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Abstract. We present a representative set of data of interpreted ice thickness and ice surface elevation at the ablation area of 12 

the Artesonraju glacier between 2012 and 2020. The ice thickness was obtained by means of Ground Penetrating Radar 13 

(GPR), while the surface elevation was by means of automated total stations and mass balance stakes. The data coverage is 14 

about 14% of the whole glacier area. The results from GPR data show a maximum depth of 235±18 m and a decreasing 15 

mean depth ranging from 134±18 m in 2013 to 110±18 m in 2020. Additionally, we estimate a mean ice thickness change 16 

rate of -4.2±3.2 m yr
-1

 between 2014 and 2020 with GPR data alone, which is in agreement with the elevation change in the 17 

same period. The latter was estimated with the more accurate surface elevation data, yielding a change rate of -3.2±0.2 myr
-1

, 18 

and hence, confirming a negative glacier mass balance. The data set can be valuable for further analysis when combined with 19 

other data types, and as input for glacier dynamics modeling, ice volume estimations, and GLOF (glacial lake outburst flood) 20 

risk assessment. The complete dataset is available at https://doi.org/10.5281/zenodo.5571081 (Oberreuter et al, 2021). 21 

1 Introduction 22 

The glacier variations are sensitive to climate change (Oerlemans, 2005), particularly that of tropical glaciers (Rabatel et al., 23 

2013; Vuille et al., 2008) located between 23.43°N and 23.43°S, whose ablation processes occurs during the entire year, 24 

while accumulation only during the austral summer (Gonzales Molina & Vacher, 2014). Hence, any variation in climate 25 

affects tropical glaciers faster than glaciers from different latitudes (Uani, 2018). The tropical region of the Andes is 26 

experiencing glacier mass loss since the end of Little Ice Age and has been accelerating since 1980 (Rabatel et al., 2013; 27 

Unai, 2018), probably due to increase in air and ground temperatures. Vuille et al. (2015) showed an increase rate in air 28 

temperature of 0.13°C per decade in the last 60 years, while Aguilar-Lome et al. (2019) showed that the ground temperature 29 
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increased at a rate of 0.17°C per decade above 5000 m.a.s.l., causing tropical glaciers to be the type with the most area 30 

shrinkage globally at a rate of 1.6% per year (Li et al., 2019).  31 

The tropical Andes concentrate ~99% of the tropical glaciers of the planet (Kaser & Os maston, 2002), and of these, ~68% 32 

are located in Perú (Veettil & Kamp, 2019), distributed in the 18 glacier cordilleras. The Artesonraju glacier is located in the 33 

larger tropical glacier chain in the world: Cordillera Blanca, which concentrates ~40% of the Peruvian glacier surface, that is , 34 

448.81 km
2
 (INAIGEM, 2017), has a total length of 247 km (INAIGEM, 2018b) and it’s simultaneously the cordillera with 35 

the greater area glacier loss: 277.5 km
2
 in the last 54 years (INAIGEM, 2018b). Also, it contributes ~40% of water supply to 36 

the basin during dry season (Mark et al., 2005).  37 

The glacier surface and volume reduction is in some cases associated with the generation of proglacial lakes and vice versa. 38 

This association is stronger than that with land-terminating glaciers (King et al., 2018). Artesonraju glacier is one of those 39 

cases, with an area reduction of 10% in 46 years, from 5.97 km
2
 in 1970 (Ames, 1988) to 5.43 km

2
 in 2016 (INAIGEM, 40 

2018a). Its front has retreated 133 m in the period 2006-2019 (~10.2 m yr
-1

), causing a severe expansion of the Artesoncocha 41 

Alta lake, from 2,020 m
2
 in 2003 to 22,314 m

2
 in 2015 (INAIGEM, 2016). 42 

In order to estimate the glacier ice thickness and its variations, several methods can be applied : ice-core drilling (Garzonio et 43 

al., 2018; Zagorodnov et al., 2005), ice thickness modelling  by means of: a) glacier morphology and slope (Campos, 2020; 44 

Frey et al., 2014; Helfricht et al., 2019; Huss & Farinotti, 2012; Paul & Linsbauer, 2012), b) glacier surface velocities 45 

(Gantayat et al., 2014; Sattar et al., 2019); and ice thickness measurement by means of geophysical methods such as seismics 46 

and GPR (Booth et al., 2013; Colombero et al., 2019; Shean & Marchant, 2010; Zhao et al., 2016). GPR is a non-invasive 47 

technique based on transmission and reception of radiowaves ranging normally from 10 MHz to 6 GHz (Zhao et al., 2016; 48 

De Pascale et al., 2008), which has been successfully utilized in mountain glaciers for estimating ice thickness  (Gacitúa et 49 

al., 2015; Grab et al., 2021; Singh et al., 2010; Liu et al., 2020; Bohleber et al., 2017; Santin et al., 2019). However, up to 50 

date, the GPR technique has been scarcely applied in tropical glaciers in Perú and the records of systematic monitoring in 51 

Peruvian glaciers are also sparse. Hence, this study aims to contribute with ice thickness data and ice surface elevation data 52 

at Artesonraju Glacier in Cordillera Blanca (Caraz-Áncash), from 2012 to 2020, which is useful for ice volume estimates and 53 

as input for glacial dynamic models. 54 

1.1 Study area 55 

The study area comprises the Artesonraju glacier (Figure 1), a tropical glacier located in the northern side of the Cordillera 56 

Blanca. According to the most recent national glacier inventory, its centroid is located at 8°57’29’’  S, 77°38’0’’ W, its 57 

elevation ranges from 4902 to 5675 m.a.s.l. and an area of 5.43 km
2
 (INAIGEM, 2016, 2018a). The ablation area of the 58 

glacier consists of two parts: an uncovered part and a debris -covered part. 59 
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  60 

Figure 1  Study area of Artesonraju glacier. Glacier boundary from INAIGEM (2018a). 61 

2 Data and methods 62 

2.1 GPR data coverage 63 

The GPR data coverage from 2013 to 2020 is described in Figure 2 and in Table 1. Data from years 2013-2017 were 64 

collected by the Autoridad Nacional de Agua (ANA), while data from years 2018-2020 were collected by Instituto Nacional 65 

de Investigación en Glaciares y Ecosistemas de Montaña (INAIGEM). All data were obtained with the same radar system 66 

described in section 2.2. 67 
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 68 

Figure 2  GPR measurements coverage at Artesonraju glacier. Glacier boundary from INAIGEM (2018a). Background image: 69 

Landsat, 4th of July, 2014. 70 

Table 1  Ice thickness datasets used in this study. 71 

Date Collected by Total profile length (km) 
Coverage area as %  of 

total area (5.43 km
2
) 

2013-07-11 ANA 5.3 12 

2014-05-31/2014-06-03 ANA 18.6 14 

2015-07-21 ANA 1.1 1 

2017-05-30 ANA 8.0 7 

2018-08-16 INAIGEM 1.4 1 

2020-10-22 INAIGEM 6.8 7 

 72 

2.2 GPR System 73 

A low-frequency impulse-type GPR developed by Unmanned Industrial LTDA  has been used in order to estimate the ice 74 

depth, similar to the one used by Bello et al (2020) to measure the ice thickness on King George island in Antarctica . The 75 

GPR consists of a receiver, an impulse generator as transmitter, both with inbuilt GPS (Taoglas antenna, model AA.161) and 76 
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two bistatic-shaped antennas. Its main features are detailed in Table 2. The transmission unit is able to generate a high-77 

voltage impulse at a pulse repetition frequency (PRF) of 1 kHz, with an output of 1.4 kV. Its two integrated GPS/GLONASS 78 

antennae (with GPS navigator accuracy) allow the trigger synchronization between receiver and transmitter, which is 79 

important for setting the beginning of each trace. The two antennas are dipole Wu-King type (Wu & King, 1965), with 5 80 

MHz of central frequency and bandwidth. During the capture process, the raw data are transferred to a handheld rugged 81 

computer (PDA) for storing and real-time visualization of data. For a better deploying of the GPR, a group of five people 82 

was needed during the surveys as shown in Figure 3. 83 

Table 2  GPR features. 84 

Features Value 

Dipole length (m) 7  

Transmitter voltage (kV) 1.4 

Central frequency (MHz) 5 

Sampling rate (MHz) 80 

Range resolution (m) 16.8  

 85 

The receiver unit digitalizes the signal at a sampling rate of 80 MHz with 16 bits  of resolution, yielding a sample length (or 86 

time increment) of 12.5 ns, and is able to stack from 256 to 4096 traces, with a trace length from 256 to 1024 samples. The 87 

digital system enables the user to set a fixed trace length (in samples) between 256 and 1024 (2
n
 format). The proper choice 88 

of the trace length depends on the estimated depth, ranging from 268 m to 1075 m, assuming a depth-averaged wave 89 

propagation velocity in ice (c) of 0.168 m/ns (Glen & Paren, 1975). 90 

With the interpretation of the two-wave travel time (    ), we estimate the ice depth ( ) using equation (1). 91 

   
      

 
 (1) 

 92 

Figure 3  a) GPR survey scheme performed in this study. The red and blue lines represent the dipole antennas of 7 m long each, 93 

with 10 m of spacing between the receiver and transmitter ends. b) GPR survey in the fieldwork at Artensonraju Glacier. 94 
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2.2 GPR data processing 95 

The first stage of the processing considers data preview and format conversion with the software RADAR View, which is the 96 

software provided by the GPR company. Then, the files are able to be imported into software Reflexw, where profiles are 97 

loaded and integrated with GPS data, and processing takes place, including the following steps:  98 

a) Normalization of amplitude-saturated traces: Due to different sources of interference, traces are sometimes affected by 99 

saturation in the signal amplitude, which leads visually to discontinuities in the profile. In this case, the normalization 100 

consists of applying the calculation Amplitude/max(Amplitude) to every trace. 101 

b) Dewow filter: Low-pass filter used to eliminate the “wow” effect, caused by a low frequency component in the signal. 102 

The filter is defined by a window length which should include the first arrival waveform. In this case, the windo w length 103 

parameter was set to 100 ns, which satisfies the requirement. 104 

c) Butterworth bandpass filter: To reduce the noise that is present in the signal outside the frequency range, where the radar 105 

operates, which is centered at 5 MHz. The lower and higher boundaries of the filter were set to 2and 10 MHz, respectively. 106 

d) Definition of zero time: The direct wave travelling through the air between source and receiver should be eliminated in 107 

order to estimate correctly the two wave travel times of the corresponding reflections. In this case, the zero time was equal 108 

for each dataset varying from 305 ns to 380 ns.  109 

e) Trace interpolation: To have a better visualization of the profile and as a necessary step for the migration, an equidistant 110 

trace interpolation was performed. Here a 1 meter separation between traces was used, preserving a similar number of traces 111 

per profile, and consequently, keeping the same horizontal resolution.  112 

f) Migration: In order to set the reflectors to their real position, a migration process was performed. It was used a 1D 113 

Kirchoff migration because of its better signal to noise ratio in this particular case. Here the migration profile window was 114 

set to 250 traces and the depth-average electromagnetic wave velocity was set to 0.168 m/ns. This velocity was in agreement 115 

with hyperbolae shapes. 116 

g) Topographic correction: This procedure enables to move the traces up and down in the profile according to the elevation 117 

that is store in the trace header, which was defined when importing the GPS data to the profile The results enable to visualize 118 

correctly the surface elevation and the bedrock elevation along the profile  (see lower panel of Figure 4). 119 

After processing, the bedrock interface was manually picked at each radar profile  and then exported to GIS software. The 120 

processed radargrams are also visualized in OpendTect in order to examine the crossover differences. An example of two 121 

processed profiles is shown in Figure 4. In general, there is good agreement in the crossover analysis (of the order of GPR 122 

error), as shown in the upper inset of the figure. 123 

 124 

 125 
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 126 

Figure 4  Radargrams of Artesonraju glacier surveyed in 2020: profiles AA’ and BB’ as defined in Figure 1. Top panel shows a 3d 127 
view of longitudinal and transversal processed radar profiles (without topographic correction) and bottom panel shows the same 128 

processed profiles with topographic correction. The glacier surface is marked in color cyan and bedrock in yellow. 129 

 130 

2.3 Surface and bedrock elevation 131 

Two sets of surface elevation data, which were surveyed by ANA, are considered in this paper: first, 2012, 2014, 2018 and 132 

2020 Digital Elevation Models (DEM) obtained from topographic points ; and second, 2014, 2015, 2018 and 2019 mass 133 

balance stakes by means of automated total stations. The survey dates and coverage are detailed in Table 3.  An automated 134 

total station is a total station that automatically and quickly follows the target (prism) with a laser while the radial 135 

topographic survey is being performed, facilitating the task in the fieldwork. The radial topographic survey is a source-to-136 

receiver procedure, which aims to determine the position of several points over a surface, where the source is a total station 137 

with known reference position (XYZ coordinate) and elevation over the ground and the receiver is a prism with known 138 
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elevation over the surface. The total station estimates the source-receiver distance and angles in order to calculate the 139 

position of the receiver in relation to the source position. In this study, one single source reference position was used for each 140 

year, which was located outside the glacier area, at a fixed rock position of coordinates  E=209143.7, N= 9007853.1, datum 141 

WGS84, UTM18S, elevation: 4764.1 m.a.s.l. The elevation of the total station was estimated with navigator GPS and it was 142 

used the same of each year. Then, each source-receiver surveyed with prism is stored within the memory of the total station. 143 

Once the radial topographic survey has been completed, the data is downloaded and processed . 144 

Topographic data from 2012 and 2014 were surveyed with a TOPCON model GPT 7005L (https://www.al-145 

top.com/producto/topcon-gpt-7005/), while topographic data and mass balance stakes from 2015, 2017, 2018, 2019 and 2020 146 

were acquired with help of a LEICA TS15 A 3″ R400 (https://surveyequipment.com/assets/index/download/id/844/).  147 

Considering the topographic survey data from 2012 to 2020, the number of points surveyed each year varies from 287 to 342 148 

covering between 11% and 18% of the total glacier area (Table 3).When measuring the distances between nearest points  of 149 

every dataset, a mean value of ~25 m was found. In order to obtain the DEMs, the topographic points were converted to a 150 

5m by 5 m raster and interpolated using the Inverse Distance Weighted interpolation tool in ArcGIS. 151 

Due to better resolution and timespan of data, the first dataset was used to estimate the surface elevation changes of the 152 

glacier, by subtracting the digital elevation model of 2020 from that of 2012. 153 

In order to take advantage of the radar data coverage, the bedrock elevation was estimated by subtracting the ice thickness 154 

interpretation from the surface elevation (base on the GPS of the radar survey) in every profile of the GPR data. 155 

Table 3  Surface elevation dataset used in this study. 156 

Date Format 
Number of 

points 

Coverage area 

as %  of total 

area (5.43 km
2
) 

2012-09-27 Points /Raster 321 12 

2014-08-19 Points /Raster 287 13 

2018-09-06 Points /Raster 386 18 

2020-09-12 Points /Raster 342 11 

2014-08-19 Mass balance stakes (Points) 14 3 

2015-09-01 Mass balance stakes (Points) 16 3 

2017-05-30 Mass balance stakes (Points) 19 4 

2018-09-06 Mass balance stakes (Points) 18 5 

2019-08-20 Mass balance stakes (Points) 15 4 
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2.4 Errors 157 

The estimation of errors in ice thickness (εHdata) was obtained following Lapazaran et al. (2016), who split it into two 158 

components: a) the error in the value of ice thickness due to GPR measurement (εHGPR), without taking into account where it 159 

was obtained and b) the error in ice thickness due to uncertainties in horizontal positioning (εHxy). εHdata is variable and 160 

hence, different for every GPR measurement point. 161 

The term εHGPR is a function of the propagation velocity in ice (c) and its uncertainty (εc), TWTT, and timing error (ετ). 162 

The velocity c is dependent of water content and ice purity. In this case, we set it to 0.168 m/ns as used by Gacitúa et al. 163 

(2015) in mountain glacier Olivares Alfa in central Andes. Due to lack of measurements of c in tropical Andes, we assume a 164 

high percentage of error of 5% in εc as suggested by Lapazaran et al (2016).  165 

The term ετ  is a function of the central frequency of the GPR (see Table 2) and c, which adds up 16.8 m.  166 

The term εHxy should be calculated considering the precision of GPS, speed of transportation and geometric aspects 167 

(Lapazaran et al, 2016). εHxy is then calculated a posteriori, unlike the other errors mentioned in this section, because an ice 168 

thickness measurement is needed in order to estimate the error that applies on that measurement.  In this case, we considered 169 

5 meters of uncertainty in horizontal positioning because of the use of single frequency GPS (there was no dual frequency 170 

GPS). With this uncertainty in the XY plane, a 5m by 5m cell point-to-raster for ice thickness procedure was performed, 171 

estimating the difference between maximum and minimum interpreted ice thickness within each grid cell and then defining 172 

this value as εHxy/√ .  173 

An example of the estimated errors in ice thickness εHGPR, εHxy and εHdata for 2014 dataset is shown in Figure 5. Also, a 174 

crossover analysis for the same dataset and for the whole ice thickness dataset is provided in Table 4. The analysis shows a 175 

maximum difference of 10 meters, which is less than the radar resolution εHGPR. 176 
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 177 

Figure 5  Estimated errors εHGPR, εHxy and εHdata for 2014 dataset, calculated according to Lapazaran et al (2016). 178 

Table 4  Crossover analysis in ice thickness classified by year. 179 

Crossover differences 2013 2014 2015 2017 2018 2020 

Number of crossovers 8 109 0 22 0 15 

Max (m) 9.4 9.3 No crossovers 6.5 No crossovers 13 

Mean (m) 2.4 1.7 No crossovers 2.5 No crossovers 1.4 

Std (m) 2.9 1.5 No crossovers 1.9 No crossovers 2.6 

RMSD (m) 3.7 2.2 No crossovers 3.2 No crossovers 2.9 

 180 

Regarding the surface elevation obtained by means of total stations , it has an error of ±0.03 m, and then the surface 181 

difference estimations have a propagated error of ±0.04 m.  182 

In relation with radar data alone, the GPS elevation has an error of ±15 m (Renfro et al, 2020) and the mean ice thickness 183 

error yields ±18 m. Hence, the bedrock elevation has  a propagated error of ±23m (√       ). On the other hand, the ice 184 

thickness differences have a propagated error of ±25.5 m. 185 
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In terms of glacier thinning rates, the propagated error is estimated by √(
  

  
)
 

 (
  

  
)
 

 where   is the uncertainty in time, 186 

  is the time period,    is the uncertainty in elevation/thickness difference, and   is the elevation/thickness difference, 187 

depending on which term may be used. 188 

3 Results and discussion 189 

This study presents the largest record of geophysical prospection using GPR at a glacier in the tropical Andes of Perú. The 190 

overall length of radar profiles adds up 41.2 km covering a total surface of 0.85 km
2
. The surface elevation of the profiles is 191 

under the ELA, whose mean value between 2014 and 2019 yields 5016 m.a.s.l. 192 

3.1 Surface elevation 193 

The glacier surface elevations along profile CC’ (Figure 1), which were obtained from interpolated DEMs and mass balance 194 

stakes between 2012 and 2020, are presented in Figure 6(a). The elevation from available stakes measurements are in 195 

agreement with that from DEMs (both data types are found in years 2014 and 2018).  196 

Table 5  Surface elevation differences statistics. 197 

Period 

DEM Difference  2014-2012 2018-2014 2020-2018 2020-2012 

Mean (m) -5.8 -12.0 -7.9 -25.6 

      25% 25% 25% 6% 

Std (m) 1.3 1.9 3.0 3.6 

      22% 16% 38% 14% 

Prop. Error 33% 30% 46% 15% 

Mean/   (m yr
-1

) -2.9±1.0 -3.0±0.9 -4.0±1.8 -3.2±0.5 

 198 

In terms of elevation change for the periods 2012-2014, 2014-2018 and 2018-2020, mean differences of -5.8, -12.0 and -7.9 199 

m were found, in the common area of the DEMs which mainly includes the ablation area. This leads to thinning rates of -200 

2.9±1.0 m yr
-1

, -3.0±0.9 m yr
-1

, and -4.0±1.8 m yr
-1

, respectively (Table 5). 201 

On the other hand, for the whole study period 2012-2020, a mean difference of -25.6 m with a standard deviation of 3.2 m 202 

(13% of the absolute mean value) was found, as shown in Figure 6(b) and in Table 5. Assuming a temporal error of 0.5 years 203 

(6% in the period 2012-2020), the propagated error adds up to 16%, yielding a surface elevation change of -3.2±0.5 m yr
-1

 in 204 

the ablation zone.  205 

 206 
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 207 

Figure 6  (a) Glacier surface elevation along profile CC’ shown in Figure 1 and (b) surface elevation difference between 2012 and 208 

2020, minimum: 4m, maximum: 37 m, mean difference: 25 m. Background image: Landsat, 4th of July, 2014. 209 

3.2 Ice thickness data 210 

The interpreted ice thickness data at Artesonraju glacier from 2013 to 2020 as well as the 2014-2020 thickness difference are 211 

presented in Figure 7, while the main statistics of the interpreted data can be found in  Table 6.  212 

The main results show a maximum depth of ~235±18 m (2017), a minimum of ~4±18 m (2014, 2017) and a mean value that 213 

varies between 110 m (2020) and 134 m (2013). Data measured in 2018 have not been considered in the summary, due to 214 

their less spatial representability in this analysis. 215 

The ice thickness differences between 2014 and 2020 shows a maximum difference of ~45 m and a mean value of ~25m, 216 

with 18 m of mean error, yielding an ice thickness change rate of -4.2±3.2 m yr
-1

, which is in agreement with the surface 217 

elevation change estimations from section 3.1. 218 

 219 

Table 6  Interpreted ice thickness data set statistics. 220 

Year 

Ice thickness 2013 2014 2015 2017 2018 2020 

Mean (m) 134 133 129 118 69 110 

Std (m) 1 1 1 1 1 1 

Mean error 

(m) 19 19 19 18 18 18 

Min (m) 6 4 41 4 17 5 

Max (m) 195 200 202 235 112 183 

 221 

 222 
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 223 

Figure 7  Interpreted ice thickness data (raster) from 2013 to 2020 and its error. Background image: Landsat, 4th of July, 2014. 224 

 225 

The surface and bed elevation along profile CC’ from 2013 to 2020 by means of radar measurements alone a re shown in 226 

Figure 8. Also, an interpolated bedrock elevation is provided in Figure 9, using all subglacial elevation available. In the 227 
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profile, the bedrock elevation ranges from 4613 m.a.s.l. to 4866 m.a.s.l. The results show a good agreement (within the 228 

magnitude of error) in the bedrock elevation although the s urveys are from different years . More evident changes could be 229 

seen at the ablation zone of the glacier or glacier tongue, where the frontal recess ion is enabling the expansion of the lake 230 

Artesoncocha Alta. Three zones along the CC’ profile of Figure 8 can be identified: first, a clear overdeepening zone of the 231 

glacier from the glacier front up to 1km upstream, with a bedrock slope between -5.2° and -3.4°, which can also be observed 232 

in Figure 9; second, a smoothed positive zone, with bedrock slope between 2.4° and 4.4°; and third, a more steep area with 233 

bedrock slope between 14.4° and 16.4°. Similar morphological patterns at the bedrock were obtained by Chisolm (2016), 234 

who estimated bed topography ranging from 4634 m.a.s.l. to 4893 m.a.s.l., indicating appropriate conditions for the 235 

formation of a proglacial lake. The glacier frontal changes of -10.2±2.0 m yr
-1

 (INAIGEM, 2016) and the results  obtained in 236 

this study would indicate that in the following years the lake would advance up to the middle point of Artesonraju glacier 237 

tongue, reaching a maximum depth of 82±18 m, estimated as the difference between the current lake surface elevation and 238 

the elevation of the deepest part of the bedrock. 239 

 240 

Figure 8  Surface and bedrock elevation along profile CC’ from Figure 1. 241 

 242 
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 243 

Figure 9  Bedrock model from all GPR measurements (2013 to 2020). The result was smoothed with a gaussian filter in order to 244 

eliminate artifacts that may be generated. Background image: Landsat, 12 July, 2014. 245 

5 Conclusions 246 

We provide a robust dataset contributing with interpreted ice thickness data and ice surface elevation data at the ablation area 247 

of Artesonraju glacier in Caraz-Áncash, from 2012 to 2020. Data analysis reveals two aspects: a) a strong decadal mass 248 

balance reduction and  b) the existence of an overdeepening up to 700 m upstream the central flowline, which may lead to an 249 

expansion of lake Artensoncocha Alta up to that point. Data here provided is useful as input for glacier dynamics modelling 250 

and can be complemented with other data types for further analysis. It is also necessary to assess the risks associated with the 251 

volume increase of the proglacial lake Artesoncocha Alta and with GLOF generation, which may constitute a hazard for the 252 

communities located downstream the Artesonraju glacier. 253 
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Data availability 254 

The datasets used in this paper are available at https://doi.org/10.5281/zenodo.5571081 (Oberreuter et al, 2021). 255 

The ice thickness data consists of vector files (*.shape) with the following fields: tr: trace number within the processed 256 

profile; x: East coordinates in WGS84/18S, y: North coordinates in WGS84/18S, z: glacier surface elevation (meters above 257 

sea level), z: tau_r: two way travel time, depth: ice thickness using 0.168 m/ns, zb: glacier bed elevation (z-depth), 258 

e_H_GPR: error in ice thickness due to GPR measurement (εHGPR), e_H_xyf: error in ice thickness due to horizontal 259 

positioning (εHxy), e_H_data: total error in ice thickness (εHdata). 260 

The surface elevation data from total stations consists of: a) vector files (*.shape) with the following fields : ID, East: East 261 

coordinates in WGS84/18S, North: North coordinates in WGS84/18S, H_masl: surface elevation in meters (above sea level), 262 

Class: point classification; b) raster files (.tif) with the interpolated surface elevation. 263 

The stakes surface elevation consists of vector files (*.shape) with the following fields: Name: name of the stake, North: 264 

North coordinates in WGS84/18S, East: East coordinates in WGS84/18S, H_masl: surface elevation in meters (above sea 265 

level). 266 
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