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Abstract
Lakes are key ecosystems within the global biogeosphere. However, the environmentalbettem-

up controls on the biological productivity of lakes, including surface temperature, ice phenology,
nutrient loads and mixing regime, are increasingly altered by climate warming and land-use
changes. To better characterize global trends inunderstand-the-envirenmental-drivers-of lake
productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water
quality parameters and surface solar radiationirradiance, for temperate and cold-temperate lakes
experiencing seasonal ice cover. We developed a method to identify periods of rapid net increase
of algal-grewth-frem-in situ chlorophyll-a concentrations from time series data and applied it to
data collectedmeasurements-perfermed between 1964 and 2019 across 343357 lakes;
predominanthy located north of 40°. The data Leng-term-trends-show that the spring chlorophyll-
a increase periodsalgal-growth-windews have been occurring earlier in the year, thus-potentially
extending the growing season and increasing the annual productivity of northern lakes. The

dataseton also-used-to-analyze-therelationship-between-chlorophyH-agrowthrates-and-seo

a%mede#a{euwad}anee%me&dﬁnng—spﬂngﬂ%en%lww chIorophyII a increase rates
and tlmmg A

fﬂ%lgakeem#mmﬂes#h&gm%h—m%dewda%aset—can be used to analyze trends and Qatterns in

lake productivity across the northern hemisphere or at smaller, regional scales. We
illustratepresent some general-trends extracted fromin the datasetéata and encourage other

researchers to use the open dataset for their own research questions.



45

50

55

60

65

70

75

1 Introduction
Lakes play an important role in the biogeochemical cycling of many elements (Battin et al.,
2008: Cole et al., 2007: O’Connell et al., 2020; Rousseaux and Greqq, 2013; Schindler, 1971).

With over 100 million documented lakes on earth (\Verpoorter et al., 2014), evidence indicates

that the majority of global lakes are shallow with enough light and nutrients available to make

them highly productive ecosystems (Downing et al., 2006; Wetzel, 2001). Lakes therefore

represent active sites for the storage, transport, and transformation of carbon, nutrients (e.g.,

nitrogen, phosphorus, silicon, iron), and contaminants (e.q., mercury) along the freshwater

continuum (Lauerwald et al., 2019: Tranvik et al., 2009). They are also sensitive to the effects of

There are multiple environmental controls on lake primary productivity, including water

temperature, ice phenology, nutrient concentrations, circulation, mixing regime, and solar

radiation (Lewis, 2011; Zohary et al., 2009). Stressors such as climate change and nutrient

pollution can significantly impact these controls, altering the ecosystem structure and

biogeochemical functioning of lakes (Jeppesen et al., 2020; Markelov et al., 2019). Changes

affecting northern lakes include warmer water temperatures, enhanced stratification and hypoxia,

nutrient enrichment, light attenuation by chromophoric organic matter, and increases in the

relative abundance of toxic cyanobacteria in the phytoplankton community (Deng et al., 2018;

Huisman and Hulot, 2005; Jeppesen et al., 2003; Creed et al., 2018). For example, Lake Superior

has seen an increase in primary production during the last century, together with increasing

surface water temperatures and longer seasonal stratification and ice-free periods (O’Beirne et

al., 2017). Other lakes are similarly experiencing increases in productivity. According to Lewis

(2011), the current mean primary production of lakes is 260 g C m?2 vy, which is 162% higher

than earlier estimations under historical baseline conditions.Fhere-are-muttiple-bottom-up
3
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Globally, phytoplankton (i.e., algae) are the main primary producers in lakes and generally make

up the foundation of lentic food webs (Carpenter et al., 2016). Periods of high lake productivity

coincide with a rapid increase in phytoplankton biomass. In extreme cases, algal blooms can

reach hundreds to thousands of cells per milliliter (Henderson-Seller and Markland, 1987). These

bloom events produce large guantities of decomposing organic matter that cause the expansion

of hypoxic conditions within the lake (Watson et al., 2016). In harmful algal blooms, certain

algal species also release hepatotoxic and neurotoxic compounds (Codd et al., 2005). Thus,

identifying trends in the timing and intensity of seasonal algal growth, and linking them to

changes in environmental stressors, can help predict the future of lake productivity and assess the

risk of undesirable algal blooms.Phyteplankton{i-e--algae)-are-the-mainprimary-producersin
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Because it is challenging to measure algal abundance and growth directly, chlorophyll-a is often

used as a proxy for algae biomass and an indicator of the associated primary production in lakes

(Huot et al., 2007). Although other proxies have been developed (Lyngsgaard et al., 2017),

chlorophyll-a is the most common metric to characterize trends in algal biomass within and

across lakes, especially in historical water quality records. Tett (1987) proposes a chlorophyll-a

threshold of 100 pg L™ to define “exceptional blooms”, Jonsson et al. (2009) use a threshold of 5

ug L to identify a bloom, while Binding et al. (2021) flags an algal bloom when the

chlorophyll-a concentrations extracted from satellite observations exceed 10 pg L. Such

threshold values, however, do not take into account the baseline (i.e., no-bloom) chlorophyll-a

concentration specific to a given lake, or the lake’s trophic status (German et al., 2017).

Furthermore, focusing on harmful and nuisance algal blooms alone may mask the impact that a

changing climate or other stressors may have on a lake’s overall biological productivity.Because

Intra-annual fluctuations in lake chlorophyll-a concentration result from the interactions of

multiple variables and processes including grazing by zooplankton, competition between algal

species with different growth strategies and chlorophyll-a contents, and changes in temperature,

light, and nutrient availability (Lyngsgaard et al., 2017; Sommer et al., 1986). In dimictic lakes,
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for example, there are usually two peaks in algal biomass, and hence also in chlorophyll-a

concentrations, in the spring and fall, with a smaller biomass stock of slower growing species

during the summer, and an even smaller stock of algae (in terms of both biovolume and

chlorophyll-a) under the ice cover in the winter (Hampton et al., 2017).

The spring increase in algal biomass generally consists of fast-growing algal species that take

advantage of the increases in temperature and light following ice-off, as well as the available

inorganic nutrients that were generated by mineralization under the ice over the winter. The shift

from spring to summer algal communities often coincides with high zooplankton grazing rates

exceeding the spring algal growth rates, hence, bringing down the total algal biomass. The high

zooplankton grazing rates favor the growth during the summer of algal species that are less

edible by grazers, but which tend to grow at slower rates. Lake overturn in the fall initiates the

transition from the predominance of the slow growing species in the summer to the fast-growing

phytoplankton species in the fall causing a second peak in algal biomass (Sommer et al., 1986).

A common approach for comparing chlorophyll-a trends across multiple lakes is to consider the

maximum or mean annual chlorophyll-a concentrations. For example, Ho et al. (2019)
applied{2020)-used the Mann-Kendall trend test to analyze time series of annual maximum
chlorophyll-a concentrations, while Shuvo et al. (2021) used a random forest regression
approach to assess the relative importance of climatic versus non-climatic controls on mean

chlorophyll-a concentrations. Both these studies analyzed chlorophyll concentrations derived

from satellite observations rather than measured in situ. In additionHewever, these approaches

didée not specifically identifyteek-at the periods of the year when chlorophyll-a concentrations
experiencedalgal biomass is primarily determined by hottom-up controls and exhibits rapid
changesgrowth.
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Alternatively, the rate of increasechange in chlorophyll-a concentration can be used to

constraineapture the timing of rapid increase in algal biomass usually associated with periods of

high primaryfake productivity. In this study, we refer to these as “periods of chlorophyll-a

increase” (PCIs).as—srowth-windows™ The weeks leading up to a PClgrewth-window are
crucial to create the necessary environmental-conditions that enable algal growth (Lewis et al.,

2018).(ewis-et-al-2018). Thus, to analyze trends in lake net primary productivity, one should
consider environmental variables, such as surface water temperature, solar radiation, and nutrient

concentrations, both during and preceding the annual PClsgrowth-windews.

Although the rate of chlorophyll-a concentration increasegrewth has been used to detect algal
blooms within individual water bodies, for example in the San Roque reservoir (German et al.,
2017), it has rarely been used across large temporal (i.e., more than a few years) and spatial (i.e.,
regional and up) scales. Here, we present a method for calculating net rates ofseasenal
chlorophyll-a increase (RCI). The timing of PCls grewth-rates-and values of the corresponding
RCIs werethen-create-a-dataset-of theserates derived from in situ chlorophyll-a concentrations
obtained for 343in-357 lakes located-mest-ofwhich-are at latitudes above 40° N. The entire
dataset covers the period from 1964 to 2019, and further contains data on coincident bettem-up

environmental control variables, including a-situ-surface solar radiation.-measurements. To
illustrate the potential applications of the resulting dataset, we present some temporalgeneral
trends of the chlorophyll-a rates and their relationships with environmental variables. The dataset
is made available as an open resource that other researchers are encouraged to use in their own

work.

2 Data and methods

All data processing, visualizations, and analyses were carried out with Python (ver. 3.7.6; Python

Software Foundation, 2021) using the pandas library (Reback et al., 2020), NumPy library
(Harris et al., 2020), and Dplython library (Riederer, 2015), while QGIS/PYQGIS was used for
all spatial data analyses (ver. 3.16; QGIS Development Team, 2021) AH-dataprocessing;
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2.1 Data acquisition, compilation, and quality control

2.1.1 Lake data selection

In situ chlorophyll-a concentrations and other lake physico-chemical data were extracted from

open source international, national, and regional databases (see supplementary information for a

summary of all databases used). The data include surface water temperature, Secchi depth and

pH, as well as the concentrations of particulate organic carbon (POC), total phosphorus (TP),

soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN) and dissolved organic carbon
DOC).

To enable readers to compare the methods used by different lake monitoring agencies and

researchers to collect and process in situ samples, we provide the links to the raw data sources

and metadata files in the supplementary information. When selecting data, we tried to be as

consistent as possible by implementing the following steps (more details can be found in the

“initial formatting” folder found in the associated GitHub repository).

1) We only included measurements taken at <3 m water depth. When the sampling depth

was not provided, we assumed the sample was taken from within the top 0.5-3 m of the

lake, given that this is the usual standard sampling protocol (Dorset Environmental

Science Centre, 2010; United States Environmental Protection Agency, 2012).

2) We selected lakes from mid-to-high latitudes (> 40° N). Lakes at these latitudes typically

experience seasonal ice cover and thermal stratification during the summer, in contrast to

low-latitude lakes that are typically meromictic or polymictic (Woolway and Merchant,

2019).
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We omitted all variable values below the corresponding analytical detection limit. Data from

different sources were individually reformatted to yield consistent (standard) units and headings.

Where needed, reported values were averaged to yield daily mean values mean-before being
combined into a single csv file. When multiple chlorophyll-a data types were available (as, for
example, in the Laurentian Great Lakes data series), we selected the uncorrected data because
most reported lake chlorophyll-a concentrations have not been corrected for phaeophytin
pigments. If no coordinates were provided, we assigned those of the lake centroid in QGIS.-e¢
estimated-based-on-the-location-name- Fifteen lakes had unknownne-knrewn location and were
removed from the final dataset. We further restricted ourselves to lakes that in most years were
sampled at least 68 times per year, which-—Fhis was consideredfeund-to-be the minimum number

oefsampling frequencypeintsreguired to reliably detect the yearly PClsgrowth-windows—The

WithAfter the above selection criteriaand-guatity-assessments, the final dataset used-for

caleulating-the-growth-windows-contained 52116 potential PClsunigue-datapoints{62%of the
original-data) for 343357 lakes at—all > 40°N (exeeptLake Kasumigadra-and-Lake Faihu)

covering the period 1964-2019. The location of the lake sampling locations in the PCI dataset are

shown in Figure 1.

2.1.2 Surface solar radiation data

Open source in situ surface solar radiation (SSR) data for the period 1950-2020 were collected

from stations paired with the selected lakes. Each lake was paired with the closest SSR station

using the nearest neighbor function in QGIS, allowing for a maximum radius of three degrees

(Schwarz et al., 2018; Figure 1). In the dataset provided here, the geodesic distance between each

9



lake and its paired SSR station is given, as well as the difference in elevation.Open-seurce-in-Situ

260

The SSR data temporal resolution varied from minutes to months. Hence, where needed, the SSR
data were resampled to yield monthly mean values. For the Experimental Lakes Area (ELA) in
Ontario, Canada, the data were converted from photosynthetically active radiation (PAR) to

265  SSR, where the PAR wavelength range (400-700 nm) was averaged to 550 nm.

2.1.3 Lake characteristics

For each lake, we calculated the trophic status index (TSI) based on the mean chlorophyll-a

concentration over the sampling period. This TSI value was used to assign the lake to the

corresponding trophic state category according to Carlson and Simpson (1996). The

270  HydroLAKES shapefile vielded the lake’s surface area, mean depth, and volume (Messager et

al., 2016). Lake elevation was extracted from a digital elevation model (DEM) (Danielson and

Gesch, 2010), and each lake was assigned its corresponding climate zone using HydroATLAS

data (Linke et al., 2019). The reader is referred to the “lake summary” file in the supplementary

information for details on the lake characteristics.Fereach-take,we-calculated-the-trophic-status

275

280 2.2 Detecting seasonal periods of chlorophyll-a increasegrowth-windows

Periods of chlorophyll-a increase (PCIs) were identified based on the normalized net rate of

change in chlorophyll-a concentration (NRCC) at each lake sampling point throughout the year.

To locate the start and end of a PCI, we smoothed the annual chlorophyll-a time series using a

Savitzky-Golay filter (SciPy.signal savgol filter) and flagged optima in the smoothed data

10
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(SciPy.signal find peaks) using functions from the open source SciPy ecosystem (Virtanen et al.,

2020). The procedure is illustrated in Figure 2.

The NRCC at any given time during the year was calculated by computing the first derivative of

the smoothed chlorophyll-a concentration versus time and dividing the derivative value by the
corresponding chlorophyll-a concentration. Growth-windows-were-defined-based-ontherateof

For each lake and each year, the start of the first PCI was defined as the day the NRCCspring

e surpassed 0.4 day™’. This the-threshold rate

was selected following a series of sensitivity tests (details provided in the supplementary

information). A threshold NRCC value was considered preferable than a threshold RCI

value0-05-pgl*day *forthefirst-time—The-0-05-pgl*day*rate-was-chesen because it accounts
for variations among lakes and among yearseerresponds-to-the-medianrate-at- which-a-distinet
switeh-to-a—rapid-growthperiod in the baseline chlorophyll-a concentrations during the non-

growing season.

ended onat the day the first-=peak® in chlorophyll-a concentration was reached, that is, just

before the NRCC turned negative. —If a threshold NRCCrate of 0.4 day05-pgk"day™ was
notrever reached during a given year, the PClgrewth-window began when the NRCCrate-of
change first became positive. The second (summer{er-fall) PClwindew was identified in the
same way, following the end of the first (spring) PCl-windew. If the annual chlorophyll-a

concentration there-was-only yielded one peak value in the smoothed data series, only one
PClgrowth-windew was identified for that year, which Wthh—'Fh—lS—yeaF was then labelled as a “single

PClgrewth-window” year.

Years with more than twothree chlorophyll-a peaks; or with no peaks; were not included in the

PClgrewth-window dataset.

11
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Depending on data availability, the pre-PCI period was defined as the one- or two-week period

immediately preceding the PCI start day. For each pre-PClI, the mean surface water temperature,

SSR, and TP concentration were compiled. These served as simple indicators of how favorable

in-lake conditions were to initiate algal growth (Lyngsgaard et al., 2017). An example of a year

with a spring and fall PCI is shown in Figure 3. Note that we use the label “fall” to indicate the

second yearly PCI, although in some cases the fall PCI was initiated before the fall equinox.

Once the PClgrowth-windew and pre-PClgrewth durations were determined, the mean values of
the variables listed in Table 1 were calculated.-fer-beth-the-growth-windew-and-the-pre-growth

windews This was done for each lake and for each year data were available. In the dataset, each
row represents a single PClgrowth-windew and includes the timing and duration, RCI value, plus

the mean values for rate-of-increase-efthe-chlorophyH-a-coneentration,-and-all other relevant
lake variables, including SSR, averaged for the PCI and pre-PCI.- Note that, along with the

variables in Table 1, we included the total number of samples collected each year and the mean
time between samples. Thus, if desired the user se-the-dataset-can filter the datasetbefittered for
a higher sampling frequency than done here.—Fhereaderisreferred-to the supplementary

information of the dataset also identifiesineluded-with-the-dataset-for-a-more-detatled-explanatory
table-with-additional-information-on the organization responsible for earrying-eut-the-monitoring

a given lakesampling-tocation.

3 Dataset: data distributions

3.1 Dataset characteristics

Most lakes in the dataset are located between 50 and 60° N. The majority of available open data

are from organizations within the United Kingdom, Sweden, Canada, and the United States. The

years with available data in the dataset are unevenly distributed. The majority of PCls fall in the

12
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period 2005-2019 (Figure 4a), likely due to a combination of increased lake monitoring efforts

and a push in recent years towards greater accessibility of publicly funded data (Hallegraeff et

al., 2021: Roche et al., 2020). Most sampling frequencies are in the range of 25 to 30 days, with

additional peaks at 7 and 14 days (Figure 4b). Thus, with a few exceptions, the PCls included in
the dataset occurred in lakes sampled at a monthly frequency or better. Mestlakes-in-the-dataset

N° N na m a a allfaWaVaTalalWa a om-_oroani [TaYa
v N—C C y v o viav e v v

The distribution of trophic states of the PCls recorded in the dataset are: 1.6% oligotrophic,

18.6% mesotrophic, 75.2% eutrophic, and 4.6% hypereutrophic. Single PCls dominate

oligotrophic lakes where they make up 96.1% of all PCls (Figure 4c¢). This may reflect the severe

nutrient limitation in oligotrophic lakes, which prevents the occurrence of a second annual algal

PCI (Rigosi et al., 2014). Oligotrophic lakes also tend to dominate at latitudes > 55 °N (Figure

4d) where lower water temperatures and lower cumulative solar radiation may further limit algal

growth (Lewis, 2011). The PCI durations range from 3 to 275 days, with a median of 68 days

(Figure 5a). Fall PCIs tend to be shorter than spring and single PCls, with the latter exhibiting
the most variable start and end days (Figure 5b). Fhe-majerity-of growth-windowsrecorded-in

ha A ) N-tha g aYala aYala 604 nliaotronh Q N0/ Mmaesotronh A0/
ata a OP e GOty 0 gotop —F70 oP - 0

13



375

380

385

390

395

400

3.2 Environmental conditions during PClsgrewth-windews

Rates of chlorophyll-a increase during the PCls exhibit log-normal distributions (Figure 6a). The

mean chlorophyll-a rate is lowest in the single PCI category and highest in the fall PCls. Mean

surface water temperature has a distinct bimodal spring-fall distribution (Figure 6b). For the

single PCls, the corresponding mean temperatures are evenly distributed across the annual range,

which reflects the large spread in the timing of the single PCls (Figure 5b). Total P

concentrations are lowest during the spring PCls (Figure 6¢), consistent with a greater control of

P limitation on algal growth during spring compared to summer and fall (Kirillin et al., 2012).

Secchi depth during the PCls ranges from 0.01 to 15.4 m, with fall PCls experiencing the lowest

mean Secchi depth (Figure 6d), as turbidity generally increases after the spring

4 Dataset: examples of trendstrend-analyses

The PClgrowth-windew delineation and the estimation of RClehlorophyl-a+rates can in principle

be applied to any lake for which time series chlorophyll-a concentration data are available. By
creating a dataset comprising many lakes and covering multi-year time periods, it becomes

possible to extractanabyze global trends in lake chlorophyll-a.preductivity- Here, we provide a
few illustrative examples of how the dataset can be interrogated, thereby-setting the stage for its

use and extension by other researchers.

14
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4.1 Chlorophyll-a rates: trophic status,-ard latitude and climate zone

When grouped by trophic status, mean and median chlorophyll-a growth rates (RClIs) show the
expected increase from oligotrophic to hypereutrophic lakes (Figure 7a). The rates in the
different trophic categories, however, cover very-large and overlapping ranges. When grouped
according to latitude, lakes between 40 and 50° N exhibit the widest range in RClsehlerephyH-a
rates (Figure 7b),)}-that; in part due to;+efleets the high proportion of lakes in this latitude range.
The highest latitude lakes (60-70° N) tend to have the lowest RClsehlerephyH-a-rates, which

may reflectis-expected-given the cooler temperatures experiencedane-Howersolarrradiance-they
experience (Lewis, 2011{ewis;2011).

The lakes are spread across three climate zones: cold and mesic; cool, temperate, and dry; and

warm, temperate, and mesic (Figure 7c). There is considerable overlap in RCI across the climate

zones, with no systematic differences in the mean and median RCI values between the zones.

While variations in chlorophyll-a rates of increase (RCIs) are often assumed to reflect

comparable differences in algal biomass growth rates, it is important to note that the chlorophyll-

a to biomass ratio varies within and among lakes. In particular, chlorophyll-a to biomass ratios

are known to be sensitive to variations in solar radiation, temperature, algal species, and cell size
(Baumert and Petzodt, 2008:; Inomura et al., 2019: Geider, 1987; Alvarez et al., 2017). The

summer ratio of chlorophyll-a to biomass (the latter typically expressed as particulate organic

carbon concentration) generally increases with increasing latitude because algae are adapted to

harvest the more variable daylight conditions, including longer summer photoperiods, at higher

latitudes (Behrenfeld et al., 2016; Taylor et al., 1997). By contrast, cooler temperatures at higher

latitudes may result in higher chlorophyll-a to biomass ratios because of lower growth rates, at

least when the algae are nutrient-replete (Behrenfeld et al., 2016). Thus, the use of a relative rate

(NRCC) as the threshold value for defining a PCI, and as a metric reported in the dataset,

facilitates comparisons between lakes of different trophic status or standing stock of chlorophyll-
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4.2 Chlorophyll-a rates: temperature and climate warming
The start and end daysdates of the spring and; single PClsand-summer-growth-windows show

temporal trends towards occurrence earlier in the year (Figure 8a). Earlier Fhe-trends-are-mest

onounced-forthe-spring-windows-which-likehyreflectsa-greatersensitivity-of springtime algal

activity could be linked to globalehimate warming. The latter is expected to result incauses earlier

ice break-up and preduces-earlier surface water temperature conditions favorable for algal

growth (Markelov et al., 2019). Fhis-hypethesis-is-consistent-with-the-correlations-between-the
chlorophyl-arates-and-water temperature-{Figure-8b).

The start and end daysedates of the spring PClsgrowth-windews show a positive correlation with
increasing temperature (Figure 8b). By contrast, little or even negative correlations are seen for
the fall PCls.summer-grewth-windews: Thus, all other conditions unchanged, a warmer climate
would see earlier spring blooms, but little temporal shifts for the fall PClssummergrowth
windews and, possibly, even a slight delay. For the spring and single PClsgrewth-windews, the
duration ef-the-windew-shows a maximum around 10° C. Therefore, moderate temperatures near
or slightly above etese-t6-10° C should, on average, produce the longest lasting algal growth
events. The sameNe-dinstinet trend is not seen for the fall PCls, possiblysummergrowth
windewspresumably because they occur when water temperatures are already above 10° C.

4.3 SurfaceChlerophyl-arates: solar Hradiance
Selarradiation during PClIs: seasonal distributions and distances to lakesis-essential-for

16
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The mean SSR during spring PCls in the dataset is approximately 100 W m (Figure 9), which is

lower than the mean SSR values of single and fall PCls that are both close to 175 W m™. This

difference in mean SSR between spring and fall PCls is expected, given the longer daylight

hours and more intense sunlight experienced in summer and fall compared to early spring. The

similarity in mean SSR between single and fall PCls may be related to the observation that, at

higher latitudes (>55°N), single PCls occur more commonly than double PCls (Figure 4d).

Higher latitude lakes tend to bloom only once during the summer months, taking advantage of
the period of the year with the highest SSR (Behrenfeld et al., 2016; Lewis, 2011). In support of

this, Figures 5b and 5c show that single PCls tend to occur between late spring and early fall. On

the other hand, at lower latitudes (40-45°N), double PClIs are more common than single PCls,

likely due to higher temperatures and longer periods of sufficient daylight experienced during the

spring and fall “shoulder seasons” at these latitudes.

Despite the defining importance of sunlight for photosynthesis, in situ SSR time series data are

rarely measured systematically as part of lake monitoring programs (Sterner et al., 1997).

Although gridded reanalysis datasets that include solar radiation parameters exist, their

comparibility with in situ SSR measurements remains in question (Wohland et al., 2020). In

gathering open source data, we compiled in situ SSR measurements from locations as close as

possible to the lakes with chlorophyll-a data. Nonetheless, much of the SSR values in our dataset

were collected at considerable distances from the corresponding lakes (up to ~300 km, Figure

10). For our dataset, only ~10% of the locations where SSR was measured are less than 20 km

away from the corresponding lakes, while ~40% are 20-50 km away, ~43% are 50-100 km away,

and ~7% are more than 100 km away. Hence, in a significant number of cases, the actual mean

SSR during a PCI may differ from the in situ mean SSR reported here, due to differences in

cloud cover and levels of atmospheric aerosols (among other factors) (Alpert and Kishcha,

2008). Users are therefore advised to consider this limitation when making use of the SSR values

in our dataset. Overall, we recognize a need for SSR data to be more systematically measured

and reported as part of lake monitoring programs, in particular for oligotrophic lakes.

17
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6 Conclusions

We present a novel way to delineate annual periods of chlorophyll-a increase (PCIs) in lakes

that, presumably, overlap with periods of algal growth. We apply this approach to derive the

chlorophyll-a rates of increase (RCIs) during the PCls of 343 lakes from cold and cold-temperate

regions in the northern hemisphere and covering the period 1964-2019. The derived RCIs are

assembled in an open-source dataset, together with additional information on the lakes, including

water quality, trophic state, and surface solar radiation. Note that the dataset can be paired with
other databases, such as HydroLAKES (Messager et al., 2016), HydroATLAS (Linke et al.,
2019), and GLCP (Mever et al., 2020), to access additional lake and/or watershed attributes. Our

dataset is designed to support comparative analyses of the controls on lake chlorophyll-a

dynamics and, by extension, also algal dynamics, within and between lakes. We present several

examples of such analyses. We hope these will encourage others to use the dataset in their own

research and to further expand the dataset’s geographical reach and information content. We
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Code and data availability

All code is available in the project GitHub repository
(https://github.com/hfadams/growth_window) and in Zenodo
(https://doi.org/10.5281/zenodo.5171442). The PClgrowth-windew dataset and supplementary
data files can be openly accessed atare-avatlable-in the Federated Research Data Repository at
https://doi.org/10.20383/102.0488 (Adams et al., 2021){Adams-et-al2021).
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Table 1: Summary of variables in the PCI dataset. Associated lake data (e.g., lake depth, surface area, volume,

climate zone) are available in the supplementary information.
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Variable Units Description Comments
Timin NA Three possible PCls: spring, A single PCI occurs when
fall, or single PCI there is only one maximum
in the smoothed yearly
chlorophyll-a concentration
time series for the year
Period of chlorophyll-a Day of year when the PCI
increase (PCI) start day begins
Period of chlorophyll-a Day of year when the PCI
increase (PCI) end day ends
Rate of chlorophyll-a ug Lt day? Difference in chlorophyll-a One RCI value is associated
increase (RCI) concentration between start with each PCI
and end of the PCI divided by
the duration of the PCI
Normalized rate of change  day RCI divided by the initial Accounts for variable
in chlorophyll-a (NRCC) chlorophyll-a concentration standing stock of
chlorophyll-a
Rate of particulate organic mg L day! Same calculation as RCI but Proxy for the rate of change

carbon (POC) increase

using start and end POC
concentrations

in total algal biomass

RCl:rate of POC increase

mg chlorophyll-a

Accounts for variable

mg POC chlorophyll-a content of
algal biomass
Mean PCI surface water °C Mean value during the PCI
temperature and the 14-day pre-PCI
Mean PCI surface solar W m2 Mean value during the PCI
radiation and the 14-day pre-PCI
Mean PCI total mg L* (Co-)limiting macronutrients
phosphorus (TP)
Mean PCI soluble reactive =~ mg L™ Mean values during the PCI
phosphorus (SRP)
Mean PCI total Kjeldahl mg L1
nitrogen (TKN)
Mean PCI Secchi depth m Proxy for turbidity
Mean PCI pH pH units
Trophic Status Index (TSI) Range: 0-100 Calculated from chlorophyll-a  Basis for assigning trophic
concentrations across all years  status
the lake was sampled
Trophic status NA Trophic status class assigned TSI thresholds are those of

based on TSI: Oligotrophic,

the North American Lake

Mesotrophic, Eutrophic, or

Management Society

Hypereutrophic
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Figure 1: Distribution of the 343357 lake sampling locations in the PClgrewth-window dataset. Lake Sampling points are
clustered by proximity, where marker size and value indicate the number of unique locations represented by each point (light
blue markers with white text).- Enlarged sections show each lake sampling location (blue markers) and along with the location of
the 320322 paired SSR stations_(orange markers).- Base map credit: ESRI, 2011.
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Figure 2: Workflow for detecting PCIs and processing grewth-windew-data. For each lake sampling point, chlorophyll-a (Chl-a)
data are smoothed with a Savitzky-Golay filter and then PClsgrewth-windews are detected based on peaks in the chlorophyll-a

850 concentration. PClsGrewth-windows are flagged as spring, fallsummer, or single PCls. The data density is shown at key points
along the workflowgrowth-windows.
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Figure 3. Example of spring and fall PClssummergrewth-wiadows in Lake Windermere’s north basin in 1988. The solid grey line
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chlorophyll-a concentration (ug L ), and the solid black line is the chlorophyll-a concentration smoothed with a Savitzky-Golay
filter. The dashed line is the normalized rate of change in chlorophyll-a (NRCC) (dayt) where the first derivative is divided by
870 the smoothed chlorophyll-a concentration and is plotted using the right axis. The PCI begins when the NRCC surpasses a
threshold of 0.4 day* as shown in the first (spring) PCI and ends when the NRCC turns negative, which_is when the peak
chlorophyll-a concentration is reached. When a peak is detected but the NRCC does not surpass a threshold of 0.4 day, the PCI
beglns when the NRCC surpasses 0 Q}Las shown in the second (faII) PCI. The PC|Q5—#g-L4dey4-(med+en—FGte—f9r—the—dI§Hnet

2 wih w and pre-
875 PCIgfewl:h—mndew (two Weeks lead/ng up to the PCIg-Fewt-h—Mndew) are shown in darkb#ue and li ght greyerange shading,
respectively.
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Figure 4. Distributions of (a) year of occurrence, (b) mean time between samples, (c) lake trophic status index, and (de) lake

latitude for each PClgrowth-windew: in the dataset. Data are grouped by “double PCIGW” or “single PCIGW” year. The data is
skewed toward more recent years and higher latitudes. Lakes in the oligotrophic category (TSI < 40) have a higherthe-highest
proportion of single PCls. These “raincloud plots’” show the same data visualized in 3 different ways for each group: frequency

distribution, boxplot with quartiles (outliers as represented as points), and a jitter plot of data points as different ways to

visualize the data (Allen et al., 2021) (Allen et al., 2021). Note that the amplitude of the frequency distribution is not proportional

between categoriesgrowth-windows.
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Figure 5: Frequency- Distributions of (a) duration, (b) start day (day of year), and (c) end day (day of year) b}-timing of the

895 PClsgrewth-windews, grouped by PClgrewth-windew type. Single PClsgrewth-windews have beth-the longest range in length
while fall PCls tend to be end-the shortest. Single PCls have the largest range of start and end days while the spring and fall
PCls tend to start and end within a smaller window. These raincloud plots show the same data visualized in 3 different ways for
each group: frequencymesteven distribution, boxplot with quartiles (outliers represented as points), and a jitter plot of data
points.
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Figure 6. Distributions of selected water quality variables during PClsthe-grewth-windew-peried: (a) log rate of chlorophyll-a

increaserate, (b) mean surface water temperature, (c) log mean total phosphorus (TP), and (d) mean Secchi depth. The mean

rate of chlorophyll-a increase is lowest in the single PCI category and highest in the fall PCls. For the single PCls, temperature
is evenly distributed across the annual range as they occur throughout the ice-free season. Total phosphorus concentrations are
lowest during the spring PCls, which likely reflects a greater control of P limitation on algal growth during spring compared to
summer and fall. Each PCI category has a similar range in Secchi depth, between 0 and 5 m. Raincloud plots show the frequency
distribution, boxplot with quartiles (outliers as represented as points), and a jitter plot of data points for each group.
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Figure 7. Rate of Chlorophyll-a increase (RCI)grewth-rate trends in the dataset,: grouped by (a) trophic status,-and (b) latitude,
and (c) climate zone.- Lakes of a higher trophic status have a higher mean RCI while ehlorephyl-a-growth-rates-and-lakes at
higher latitudes have lower RCI (W|th c0n5|derable overlap between all categories). Grouping by climate zone shows minimal
effect on RCI. ahy i MR- ws- The number of lakes represented by each violin is shown in

940 grey text on the panels. Cllmate zones are as follows: 7 = cold and mesic; 8 = cool, temperate, and dry; 10 = warm, temperate,
and mesic. White circles indicate the mean value for each violin.
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Figure 8. (a) time-series-of-the-start and end daysdetes for the spring, fallsummer, and single PClsgrowth-windews for all the
lakes in the dataset; spring and single PCleH-growth-window categories trend toward earlier start and end days, while fall PCI
start days are occurring earlierdates,especially in the yearspring. (b) Start and end daysdates of the PClsgrowth-windows as a
function of temperature (top two rows in panel B, linear regression trendlinekine in blackderk-blue) suggest a positive
relationship between PCIgrewth—wmdew t/mmg and surface water temperature in the spr/ng and a negative relatlonsh/p in the
fall. Longer PClsstaam z " !
leﬁgepgeevﬁh—wmdews occur at moderate surface water temperatures WhICh are Observed Iess often du ring the faII PCIS
(trendline fitting data in the bottom row is locally weighted scatterplot smoothing). thet-aren’t-seenin-the-summermonths:
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