developed a new spectral index (NRGBI) to reduce the influence of "rainbow" (Eq.2). The scatter plot of NDYI and 

NRGBI of rapeseed parcel samples and "rainbow" samples around clouds (visual interpretation) showed that the NRGBI 275 

(threshold is -0.05) can effectively distinguish rapeseed from the "rainbow" (Fig. 4h5h). 

𝑁𝑅𝐺𝐵𝐼 =
𝑟𝑒𝑑−𝑏𝑙𝑢𝑒

𝑟𝑒𝑑+𝑏𝑙𝑢𝑒
−

𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                               (2) 

where red, green, and blue are the TOA reflectance values of the red band (b4), green band (b3), and blue band (b2) of the S2 

imagery, respectively. The GEE code for NRGBI index calculation can be found at 

https://code.earthengine.google.com/a39fc699a276d018778d59c5b085d960. Also, NRGBI can be calculated based on Eq.2 in 280 

other GIS software (e.g. QGIS and ArcGIS) on the local computer.  
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Figure 45. Causes, examples, and solutions for the “rainbow” cloud effect. (a) staggered detector configuration of S2 (ESA, 

2015a); (b-f) examples of spectral misregistration effects and performance of cloud masking methods (each image was masked 285 

by quality assurance band (QA60)) for Sentinel-2 TOA image, with the red arrows indicating the cloud “rainbow” appearance 

at high altitude in the S2 image (Image source: Copernicus Sentinel-2 data); (g) Sentinel-2 TOA image of rapeseed at the 

flowering stage, with the yellow arrow for the rapeseed fields; (h) scatter plots of NDYI and NRGBI of rapeseed field samples 

and "rainbow" around clouds samples from the S2 images, with the color density for the number of pixels. 

 290 

Step 2: identifying all rapeseed pixels from different images during the flowering period and aggregating them into annual 

rapeseed planting areas (Fig. 56). Because the peak flowering dates and the number of available images of rapeseed fields in 

a region are different (Fig. S10S4), rapeseed classifications based on a single image could fail in capturing rapeseed flowering 

dynamics (Ashourloo et al., 2019). To avoid the misclassification from bad-quality observations during the rapeseed flowering 

stage, we aggregated all the classified results from available S2 images during the flowering period. Hence, a larger number 295 

of images will result in better performance (Fig. S10S4). 
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Step 3: combining optical with SAR images to ensure the accuracy of the rapeseed maps. The high VH values during the pod 

stage are another distinct feature that can distinguish rapeseed from other crops (Mercier et al., 2020; Tian et al., 2019; Van 

Tricht et al., 2018; Veloso et al., 2017). Considering the variability of flowering in different fields and the duration of the pod 

stage (Section 2.3.2), we calculated the maximum VH between the second half of the flowering stage and the next 30 days 300 

after the flowering stage (~ 45 days) (See the grey part in Fig. 56). Within 45 days, at least three S1 satellite images are 

available in the study areas. Also, the areas with a slope ≥> 10° (where rapeseed is unlikely to be planted)  were removed 

(Jarasiunas, 2016). All pixels that meet the requirements are defined as rapeseed. 

Step 4: removing the “salt and pepper” noise according to the connected components (objects) threshold (the size of the 

neighborhood in pixels) and filling the gaps inside the parcels (Hirayama et al., 2019). In this study, wWe used 8-connected 305 

rules, which means that the edges or corners of the pixels are connected. If two adjacent pixels are connected, they are part of 

the same object (https://www.mathworks.com/help/images/ref/bwareaopen.html). The bwareaopen function in MATLAB 

2020b software was used to remove the objects which are less than the threshold. The thresholds of different indicators in 

different regions can be found in Table S3S1. 
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Figure 56. The workflow for mapping rapeseed areas using the proposed phenology- and pixel-based algorithm. Global Food 

Security-Support Analysis Data at 30m (GFSAD30); normalized difference yellowness index (NDYI); The new spectral index 

(NRGBI), Deutsche Wetterdienst (DWD), Food and Agriculture Organization of the United Nations (FAO), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), R-squared (R2), Cropland Data Layer (CDL), Annual Crop Inventory (ACI), 315 

Crop Map of England (CROME), Land Cover Map of France (LCMF), user’s accuracy (UA), producer’s accuracy (PA), and 

F1 score (F1). 

2.4 Accuracy assessment 

First, we compared the rapeseed areas retrieved by the new method with FAO statistics. Our rapeseed data is a binary (0 or 1) 

map with a spatial resolution of 10 m. We then can calculate the total area of rapeseed maps in each country and compare 320 

them with the national rapeseed statistics. The RMSE (Eq.3), and the MAE (Eq.4), and the coefficient of determination (R2, 

Eq.5) are used to verify the accuracy of rapeseed mapping. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑓𝑖)

2

𝑛

𝑛
𝑖=1                                                                                                                                                              (3) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|
𝑛
𝑖=1                                                                                                                                                               (4) 

𝑅2 =
(∑ (𝑦𝑖−𝑦𝑖̅̅̅)(𝑓𝑖−𝑓𝑖̅)

𝑛
𝑖=1 )2

∑ (𝑦𝑖−𝑦𝑖̅̅̅)
2𝑛

𝑖=1 ∑ (𝑓𝑖−𝑓𝑖̅)
2𝑛

𝑖=1

                                                                                                                                                       (5) 325 
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where n is the total number of countries. 𝑦𝑖  is the mapped rapeseed planting areas, 𝑦𝑖̅ is the corresponding mean value, 𝑓𝑖 is 

the records rapeseed planting areas from FAO, 𝑓𝑖̅  is the corresponding mean value.  

Also, we compared the rapeseed maps with four open-access datasets that include rapeseed layers (ACI, CDL, CROME, and 

LCMF) in Canada, AmericaUSA, GBREngland, and France at the pixel level. We used them as the reference data for 2018, 

2019 (Boryan et al., 2011; Fisette et al., 2013). To unify the spatial resolution of the rapeseed maps, CDL, ACI, and CROME 330 

were resampled to 10m resolution for comparison. UA (Eq.6), PA (Eq.7), and F1 (Eq.8) were calculated based on confusion 

matrices (Table S22) to measure the classification accuracy. 

Thirdly, we also randomly selected verification samples based on the previous studies (Pekel et al., 2016; Wang et al., 2020b) 

to validate the rapeseed maps. A grid (0.2 latitudes by 0.2 longitudes) was generated within the rapeseed map in 2018 acquired 

by our method (Fig. S5). Two points (rapeseed and non-rapeseed) were generated randomly in each grid by visually 335 

interpreting images available from S2 and Google Earth, together with spectral reflectance (red and green bands), spectral 

index (NDYI), and scattering coefficient (VV and VH) profiles from the S-1/2 time series. The confusion matrices were 

similarly used to assess the accuracy according to Eqs 6~8. 

𝑈𝐴 =
𝑥𝑖𝑗

𝑥𝑗
                                                                                                                                                                                     (6) 

𝑃𝐴 =
𝑥𝑖𝑗

𝑥𝑖
                                                                                                                                                                                     (7) 340 

𝐹1 = 2 ×
𝑈𝐴×𝑃𝐴

𝑈𝐴+𝑃𝐴
                                                                                                                                                                         (8) 

Where xij is the value of the i-th row and j-th column; xi is the sum of the i-th row; xj is the sum of the j-th column. Although 

the statistical data and existing products are not completely the same as the real areas and locations of rapeseed planted on the 

ground, these datasets do benefit to validating the accuracy of rapeseed maps at different scales (national and pixels). 

3 Results 345 

3.1 Accuracy assessment 

We compared the derived rapeseed areas with those from the FAO statistics. The total planting areas of rapeseed are well 

consistent with the agricultural statistics at the national level, with RMSE of 1459.64 km2, MAE of 785.25 km2, and R2 of 0.88 

(Fig. 67). We found the derived areas in 2017 and 2019 are larger than those in 2018, especially for the countries with the 

relatively small rapeseed areas (e.g. many European countries indicated by the subgraph located at the bottom right of Fig. 6. 350 

The more availability of S2 images together with better quality of data in 2018 could contribute to the larger rapeseed areas 

derived by the new method (Liu et al., 2020a).  
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Figure 67. Comparison of rapeseed areas with the FAO statistics at the national level. The names of all countries can be found 

in Section 2.1.  355 

The comparison of our rapeseed maps with those of America USA CDL in 2018, 2019, Canada ACI, England GBR CROME, 

France LCMF in 2018 was consistent at pixel level indicated by a higher accuracy according to the confusion matrix values 

(Table S4S3). Fig. 7a 8a shows that the rapeseed areas calculated from our maps are consistently more comparable to FAO 

statistics than those from existing products. The UA, PA, and F1 varied by country, with PA of 0.70–0.80, UA of 0.93–0.97, 

and F1 of 0.81–0.86 (Fig. 7b8b). The rapeseed areas obtained by us accounted for around 71% of 2018 CDL, 71% of 2018 360 

ACI, and 80% of 2018 CROME, and 70% of 2018 LCMF, and 79% of 2019 CDL. Furthermore, our results showed consistent 

distributions between our rapeseed maps and the existing products at the pixel level (Fig. S7-S8). The difference in accuracy 

might be caused by the number of high-quality images available in different regions (Dong et al., 2016). Despite the various 

ground conditions, methods, images, and spatial resolutions among the products, the comparison results further verify the 

accuracy of our rapeseed map (Gong et al., 2020; Singha et al., 2019). 365 
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Figure 78. Validation results of the classifications. (a) The percentage of the rapeseed area of the existing products and 

classification results in the FAO statistics. (b) The user’s accuracy (UA), producer’s accuracy (PA), and F1 score (F1) of 

classifications in four countries (Canada, AmericaUSA, EnglandGBR, and France). The existing products were used as 370 

reference data. 还需要写国家缩写吗 

The confusion matrix values (Table S5S4) based on random sampling points show that the accuracy of the rapeseed 

maps varies in different regions. We found zone IIEurope shows the highest accuracy (F1, 0.91), followed by zone IIIChile 

(F1, 0.9), and zone INorth America (F1, 0.84). Such disparity in accuracy might be ascribed to the different availability of 

high-quality images in the studied areas. The results showed that the rapeseed maps derived by our method had a satisfying 375 

accuracy. 

3.2 More details of rapeseed maps derived by the new method 

To show more details of rapeseed maps derived from our method, we selected some images in some areas of each country. 

The rapeseed maps show good spatial consistency with the actual rapeseed planted on the ground (Fig. 89 and Fig. S6). From 

the area densely planted by rapeseed in Canada (Fig. 89--a) to relatively sparse planting ones such as in Chile (Fig. 89-b) and 380 
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European countries (e.g. Fig. 89-c,d) (Lowder et al., 2016), from regular rectangles (e.g. Fig. 89-a, h) to irregular parcels (Fig. 

89-c, d), from temperate oceanic climate (Fig. 89- c-e) to temperate sub-continental (Fig. 89-a, f), or even subtropic climate 

(Fig. 89-b), all field details were indicated clearly in our maps. Fragmentation of land in some European countries, especially 

in Eastern and Central Europe after land reform in 1989 (Hartvigsen, 2013, 2014), such as Estonia (Fig.8f9f) (Jürgenson and 

Rasva, 2020; Looga et al., 2018). Although under different climates, terrain, landscapes, and over a very larger region, the 385 

algorithm proposed in our study showed a satisfying classification accuracy across 33 countries. Thus, the rapeseed maps 

based on S-1/2 data can effectively identify the fields in detail with high spatial resolution and clear field boundaries. More 

rapeseed classification details can be found in Fig. S12 and Fig. S19. 

Furthermore, our results showed consistent distributions between our rapeseed maps and the existing products at the pixel level 

(Fig. S13-S14). The yellow grids (70%~80%) mean they are identified as rapeseed areas both by our method and 390 

ACI/CDL/CROME/LCMF datasets, while red grids indicate disagreement. The difference in accuracy might be caused by the 

number of high-quality images available in different regions (Dong et al., 2016). Despite the various ground conditions, 

methods, images, and spatial resolutions among the products, the comparison results further verify the accuracy of our rapeseed 

map (Gong et al., 2020; Singha et al., 2019).  
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Figure 89. Spatially explicit details of rapeseed maps in eight countries with diverse crop structures in different years (the 

yellow words show the climatic zones). RGB composite images use the red (b4), green(b3), and blue (b2) bands from Sentinel-

2 with good-quality observations during the flowering period of rapeseed (image source: Copernicus Sentinel-2 data). The 

climate zone data is from the Food Insecurity, Poverty and Environment Global GIS Database (FGGD). 400 

3.3 Spatial patterns of rapeseed planting areas 

Canada shows the largest rapeseed planting area (Fig. 9, Fig. S15), with a total area of 118,489.73 km2 in 2018, higher than 

those in Europe (106,814.67 km2). France and Germany are two leading rapeseed growing countries in Europe, accounting for 

around 66.3% of European rapeseed areas together with the other three countries (EnglandGBR, Poland, and Ukraine). The 

country-wide rapeseed areas in all 33 countries were further normalized to show clearly the spatial patterns (Fig. S15). The 405 

spatial patterns of three years (2017~2019) are consistent at the national level (Fig. S9). Moreover, we also plotted the 
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geographic characteristics of rapeseed areas along latitude and longitude for three regionsthe study areas  (Fig. 910). Rapeseed 

in Europe is widely planted in the countries with latitudes of 45~56°N and longitudes of -2°~4°, 9°~19°, and 22°~27°, with 

exception of the steep mountainous areas and the cold northern areas (Fig. 9a10a) (van Duren et al., 2015). In  Canada and 

USANorth America, the areas with the latitudes of 44~44.5°N, 51~55°N, 56~57°N and longitudes of -118°~-117°, -114°~-98° 410 

are densely distributed by rapeseed (Fig. 9b10b).  
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Figure 910. Spatial distribution of rapeseed areas at 10m resolution along latitude and longitude gradients in 2018. (a) Europe 415 

and Turkey. (b) Canada and AmericaUSA. 
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4 Discussion 

4.1 Investigating the rapeseed rotation systems 

We obtained three-year rapeseed maps at a 10-m spatial resolution, and with a higher accuracy which was validated by annual 

national statistic books, open accessed public products, and random sampling points at 0.2°×0.2°grids. These rapeseed maps, 420 

with good quality for three consecutive years, provide a new opportunity to investigate rapeseed rotation systems (Liu et al., 

2018a). Crop rotation information is considered an important factor for crop yield (Harker et al., 2015; Liu et al., 2018a; Ren 

et al., 2015; Rudiyanto et al., 2019; Zhou et al., 2015). Thus, we selected 25 representative areas (Fig. S16S10) to analyze the 

rapeseed rotation patterns according to the three criteria. Firstly,  the quality of images is high. Secondly, the classification 

accuracy of rapeseed is high. Thirdly, the area of rapeseed is large. The rapeseed rotation was calculated by the frequency in 425 

each rapeseed pixel (Fig. S17-181).  
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Figure 11. Spatial distribution of three types of rotations in different areas from 2017~2019. 

Please note that the longest rapeseed rotation break that can be observed is 2 years because there are only three years (2017-430 

2019) of rapeseed maps available. Thus, to more accurately express the pattern of rapeseed rotation break, we classified the 

rapeseed rotation break into three types: ≥ 2 years, 1 year, 0 years in this study (Fig. 10 and Fig. S17-18). We found most 

countries show a rotation break greater than or equal to 2 years (the highest ratios of green parts) (Fig. 1012), especially for 

European countries (Fig. 1012-b). The rotation break ≥ 2 years in Canada accounts for 70%, followed by 1-year break (30%) 

(Fig. 1012-a). The histogram confirmed that rotation breaks of 20 locations have been identified ≥ 2 years. The percentage of 435 
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planting areas with rotation break ≥ 2 years is higher than 90% (Fig. 1012-d). Many previous studies have found that a two- 

or three-year rotation break will significantly reduce the number of spores, especially rhizomes and blacklegs, suggesting 

rotation system is an important step in controlling diseases (Gill, 2018; Harker et al., 2015; Ren et al., 2015; Zhou et al., 2015). 

Moreover, rapeseed rotation will also benefit yield, insects, moisture, fertility, and reducing weeds (Bernard et al., 2012; Harker 

et al., 2015; Pardo et al., 2015; Peng et al., 2015; Ren et al., 2015). Thus, more efforts should be input to produce longer time-440 

series rapeseed maps and obtain detailed rotation information in the future. 
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Figure 1012. Crop rotation. (a-c) The proportions of the total area planted by rapeseed for three rapeseed rotation breaks. The 

sample blocks selected for each area are red in Fig. S16. (d) The numbers of areas with  ≥ 2-year break in Fig. 10 12 a-c. 445 

4.2 Uncertainty analysis 

Generating annual high-resolution maps of a specific crop over a larger region is a big challenge (Gong et al., 2020; Liu et al., 

2018b, 2020a). Pixel-and phenological-based algorithms, multisource remote sensing data, and the GEE are useful to map 

rapeseed at high resolution and over larger areas. Besides, the proposed algorithm does not need a large number of training 

sample data and reduces disturbance from agronomy differences by combining images of multiple dates. However, the 450 

uncertainty is from the following aspects. 1) Cropland layer. We used the GFSAD30 datasets to identify croplands. However, 

GFSAD30 has its limitations such as classification error (Phalke et al., 2020). 2) The number of satellite images available. 

Although our annual rapeseed maps are consistent with FAO statistics and show higher accuracy comparing with existing 

products, the maps are limited by the good-quality observations during the critical growth stages. For example, Fig. 11a 13a 

shows that there is an error in the area of France in 2017, which could be attributed to the lack of clear S2 images during the 455 

rapeseed flowering period (Fig. 11b13b). The rapeseed flowering period is generally characterized by high NDYI, red band, 

and green band reflectance, thus rapeseed pixels are likely to be misclassified if the images during the flowering stage were 



38 

 

missing (Fig. 11c13c). 3)Thresholds for different indicators. The threshold is the key for mapping crops (Ashourloo et al., 

2019; Dong et al., 2016; Liu et al., 2020a; Wang et al., 2020a; Zhang et al., 2015). Although the reference thresholds for three 

regions are given in this study, it should be cautious when applying them to other regions. 4) The complexity of the ground 460 

environment. For example, landscape types might impact the accuracy of rapeseed maps (Wang et al., 2020a). 

 

Figure 1113. Descriptions for the classification limitation. (a) Rapeseed map with an error in France in 2017 (Lon. 2.059824°, 

Lat. 46.734987°). (b) Availability of time series Sentinel-2 images during rapeseed flowering phases. (c) Comparison of the 465 

time series of different sites indicating how the peak NDYI is missed.修改序号 

4.3 Implications and improvements 

Despite the above limitations, the new phenology-based method proposed by us has the potential to extend to other regions by 

modifying the phenology metrics. Recently, the Harmonized Landsat and Sentinel-2 database has improved spatial resolution 

and shortened the revisit cycle of images (Claverie et al., 2018; Shang and Zhu, 2019). Similar or even higher rapeseed 470 

classification accuracy can be expected. Furthermore, remote sensing data fusion algorithms have been continuously developed 
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(e.g., STARFM and ESTARFM) (Zhu et al., 2010). Finally, various deep learning models have been explored for classifying 

crops and lowering errors (Hu et al., 2019; Zhong et al., 2019). Integrating phenological metrics and deep learning models 

might further improve rapeseed mapping accuracy. Thus, such rapeseed products will objectively track the dynamics of 

rapeseed planting areas as well as agricultural management in the future. 475 

5 Data availability 

The rapeseed map produced is accessible at Mendeley Data (http://dx.doi.org/10.17632/ydf3m7pd4j.3) (Han et al., 2021). The 

rapeseed maps with 10 m resolution are provided in this study. The dataset includes a set of GeoTIFF images in the ESPG: 

4326 spatial reference system. The values 1 and 0 represent rapeseed and non-rapeseed, respectively.  We encourage users to 

independently verify the rapeseed map. Also, Sentinel 1/2 images, CDL, ACI, and SRTM are available on GEE 480 

(https://developers.google.com/earth-engine/datasets/). For more detailed information about the data collected in this work, 

please see Table 1. 

6 Conclusions  

Large-scale and high-resolution rapeseed maps are the basis for crop growth monitoring and production prediction. We 

designed a new method for mapping rapeseed based on the spectral and polarization features and multi-source data. The new 485 

algorithm has produced three annual rapeseed maps (2017~2019) at 10m spatial resolution in 33 countries. Three different 

verification methods indicated that our rapeseed maps have reasonable accuracy. Compared with existing products at the pixel 

level in Canada, AmericaUSA, EnglandGBR, and France, PA, UA, and F1 are 0.70–0.80, 0.93–0.97, and 0.81–0.86, 

respectively. Also, the F1 ranged from 0.84 to 0.92 based on the independent validation samples. Our approach reduces 

disturbances from different planting times and bad-quality observations to some degree. The 10m rapeseed maps do provide 490 

more spatial details of rapeseed. Finally, we found that rapeseed crop rotation is 2 years or longer in almost all countries in 

this study. The rapeseed mapping method proposed in this work could be applied to other regions. The derived rapeseed data 

product is useful for many purposes including crop growth monitoring and production, rotation system planning. 
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