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Abstract. As a major oilseed crop, large-scale and high-resolution maps of rapeseed (Brassica napus L.) are critical for 

predicting annual production and ensuring global energy security. However, such free maps are still unavailable in large areas. 

We designed a new pixel- and phenology-based algorithm and produced a new data product for rapeseed planting area (2017-

2019) over 33 countries at 10-m spatial resolution based on the multiple data. The product showed a good consistence 

consistency(R2=0.88) with the official statistics (Food and Agricultural Organization of the United Nations, FAO) at the 15 

national level. Rapeseed maps achieved at least 0.81 F1 -scores of spatial consistency when comparing with the Cropland Data 

Layer (CDL) of in America, Annual Crop Inventory (ACI) in Canada and, Crop Map of England (CROME), in England and 

Land Cover Map of France (LCMF). Moreover, their F1- scores ranged from 0.84 to- 0.92 based on the independent validation 

samples, implying a good consistency with ground truth. TFurthermore, he we found that rapeseed crop rotation is at least≥ 2 

years in almost all countries in this study. Our derived maps with reasonablehigh accuracy suggest the robustness of pixel- and 20 

phenology-based algorithm in identifying rapeseed over large regions with various climate and landscapes. The derived 

rapeseed planting areas freely downloaded can be applied to predict rapeseed production and optimize planting structure. The 

product is available publicly at http://dx.doi.org/10.17632/ydf3m7pd4j.3  (Han et al., 2021). 

1 Introduction 

Currently, fossil fuels are the main source of energy (Fang et al., 2016; Shafiee and Topal, 2009). However, overexploiting 25 

fossil fuels will exposure human increasinge risks for human survival such as nonrenewable fossil fuels, greenhouse gas 

emission, and environmental pollution (Fang et al., 2016; Höök and Tang, 2013). Biofuel energy seems to be a promising 

alternative energy source and has become a key concern (Hassan and Kalam, 2013). Rapeseed is an important source of 

http://dx.doi.org/10.17632/ydf3m7pd4j.3
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biofuels, edible oil, animal feed, and protein powder plants Rapeseed is not only an important biofuel, but also edible oil, 

animal feed, and protein meal plant species all over the world (Firrisa et al., 2014; Malça and Freire, 2009; Sulik and Long, 30 

2016). As a widely grown winter or spring crop, the global rapeseed production has been increasing rapidly in the past few 

decades. Rapeseed dData products on about the planting densitiesplanting intensities, their healthgrowth conditions, and 

productivity of rapeseed are dependent on precise and accurate planting area maps (Zhang et al., 2019).  HoweverNonetheless, 

such maps are yet unavailable, a great gap for global food and energy security. 

Global agricultural statistics on rapeseed in many regions come from field surveys, field sampling, and producer reports (Arata 35 

et al., 2020; Fuglie, 2010). Ground-based methods are time-consuming and labor-intensive and fail in describing the detailed 

spatial information of rapeseed fields (Wang et al., 2020a). Remote sensing technology plays an important role in agricultural 

monitoring, providing accurate and objective spatial-temporal crop information (Dong et al., 2016; Salmon et al., 2015). In 

previous literature, MODIS and Landsat were used to identify different crop types over large scales (Dong et al., 2016; Gong 

et al., 2013; Salmon et al., 2015; Xiao et al., 2006; Zhang et al., 2020). With a higher spatial resolution than MODIS and 40 

Landsat data, Sentinel-1/2 (S1/2) show a greater power for high-resolution crop mapping (Malenovský et al., 2012; Singha et 

al., 2019). 

At present, many land cover products from remote sensing have  publicly provided openly a cropland layer, e.g. the Fine 

Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) project (Gong et al., 2013), the GLOBCOVER 

land-cover maps (Arino et al., 2008), the Global Land Cover 2000 (GLC2000) map (Bartholomé and Belward, 2005), 45 

ChinaCropPhen1km (Luo et al., 2020), and Global Food Security-support data at 30 m (GFSAD30) (Phalke et al., 2020; Xiong 

et al., 2017). However, cropland identified by these products either failed in distinguishing different crop types or 

hadinindicated by a coarse  spatioo-temporal resolution (Teluguntla et al., 2018), andor also excluded rapeseed information. 

Till nowadays, there are few rapeseed maps on a large- scale, especially at 10m-resolution. The 30m-resolution Cropland Data 

Layer (Boryan et al., 2011) for the America and Annual Crop Inventory in Canada (Fisette et al., 2013) did classify various 50 

crops using the decision tree classification method based on a large volume number of training samples. However, the method 

is hard to apply into other developing regions due to a a lack of ground training samples (Xiong et al., 2017). A new method 

is highly required to map large-scale annual maps with high spatial resolution, which will be widely applicable for the regions 

with scare ground training samples. 

Five remote sensing-based methods for rapeseed mapping have been developed in recent decades: a) machine learning: 55 

supervised classifiers such as Random Forest (RF) (Griffiths et al., 2019; Preidl et al., 2020), and unsupervised classifiers such 

as  Iterative Self-Organizing Data Analysis Technique (She et al., 2015; Tao et al., 2020); b) a classifier based on time series 

data: e.g. an automatic rapeseed classification method using sentinel 2 images (Ashourloo et al., 2019); c) a threshold 

segmentation based on phenology (Tian et al., 2019); d) Multi-Range Spectral Feature Fitting (MRSFF) (Pan et al., 2013); and 

e) HSV transformation and Spectral Features (Wang et al., 2018). However, most methods only produce rapeseed maps for a 60 

small area based on very limited imageries taken on the rapeseed peaking flowering dates (Ashourloo et al., 2019; She et al., 

2015). The peak flowering dates vary by areas and cultivars because of differences in natural conditions and cultivation habits, 
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especially over a large- region (d’Andrimont et al., 2020; Ashourloo et al., 2019; McNairn et al., 2018). Thus, it is still a big 

challenge to automatically map rapeseed areas with a finer resolution over a large region by applying the above methods. 

Fortunately, aAs its powerful computing performanceC, cloud computing technology ishas developinged rapidly as its 65 

powerful computing capability (Gorelick et al., 2017) and has made high-resolution rapeseed maps possible over large areas. 

In the last decade, powerful computing performance has developed, Google Earth Engine (GEE) can provide unprecedented 

opportunities to process large amounts of remote sensing data with the most advanced cloud computing and storage capabilities 

(Gorelick et al., 2017). 

Considering the unique phenological characteristics of crops, many studies have indicated the potential ways based on 70 

phenology for crop identifying in large areas (Ashourloo et al., 2019; Dong et al., 2016; Liu et al., 2018b, 2020a; Zhang et al., 

2020). The algorithm based on phenology develops classification rules through analyzzing the unique characteristics of the 

crop, which have been successfully applied to mapping rice (Dong et al., 2016), soybean (Zhong et al., 2014), corn (Zhong et 

al., 2016), and sugarcane (Wang et al., 2020a),  but rarely applied to rapeseed.but not yet for rapeseed. Rapeseed has unique 

reflectance and scattering characteristics (Ashourloo et al., 2019; McNairn et al., 2018; Sulik and Long, 2015, 2016), and 75 

undergoes three canopy morphologies (Ashourloo et al., 2019; Rondanini et al., 2014), including leaves, yellow petals, and 

pods/branches. Each canopy shape strongly influences how solar radiation intercepts (Sulik and Long, 2016). Compared with 

other crops, rapeseed is more easily to be identified, of which the yellow flowers significantly increase the reflectance of red 

and green bands (Pan et al., 2013; Sulik and Long, 2015). Additionally, when rapeseed grows, the backscatter signal increases 

because of the rough canopy structure formed by the intertwined pods . (McNairn et al., 2018; Mercier et al., 2020; Tian et al., 80 

2019; Veloso et al., 2017). Thus we are sure the specific featurrues of reflectance values and scattering coefficients of rapeseed 

on from S-1/2 data will provide enough information for automatic rapeseed mapping of rapeseed over larger areas and with a 

finer resolution. 

Also,  

crop rotation is beneficial to the management of pests and diseases in crop production (Harker et al., 2015; Liu et al., 2018a). 85 

Previous studies have shown that crop rotation is one of the main causes of yield change in rapeseed production (Harker et al., 

2015; Ren et al., 2015). The soil's physical and chemical properties of the soil will change during crop rotation, and these 

changes will affect rapeseed growth (Ren et al., 2015). Most of the current studies are limited to field observations (Peng et 

al., 2015). The spatial distribution information of rapeseed rotation in different regions is still not very clear due to the lack of 

high-resolution rapeseed maps. It is necessary to explore the rapeseed rotation for the cultivation and management. 90 

Thus, we integrated multi-source data to: 1) develop a new method for identifying rapeseed ; 2) apply the new method to 

generate rapeseed maps with a spatial resolution of 10 m  from in three years (2017 to -2019) across the main planting areas 

of 33 countries; 3) analyzze the geographic characteristics of rapeseed planting and crop rotation. The proposed algorithm and 

its derived products may benefit scientists, decision-makers, scientists and local farmers to ensure food and ennergye security. 
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2 Materials 95 

2.1 Study area 

We This work identified rapeseed planting areas for 33 countries in three continents (North America, South America, and 

Europe) as they are the main rapeseed producers in the world (Fig. 1). The planting areas and production of rapeseed are large 

in Canada and the European Union (EU) (Carré and Pouzet, 2014; van Duren et al., 2015; Rondanini et al., 2012). According 

to the report by Statistics Canada, from 2000 to 2019, the sown rapeseed area of rapeseed in Canada increased by 1.7 times, 100 

and the production increased by 2.7 times (https://www.canolacouncil.org/). Rapeseed is grownn in most European countries. 

The EU's rapeseed production in of 2017 was approximately 1.92 times that ofin 2000 (d’Andrimont et al., 2020). Europe 

produces a large amount of biodiesel for the world every year. In 2008, 79% of the biodiesel feedstock crops in Europe were 

rapeseed (van Duren et al., 2015). Also, the Republic of Chile is the main rapeseed producer in South America and the country 

with a high yield of rapeseed in 2018 (38877 kg/ha). Rapeseed agriculture in these countries is important in food and energy 105 

security  (Carré and Pouzet, 2014). The climates in these three continents are different because of factors such as latitude and 

topography. Europe includes three climatic types: subtropics, boreal, and temperate (Fig. S1b) (Peel et al., 2007). The climate 

in the rapeseed growing areas in Canada and northern America is temperate and boreal (Fig. S1a). The Republic of Chile ihas 

the main subtropics climate (Fig. S1c). Rapeseed planting seasons are differentdistinctive because of differences in natural 

conditions (such as climate and temperature) in different countries (Singha et al., 2019; Wang et al., 2018), which brings great 110 

challengess to mapping rapeseed. 
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Figure 1. The locations of 33 countries and the sample blocks for phenological monitoring with a radius of 10 km (a-d). The 

33 countries include Canada, America, Chile, Ireland, England, France, Spain, Netherlands, Belgium, Luxembourg, Germany, 

Switzerland, Denmark, Sweden, Poland, Czech Republic, Austria, Slovenia, Croatia, Slovakia, Hungary, Estonia, Latvia, 115 

Lithuania, Belarus, Ukraine, Moldova, Romania, Bulgaria, Serbia, The Former Yugoslav Republic of Macedonia, Greece, 

Turkey. 

2.2 Data 

2.2.1 Remote sensing data 

We collected the Sentinel-2 (S2) and Sentinel-1 (S1) imagery (Table 1). The S1/2 satellites are launched by the European 120 

Space Agency (ESA) (Drusch et al., 2012; Torres et al., 2012). The highest spatial resolution of S2 images is 10 m. We used 

red (b4), green (b3), and blue (b2) spectral bands with 10 -m spatial resolution Top-Of-Atmosphere (TOA) reflectance 

observations. The S2 TOA product includes the Quality Assessment (QA) band, which was used to remove most of the bad-

quality images (e.g. clouds information) in this study. However, it is difficult to remove all clouds due to the quality of the QA 

band (Wang et al., 2020a; Zhu et al., 2015). The S1 includes four modes: Stripmap (SM), Interferometric Wide Swath (IW), 125 
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Extra Wide Swath (EW), and Wave (WV) (Torres et al., 2012). We used the IW mode, which provides dual-band cross-

polarization (VV) and vertical transmit/horizontal receive (VH) with a 12 day or 6-day repeat cycle and 10m space resolution 

(Torres et al., 2012). The S- 1/2 images were obtained on GEE. Also, we used QA bands to remove most of the bad-quality 

images on GEE (Sample code can be found at 

https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FCOPERNICUS_S2). See Table 1 for more 130 

details. 

2.2.2 Digital elevation model 

We used a spatial resolution of one arc-second (approximately 30 m) elevation data from the Space Shuttle Radar Terrain 

Mission (Table 1) (Farr et al., 2007). Then we calculated the spatial distribution of slop on GEE (Sample code can be found at 

https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2FUSGS_SRTMGL1_003) (Fig. S1d-f). Later, we 135 

extracted areas with a slope less than 10° to mask hilly terrain where rapeseed is unlikely to be planted (Jarasiunas, 2016). 

2.2.3 Cropland and agricultural statistics data 

In this study, cropland data from the GFSAD30 were used to identify major farming areas in different countries (Phalke et al., 

2020; Xiong et al., 2017). The existing crop data products containing rapeseed information include: 4four datasets: 1) the 30-

m Annual Crop Inventory (ACI) in Canada (Fisette et al., 2013), . 2) the 30-m Cropland Data Layer (CDL) was generated in 140 

America (Boryan et al., 2011) (. CDL and ACI layers are downloaded from on GEE). 3) the Crop Map of England (CROME) 

was generated in America in England. 4) the 10-m Land Cover Map of France (LCMF) was generated in France (Inglada et 

al., 2017). These three four crop layer products are generated based on satellite images and a large number of training sample 

collections. In this study, rapeseed maps in ACI, CDL, and CROME, and LCMF were used for accuracy verification at the the 

pixel level. The FAO releases annual statistics on the area for major crops in different countries or regions every year. We 145 

selected the statistics from FAO for accuracy verification. Please see Table 1 for more details. 

2.2.4 Crop calendars 

We used two crop phenological data sets to assist in extracting rapeseed phenological parameters, : (1) crop calendars in 

different countries (https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx) and field records of the crop phenology in Germany. 

The crop calendars come from the United States Department of Agriculture (USDA) which only records the planting and 150 

harvest time of rapeseed in some countries (Table S1). (2)The field records of the crop phenology in Germany are. In-situ 

observations from come crop phenological records shared by the Deutsche Wetterdienst (DWD) in Germany (Kaspar et al., 

2015). The DWD provides field observations of crop phenological periods following the Biologische Bundesanstalt, 

Bundessortenamt, and Chemical (BBCH) scale throughout Germany (Table 1). DWD records the start date and the end date 

of rapeseed flowering (d’Andrimont et al., 2020; Kaspar et al., 2015). Note that both crop calendars and DWD do not contain 155 

https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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information on the peak flowering dates of rapeseed. We used all stations that fully recorded the start and end of the flowering 

periods from 2017 to 2019 to assist infor extracting rapeseed phenological parameters. Finally, 281, 269, and 253 stations are 

available in 2017, 2018, and 2019, respectively. (the spatial distribution of the DWD rapeseed stations can be found in Fig. S2. 
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2.3 Methods 

2.3.1 Optical and SAR characteristics during the growing period of rapeseed 

We selected available rapeseed parcels and in-situ observations of DWD from different climate regions and different years to 180 

analyyzze the optical (reflectance and vegetation index) and SAR (VV, VH) characteristics of rapeseed along time. For 

example, Fig. 2 shows the time series of one rapeseed parcel around the DWD station (station with an idid: equal to 13126) in 

2018. The rapeseed parcel shows unique visual characteristics during the flowering period (Fig. S3). The flower is 

becomingbecomes  yellow when rapeseed is approaching peak flowering (d’Andrimont et al., 2020; Pan et al., 2013; Tao et 

al., 2020; Wang et al., 2018). Rapeseed is yellow-green on the true color images of S2 and Google Earth during the flowering 185 

period (Fig. S4). The reflectance of the green band and red band  separately increased from 0.09 and 0.06 (2018/4/17, before 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://search.earthdata.nasa.gov/search?q=GFSAD30
https://search.earthdata.nasa.gov/search?q=GFSAD30
https://search.earthdata.nasa.gov/search?q=GFSAD30
https://search.earthdata.nasa.gov/search?q=GFSAD30
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI
https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI
https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI
https://developers.google.com/earth-engine/datasets/catalog/AAFC_ACI
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://data.gov.uk/dataset/fb19d34f-59e6-48e7-820a-fe5fda3019e5/crop-map-of-england-crome-2018
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=575620&lsbId=646252
http://www.fao.org/faostat/en/#data/QC
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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flowering) to 0.16 and 0.14 (2018/5/7, peak flowering), and decreased after flowering (Fig. 2a). The reflectance of the blue 

band is lower than red and green bands during flowering. The reflectance of the red band increased again and higher than the 

green band during the rapeseed harvest period. This is similar to previous research results (Ashourloo et al., 2019; Sulik and 

Long, 2015). The Normalized Difference Yellow Index (NDYI, Eq.1) can capture the increasing yellowness in the time- series 190 

(d’Andrimont et al., 2020; Sulik and Long, 2016). Also, the NDYI increased from -0.03 on April 17 to 0.21 on May 7 (Fig. 

2b). NDYI reaches a peak during the flowering time of rapeseed. This unique spectral feature of rapeseed in the flowering 

period is caused by the yellow petals. 

𝑁𝐷𝑌𝐼 =
𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                                                    (1) 

where green is the TOA reflectance of the green band (b3) of the S2 imagery, blue is the blue band (b2) reflectance. 195 

S1 backscattering changes with the growth of rapeseed. We used the VV and VH time series smoothed by the Savitzky–Golay 

(SG) filter (window size 3) (Chen et al., 2004) as input to identify the phenological parameters of rapeseed parcels. We ran the 

SG filter algorithm on MATLABMatlab 2020b. The results show that there are local minimums in both the VV (-11.20, May 

8) and VH (-15.60, May 5) time series during rapeseed flowering (Fig. 2c-d). Furthermore, VH reaches the maximum (-9.64, 

June 1) during the pod period (Fig. 2d). Unlike other crops, rapeseed has two distinct green green-up phases: the flowering 200 

period and the pod period (Ashourloo et al., 2019; Bargiel, 2017; Mercier et al., 2020; Veloso et al., 2017). The petals of 

rapeseed decrease the scattering of VV and VH, while the pods increase the scattering intensity of VH (d’Andrimont et al., 

2020; Bargiel, 2017; McNairn et al., 2009; Mercier et al., 2020). The NDYI and backscattering (VV, VH) time series of 

rapeseed in different climate regions (Fig. S4) also show the same characteristics. Hence, we used the features in both Optical 

and SAR to identify the rapeseed flowering and pod period in this study. Due to the difference in the revisit periods of S1/2 205 

satellites, rapeseed peak flowering dates are defined as the median dates extracted by optical and SAR indicators. 
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Figure 2. The time-series profiles of four features of the rapeseed pixels around one DWD station (id = 13126, Longitude: 

11.333268424°, Latitude: 52.200000463°) in Germany in 2018. (a), the mean reflectance values (red, green, and blue); (b), 

mean NDYI; (c) mean VH; and (d) mean VV; the filled color areas for standard deviation; BBCH for the in-situ observations 210 

of rapeseed phenology, with BBCH61 and, BBCH69, and BBCH50 for the start of flowering and the, end of floweringfalling, 

sprouting, respectively. (e), TThe rapeseed parcel around the DWD station is shown by red boundaries (image source: 

Copernicus Sentinel-2 data 2018). 

2.3.2 Sample blocks collected for phenological monitoring 

As a pre-requisite to mapping rapeseed at a large- scale, the phenology of rapeseed in different countries needs to be identified 215 

and delineated (Dong et al., 2016; Zhang et al., 2020). However, not enough observation records of rapeseed phenology are 

available on a large scale. Referring to the DWD method of observing phenology (Kaspar et al., 2015), we created a radius of 

10km sample blocks with a  radius of 10 km over rapeseed producing areas of different countries and randomly sampled 10 
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rapeseed parcels uniformly for each block (Fig. S5). The rapeseed plots were identified by phenological characteristics 

obtained from the visual- interpretation and  reference data including: (1) high-resolution images available in S2 and Google 220 

Earth(2)  as well as Spectral reflectance (red band and green band) and spectral index (NDYI) and scattering coefficient profiles 

(VV and VH) from the S1/2 time series. . It should be noted that the Google Earth images during rapeseed flowering were 

used to assist with the visual interpretation of rapeseed parcels. (2) Spectral reflectance (red band and green band) and spectral 

index (NDYI) and scattering coefficient profiles (VV and VH) from the S1/2 time series. The rapeseed parcels without that do 

not havewithout high-quality available time-series imagery available because of data quality issues such as clouds were omitted. 225 

Finally, 75 sample blocks in 2017, 84 sample blocks in 2018, and 84 sample blocks in in 2017, 2018, 2019 were uniformly 

and randomly collected. The sample blocks are shown in Fig. 1. We extracted the growth phenology information of rapeseed 

by calculating the average of the pixels of all rapeseed parcels in each block in  for different regions. 

2.3.3 Flowering and pod phase detection in different countries 

The phenology of rapeseed is different among regions. To find out the flowering dates of rapeseed in different countries, we 230 

evaluated each phenological sample block from 2017 to 2019. First, we calculated the average values of all pixels in the 10 

rapeseed parcels we selected beforewe calculated the time-series average value of S1/2 of all sample rapeseed parcels pixels 

during the rapeseed growth period for each block in conjunction with the crop calendar. VV and VH time series for each 

sample rapeseed parcels were smoothed using the SG filter. Second, these S1/2 peak flowering dates and pod dates were 

derived for all sample blocks based on the method in SSection 2.3.1. We found the peak flowering dates of rapeseed have an 235 

explicit obvious latitude gradient, especially in Europe (Fig. S6). Also, we found the signal with the maximum of VH is within 

45 days after the peak date of flowering (Fig. S7). Then we calculated the difference in the peak flowering date of each sample 

block in different years. The results showed that the error flowering peak dates of most sample parcels were  wasere within 10 

days of advanced or delayed by 10 days (Fig. 3d). Therefore, it is reasonable to use the same timeperiod for rapeseed 

identification in different years in the same area in this study. Previous studies and field observation records show that the 240 

flowering period of rapeseed is about 30 days (d’Andrimont et al., 2020; Chen et al., 2019; Kaspar et al., 2015; She et al., 

2015). Therefore, we divided each month into two- time periods (the 15th is the dividing line). Two consecutive half-months 

are defined as suitable classified flowering periods for classifying flowering dates. Finally, we designated the flowering period 

for each sample block based on the peak flowering dates (Fig. 3a-c). 
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  245 

Figure 3. Flowering phenology of rapeseed. (a-c) TThe spatial distribution of rapeseed flowering periods for sample blocks 

(the number with six bits in Fig.3-c means: the 1st, 2nd, 4th, and 5th digits represent the month; 3rd and 6th digits represent the 

time of each month, where 1 and 2 represent the first half and second half of the month respectively). (d)  TThe boxplot 

showing the changes in peak flowering dates of each sample block in three years.  

2.3.4 Developing phenology- and pixel-based algorithm for mapping rapeseed 250 

The analysis of temporal profile analysis atat rapeseed parcelsfields in this study and together with many previous studies 

indicated that the spectrum at flowering stage and the scattering signal at pod stage are the key features to identify rapeseed 

(Ashourloo et al., 2019; Bargiel, 2017; Han et al., 2020; Mercier et al., 2020; Sulik and Long, 2015; Veloso et al., 2017). 

Previous studies have found the high reflectance values of the green band and red band at the flowering stage for rapeseed are 

the main spectral factors to distinguish from other crops (Ashourloo et al., 2019). We developed aone phenology- and pixel-255 

based rapeseed mapping algorithm for rapeseed mapping using four features,: including 1) spectral bands (red and green), 2) 

spectral indices (NDYI), 3) polarization bands (VH), and 4) terrain (slope). And fFour primary steps were orderly conducted 

for mapping annual planting areas (Fig. 5). 
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Step 1: determining the threshold of the feature indicators. Thresholds of indicators are the key parameters to determine the 

area accurancy. identified. We analyzzed the histograms of the random samples selected from different countries as the 260 

previous studies (Zou et al., 2018) suggested. We found consistently the normal distributionssimilarities of green band, blue 

band, and NDYI (Fig. S9) for all samples during the flowering stage from different regions. 98% ofMost (98%) of the rapeseed 

pixels showed red > 0.07, green > 0.11, and NDYI > 0.05. 

However, we found some pixels with a relatively higher NDYI, which would be misclassified into rapeseed while beaccause 

in fact they are polluted by the cloud with a “rainbow” appearance, would be misclassified into rapeseed. Such 265 

misclassifications caused by some bad-quality observations from the S2 image cann’t be removed due to the limited quality of 

the QA band and simple cloud score algorithm (Wang et al., 2020c; Zhu et al., 2015). The “rainbow” of the cloud is comecomes 

from the push-broom design of S2 (Fig. 4a) and spectral misregistration (For more details, please refer to ESA, 2015a, and 

ESA, 2015b). Based on the principle of the relative displacement of each spectral channel sensor in the S2 push-broom design 

(Frantz et al., 2018; Liu et al., 2020b; Zhao et al., 2018), we developed a new spectral index (NRGBI) to reduce the influence 270 

of "rainbow" (Eq.2). The scatter plot of NDYI and NRGBI of rapeseed field parcel samples and "rainbow" samples around 

clouds samples (visual interpretation) showed that the NRGBI (threshold is -0.05) can effectively distinguish rapeseed from 

the "rainbow" (Fig. 4h). 

𝑁𝑅𝐺𝐵𝐼 =
𝑟𝑒𝑑−𝑏𝑙𝑢𝑒

𝑟𝑒𝑑+𝑏𝑙𝑢𝑒
−

𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
                                                                                                                                               (2) 

where red, green, and blue are the TOA reflectance values of the red band (b4), green band (b3), and blue band (b2) of the S2 275 

imagery, respectively. The sample GEE code for NRGBI index calculation can be found at 

https://code.earthengine.google.com/a39fc699a276d018778d59c5b085d960. In additionAlso, NRGBI can be calculated based 

on Eq.2 in other GIS software (e.g. QGIS and ArcGIS) of on the local computer.  
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Figure 4. Causes, examples, and solutions for the “rainbow” cloud effect. (a) Staggered staggered detector configuration of S2 280 

(ESA, 2015a); (b-f) examples of spectral misregistration effects and performance of cloud masking methods (each image was 

masked by quality assurance band (QA60)) for Sentinel-2 TOA image, with the red arrows indicating the cloud “rainbow” 

appearance at high altitude in the S2 image (image Image source: Copernicus Sentinel-2 data); (g) Sentinel-2 TOA image of 

rapeseed at the flowering stage, with the yellow arrow for the rapeseed fields; (h) scatter plots of NDYI and NRGBI of rapeseed 

field samples and "rainbow" around clouds samples from the S2 images, with the color density for the number of pixels. 285 

Step 2: identifying all rapeseed pixels from different images during the flowering period flowering period and aggregating 

them into annual rapesesed planting areas (Fig. 5). Because the peak flowering dates and the number of available images of 

rapeseed fields in a region are different (Fig. S10), rapeseed classifications based on a single image could fail in capturing 

rapeseed flowering dynamics (Ashourloo et al., 2019). To avoid the misclassification from bad-quality observations during 

the rapeseed flowering stage, we aggregated the aggregate approach from all the classified results from available S2 images 290 

during the flowering period was used. Hence, a larger number of images will result in better performance (Fig. S10). 

Step 3: combining optical with SAR images to ensure the accuracy of the rapeseed maps. The high VH values during the 

rapeseed pod stage isare another distinct feature that can distinguishes it rapeseed from other crops (Mercier et al., 2020; Tian 
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et al., 2019; Van Tricht et al., 2018; Veloso et al., 2017). Considering the variability of flowering in different fields and the 

duration of the pod stage (SSection 2.3.2), we calculated the maximum VH during the period between the second half of the 295 

flowering stage and the next 30 days after the flowering stageit (~ 45 days) (See the grey part in Fig. 5). Within 45 days, at 

least three S1 satellite images are available in the study areas. Also, the areas with a slope > 10° (where rapeseed is unlikely 

to be planted) were removed (Jarasiunas, 2016). All pixels that meet the requirements are defined as rapeseed. 

Step 4: removing the “salt and pepper” noise according to the connected componentsdomain (objects) threshold (the size of 

the neighborhood in pixels) of the pixels and filling the gaps inside the parcels (Hirayama et al., 2019). In this study, we used 300 

8-connected rules, which means that the edges or corners of the pixels are connectedin touch. If two adjacent pixels are 

connected, they are part of the same object (https://www.mathworks.com/help/images/ref/bwareaopen.html). The bwareaopen 

function in MATLAB 2020b software was used to remove the objects which are less than the threshold. The thresholds of 

different indicators in different regions can be found in Table S3.The thresholds of different indicators in different regions can 

be found in Table S3. 305 

   

Figure 5. The workflow for mapping rapeseed areas using the newproposed phenology- and pixel-based algorithm. Global 

Food Security-Support Analysis Data at 30m (GFSAD30); normalized difference yellowness index (NDYI); The new spectral 



16 

 

index (NRGBI), Deutsche Wetterdienst (DWD), Food and Agriculture Organization of the United Nations (FAO), Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), R-squared (R2), Cropland Data Layer (CDL), Annual Crop Inventory 310 

(ACI), Crop Map of England (CROME), Land Cover Map of France (LCMF), user’s accuracy User Accuracies (UA), Producer 

producer’s accuracyAccuracies (PA), and F1 -score (F1). 

2.4 Accuracy assessment 

Total three ways were applied to assess the accuracy of the rapeseed map acquired by our new phenology- and pixel-based 

algorithm. First, we compared the rapeseed areas retrieved by the new method with FAO statistics. Our rapeseed data is a 315 

binary (0 or 1) map with a spatial resolution of 10 m. , equivalently as each pixel = 100 m2. We then can calculate the total 

area of rapeseed maps in each country and compare them with the national rapeseed statistics. The RMSE (Eq.3), and the MAE 

(Eq.4), and the coefficient of determination (R2, Eq.5) are used to verify the accuracy of rapeseed mapping. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑓𝑖)

2

𝑛

𝑛
𝑖=1                                                                                                                                                              (3) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|
𝑛
𝑖=1                                                                                                                                                               (4) 320 

𝑅2 =
(∑ (𝑦𝑖−𝑦𝑖̅̅̅)(𝑓𝑖−𝑓�̅�)

𝑛
𝑖=1 )2

∑ (𝑦𝑖−𝑦𝑖̅̅̅)
2𝑛

𝑖=1 ∑ (𝑓𝑖−𝑓�̅�)
2𝑛

𝑖=1

                                                                                                                                                       (5) 

where n is the total number of countries. 𝑦𝑖  is the mapped rapeseed planting areas, 𝑦�̅� is the corresponding mean value, 𝑓𝑖 is 

the records rapeseed planting areas from FAO, 𝑓�̅�  is the corresponding mean value.  

Also, we compared the rapeseed maps with two four open open-access datasets that include rapeseed layers (ACI, CDL, and 

CROME, and LCMF) in Canada, America, and England, and France aton the the pixel scalelevel. We used them as the 325 

reference data for 2018, 2019 (Boryan et al., 2011; Fisette et al., 2013). To unify the spatial resolution of the rapeseed maps, 

CDL, ACI, and CROME were resampled to 10m resolution for comparison. UA (Eq.6), PA (Eq.7), and F1 (Eq.8) were 

calculated based on confusion matrices (Table S2) to measure the classification accuracy. 

Thirdly, we also randomly selected randomly verification samples based on the previous studies (Pekel et al., 2016; Wang et 

al., 2020b) to validate the rapeseed maps. A grid (0.2 latitudes by 0.2 longitudes) was generated within the rapeseed map in 330 

2018 acquired by our pixel- and phenology-based method. Two points (rapeseed and non-rapeseed) was were generated 

randomly in each grid by visually interpreting visually images available in thefrom S2 and Google Earth, together with spectral 

reflectance (red and green bands), spectral index (NDYI), and scattering coefficient (VV and VH) profiles from the S-1/2 time 

series. The confusion matrices were similarly used to assess the accurancy according to Eqs 6~8. 

𝑈𝐴 =
𝑥𝑖𝑗

𝑥𝑗
                                                                                                                                                                                     (6) 335 

𝑃𝐴 =
𝑥𝑖𝑗

𝑥𝑖
                                                                                                                                                                                     (7) 

𝐹1 = 2 ×
𝑈𝐴×𝑃𝐴

𝑈𝐴+𝑃𝐴
                                                                                                                                                                         (8) 
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Where xij is the value of the i-th row and j-th column; xi is the sum of the i-th row; xj is the sum of the j-th column. Although 

the statistical data and existing products are not completely the same as the real areas and locations of rapeseed planted on the 

ground, these datasets do benefit to to validateing the accurancy of rapeseed maps at different scales (national and pixels). 340 

3 Results 

3.1 Accuracy assessment 

We compared the derived rapeseed areas with those from the FAO statistics. The total planting areas of rapeseed are well 

consistent with the agricultural statistics at the national level, with RMSE of 1459.64 km2, MAE of 785.25 km2, anmd R2 of 

0.88 (Fig. 66). We found the derived areas in 2017 and 2019 are larger than those in 2018, especially for the countries with the 345 

relatively smaller rapeseed areas (e.g. many European countries indicated by the small subplotgraph located in at the bottom 

right and below of Fig. 6. The more availability of S2 images together with better quality of data in 2018 could contribute to 

the larger rapeseed areas derived by the new method (Liu et al., 2020a).  

  

Figure 6. Comparison of rapeseed areas with the FAO statistics at the national level. The names of all countries can be found 350 

in chapterSsection 2.1.  
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The comparision of our rapeseed maps with those of America CDL in 2018, 2019, Canada ACI and, England CROME, France 

LCMF in 2018 was consistently at pixel level indicated by a higher accurancy according to the confusion matrices matrix 

values (Table 2S4). Fig. 7a shows that the rapeseed areas calculated from our maps are consistently more comparable to FAO 355 

statistics than those from existing products. The UA, PA, and F1 varied by countriescountry, with PA of 0.7170–0.80, UA of 

0.93–0.9697, and F1 of 0.81–0.86 (Fig. 7b). The rapeseed areas  retrieved obtained by us accounted for around 71% rapesesed 

areas from of 2018 CDL, 71% from of 2018 ACI, and 80% of from 2018 CROME, and 70% from of 2018 LCMF, and 79% 

from of 2019 CDL. 

Table 2 The comparison of rapeseed (pixels) in Canada, America and England from different data sources in 2018, 2019, with 360 

rows from reference classification, while columns from our derived map 

  Non-rapeseed  Rapeseed Total PA UA F1 

ACI 

2018 

Non-rapeseed  434,530,41     

Rapeseed 469,895,705 114,144,421,6 161,133,992,1 0.71 0.96 0.82 

Total  118,489,725,7     

CDL 

2018 

Non-rapeseed  551,173,7     

Rapeseed 321,272,80 778,389,57 109,966,237 0.71 0.93 0.81 

Total  833,506,94     

CDL 

2019 

Non-rapeseed  619,139,3     

Rapeseed 251,284,08 935,079,60 118,636,368 0.79 0.94 0.86 

Total  996,993,53     

CROME 

2018 

Non-rapeseed  448,424,3     

Rapeseed 180,611,43 712,890,46 893,501,89 0.80 0.94 0.86 

Total  757,732,89     

The confusion matrices (Table S54) based on random sampling points show that the accuracy of the rapeseed maps 

varies in different regions. We found Europe shows the highest accuracy (F1 0.91), followed by Chile (F1 0.9), and the lower 

F1 (0.84) indicated by North America. Such disparity in accuracy might be ascribed to the different availability of high-quality 

images in the studied areas. Nevertheless, all rapeseed maps derived by our method show a reasonable accuracy across such a 365 

larger region. 
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Figure 7. Validation results of the classifications. (a) Tthe percentage of the rapeseed area of the existing products and 

classification results in the FAO's statistics. (b) Tthe user’s accuracy (UA), producer’s accuracy (PA), and F1 -score (F1) of 

classifications in four countries (Canada, America, England, and France). The existing products were used as reference data.  370 

The confusion matricesmatrix values (Table S5) based on random sampling points show that the accuracy of the 

rapeseed maps varies in different regions. We found Europe shows the highest accuracy (F1, 0.91), followed by Chile (F1,1 

0.9), and North America (the lower F1, (0.84) indicated by North America. Such disparity in accuracy might be ascribed to 

the different availability of high-quality images in the studied areas. The results showed that the rapeseed maps derived by our 

method showhad a reasonablesatisfying accuracy across such a larger region. 375 

 

 

3.2 More details of rapeseed maps derived by the new method 

To show more details of rapeseed maps derived by from our method, we captured selected some images in some areas of each 

country. The rapeseed maps show good spatial consistency with the actual rapeseed planted on the ground (Fig. 78). From the 380 
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area densely planted by rapeseed in Canada (Fig. 1089-a) to relatively sparse planting ones such as in Chile (Fig. 9108-b) and 

European countries (e.g. Fig. 9108-c,d) (Lowder et al., 2016), from regular rectangles (e.g. Fig. 9108-a, h) to irregular parcels 

(Fig. 9108-c, d), from temperate oceanic climate (Fig. 9108- c-e) to temperate sub-continental (Fig. 9108-a, f), or even 

subtropic climate (Fig. 9108-b), all fileld details were indicated clearly in our maps. Fragmentation of land in some European 

countries, especially in Eastern and Central Europe after land reform in 1989 (Hartvigsen, 2013, 2014), such as Estonia 385 

(Fig.7f8f) (Jürgenson and Rasva, 2020; Looga et al., 2018). Although under different climates, terrain, landscapes, and over a 

very larger region, the algorithm proposed in our study consistently showsed a good satisfying classification accuracy across 

33 countries. Thus, the rapeseed maps based on S-1/2 data can effectively identify the fields in detail with high spatial 

resolutions and clear field boundaries. More rapeseed classification details can be found in Fig. S12 and Fig. S198. 

Furthermore, our results showed a consistent distributions between our rapeseed maps and the existing products at the the pixel 390 

level (Fig. S13-S14). The yellow grids (701%~80%) mean they are simultaneously identified as rapeseed areas both by our 

method and ACI/CDL/CROME/LCMF datasets, while red grids indicate for disagreement. The difference in accuracy might 

be caused by the number of high-quality images available in different regions (Dong et al., 2016). Despite the various ground 

conditions, methods, images, and spatial resolutions among the products, the comparison results further verify the accuracy of 

our rapeseed map (Gong et al., 2020; Singha et al., 2019).  395 
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Figure 78. Spatially- explicit details of rapeseed maps in eight countries with diverse crop structures in different years (the 

yellow words show the climatic zones). The upper layers were RGB composite images using use the red (b4), green(b3), and 

blue (b2) bands from Sentinel-2 with good-quality observations during the flowering period of rapeseed (image source: 

Copernicus Sentinel-2 data). The climate zone data is from the Food Insecurity, Poverty and Environment Global GIS 400 

Database (FGGD). 

3.3 Spatial patterns of rapeseed planting areas 

Canada shows the largest rapeseed planting area (Fig. 89, Fig. S154), with the a total area of 118,489.73 km2 in 2018, higher 

than those in Europe (106,814.67 km2). France and Germany are two leading rapeseed growing countries in Europe, accounting 

for around 66.3% of European rapeseed areas together with the other three countries (EnglandUnited Kingdom, Poland, and 405 

Ukraine). The country-wide rapeseed areas in all 33 countries were further normalized to show clearly the spatial patterns (Fig. 



22 

 

S14S15). The spatial patterns of three years (2017~2019) are consistent at the national level. Moreover, we also plotted the 

geographic characteristics of rapeseed areas along latitude and longitude by for three regions (Fig. 89). Rapeseed in Europe is 

widely planted in the countries with a latitudes of 45~56°N and longitudes of -2°~4°, 9°~19°, and 22°~27°, with exception of 

the steep mountainous areas and the cold northern areas (Fig. 8a9a) (van Duren et al., 2015). In North America, the areas with 410 

the latitudes of 44~44.5°N, 51~55°N, 56~57°N and longitudes of -118°~-117°, -114°~-98° are densely distributed by rapeseed 

(Fig. 8b9b).  
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Figure 89. Spatial distribution of rapeseed areas at 10m- resolution along latitude and longitude gradients in 2018., (a) Europe 

and Turkey., (b) Canada and America. 415 
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4 Discussion 

4.1 Investigating the rapeseed rotation systems 

We obtained three-year rapeseed maps at a 10-m spatial resolution, and with a higher accurancy which was validated by annual 

national statisticstatitisc books, open accessed public products, and random sampling points at 0.2°×x 0.2°grids. These 

rapeseed maps, with good quality for three consecutive years, provide a new opportunity to investigate rapeseed rotation 420 

systems (Liu et al., 2018a). Crop rotation information is considered as an important factor for crop yield, soil degradation, and 

greenhouse gas emissions (Harker et al., 2015; Liu et al., 2018a; Ren et al., 2015; Rudiyanto et al., 2019; Zhou et al., 2015). 

Thus, we selected 25 representative areas (Fig. S165) to analyzze the rapeseed rotation patterns according to the three 

criterionscriteria. Firstly, : 1) high-the quality of images is high. available during the annual rapeseed flowering period from 

2017 to 2019; 2) Secondly, thehigh rapeseed classification accuracy of rapeseed is high. Thirdly, ; 3) rapeseed is the main crop 425 

type and a large areathe area of rapeseed is large is planted by rapeseed every year. The rapeseed rotation was calculated by 

the frequency in each rapeseed pixel (Fig. S176-187).  

 

Please note that the longest rapeseed rotation break that can be observed is 2 years due tobeaccause there are only three years 

(2017-2019) of rapeseed maps available. Thus, to more accurately express the pattern of rapeseed rotation break, Wwe 430 

classifiedclassfied the rapeseed rotation break into three types: ≥≥ 2 years, 1 year, 0 years in this study (Fig. 9 10 and Fig. 

S176-18)7. We found most countries show the a rotation break ≥ greater than or equal to≥ 2 years (the highest ratios of green 

parts) (Fig. 910), especially for European countries (Fig. 910-b). The rotation break ≥≥ 2 years in Canada amounts to accounts 

for 70%, followed by 30% with a 1-year break (30%) (Fig. 910-a). The histogram futher confirmed that rotation breaks of 20 

locations have been identified as the rotation break ≥≥ 2 years, . The with their rates percentage of planting areas with rotation 435 

break ≥ 2 years is higher than 90% (Fig. 910-d). Many previous studies have found that a two- or three-year rotation break 

will significantly reduce the number of spores, especially rhizomes and blacklegs, suggesting rotation system is an important 

step in controlling diseases (Gill, 2018; Harker et al., 2015; Ren et al., 2015; Zhou et al., 2015). Moreover, rapeseed rotation 

will also benefit yield, insects, moisture, fertility, and reducing weeds (Bernard et al., 2012; Harker et al., 2015; Pardo et al., 

2015; Peng et al., 2015; Ren et al., 2015). Thus, more efforts should be input to produce longer time-series rapeseed maps, and 440 

obtain detailed rotation information in the future . 
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Figure 9 10. Crop rotation. (a-c) TThe proportions of the total area planted by rapeseed for three types of rapeseed rotation 

breakss to the total area planted by rapeseed. The scope sample blocks of each area selected can be foundfor each area are in 

the red rectangle red in Fig. S15S16. (d) TThe histogram of numbers of areas with green parts (≥ ≥ 2-year break) in Fig. 9 10 445 

a-c. 

4.2 Uncertainty analysis 

Generating annual high-resolution maps of a specific crop over a larger region is a big challenge (Gong et al., 2020; Liu et al., 

2018b, 2020a). Pixel-and phenological-based algorithms, multisource remote sensing data, and the GEE are useful to map 

rapeseed with at high -resolution and over larger areas. Besides, the proposed algorithm does not need a large number of 450 

training sample data and reduces disturbance from agronomy differences by combining images of multiple dates. However, 

the uncertainty are is from the followsfollowing aspects. : 1) cropland Cropland layer. We used the GFSAD30 datasets to 

identify croplands. However, GFSAD30 has its limitations such as classification error (Phalke et al., 2020). 2) Tthe number of 

satellite images available. Although our annual rapeseed maps are consistent with FAO statistics, and show higher accuracy 

comparing with existing products, the maps are limited by the good-quality observations during the critical growth stages. For 455 

example, Fig. 110a shows that there is anthe error in the area of France in 2017,  and error which could be attributed to the 
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lack of clear S2 images during the rapeseed flowering period (Fig. 110b). Rapeseed The rapeseed flowering period is generally 

characterized by higher NDYI, red band, and green band reflectance, thus rapeseed pixels are likely to be misclassified if the 

images during the flowering stage were missthus missing the peak will fail in identifying rapeseed pixelsing (Fig. 110c). 3) 

tThresholds for different indicators. The threshold is the key for mapping crops (Ashourloo et al., 2019; Dong et al., 2016; 460 

Liu et al., 2020a; Wang et al., 2020a; Zhang et al., 2015). Although the reference thresholds for three regions are given in this 

study, it should be cautious when applying them into other regions. 4) tThe complexity of the ground environment. For example, 

landscape types might impact the accuracy of rapeseed maps (Wang et al., 2020a). 

 

Figure 1011. One dDescriptions for the classification limitation. (a) Rapeseed map with an error in France in 2017 (Lon. 465 

2.0598242°6'35.368"E, Lat. 46.73498746°44'5.953"N). (b) Availability of time series Sentinel-2 images during rapeseed 

flowering phases. (c) Comparison of the time series of different sites indicating how the peak NDYI is missed. 

4.3 Implications and improvements 

Despite the above limitations, the new phenology-based method proposed by us has the potential to extend to other regions by 

revising modifying the phenology metrics. Recently, the Harmonized Landsat and Sentinel-2 database has improved the spatial 470 

resolution and shortened the revisit cycle of images (Claverie et al., 2018; Shang and Zhu, 2019). Similar or even higher 

rapeseed classification accuracy can be expected. Furthermore, remote sensing data fusion algorithms have been continuously 

developed (e.g., STARFM and ESTARFM) (Zhu et al., 2010). Finnally, various deep learning models have been explored for 

classifying crops and lowering errors (Hu et al., 2019; Zhong et al., 2019). Integrating phenological metrics and deep learning 

models might further improve rapeseed mapping accuracy. Thus, such rapeseed products will objectively track the dynamics 475 

of rapeseed planting areas as well as agricultural management in the future. 
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5 Data availability 

The rapeseed map produced is accessible at Mendeley Data (http://dx.doi.org/10.17632/ydf3m7pd4j.3) (Han et al., 2021). The 

rapeseed maps with 10  m resolution are provided in this study. The dataset includes a set of GeoTIFF images in the ESPG: 

4326 spatial reference system. The values 1 and 0 represent rapeseed and non-rapeseed, respectively.  We encourage users to 480 

independently verify the rapeseed map. In additionAlso, Sentinel 1/2 images, CDL, ACI, and SRTM are available on GEE 

(https://developers.google.com/earth-engine/datasets/). For more detailed information about the data collected in this work, 

please see Table 1. 

6 Conclusions  

Large-scale and high-resolution rapeseed maps are the basis for crop growth monitoring and production prediction. We 485 

designed a new method for mapping rapeseed based on the spectral and polarization features and multi-source data. The new 

algorithm have has produced three annual rapeseed maps (2017~2019) at 10m spatial resolution in 33 countries. Three different 

verification methods indicated that our products rapeseed maps have reasonablerelatively higher accuracy. Compared with 

existing products at the pixel level in the four countriesCanada, America, England, and France , PA, UA, and F1 are 0.70–

0.80, 0.93–0.97, and 0.81–0.86, respectively. Also, the F1 ranged from 0.84 to 0.92 based on the independent validation 490 

samples. Our approach reduces disturbances from different planting times and bad-quality observations in to some degree. The 

10m rapeseed maps do provide more spatial details of rapeseed.  FinallyAlso, we have found that rapeseed crop rotation is 2 

years or longer or more in almost all countries in this study. The rapeseed mapping method proposed in this work in this study 

could be applied into other regions and other crops. The derived rapeseed data product is useful for many purposes including 

crop growth monitoring and production, rotation system s planning. 495 
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