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Abstract. The Tibetan Plateau, known as "the third pole of the Earth", is a region susceptible to 13 

climate change. With little human disturbance, lake storage changes serve as a unique indicator of 14 

climate change, but comprehensive lake storage data are rare in the region, especially for the lakes with 15 

an area less than 10 km2 which are the most sensitive to environmental changes. In this paper, we 16 

completed a census of annual lake volume change for 976 lakes larger than 1 km2 in the endorheic 17 

basin of the Tibetan Plateau (EBTP) during 1989-2019 using Landsat imagery and digital terrain 18 

models. Validation and comparison with several existing studies indicate that our data are more 19 

reliable. Lake volume in the EBTP exhibited a net increase of 193.45 km3 during the time period with 20 

an increasing rate of 6.45 km3 year−1. In general, the larger the lake area, the greater the lake volume 21 

change, though there are some exceptions. Lakes with an area less than 10 km2 have more severe 22 

volume change whether decreasing or increasing. This research complements existing lake studies by 23 

providing a comprehensive and long-term lake volume change data for the region. The dataset is 24 

available on Zenodo (https://doi.org/10.5281/zenodo.5543615, Wang et al., 2021). 25 

 26 
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 28 

1 Introduction 29 

Alpine lakes are susceptible to climate change in arid and semi-arid endorheic watersheds (Williamson 30 

et al., 2009; Yao et al., 2018). One of the world's largest alpine lake groups are found in the Tibetan 31 

Plateau (TP) (Yang et al., 2017a), which, together with its surrounding regions, is often referred to as 32 

"the Third Pole of the Earth" (Qiu, 2008) and the "roof and the world" and provides vital water resources 33 
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for more than a billion population in Asia and is a sensitive region undergoing rapid climate change 34 

(Field, 2014).  35 

With little human disturbance in the region, lake volume variation may serve as an important indicator 36 

that reflects regional hydrologic system’s responses to climate change (Boos and Kuang, 2010; Yang et 37 

al., 2017b). In the past 50 years, the TP has undergone a much faster warming trend (~0.447 ℃ per 38 

decade) than the global average (0.15–0.20 ℃ per decade) (Hansen et al., 2010; Xu et al., 2008), which 39 

posed inevitable impacts on the water budget of its alpine lakes (Lei et al., 2017; Liu et al., 2009). Lake 40 

area in the TP has been increasing, which is the opposite of the changes in other regions of China (Ma et 41 

al., 2010), Asia's plateaus (Zhang et al., 2017a), and other regions or drainage basins across the globe 42 

(Donchyts et al., 2016). Furthermore, alpine lakes in the endorheic basin have a unique role as they serve 43 

as nodes linking atmospheric, cryospheric, and biospheric components of the hydrological cycle. To 44 

understand climate change forcing on regional hydrological cycles in the region, it is essential to monitor 45 

the volume change of these alpine lakes (Song et al., 2014).  46 

Due to the harsh environment and few in situ observations, satellite remote sensing has become an 47 

indispensable tool for studying the dynamics of alpine lakes in the TP (Song et al., 2016; Song et al., 48 

2017; Wan et al., 2016). The advent of satellite imagery makes it possible for long-term and large-scale 49 

monitoring of alpine lakes (Lei et al., 2017; Li et al., 2019; Song et al., 2016; Yang et al., 2017a; Yao et 50 

al., 2018; Zhang et al., 2017b; Zhou et al., 2015) and lake volume changes in the TP have been examined 51 

using Landsat data (Ma et al., 2010; Song et al., 2014; Zhang et al., 2017a). Table 1 summarizes recent 52 

studies on lake volume changes in the region. In the two most recent studies, Li et al. (2019) examined 53 

multiyear changes in water level and storage of 52 lakes with an area larger than 150 km2 in the TP using 54 

altimetry and optical remote sensing images during 2000–2017. Yao et al. (2018) integrated optical 55 

imagery and digital elevation models and studied the lake water storage (LWS) change of 871 lakes from 56 

2002–2015 in the Changtang Plateau (CP) of north-western TP. However, existing studies are limited to 57 

either some large lakes, specific years (every 5 or 10 years), or only for a time span of less than 15 years. 58 

According to existing research, there are about 1200 lakes with an area larger than 1 km2 in the TP (Zhang 59 

et al., 2017a; Zhang et al., 2020) and earth observation satellites, such as Landsat mission, span more 60 

than 30 years (Huang et al., 2017). However, existing studies have neither made full use of existing earth 61 
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observation data, nor have they covered more than 75% of the lakes in the TP. Without a long-term 62 

comprehensive census on lake volume change, it is difficult to study the impacts of climate change on 63 

the hydrological system in the region.  64 

Table 1: Recent lake studies and datasets in the TP. 65 

Study 
No. of 

lakes 

Temporal resolution 
Timespan 

Zhang et al. 

(2017b) 
60-70 

One record in the 1970s and annual for 

1989–2015 
1972-2015 

Yang et al. 

(2017b) 
114 

1976, 1990, 2000, 2005 and 2013  
1976-2013 

Yang et al. 

(2017a) 
874 

Monthly 
2009-2014 

Yao et al.  

(2018) 
871 

Annual 
2002-2015 

Li et al.  

(2019) 
52 

Monthly 
2000-2017 

This study 976 Annual 1989-2019 

 66 

In this research, using the Google Earth Engine (GEE) geospatial analysis platform, we analyzed Landsat 67 

imagery in the past 30 years (1989 – 2019) to obtain annual lake area time series data for 976 lakes with 68 

a maximum area larger than 1 km2 in the endorheic basin of the TP (EBTP). We further derived the 69 

relationship between lake area and surface elevation using digital terrain model data and estimated the 70 

annual volume change for the lakes. This study provides so far the most comprehensive census on lake 71 

volume change in the EBTP.  72 

2 Study area and data 73 

The endorheic basin of the TP (78.646E-99.379E, 29.829N-39.419N), which has a total area of 1.42 x 74 

106 km2, can be generally divided into two sub-basins: Inner and Qaidam basins (IB and QB) (Fig. 1). 75 

Most lakes in the endorheic basin were expanding under climate change (Zhou et al., 2015). 976 lakes 76 

with a maximum area larger than 1 km2 were identified in this study, which had a total area of 30912.03 77 

km2 in 2019.  78 
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 79 
Figure 1: Study area and two sub-regions (inner basin and Qaidam basin). Background remote sensing 80 

image is from http://t0.tianditu.gov.cn/img_c/wmts.  81 

The data used in this research include Landsat imagery, Joint Research Centre Global Surface Water 82 

(JRC-GSW) data, Shuttle Radar Topography Mission (SRTM) digital elevation mode (DEM)l, Advanced 83 

Land Observing Satellite (ALOS) digital surface model (DSM), and several public lake storage data. 84 

Imagery from Landsat-5 TM (1984-2012), Landsat-7 ETM+ (1999-), and Landsat-8 OLI (2013-) was 85 

used to extract lake and calculate annual lake area. The JRC-GSW data were generated using over 3 86 

million scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 31 December 2019 (Pekel 87 

et al., 2016). The dataset provides monthly surface water from 1984 to 2019 and statistics on the extent 88 

and change of surface water. The dataset was used to identify individual lakes and their analysis extents 89 

in this study. SRTM DEM and ALOS DSM (digital terrain model, DTM hereafter) were used to delineate 90 

lake’s approximate extents from JRC-GSW data (see Sect. 3.1) and to establish the relationship between 91 

lake area and water surface elevation (see Sect. 3.4).  92 

For validation purpose, we compared our results with a widely used lake surface elevation/storage data 93 

from the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) Hydroweb 94 

(Crétaux et al., 2011) and two most recent lake volume data from Li et al. (2019) and Yao et al. (2018). 95 

For these datasets, we used the overlapping lakes in the comparison. 96 
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3 Methods 97 

In this research, calculating the lakes relative volume can be divided into two steps. The first step is to 98 

identify individual lakes, determine their analysis extents, and calculate annual lake area from Landsat 99 

imagery. The second step is to derive lake area-elevation relationship, estimate lake surface elevation 100 

from lake area, and calculate lake volume change. Details in the first step are shown in Fig. 2, which 101 

include three sub-steps: lake identification, analysis extent and seed determination (Sect. 3.1), water 102 

classification and segmentation (Sect. 3.2), and annual lake area calculation (Sect. 3.3). For the second 103 

step, Sect. 3.4 explains the way we construct the lake surface elevation-area relationship and Sect. 3.5 104 

explains how to get the lake annual relative volume. 105 

 106 

 107 
Figure 2: Workflow for calculating annual lake area from Landsat imagery. Background remote sensing 108 

image is from http://t0.tianditu.gov.cn/img_c/wmts. 109 

3.1 Lake identification and analysis extent and seed determination 110 

Due to the vast size of the EBTP and long term of Landsat imagery, we need to limit image processing 111 

to the lakes and their surrounding areas, so as to reduce computing resources and improve efficiency. For 112 

this purpose, we first need to identify the lakes and determine their analysis extents. Methods introduced 113 

in the following sections are all performed inside a lake’s analysis extents.  114 
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We used the JRC-GSW data to identify the lakes in the study area. All the pixels with a positive water 115 

cover frequency on the water occurrence band of the JRC-GSW data were retained, representing the 116 

maximum water extent between 1984 and 2019. From those water pixels, spatially connected pixels were 117 

identified as individual waterbodies and those with an area larger than 1 km2 were kept. Some of those 118 

waterbodies include both lakes and the rivers connected with them, especially for large lakes (Fig. 3). 119 

The border between lakes and rivers is hard to define but we assume that the primary waterbody of a lake 120 

is relatively flat and should have a slope close to zero. We used SRTM DEM to calculate the slope for 121 

each waterbody pixel. Pixels with a slope greater than 0° are considered rivers and removed from the 122 

waterbody. In this step, several patches of waterbody pixels may occur. We visually inspected those 123 

patches and only kept the patch that represents the approximate extent of the lake associated with the 124 

waterbody. This approach worked effectively for water bodies larger than 50 km2 and the approximate 125 

lake extents of 490 lakes were identified this way. In the process, we found there is a river linking two 126 

lakes from high resolution remote sensing images (see Sect. 5.1 and Fig. 15). For these two lakes, the 127 

linking river was kept and these two lakes were treat as one lake in our research. This situation happened 128 

only once and these two lakes were usually treated as separate lakes in former reseach (Li et al., 2019; 129 

Yao et al., 2018). The above procedure, however, tends to remove many small waterbodies entirely. So 130 

for waterbodies less than 50 km2, we inspected each waterbody visually and manually drew the 131 

approximate lake extents, and we identified 486 more lakes and their approximate extents. Altogether, 132 

we identified a total of 976 lakes and their approximate extents in the study area. Buffers of the 133 

approximate lake extents were generated and used as analysis extents for the lakes so the accuracy of the 134 

approximate lake extents is not an issue. 135 
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 136 
Figure 3: Lakes identification and approximate extent determination. (A) Waterbodies with rivers; (B) Lake 137 

approximate extents after removing connected rivers. Background remote sensing image is from 138 

http://t0.tianditu.gov.cn/img_c/wmts. 139 

In addition to lake approximate extents, a point is created for each lake (hereafter lake seed) to identify 140 

and distinguish the target lake from other waterbodies within its analysis extent. The centroid point of 141 

each lake’s approximate extent was calculated as the initial lake seed location but these points were 142 

manually checked and edited if necessary to make sure they are inside their lake approximate extents.  143 

3.2 Water segmentation 144 

Although the JRC-GSW data provide global monthly surface water map, it is not designed for mapping 145 

alpine lakes specifically. As such, we developed our own method for mapping lakes in the EBTP from 146 

Landsat imagery.  147 

Based on the lake approximate extents obtained in Sect. 3.1, a 5 km buffer was generated around each 148 

extent and all the analyses hereafter in this section are confined to this analysis extent. Since there are 149 

more than 30,000 Landsat images in our study area within the study period, Google Earth Engine (GEE) 150 
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(Gorelick et al., 2017) was used for image processing and data analysis. We first selected Landsat images 151 

between June and November in each year to exclude images with snow and ice. Landsat quality 152 

assessment band (hereafter BQA band) was used to remove cloud, shadow, saturation (for Landsat 5, 7 153 

and 8) and terrain occlusion (for Landsat 8 only) pixels on each image. A composite image was then 154 

generated with the selected images using the SimpleComposite function in GEE. The function computes 155 

a Landsat top of atmosphere (TOA) composite from a collection of raw Landsat scenes. It calculates a 156 

cloud score (between 0 and 100) at each pixel for each image, selects the pixels with a cloud score less 157 

than a certain threshold, and calculate a percentile pixel value for the composite image. In this research, 158 

we used a cloud score threshold of 10 and a percentile value of 0. By using this function with the 159 

parameters, we removed most cloud and generated annual max-water composite images. More details on 160 

the function can be found at https://developers.google.com/earth-engine/guides/landsat#simple-161 

composite.  162 

With the annual composite images, lake water pixels are classified using normalized difference water 163 

index (NDWI) (Gao, 1996): 164 

NDWI =
𝐵𝐺−𝐵𝑁𝐼𝑅

𝐵𝐺+𝐵𝑁𝐼𝑅
                                                                  (1) 165 

where 𝐵𝐺 , 𝐵𝑁𝐼𝑅 refer to green and near infrared bands, which is band 2 and 4 for Landsat 5/7 TM/ETM+ 166 

images and bands 3 and 5 for Landsat 8 OLI images, respectively. Several other indexes have been used 167 

for lake mapping, such as modified NDWI (MNDWI) (Weekley and Li, 2019), normalized difference 168 

moisture index (NDMI) (Elsahabi et al., 2016), and water ratio index (WRI) (Barbieux et al., 2018; 169 

Elsahabi et al., 2016). We chose NDWI in this study as existing research indicated that NDWI appears 170 

to be more robust in detecting lake extent under various water conditions (Qiao et al., 2019; Rokni et al., 171 

2014).  172 

Thresholding (or segmentation) is a key step in extracting water pixels from NDWI images. Usually, 173 

pixels with a NDWI value greater than 0 are considered as water. However, because of disparate 174 

geographical environment and dynamic water conditions, it is impossible to use the same NDWI 175 

threshold for all the lakes in all the years. In this research, we used local Otsu method (Otsu, 1979; 176 

Setiawan et al., 2017) to dynamically segment NDWI images. Specifically, a Canny edge detection 177 

algorithm (Bao et al., 2005) was first used to extract lake shorelines from NDWI images (see the yellow 178 
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box in Fig. 2). A 120-m double-sided buffer was then generated around the shorelines and Otsu method 179 

was applied to obtain an optimal threshold that separates water from background pixels within the buffer. 180 

This locally derived and image specific threshold was then used to extract lake pixels.  181 

3.3 Annual lake area 182 

As water level changes, some lakes may have several separate waterbodies in some years due to reduced 183 

water volume. To handle this situation, we merged all the annual water pixels within a lake’s analysis 184 

extent and, from which, we then identified the spatially connected water pixels which contains the lake’s 185 

seed as the lake’s maximum water extent during the study period. The maximum lake water extent is 186 

then used to identify annual lake water pixels and calculate annual lake area (see red box in Fig. 2). In 187 

this way, even if a lake has separate waterbodies in some of the years, all the waterbodies are counted as 188 

parts of the same lake.  189 

The Landsat imagery has several series, including Landsat-5 TM (1984-2012), Landsat-7 ETM+ (1999-), 190 

and Landsat-8(Cristóbal et al., 2009). When imagery from multiple sensors (Landsat 5 & 7 and 7 & 8) 191 

are available, lake area was calculated separately from each sensor and then combined. If the relative 192 

difference between the sensors is within 2%, the average area is used for the year. Otherwise, annual 193 

Landsat composite images and lake boundaries were manually examined to decide which area is more 194 

accurate. In addition, annual lake area was manually checked if there is a significant change from 195 

previous and following years. If the annual composite image is contaminated and unreliable, lake area 196 

for the year was linearly interpolated using prior and later year’s lake area. Through those steps, we 197 

obtained the annual maximum lake area for each lake from Landsat imagery.  198 

3.4 Lake surface elevation 199 

Lake surface elevation is essential to calculate water volume change. Both satellite altimetry and DTM 200 

have been used to estimate lake surface elevation (Li et al., 2019; Qiao et al., 2019; Song et al., 2014). 201 

While satellite altimetry is more accurate, it is limited to less than 170 large lakes in the TP (Hwang et 202 

al., 2019; Jiang et al., 2017; Li et al., 2017) and even fewer in our study area (Zhang et al., 2017b). 203 

Because of this, we used DTM data to estimate lake surface elevation.   204 
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Without lake bathymetry data, we can only estimate lake surface elevation based on the elevation-area 205 

relationship derived from DTM collected after 2000 assuming that the slope below lake surface is similar 206 

to that above lake surface in 2000 (Yang et al., 2017b). Some commonly used methods include linear 207 

equation (Yang et al., 2017b), second order parabolic equation (Li et al., 2019) and monotonic cubic 208 

spline fitting (Yao et al., 2018). These methods have their own advantages and disadvantages. While the 209 

linear interpolation is the simplest, more complicated methods such as the cubic spline interpolation, 210 

which constructs polynomial functions, can fit data more smoothly (Gray et al., 2018). Linear regression 211 

is usually suitable for elevation-area relationship with a fixed slope. And second order parabolic equation 212 

is suitable for simulating the relationship with small changes in slope. The monotonic cubic spline fitting 213 

can model the elevation-area relationship with large slope changes (Gray et al., 2018).  214 

Although existing research indicates that monotonic cubic interpolation (MCI) has the best performance 215 

in fitting elevation-area relationship (Yao et al., 2018), we found that MCI may overfit (see Sect. 5.2). In 216 

this research, a combination of linear regression (LR), second order polynomial regression (SOPR), and 217 

MCI methods was used to derive the elevation-area relationship which was then used to estimate surface 218 

elevation based on lake area. The elevation-area pairs, where the elevation starts at from the lowest 219 

elevation, stops at the highest elevation and increases at an interval of 1 m within each lake analysis 220 

extent, were obtained from SRTM and ALOS separately. At each elevation, pixels with an elevation less 221 

than the current elevation are kept and connected components are identified. The maximum lake water 222 

extent (see 3.4) is then used to select the components belonging to the lake. The sum of all the components’ 223 

area is calculated as the area for the current elevation. The minimum (MinA) and maximum (MaxA) 224 

annual lake area from Landsat are then used to select the elevation-area pairs whose area is in the range 225 

of [MinA/1.5, MaxA*1.5] from both SRTM and ALOS, and the list with more elevation-area pairs is 226 

kept. If the two lists have the same length, the SRTM list is kept. The choice of the data fitting methods 227 

depends on the number of elevation-area pairs in the range of [MinA/1.5, MaxA*1.5], which is discussed 228 

below and summarized in Table 2: 229 

(1) If the number of data pairs is zero or one, we generated a new list of elevation-area pairs from the 230 

selected DTM with eight pairs whose area starts with MaxA*1.5. The LR method was then used to derive 231 

the elevation-area relationship (labelled LRN); 232 
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(2) If the number of data pairs is two, we directly used LR to derive the elevation-area relationship 233 

(labelled LRC);  234 

(3) If the number of data pairs is equal to or greater than five and lake area range from the selected DTM 235 

fully covers the area range ([MinA, MaxA]) from Landsat imagery, the MCI method was used; 236 

(4) In other cases, the SOPR method was used. If the symmetry axis of the SOPR model falls into [MinA, 237 

MaxA], the elevation-area relationship will be non-monotonic (see Sect. 5.2). To avoid this, the 238 

symmetry axis was calculated, and if the symmetry axis fell into [MinA, MaxA], LR method was used 239 

instead (labeled LRS).  240 

Table 2: Selection of data fitting methods for deriving elevation- area relationship for each lake. 241 

Conditions Method Abbreviation 

The number of data pairs is 0 or 1 
Generate 8 new data pairs and then 

use LR  
LRN 

Number of data pairs = two LR  LRC 

Number of data pairs >= five and MinA is 

larger than the minimum area from DTM  
MCI  MCI 

None of the above  
SOPR but use LR when the symmetry 

axis of SOPR falls into [MinA, MaxA]  
SOPR / LRS 

3.5 Lake volume  242 

While it is impossible to obtain lake water volume without bathymetry data (Crétaux et al., 2016), we 243 

can calculate relative lake volume (RLV) between two dates with the lake area and elevation at those 244 

dates. RLV from time t1 to time t2 can be calculated by the integral of an elevation-area relationship 245 

function: 246 

 RLV𝑡1−𝑡2 = ∫ 𝐴𝑑𝐸
𝐸𝑡2

𝐸𝑡1
= ∫ 𝑓(E)𝑑𝐸

𝐸𝑡2

𝐸𝑡1
                                                  (2)    247 

𝑓(E) = 𝐴 = a + bE + cE2 𝑜𝑟 𝑑 + 𝑒𝐸                                         (3) 248 

where E denotes lake surface elevation, and A is the lake area at the elevation. f(E) is the fitted elevation-249 

area function using the LR or SOPR methods, and a, b, c, d, and e are the coefficients of the SOPR and 250 

LR models.  251 

Since the MCI function is not integrable analytically, we cut the lake volume between two dates into 252 

frustums with 1 m intervals in elevation (Fig. 4). With an elevation list [𝐸𝑡1, 𝐸𝑡1 + 1, 𝐸𝑡1 + 2, … , 𝐸𝑡2 −253 
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1, 𝐸𝑡2], the corresponding lake area was obtained using a fitted MCI. The RLV is the sum of all the 254 

frustums (i.e., ∑ 𝑉𝐹𝑛
𝑛
1 ), which can be calculated by the following formula: 255 

𝑉𝐹 = (𝐴𝑈 + 𝐴𝐷 + √(𝐴𝑢 + 𝐴𝐷) ×
1

3
ℎ                                                   (4) 256 

where 𝐴𝑈 and 𝐴𝐷 denote the base and top surface area of a frustum and ℎ denotes the height of the 257 

frustum, which is 1 m in our case. In this research, RLV is calculated relative to 1989.  258 

 259 

  260 
Figure 4: Schematic diagram showing how relative lake volume can be calculated using a series of frustums. 261 

The volume between time t1 to t2 can be divided into a series of frustums (F1 to Fn) with a height of1 m. For 262 

each frustum, its volume can be calculated with its top and bottom area.  263 

4 Accuracy assessment  264 

We compared our results with a widely used lake surface elevation and storage dataset from the LEGOS 265 

Hydroweb (Crétaux et al., 2011) as well as several most recent lake volume data in the TP from Li et al. 266 

(2019) (referred to as Li’s data hereafter) and (Yao et al., 2018) (referred to as Yao’s data hereafter). 267 

Because our volume data are relative volume change to 1989, we recalculated both Li’s and Yao’s data 268 

to make sure their volume data are also relative volume to 1989. Pearson’s correlation coefficient (PCC) 269 

and symmetric mean absolute percentage error (sMAPE) were used to evaluate our data, which is defined 270 

as: 271 

sMAPE =
1

𝑛
∑

2∗|𝑥𝑖−𝑦𝑖|

|𝑥𝑖|+|𝑦𝑖|

𝑛
𝑖=1                                                              (5) 272 
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where n is the sample size. 𝑥𝑖 and 𝑦𝑖  are ith data value in our results and existing datasets, respectively. 273 

The range of sMAPE is [0, 2] and the smaller the sMAPE, the smaller the relative error. sMAPE is a 274 

scale-independent accuracy index based on percentage errors (Chen et al., 2017). Compared with 275 

commonly used Root Mean Square Error (RMSE), sMAPE can be used to compare lakes with different 276 

magnitude of RLV. In addition, sMAPE allows 0 in the data, which is very common in RLV. In contrast, 277 

mean relative error (MRE) has issues when data values are 0. Because those reasons we used sMAPE 278 

here.   279 

Table 3 shows the PCC and sMAPE when comparing our results with Hydroweb (21 lakes) and Li's data 280 

(40 lakes) for overlapping lakes. All the PCCs are significant with p-values less than 0.01. Compared 281 

with Hydroweb data, 13 lakes (61.9%) have a PCC larger than 0.8 and a sMAPE less than 1. Compared 282 

with Li's data, 26 lakes (65%) have a PCC larger than 0.8 and a sMAPE less than 1. Those results suggest 283 

that our results match generally well with both Hydroweb and Li's lake data.    284 

 285 

Table 3: Comparison between our results and Hydroweb and Li's data. The lowest PCC and highest sMAPE 286 

in each column were highlighted in italic and bold font (Lake names are from Hydroweb dataset). 287 

Lake Name Hydroweb  Li’s Data 

 PCC sMAPE PCC sMAPE 

Tangra-Yumco 0.801  1.061  0.738  0.245  

Xuelian-Hu 0.819  0.576  / / 

Orba-Co 0.693  1.195  / / 

Dung-Co / / 0.889  0.892  

Memar-Co / / 0.954  0.508  

Pung-co 0.970  0.235  0.983  0.407  

Yibug-Caka / / 0.956  0.694  

Kyebxang-Co / / 0.982  1.375  

Xuru-Co / / 0.863  1.080  

Salt-Lake / / 0.990  0.381  

Rola-Co / / 0.995  0.501  

Salt-Water-Lake / / 0.742  1.540  

Zige-Tangcuo 0.996  0.422  0.964  0.693  

Bamco / / 0.993  0.134  

Gozha-Co / / -0.118  1.551  

Donggei-Cuona-Lake / / 0.945  0.947  

Zhuonai-Lake / / 0.981  0.900  

Aksayqin 0.901  0.684  0.954  1.129  
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Co-Ngoin1 / / 0.537  1.048  

Lixiodain-Co 0.985  0.730  0.970  1.011  

Margai-Caka / / 0.966  0.274  

Dagze-Co 0.979  0.323  0.985  0.267  

Kusai-Lake / / 0.991  1.286  

Jingyu 0.886  1.562  0.941  0.534  

Hoh-Xil-Lake / / 0.975  0.877  

Lumajangdong-Co 0.978  1.048  0.978  1.259  

Dogaicoring-Qangco 0.954  0.403  0.901  0.789  

Urru-Co 0.790  1.009  0.384  1.257  

Goren-Co / / 0.690  1.326  

Taro-Co 0.384  1.708  0.813  0.786  

Ngangze-Co 0.911  0.299  0.933  0.199  

Dogia-Coring 0.983  0.152  0.975  0.283  

Xijir-Ulan-Lake / / 0.983  0.661  

Ngangla-Ringco -0.140  1.263  0.811  1.140  

Aqqikkol-Lake / / 0.991  0.560  

Wulanwula-Lake 0.980  0.307  0.975  0.329  

Zhari-Namco 0.958  0.496  0.903  0.590  

Ayakkum-Lake 0.966  0.968  0.981  0.981  

Tu-Co / / 0.963  0.340  

Chibzhang-Co / / 0.988  0.666  

Nam-Co 0.935  0.457  0.918  0.273  

Selin-Co 0.994  0.411  0.984  0.231  

 288 

There are discrepancies among the datasets. For example, lake Ngangla-Ringco has a PCC of -0.140 and 289 

sMAPE of 1.263 when compared with Hydroweb data but a PCC of 0.811 and sMAPE of 1.263 when 290 

compared with Li’s data. Three lakes (Ngangla-Ringco, Gozha-Co, Taro-Co), which have the largest 291 

difference from our dataset and are highlighted in Table 5, were further examined. For Ngangla-Ringco, 292 

Fig. 5 shows the differences in lake area and surface elevation between our results and the two existing 293 

datasets. From 2016 to 2019, while our and Li’s lake surface elevation both show a significant increase, 294 

Hydroweb elevation has a slight decrease. And from 2002 to 2019, our lake area is around 500 km2 but 295 

Hydroweb lake area is about 240 km2, only about half of our lake surface area.  296 
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 297 

Figure 5: Comparison of lake area and lake surface elevation between our results and two existing data 298 

(Hydroweb and Li’s data) for lake Ngangla-Ringco from 2002 to 2019. The y-axis on the left, representing 299 

lake area, is for the vertical bars. The y-axis on the right, representing lake surface elevation, is for the lines. 300 

 301 

The boundaries of lake Ngangla-Ringco in 2008 (before significant increase) and 2018 (after significant 302 

increase) are shown in Fig. 6 with SRTM DEM added to illustrate lake boundary elevation in these two 303 

years. The mean lake boundary elevation is 4716.68 and 4717.88 meters in 2008 and 2018 respectively 304 

and Fig. 6C-E show a distinct increase in surface elevation between the years. Our lake boundaries (Fig. 305 

6A-B) fit well visually with the lake on the composite images, indicating our lake areas are more credible 306 

than Hydroweb data for the lake. Although our annual composite images tend to extract the maximum 307 

lake extent within a year, it is unlikely the lake area is twice as large as that in Hydroweb.  308 
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 309 

Figure 6: Lake extents in 2018 (A) and 2008 (B) and in three close-up areas (C), (D) and (E) (corresponding 310 

to boxes (1), (2), (3) in (A) and (B), respectively) from our results for lake Ngangla-Ringco. Images in (A) and 311 

(B) are composite image (R: Near-infrared band, G: Red band, B: Green band ) from Landsat 5 and Landsat 312 

8 respectively. DEM shown in (C)-(E) are SRTM DEM.  313 

 314 

Lake Gozha-Co showed distinct trends in lake surface elevation and volume between our results and Li's 315 

data (Fig. 7). In Li's data, lake surface elevation rose from 2001 to 2009 with the highest elevation of 316 

5084.43 m in 2009, and then started a decrease trend. In our results, lake surface elevation fluctuated but 317 

generally had been decreasing from 2001 to 2018. While our results have an elevation range between 318 

5079 and 5081 m, the elevation range of Li's data is between 5083 and 5085 m, which leads to extremely 319 

larger lake volume compared with our data.  320 
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 321 

Figure 7: Comparison of relative lake volume and lake surface elevation between our results and two existing 322 

data (Hydroweb and Li’s data) for lake Gozha-Co from 2001 to 2018. The y-axis on the left, representing ake 323 

surface elevation, is for the lines. The y-axis on the right, representing raletive lake volume, is for the vertical 324 

bars.  325 

 326 

For further assessment, extracted extents (Fig. 8A-C) for lake Gozha-Co in 2002, 2009, and 2018 and 327 

SRTM DEM are shown in Fig. 8. The mean lake boundary elevation is 5080.74, 5079.28 and 5079.04 328 

meters in 2002, 2009 and 2018 respectively and Fig. 8D-E show no distinct change in surface elevation, 329 

confirming our surface elevation is more reliable. Fig. 8 also shows that the highest lake surface elevation 330 

occurred in 2002 rather than 2009, and the lake surface elevation in 2009 and 2018 did not differ much. 331 

The large difference in volume might be caused by the gaps in elevation. But a definite conclusion cannot 332 

be drawn as Li’s data doesn’t provide lake area information.  333 
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 334 

Figure 8: Lake extents in 2002 (A), 2009 (B), and 2018 (C) and two close-up areas (D), and (E) (corresponding 335 

to boxes (1) and (2) in image (A), (B) and (C), respectively) from our results for lake Gozha-Co. DEM shown 336 

in (D) and (E) are SRTM DEM . Composite images in (A)-(C) (R: Near-infrared band, G: Red band, B:Green 337 

band) are from Landsat 7.  338 

 339 

Figure 9 shows the differences in lake area and surface elevation among the datasets for lake Taro-Co. 340 

Our results and the two existing datasets generally have a similar increase trend in surface elevation in 341 

2004-2008. In our results, surface elevation had been increasing from 2015 to 2018 but Hydroweb 342 

elevation experienced a decrease from 2015 to 2016 and Li's elevation had also been decreasing from 343 

2017 to 2018. In addition, both our area and elevation fluctuated more than the other two datasets.  344 

 345 
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 346 
Figure 9: Comaprison of lake area and lake surface elevation between our results and two existing data 347 

(Hydroweb and Li’s data) for lake Taro-Co from 2000 to 2018. The y-axis on the left, representing lake area, 348 

is for the vertical bars. The y-axis on the right, representing lake surface elevation, is for the lines. 349 

 350 

For further assessment, the extracted extents (Fig. 10A-C) for lake Taro-Co in 2015, 2016, and 2018 and 351 

SRTM DEM were shown in Fig. 10. Our lake boundaries visually fit well with lake extents on the 352 

composite images and the mean elevation of the lake boundaries is 4569.59 m, 4569.77 m, and 4571.25 353 

m, respectively. A significant increase in lake surface elevation in 2018 can be clearly observed in Fig. 354 

10D-E.  355 
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 356 

Figure 10: Lake extents from our analysis for lake Taro-Co in 2015 (A), 2016 (B), and 2018 (C) and two close-357 

up areas (D), and (E) (corresponding to boxes (1) and (2) in image (A), (B) and (C), respectively). DEM shown 358 

in (D) and (E) are SRTM DEM . Composite images in (A)-(C) (R: Near-infrared band, G: Red band, B:Green 359 

band) are from Landsat 7. 360 

 361 

Yao et al. (2018) also published a lake storage data in the IB. Their datasets include the annual RLV for 362 

871 lakes with an area larger than 1 km2 from 2009 to 2015, and the annual RLV for 126 lakes with an 363 

area larger than 50 km2 from 2002 to 2015. We found 816 overlapping lakes from 2009 to 2015 and all 364 

the large lakes (126) in our dataset. The main reason that our dataset has less lakes in the IB is that 365 

connected waterbodies were counted as separate lakes in Yao's data (as shown in Fig. 11).  366 
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 367 

 368 
Figure 11: An example that connected waterbodies were counted as separate lakes in Yao's data. Remote 369 

sensing image is from http://t0.tianditu.gov.cn/img_c/wmts. Background remote sensing image is from 370 

http://t0.tianditu.gov.cn/img_c/wmts. 371 

 372 

The PCC and sMAPE for the overlapping lakes (816) are shown in Table 4. For lakes larger than 1 km2, 373 

when the p-value is greater than 0.05, the PCCs of all lakes are less than 0.8, and 84.01% of lakes have 374 

sMAPE greater than 1. This means that for these 371 lakes, there is a big difference between our results 375 

and Yao's data. There are 389 lakes (47.67%) have a PCC greater than 0.8 and a p-value less than 0.05, 376 

and 71.91% of lakes have a sMAPE less than 1. This means that for these 445 lakes, our results have 377 

high consistency with Yao's. For lakes with an area greater than 50 km2, 109 out of 126 (86.51%) lakes 378 

have p-value less than 0.05. For lakes with p-value less than 0.05, 86 out of 109 (78.90%) lakes have 379 

PCC larger than 0.8 and 73.40% lakes have sMAPE less than 1. Overall, most of our lake data match 380 

well with Yao’s data. Because Yao et al. (2018) did not provide lake area and surface elevation data, it 381 

is difficult for us to further examine the discrepancy.  382 

 383 

Table 4: Data comparison statistics between our results and Yao’s data. 384 

Dataset p-value Total PCC <0.6 0.6≥PCC<0.8 PCC≥ 0.8 sMAPE <1 sMAPE≥1 

Lake area > 1 km2 
> 0.05 371 251 120 0 84 287 

≤ 0.05 445 5 51 389 320 125 

Lake area > 50 km2 
> 0.05 17 17 0 0 2 15 

≤ 0.05 109 3 20 86 80 29 

 385 
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In summary, our results generally show a high consistency with the existing datasets, though large 386 

discrepancy does exist for some of the lakes. Close examination on a few extreme lakes indicated that 387 

our results are more reliable and more in line with Landsat imagery and SRTM DEM. 388 

5 Results  389 

We identified a total of 976 lakes in the EBTP, and their maximum extents during the study period are 390 

shown in Fig. 12. 930 of those lakes (95.29%) are located in the Inner Basin, and only 46 (4.71%) are in 391 

the Qaidam Basin. Large lakes are primarily located in the southern and eastern periphery of the inner 392 

basin.  393 

 394 

Figure 12: A total of 976 lakes larger than 1 km2 identified in the EBTP. Remote sensing image is from 395 

http://t0.tianditu.gov.cn/img_c/wmts.  396 

5.1 Lake water volume change  397 

Total lake volume in the study area exhibited a net increase of 193.45 km3 from 1989 to 2019 with an 398 

increase rate of 6.45 km3 year−1. Although lake volume was generally increasing in the past 30 years, it 399 

varied significantly from year to year. Figure 13 shows annual total loss, gain, and net change of lake 400 

volume from 1989 to 2019. The lakes experienced water gain in 23 years and loss only in 7 years in the 401 

30 years of study period. From 1998 to 2013, the lakes experienced the longest continuous water gain of 402 

16 years. The largest water gain of 25.19 km3 appeared in 2000, and the largest water loss of -18.15 km3 403 

occurred in 1994.    404 
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 405 
Figure 13: The gain, loss and net lake water volume in the EBTP from 1989 to 2019. 406 

 407 

Figure 14 shows the trend of annual RLV in the entire study period and in 7-year periods (1989-1995, 408 

1995-2001, 2001-2007, 2007-2013, 2013-2019) at each lake. Positive trend slope represents an overall 409 

increase in lake volume and vice versa. Similar to some previous studies (Yao et al., 2018; Zhang et al., 410 

2017b), 909 lakes (93.14%) had been expanding in the study period with the exception of 67 lakes 411 

(6.86%). 16 lakes gained more than 0.1 km3 of water per year, and these lakes are mainly located in the 412 

east side of the IB (Fig. 14A).  413 

RLV trend varied in the 7-year time periods. From 1989 to 1995, only 418 lakes (42.83%) experienced 414 

volume expansion, and in fact, a noticeable lake shrinkage is observed from 1989 to 1995 (Fig. 14B) 415 

where most lakes have a decreasing trend and lakes with large RLV decrease (> 0.1 km3 per year) are 416 

mostly located on the east or west side of IB. From 1995 to 2001 (Fig. 14C), 816 lakes (83.61%) had 417 

been expending. While most lakes in the QB were still decreasing, most lakes in the IB had increase 418 

trend with large RLV increase (>0.1 km3 per year) mostly located at the north, east and south periphery 419 

of the IB. From 2001 to 2007 (Fig. 14D), though the changing trend is similar to 1995-2001, the increase 420 

rate got smaller as there are more yellow lakes than light green lakes in Fig. 14D, indicating more lakes 421 

have negative changing rate (-0.05-0km3/y) in 2001-2007. The increasing trend in 2007-2013 (Fig. 14E) 422 

is very similar to the previous period but with a lower rate as there are less large increase lakes (dark blue 423 

lakes) and a couple of large decrease lakes (red lakes). From 2013 to 2019 (Fig. 14F), strong increasing 424 

trend occurred again with more blue lakes in both IB and QB.  425 

 426 
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 427 
Figure 14: Trend of annual RLV during the periods of (A) 1989-2019, (B) 1989-1995, (C) 1995-2001, (D) 2001-428 

2007, (E) 2007-2013, and (F) 2013-2019. Background remote sensing image is from 429 

http://t0.tianditu.gov.cn/img_c/wmts. 430 

 431 

Trend analysis was performed for the EBTP, its sub-regions (IB, QB) and different time periods. The 432 

slope and coefficient of determination (R2) are shown in Table 5. It suggests that there was a significant 433 

increasing trend both in the TP and IB in the recent 30 years. While the trend slope is positive in the QB 434 

(0.0700), it is much smaller than that of EBTP (7.28) and IB (7.45).  R2 in the QB is 0.242 and it’s 435 

significant at 0.01 confidence level indicating a weak increasing trend. Trends in the IB and EBTB are 436 

similar in the 7-year periods but this is not the case in the QB. This is mainly due to that most of the lakes 437 

are located in the IB. Trend slopes in Table 5 correspond well to Fig. 14 which indicate that the entire 438 

EBTB experienced a lake volume decrease (slope=-6.47, R2=0.800) in 1989-1995. In 1995-2001, IB's 439 

lake volume increased (slope=10.23, R2=0.925) while QB's lake volume decreased (slope=-0.153, 440 

R2=0.708). From 2001 to 2019, although the overall volume of lake water has been increasing, the slope 441 

in 2007-2013 (8.93) was less than that in 2001-2007 (10.43) and 2013-2019 (9.92). 442 
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 443 

Table 5: Trend of total RLV in EBTP and its sub-region IB and QB in different time periods (* indicates 444 

significant at a confidence level of 0.01). 445 

Time Period Index EBTP IB QB 

1989-2019 
Slope (km3·year−1) 7.28 7.45 0.0700 

R² 0.921* 0.923* 0.242 

1989-1995 
Slope (km3·year−1) -6.47 -6.29 -0.174 

R² 0.800 0.797 0.631 

1995-2001 
Slope (km3·year−1) 10.08 10.23 -0.153 

R² 0.921 0.925 0.708* 

2001-2007 
Slope (km3·year−1) 10.43 10.28 0.156 

R² 0.978* 0.979* 0.439* 

2007-2013 
Slope (km3·year−1) 8.93 8.59 0.343 

R² 0.969* 0.966* 0.420 

2013-2019 
Slope (km3·year−1) 9.92 9.49 0.422 

R² 0.842* 0.850* 0.300 

 446 

5.2 RLV and lake area 447 

Figure 15 shows annual RLV trend slope by lake area. For most lakes in 1 - 10 km2, their RLV trend 448 

slope is between 0 and 0.003 km3/y, indicating slow increase in water volume in the past 30 years. As 449 

lake area increases from 10-50 km2 to greater than 50 km2, RLV trend slopes also increased (Fig. 15C-450 

D) though the number of lakes reduced. Nevertheless, there are some exceptions. For example, there are 451 

lakes with area larger than 100 km2 (Fig. 15D) but their RLV increasing rate is less than 0.003 km3/y. 452 

Some lakes with an area between 10-50 km2 have annual RLV larger than 0.01 km3/y (Fig. 15B). Some 453 

small lakes, with an area less than 10 km2, have decreasing RLV rate smaller than 0.01 km3/y (Fig. 15A).  454 

https://doi.org/10.5194/essd-2021-331

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 November 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

 455 

Figure 15: Annual RLV trend by lake area of (A) 1 - 10 km2, (B) 10 - 50 km2, (C) 50 - 100 km2, (D) > 100 km2. 456 

Background remote sensing image is from http://t0.tianditu.gov.cn/img_c/wmts. 457 

Table 6 shows the statistics of annual RLV trend by lake area. In general, the larger the lake area, the 458 

greater the trend slope. The mean and standard deviation of the trend slopes both increase with the 459 

increase of area. The range of the RLV rate for lakes of 0-10 km2 is larger than that for lakes of 10-50 460 

km2, indicating extreme changes occurred in smaller lakes 461 

 462 

Table 6: Statistics of annual RLV changing rate. 463 

Statistics of 

Annual RLV changing rate  

Lake Area  

1 - 10 km2 10 - 50 km2 50 - 100 km2 > 100 km2 

Count  675 175 56 70 

Minimum (km3/y) -0.038 -0.0014 -0.0054 -0.051 

Maximum (km3/y) 0.037 0.037 0.085 1.04 

Mean (km3/y) 0.00068 0.0052 0.016 0.075 

Standard Deviation (km3/y) 0.0032 0.0059 0.015 0.15 

6 Discussions  464 

 6.1 Methods for deriving lake elevation-area relationship 467 

Lake surface elevation can be estimated by calculating the average elevation of lake boundary (Bao et 468 

al., 2005; Li et al., 2019; Yang et al., 2017a; Yao et al., 2018). This approach assumes that the DTM are 469 

obtained before lake water volume starts increase. The DTM we used were acquired in and after 2000 470 
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(Takaku et al., 2014; Van Zyl, 2001) but our study period starts from 1989. As such, lake surface 471 

elevation in this study is estimated based on the area-elevation relationship derived from the DTM. 472 

Existing studies mainly used just one of a few methods, including linear equation (Yang et al., 2017b), 473 

parabolic equation (Li et al., 2019) or monotonic cubic spline fitting (Yao et al., 2018), in deriving lake 474 

elevation-area relationship. In this research, we compared those methods and used different methods 475 

under different situations (see Sect. 3.4).  476 

Four lakes, with area ranging from 0.97 km2 to 149.3 km2, were selected to explain the typical situations 477 

when different methods were used. Figure 16 shows the elevation-area pairs (red points) from the DTM 478 

and estimated elevations based on image lake area using different data fitting methods. For fitting the 479 

data from the DEM, MCI has the best fitting performance for the lakes in Fig. 16A & B and there is no 480 

obvious disparities between SOPR and MCI in Fig. 16 C & D. The LR has the worst performance in Fig. 481 

16 A, B & C. However, when the elevation-area pairs from the DTM do not cover the lake area range 482 

from Landsat images, estimated elevation can have serious error, especially for MCI. Take the lake in 483 

Fig. 16B as an example, its area range from Landsat imagery is [0.23, 16.71] km2 from 1989 to 2019, yet 484 

the smallest area obtained from SRTM is 4.69 km2. This is because the DTM were obtained after 2000 485 

but most lakes had been expending since 1995 in the region. While MCI fits well with the elevation-area 486 

data from the DTM, elevations estimated outside the DTM area range are unreal in Fig. 16B & D), 487 

especially in Fig. 16D, where the elevation estimates for lake area smaller than the smallest area from 488 

the DTM are unreasonably high. Those examples indicate that MCI may overfit and should only be used 489 

for lakes when their image area is within the area range from the DTM. SOPR predicted lake elevations 490 

generally follow the same trend when lake image area is outside DTM area range. As such, SOPR is 491 

selected when lake image area is smaller than the minimum area from the DTM. In addition to the above 492 

situations, the number of elevation-area pairs from the DTM within the area range of [MinA/1.5, 493 

MaxA*1.5] also play a role as discussed in Sect. 3.4. Besides, some other situations also affect the choice 494 

of the methods. When using SOPR method, the fitted curve is not monotonic if its symmetric axis falls 495 

into [MinA, MaxA] (Fig. 16A). When this happens, LR method was used instead.  496 
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 497 

Figure 16: Estimated elevation based on image lake area using LR, SOPR and MCI. The elevation-area data 498 

pairs obtained from SRTM DEM is also added.  499 

The number of lakes and the minimum, maximum, and average lake area for each method are listed in 500 

Table 7. The most used method is SOPR with 766 lakes. While LRN and LRC are typically used for 501 

small lakes, MCI is selected mostly for large lakes. Since MCI was only used for lakes when their image 502 

area is within the area range from the DTM, this indicates most large lakes’ area started increasing after 503 

2000. In summary, we found no single method is suitable for all the lakes, and different methods have to 504 

be used for different lakes. 505 

Table 7: Frequency and lake area statistics for each method used in deriving the lake elevation-area 506 

relationship. Lake area is for 2019. 507 

Methods Frequency 
Minimum lake area 

(km2) 

Maximum lake area 

(km2) 

Average lake area 

(km2) 

LRN 24 0.049 27.35 3.40 

LRC 30 0.86 9.72 2.30 

LRS 75 0.028 1044.80 62.74 

SOPR 766 0.049 1078.81 25.71 

MCI 81 1.46 2016.52 121.83 
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6.2 RLV variation  508 

Although lakes with larger area usually have larger RLV trend slope, we found that the range of the 509 

change rates for the lakes in 1 - 10 km2 is larger than that for the lakes in 10-50 km2 in Sect. 4.2. Here 510 

we further examined the relationship between lake area and the coefficient of variation (CV) of RLV 511 

(Fig. 17). While there is lack of correlation between them, the percentages of lakes with |CV| >10 in the 512 

four area ranges are 3.7%, 2.3%, 1.8%, and 2.9% respectively, with lakes in 1 – 10 km2 having the highest 513 

ratio. The lakes with extreme RLV are mostly located in the peripheral of the IB and QB (Fig. 17).  514 

 515 

Figure 17: CV of annual RLV by lake area of (A) 1 - 10 km2, (B) 10 - 50 km2, (C) 50 - 100 km2, (D) > 100 km2. 516 

Background remote sensing image is from http://t0.tianditu.gov.cn/img_c/wmts. 517 

The minimum, maximum and mean CV of all lakes are -106.65, 82.77 and 0.89, respectively. And 94.36% 518 

(921 out of 976) of the lakes have a CV between -1~1, which indicates that the remaining few lakes have 519 

significant volume changes in the past 30 years. The annual lake area and RLV of the three lakes with 520 

the highest absolute CV are shown in Fig. 18. All three lakes have significant volume fluctuation in the 521 

past 30 years. For lake (1) (Fig. 18C(1)), its volume decreased significantly from 1994 to 1996 and 522 

increased rapidly from 2003 to 2009. For lake (2) (Fig. 19C(2)), its volume fluctuated cyclically in the 523 

past 30 years. From 1989 to 1996, its water volume had been continuously decreasing and reached the 524 

minimum RLV of -0.0011 km3. From 1996 to 2004, its lake volume kept rising and reached the maximum 525 

RLV of 0.0026 km3. Subsequently, its volume started to decline again, reaching a minimum value of -526 

0.0013 km3 in 2017. For lake (3)(Fig. 19C(3)), its volume had been expanding slowly after 2000. 527 
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However, between 1990 and 2000, its volume fluctuated significantly. While all these example lakes are 528 

in 1 - 10 km2 and have extreme CVs, their temporal variations are different indicating the influence of 529 

local hydro-climatic factors on lake dynamics 530 
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531 

 532 
Figure 18: The location of three lakes with the highest absolute CV in the EBTP (A), their maximum extents 533 

(B) and area and RLV time series of the lakes (C). Remote sensing images in (A) and (B) are from 534 

http://t0.tianditu.gov.cn/img_c/wmts. 535 
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In previous research, although some studies (Li et al., 2019; Zhang et al., 2020; Dong et al., 2018) have 536 

found that lakes of different sizes respond differently to climate change, there is a lack of attention to 537 

lakes less than 10 km2. This is mainly due to insufficient data of small lakes in the region. Our results 538 

indicate that small lakes are important as lakes with higher CV are usually less than 10 km2, which, 539 

however, is different from the definition of small lakes in Zhang et al. (2020) (50-100 km2) and Dong et 540 

al. (2018) (10-30 km2). Our results show that lakes less than 10 km2 are more prone to drastic volume 541 

change and should receive more attention. In addition, most existing data products focused on lake area 542 

instead of volume change, though RLV is more valuable in studying water balance in hydrological 543 

systems.  544 

7 Conclusions  545 

This research provides a comprehensive census on water volume change for the lakes greater than or 546 

equal to 1 km2 in the EBTP from 1989-2019 using Landsat imagery and DTM data. Our annual dataset, 547 

compared with satellite altimetry and other existing data, covers more lakes, especially small lakes in 1 548 

– 10 km2, and longer time period.  549 

The comparison with three other major existing data products indicates that our dataset is reliable and 550 

might be more accurate. To the best of our knowledge, our dataset provides the longest and most 551 

comprehensive lake water volume change data in the region, especially for small lakes (1-10 km2). The 552 

dataset is valuable in studying the impacts of climate change and water balance in the region.  553 

Our research indicates that small lakes with an area in 1 - 10 km2 are most sensitive and have the highest 554 

fluctuation in water volume in the study time period. Monitoring their changes is of critical importance 555 

for understanding regional and global climate change. In deriving the lake area-elevation relationship 556 

from DTM, the best result comes from the combination of several data fitting methods. The workflow 557 

used in this research can be further developed to process individual remote sensing image (instead of 558 

annual composite image) and create a lake volume dataset with a higher temporal resolution in future 559 

research.  560 
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8 Data availability 561 

We completed a census of annual lake area and volume change for 976 lakes larger than 1 km2 in the 562 

endorheic basin of the Tibetan Plateau (EBTP) during 1989-2019 using Landsat imagery and digital 563 

terrain models. This dataset consists of two lake extents shapefiles containing the annual area and 564 

relative volume data from 1989 to 2019 for each lake. In addition, the lake seeds used to identify the 565 

lakes are also included as a shapefile in this dataset. The dataset 566 

(https://doi.org/10.5281/zenodo.5543615, Wang et al., 2021), entitled “Lake area and volume variation 567 

data in the endorheic basin of the Tibetan Plateau from 1989 to 2019”, is available on Zenodo. 568 
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