
1 
 

Rates and timing of chlorophyll-a 

increasesgrowth rates and related 

environmental variables in global temperate 

and cold-temperate lakes 

 5 

Hannah Adams1, Jane Ye1, Bhaleka Persaud1, Stephanie Slowinski1, Homa Kheyrollah Pour2, 

Philippe Van Cappellen1 

1 Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University 

of Waterloo, Waterloo, ON, Canada 

2 ReSEC Research Group, Department of Geography and Environmental Studies, Wilfrid Laurier University, 10 
Waterloo, ON, Canada 

Correspondence to: Hannah Adams (hadams21@mun.ca) 

 

Running Head: Chlorophyll-a concentrationsgrowth rates in northernmid-to-high latitude 

lakes 15 

 

Keywords: northern lakes,lake primary productivity, chlorophyll-a concentration, increase, 

growth window, growth rate, bottom-up controls, trophic state, climate changeice phenology, 

solar irradiance  

mailto:hadams21@mun.ca


2 
 

Abstract 20 

Lakes are key ecosystems within the global biogeosphere. However, the environmentalbottom-

up controls on the biological productivity of lakes, including surface temperature, ice phenology, 

nutrient loads and mixing regime, are increasingly altered by climate warming and land-use 

changes. To better characterize global trends inunderstand the environmental drivers of lake 

productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water 25 

quality parameters and surface solar radiationirradiance, for temperate and cold-temperate lakes 

experiencing seasonal ice cover. We developed a method to identify periods of rapid net increase 

of algal growth from in situ chlorophyll-a concentrations from time series data and applied it to 

data collectedmeasurements performed between 1964 and 2019 across 343357 lakes, 

predominantly located north of 40°. The data Long-term trends show that the spring chlorophyll-30 

a increase periodsalgal growth windows have been occurring earlier in the year, thus potentially 

extending the growing season and increasing the annual productivity of northern lakes. The 

dataset onis also used to analyze the relationship between chlorophyll-a growth rates and solar 

irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially 

at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a increase rates 35 

and timing growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role 

of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability 

in spring but not in summer and fall, consistent with a switch to top-down control of summer and 

fall algal communities. The growth window dataset can be used to analyze trends and patterns in 

lake productivity across the northern hemisphere or at smaller, regional scales. We 40 

illustratepresent some general trends extracted fromin the datasetdata and encourage other 

researchers to use the open dataset for their own research questions. 
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1 Introduction 45 

Lakes play an important role in the biogeochemical cycling of many elements (Battin et al., 

2008; Cole et al., 2007; O’Connell et al., 2020; Rousseaux and Gregg, 2013; Schindler, 1971). 

With over 100 million documented lakes on earth (Verpoorter et al., 2014), evidence indicates 

that the majority of global lakes are shallow with enough light and nutrients available to make 

them highly productive ecosystems (Downing et al., 2006; Wetzel, 2001). Lakes therefore 50 

represent active sites for the storage, transport, and transformation of carbon, nutrients (e.g., 

nitrogen, phosphorus, silicon, iron), and contaminants (e.g., mercury) along the freshwater 

continuum (Lauerwald et al., 2019; Tranvik et al., 2009). They are also sensitive to the effects of 

climate change (Williamson et al., 2009; Rouse et al., 1997).Lakes play an important role in the 

biogeochemical cycling of many elements (Battin et al., 2008; Cole et al., 2007; O’Connell et al., 55 

2020; Rousseaux and Gregg, 2013; Schindler, 1971). With over 100 million documented lakes 

on earth (Verpoorter et al., 2014), evidence indicates that the majority of global lakes are shallow 

with enough light and nutrients available to make them highly productive ecosystems (Downing 

et al., 2006; Wetzel, 2001). Lakes therefore represent active sites for the storage, transport, and 

transformation of carbon, nutrients (e.g., nitrogen, phosphorus, silicon, iron), and contaminants 60 

(e.g., mercury) along the freshwater continuum (Lauerwald et al., 2019; Tranvik et al., 2009). 

There are multiple environmental controls on lake primary productivity, including water 

temperature, ice phenology, nutrient concentrations, circulation, mixing regime, and solar 

radiation (Lewis, 2011; Zohary et al., 2009). Stressors such as climate change and nutrient 

pollution can significantly impact these controls, altering the ecosystem structure and 65 

biogeochemical functioning of lakes (Jeppesen et al., 2020; Markelov et al., 2019). Changes 

affecting northern lakes include warmer water temperatures, enhanced stratification and hypoxia, 

nutrient enrichment, light attenuation by chromophoric organic matter, and increases in the 

relative abundance of toxic cyanobacteria in the phytoplankton community (Deng et al., 2018; 

Huisman and Hulot, 2005; Jeppesen et al., 2003; Creed et al., 2018). For example, Lake Superior 70 

has seen an increase in primary production during the last century, together with increasing 

surface water temperatures and longer seasonal stratification and ice-free periods (O’Beirne et 

al., 2017). Other lakes are similarly experiencing increases in productivity. According to Lewis 

(2011), the current mean primary production of lakes is 260 g C m-2 y-1, which is 162% higher 

than earlier estimations under historical baseline conditions.There are multiple bottom-up 75 
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controls on lake primary productivity, including water temperature, ice phenology, nutrient 

concentrations, circulation, mixing regime, and solar radiation (Lewis, 2011). Stressors such as 

climate change and nutrient pollution can significantly impact these controls, altering the 

ecosystem structure and biogeochemical functioning of lakes (Jeppesen et al., 2020; Markelov et 

al., 2019). Changes affecting northern lakes include warmer water temperatures, enhanced 80 

stratification and hypoxia, nutrient enrichment, light attenuation by chromophoric organic 

matter, and increases in the relative abundance of toxic cyanobacteria in the phytoplankton 

community (Deng et al., 2018; Huisman and Hulot, 2005; Jeppesen et al., 2003; Creed et al., 

2018). For example, Lake Superior has seen an increase in primary production during the last 

century, together with increasing surface water temperatures and longer seasonal stratification 85 

and ice-free periods (O’Beirne et al., 2017). Other lakes are similarly experiencing increases in 

productivity. According to Lewis (2011), the current mean primary production of lakes is 260 g 

C m-2y-1, which is 162% higher than earlier estimations under historical baseline conditions. 

Globally, phytoplankton (i.e., algae) are the main primary producers in lakes and generally make 

up the foundation of lentic food webs (Carpenter et al., 2016). Periods of high lake productivity 90 

coincide with a rapid increase in phytoplankton biomass. In extreme cases, algal blooms can 

reach hundreds to thousands of cells per milliliter (Henderson-Seller and Markland, 1987). These 

bloom events produce large quantities of decomposing organic matter that cause the expansion 

of hypoxic conditions within the lake (Watson et al., 2016). In harmful algal blooms, certain 

algal species also release hepatotoxic and neurotoxic compounds (Codd et al., 2005). Thus, 95 

identifying trends in the timing and intensity of seasonal algal growth, and linking them to 

changes in environmental stressors, can help predict the future of lake productivity and assess the 

risk of undesirable algal blooms.Phytoplankton (i.e., algae) are the main primary producers in 

lakes and generally make up the foundation of lentic food webs (Carpenter et al., 2016). Periods 

of high lake productivity coincide with a rapid increase in phytoplankton biomass. In extreme 100 

cases, algal blooms can reach hundreds to thousands of cells per milliliter (Henderson-Seller and 

Markland, 1987). These bloom events produce large quantities of decomposing organic matter 

that cause the expansion of hypoxic conditions within the lake (Watson et al., 2016). In harmful 

algal blooms, certain algal species also release hepatotoxic and neurotoxic compounds (Codd et 

al., 2005). Thus, identifying trends in the timing and intensity of seasonal algal growth, and 105 
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linking them to changes in environmental stressors, can help predict the future of lake 

productivity and assess the risk of undesirable algal blooms. 

Because it is challenging to measure algal abundance and growth directly, chlorophyll-a is often 

used as a proxy for algae biomass and an indicator of the associated primary production in lakes 

(Huot et al., 2007). Although other proxies have been developed (Lyngsgaard et al., 2017), 110 

chlorophyll-a is the most common metric to characterize trends in algal biomass within and 

across lakes, especially in historical water quality records. Tett (1987) proposes a chlorophyll-a 

threshold of 100 µg L-1 to define “exceptional blooms”, Jonsson et al. (2009) use a threshold of 5 

µg L-1 to identify a bloom, while Binding et al. (2021) flags an algal bloom when the 

chlorophyll-a concentrations extracted from satellite observations exceed 10 µg L-1. Such 115 

threshold values, however, do not take into account the baseline (i.e., no-bloom) chlorophyll-a 

concentration specific to a given lake, or the lake’s trophic status (Germán et al., 2017). 

Furthermore, focusing on harmful and nuisance algal blooms alone may mask the impact that a 

changing climate or other stressors may have on a lake’s overall biological productivity.Because 

it is challenging to measure algal population growth directly, chlorophyll-a is often used as a 120 

proxy for both the algae biomass and the associated primary production rate in lakes (Huot et al., 

2007). Although other proxies have been developed (Lyngsgaard et al., 2017), chlorophyll-a is 

the most common metric to characterize trends in algal biomass within and across lakes, 

especially in historical water quality records. Tett (1987) proposes a chlorophyll-a threshold of 

100 µgL-1 to define “exceptional” blooms”, Jonsson et al. (2009) use a threshold of 5 µgL-1 to 125 

identify a bloom, while Binding et al. (2021) flags an algal bloom when the chlorophyll-a 

concentrations extracted from satellite observations exceed 10 µgL-1. Such threshold values, 

however, do not take into account the baseline (i.e., no-bloom) chlorophyll-a concentration 

specific to a given lake, or the lake’s trophic status (German et al., 2017). Furthermore, focusing 

on harmful and nuisance algal blooms alone may mask the impact that a changing climate or 130 

other stressors may have on a lake’s overall biological productivity. 

Intra-annual fluctuations in lake chlorophyll-a concentration result from the interactions of 

multiple variables and processes including grazing by zooplankton, competition between algal 

species with different growth strategies and chlorophyll-a contents, and changes in temperature, 

light, and nutrient availability (Lyngsgaard et al., 2017; Sommer et al., 1986). In dimictic lakes, 135 
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for example, there are usually two peaks in algal biomass, and hence also in chlorophyll-a 

concentrations, in the spring and fall, with a smaller biomass stock of slower growing species 

during the summer, and an even smaller stock of algae (in terms of both biovolume and 

chlorophyll-a) under the ice cover in the winter (Hampton et al., 2017).  

The spring increase in algal biomass generally consists of fast-growing algal species that take 140 

advantage of the increases in temperature and light following ice-off, as well as the available 

inorganic nutrients that were generated by mineralization under the ice over the winter. The shift 

from spring to summer algal communities often coincides with high zooplankton grazing rates 

exceeding the spring algal growth rates, hence, bringing down the total algal biomass. The high 

zooplankton grazing rates favor the growth during the summer of algal species that are less 145 

edible by grazers, but which tend to grow at slower rates. Lake overturn in the fall initiates the 

transition from the predominance of the slow growing species in the summer to the fast-growing 

phytoplankton species in the fall causing a second peak in algal biomass (Sommer et al., 1986). 

Annual fluctuations in lake chlorophyll-a concentration are an indicator of the natural seasonal 

succession of algal species as a function of temperature, light, and nutrient availability 150 

(Lyngsgaard et al., 2017). For instance, in a dimictic lake algal growth in the spring tends to be 

controlled by these bottom-up controls, with light often being the primary limiting factor, while 

later in the summer or fall algal biomass may be more influenced by zooplankton grazing (i.e., a 

top-down control), while nutrient availability may overtake solar radiation as the limiting 

resource for growth (Lewis et al., 2018; Lyngsgaard et al., 2017; Scofield et al., 2020). 155 

A common approach for comparing chlorophyll-a trends across multiple lakes is to consider the 

maximum or mean annual chlorophyll-a concentrations. For example, Ho et al. (2019) 

applied(2020) used the Mann-Kendall trend test to analyze time series of annual maximum 

chlorophyll-a concentrations, while Shuvo et al. (2021) used a random forest regression 

approach to assess the relative importance of climatic versus non-climatic controls on mean 160 

chlorophyll-a concentrations. Both these studies analyzed chlorophyll concentrations derived 

from satellite observations rather than measured in situ. In additionHowever, these approaches 

diddo not specifically identifylook at the periods of the year when chlorophyll-a concentrations 

experiencedalgal biomass is primarily determined by bottom-up controls and exhibits rapid 

changesgrowth. 165 
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Alternatively, the rate of increasechange in chlorophyll-a concentration can be used to 

constraincapture the timing of rapid increase in algal biomass usually associated with periods of 

high primarylake productivity. In this study, we refer to these as “periods of chlorophyll-a 

increase” (PCIs).as “growth windows”. The weeks leading up to a PCIgrowth window are 

crucial to create the necessary environmental conditions that enable algal growth (Lewis et al., 170 

2018).(Lewis et al., 2018). Thus, to analyze trends in lake net primary productivity, one should 

consider environmental variables, such as surface water temperature, solar radiation, and nutrient 

concentrations, both during and preceding the annual PCIsgrowth windows. 

Although the rate of chlorophyll-a concentration increasegrowth has been used to detect algal 

blooms within individual water bodies, for example in the San Roque reservoir (Germán et al., 175 

2017), it has rarely been used across large temporal (i.e., more than a few years) and spatial (i.e., 

regional and up) scales. Here, we present a method for calculating net rates ofseasonal 

chlorophyll-a increase (RCI). The timing of PCIs growth rates and values of the corresponding 

RCIs werethen create a dataset of these rates derived from in situ chlorophyll-a concentrations 

obtained for 343in 357 lakes located, most of which are at latitudes above 40° N. The entire 180 

dataset covers the period from 1964 to 2019, and further contains data on coincident bottom-up 

environmental control variables, including in situ surface solar radiation. measurements. To 

illustrate the potential applications of the resulting dataset, we present some temporalgeneral 

trends of the chlorophyll-a rates and their relationships with environmental variables. The dataset 

is made available as an open resource that other researchers are encouraged to use in their own 185 

work. 

2 Data and methods 

All data processing, visualizations, and analyses were carried out with Python (ver. 3.7.6; Python 

Software Foundation, 2021) using the pandas library (Reback et al., 2020), NumPy library 

(Harris et al., 2020), and Dplython library (Riederer, 2015), while QGIS/PYQGIS was used for 190 

all spatial data analyses (ver. 3.16; QGIS Development Team, 2021).All data processing, 

visualizations, and analyses were carried out with Python (ver. 3.7.6; Python Software 

Foundation, 2021) using the pandas library (Reback et al., 2020), NumPy library (Harris et al., 

2020), and Dplython library (Riederer, 2015), while QGIS/PYQGIS was used for all spatial data 

analyses (ver. 3.16; QGIS Development Team, 2021). 195 
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2.1 Data acquisition, compilation, and quality control 

2.1.1 Lake data selection 

In situ chlorophyll-a concentrations and other lake physico-chemical data were extracted from 

open source international, national, and regional databases (see supplementary information for a 

summary of all databases used). The data include surface water temperature, Secchi depth and 200 

pH, as well as the concentrations of particulate organic carbon (POC), total phosphorus (TP), 

soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN) and dissolved organic carbon 

(DOC).  

To enable readers to compare the methods used by different lake monitoring agencies and 

researchers to collect and process in situ samples, we provide the links to the raw data sources 205 

and metadata files in the supplementary information. When selecting data, we tried to be as 

consistent as possible by implementing the following steps (more details can be found in the 

“initial formatting” folder found in the associated GitHub repository).  

1) We only included measurements taken at ≤ 3 m water depth. When the sampling depth 

was not provided, we assumed the sample was taken from within the top 0.5-3 m of the 210 

lake, given that this is the usual standard sampling protocol (Dorset Environmental 

Science Centre, 2010; United States Environmental Protection Agency, 2012).  

2) We selected lakes from mid-to-high latitudes (≥ 40° N). Lakes at these latitudes typically 

experience seasonal ice cover and thermal stratification during the summer, in contrast to 

low-latitude lakes that are typically meromictic or polymictic (Woolway and Merchant, 215 

2019).  

In situ chlorophyll-a concentrations and other lake physico-chemical data were collected from 

open source international, national, and regional databases. The data include surface water 

temperature, Secchi depth and pH, as well as the concentrations of particulate organic carbon 

(POC), total phosphorus (TP), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN) 220 

and dissolved organic carbon (DOC). We selected lakes from latitudes ≥ 40° N to reduce the 

latitude-dependent variability in mixing and thermal regimes, both of which exert a strong 

control on lake productivity (Kirillin et al., 2012). At mid-to-high latitudes most lakes are 

dimictic with seasonal ice cover while low-latitude lakes are typically meromictic or polymictic 

(Woolway and Merchant, 2019). High-elevation lakes at lower latitudes can experience similar 225 

https://github.com/hfadams/growth_window/tree/main/code/initial_formatting
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effects from the transition from winter to spring, even without ice cover (Deng et al., 2020). We 

therefore included the extensively monitored Lake Kasumigaura in Japan and Lake Taihu in 

China in our study, although they are located at latitudes lower than 40°N. 

Chlorophyll-a measurements are collected at variable water depths by different lake monitoring 

agencies and researchers. For consistency, we only included measurements taken at ≤ 3 m depth. 230 

When the sampling depth was not provided, we assumed the sample was taken from within the 

top 0.5-3 m of the lake, given that this is standard sampling protocol (Dorset Environmental 

Science Centre, 2010; United States Environmental Protection Agency, 2012). 

We omitted all variable values below the corresponding analytical detection limit. Data from 

different sources were individually reformatted to yield consistent (standard) units and headings. 235 

Where needed, reported values were averaged to yield daily mean values mean before being 

combined into a single csv file. When multiple chlorophyll-a data types were available (as, for 

example, in the Laurentian Great Lakes data series), we selected the uncorrected data because 

most reported lake chlorophyll-a concentrations have not been corrected for phaeophytin 

pigments. If no coordinates were provided, we assigned those of the lake centroid in QGIS. or 240 

estimated based on the location name. Fifteen lakes had unknownno known location and were 

removed from the final dataset. We further restricted ourselves to lakes that in most years were 

sampled at least 68 times per year, which. This was consideredfound to be the minimum number 

of sampling frequencypoints required to reliably detect the yearly PCIsgrowth windows. The 

location of all lake sampling locations in the growth window dataset are shown in Figure 1. 245 

WithAfter the above selection criteriaand quality assessments, the final dataset used for 

calculating the growth windows contained 52116 potential PCIsunique data points (62% of the 

original data) for 343357 lakes at, all ≥ 40°N (except Lake Kasumigaura and Lake Taihu), 

covering the period 1964-2019. The location of the lake sampling locations in the PCI dataset are 

shown in Figure 1. 250 

2.1.2 Surface solar radiation data 

Open source in situ surface solar radiation (SSR) data for the period 1950-2020 were collected 

from stations paired with the selected lakes. Each lake was paired with the closest SSR station 

using the nearest neighbor function in QGIS, allowing for a maximum radius of three degrees 

(Schwarz et al., 2018; Figure 1). In the dataset provided here, the geodesic distance between each 255 
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lake and its paired SSR station is given, as well as the difference in elevation.Open source in situ 

surface solar radiation (SSR) data for the period 1950-2020 were collected from stations paired 

with the selected lakes. Each lake was paired with the closest SSR station using the nearest 

neighbor function in QGIS, allowing for a maximum radius of three degrees (Schwarz et al., 

2018; Figure 1). In the dataset, the geodesic distance between each lake and its paired SSR 260 

station is given, as well as the difference in elevation. 

The SSR data temporal resolution varied from minutes to months. Hence, where needed, the SSR 

data were resampled to yield monthly mean values. For the Experimental Lakes Area (ELA) in 

Ontario, Canada, the data were converted from photosynthetically active radiation (PAR) to 

SSR, where the PAR wavelength range (400-700 nm) was averaged to 550 nm. 265 

2.1.3 Lake characteristics 

For each lake, we calculated the trophic status index (TSI) based on the mean chlorophyll-a 

concentration over the sampling period. This TSI value was used to assign the lake to the 

corresponding trophic state category according to Carlson and Simpson (1996). The 

HydroLAKES shapefile yielded the lake’s surface area, mean depth, and volume (Messager et 270 

al., 2016). Lake elevation was extracted from a digital elevation model (DEM) (Danielson and 

Gesch, 2010), and each lake was assigned its corresponding climate zone using HydroATLAS 

data (Linke et al., 2019). The reader is referred to the “lake summary” file in the supplementary 

information for details on the lake characteristics.For each lake, we calculated the trophic status 

index (TSI) based on the mean chlorophyll-a concentration over the sampling period. This TSI 275 

value was used to assign the lake to the corresponding trophic state category according to 

Carlson and Simpson (1996). The HydroLAKES shapefile yielded the lake’s surface area, mean 

depth, elevation, and volume (Messager et al., 2016). The climate zone of the lake was extracted 

from the HydroATLAS shapefile (Linke et al., 2019).  

2.2 Detecting seasonal periods of chlorophyll-a increasegrowth windows  280 

Periods of chlorophyll-a increase (PCIs) were identified based on the normalized net rate of 

change in chlorophyll-a concentration (NRCC) at each lake sampling point throughout the year. 

To locate the start and end of a PCI, we smoothed the annual chlorophyll-a time series using a 

Savitzky-Golay filter (SciPy.signal savgol_filter) and flagged optima in the smoothed data 
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(SciPy.signal find_peaks) using functions from the open source SciPy ecosystem (Virtanen et al., 285 

2020). The procedure is illustrated in Figure 2.  

The NRCC at any given time during the year was calculated by computing the first derivative of 

the smoothed chlorophyll-a concentration versus time and dividing the derivative value by the 

corresponding chlorophyll-a concentration. Growth windows were defined based on the rate of 

change in chlorophyll-a concentration at each lake sampling point throughout the year. To locate 290 

the start and end of a growth window, we smoothed the annual chlorophyll-a time series using a 

Savitzky-Golay filter (SciPy.signal savgol_filter) and flagged optima in the smoothed data 

(SciPy.signal find_peaks) using functions from the open source SciPy ecosystem (Virtanen et al., 

2020). The procedure is illustrated in Figure 2.  

For each lake and each year, the start of the first PCI was defined as the day the NRCCspring 295 

growth window began when the daily rate of increase surpassed 0.4 day-1. This the threshold rate 

was selected following a series of sensitivity tests (details provided in the supplementary 

information). A threshold NRCC value was considered preferable than a threshold RCI 

value0.05 µgL-1day-1 for the first time. The 0.05 µgL-1day-1 rate was chosen because it accounts 

for variations among lakes and among yearscorresponds to the median rate at which a distinct 300 

switch to a “rapid growth” period in the baseline chlorophyll-a concentrations during the non-

growing season.  

The PCImesotrophic-hypereutrophic lakes in the dataset was observed. The growth window 

ended onat the day the first “peak” in chlorophyll-a concentration was reached, that is, just 

before the NRCC turned negative. . If a threshold NRCCrate of 0.4 day05 µgL-1day-1 was 305 

notnever reached during a given year, the PCIgrowth window began when the NRCCrate of 

change first became positive. The second (summer (or fall) PCIwindow was identified in the 

same way, following the end of the first (spring) PCI window. If the annual chlorophyll-a 

concentration there was only yielded one peak value in the smoothed data series, only one 

PCIgrowth window was identified for that year, which. This year was then labelled as a “single 310 

PCIgrowth window” year. (i.e., only one major algal growth window occurred within that year). 

Years with more than twothree chlorophyll-a peaks, or with no peaks, were not included in the 

PCIgrowth window dataset. 
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Depending on data availability, the pre-PCI period was defined as the one- or two-week period 

immediately preceding the PCI start day. For each pre-PCI, the mean surface water temperature, 315 

SSR, and TP concentration were compiled. These served as simple indicators of how favorable 

in-lake conditions were to initiate algal growth (Lyngsgaard et al., 2017). An example of a year 

with a spring and fall PCI is shown in Figure 3. Note that we use the label “fall” to indicate the 

second yearly PCI, although in some cases the fall PCI was initiated before the fall equinox. 

Depending on data availability, the pre-growth window was defined as the one or two week 320 

period immediately preceding the growth window start date. For each pre-growth window, the 

mean surface water temperature, SSR, and TP concentration were calculated. These served as 

(simple) indicators of how favorable in-lake conditions were to initiate algal growth (Lyngsgaard 

et al., 2017). An example of a spring and summer growth window is shown in Figure 3. Note that 

we use the label “summer” to indicate the second yearly growth window, although in many cases 325 

the summer growth window occurred after the fall equinox.   

Once the PCIgrowth window and pre-PCIgrowth durations were determined, the mean values of 

the variables listed in Table 1 were calculated. for both the growth window and the pre-growth 

window. This was done for each lake and for each year data were available. In the dataset, each 

row represents a single PCIgrowth window and includes the timing and duration, RCI value, plus 330 

the mean values for rate of increase of the chlorophyll-a concentration, and all other relevant 

lake variables, including SSR, averaged for the PCI and pre-PCI.. Note that, along with the 

variables in Table 1, we included the total number of samples collected each year and the mean 

time between samples. Thus, if desired the user so the dataset can filter the datasetbe filtered for 

a higher sampling frequency than done here.. The reader is referred to the supplementary 335 

information of the dataset also identifiesincluded with the dataset for a more detailed explanatory 

table with additional information on the organization responsible for carrying out the monitoring 

a given lakesampling location. 

3 Dataset: data distributions 

3.1 Dataset characteristics 340 

Most lakes in the dataset are located between 50 and 60° N. The majority of available open data 

are from organizations within the United Kingdom, Sweden, Canada, and the United States. The 

years with available data in the dataset are unevenly distributed. The majority of PCIs fall in the 
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period 2005-2019 (Figure 4a),  likely due to a combination of increased lake monitoring efforts 

and a push in recent years towards greater accessibility of publicly funded data (Hallegraeff et 345 

al., 2021; Roche et al., 2020). Most sampling frequencies are in the range of 25 to 30 days, with 

additional peaks at 7 and 14 days (Figure 4b). Thus, with a few exceptions, the PCIs included in 

the dataset occurred in lakes sampled at a monthly frequency or better. Most lakes in the dataset 

are located between 50 and 60° N as the majority of available open data are from organizations 

within the United Kingdom, Sweden, Canada, and the United States. The years with available 350 

data in the dataset are unevenly distributed, however, with most detected growth windows falling 

in the period 2005-2019,  likely due to a combination of increased lake monitoring efforts and a 

push in recent years towards greater accessibility of publicly funded data (Hallegraeff et al., 

2021; Roche et al., 2020; Figure 4a).  

The distribution of trophic states of the PCIs recorded in the dataset are: 1.6% oligotrophic, 355 

18.6% mesotrophic, 75.2% eutrophic, and 4.6% hypereutrophic. Single PCIs dominate 

oligotrophic lakes where they make up 96.1% of all PCIs (Figure 4c). This may reflect the severe 

nutrient limitation in oligotrophic lakes, which prevents the occurrence of a second annual algal 

PCI (Rigosi et al., 2014). Oligotrophic lakes also tend to dominate at latitudes ≥ 55 °N (Figure 

4d) where lower water temperatures and lower cumulative solar radiation may further limit algal 360 

growth (Lewis, 2011). The PCI durations range from 3 to 275 days, with a median of 68 days 

(Figure 5a). Fall PCIs tend to be shorter than spring and single PCIs, with the latter exhibiting 

the most variable start and end days (Figure 5b). The majority of growth windows recorded in 

the dataset fall in the eutrophic category (1.6% oligotrophic, 18.0% mesotrophic, 75.4% 

eutrophic, and 5.0% hypereutrophic). Single growth windows dominate oligotrophic lakes where 365 

they make up 96% of all growth windows (Figure 4b). This may reflect the severe nutrient 

limitation in oligotrophic lakes, which prevents the occurrence of a second annual algal growth 

window (Rigosi et al., 2014). Oligotrophic lakes also tend to occur at the higher latitudes (Figure 

4c) where lower water temperatures and solar radiation may further limit algal growth (Lewis, 

2011). 370 

The growth window durations range from 2 to 251 days, with a median of 71 days across all 

lakes (Figure 5a). Summer growth windows tend to be shorter than those of spring and single 

growth windows, with the latter exhibiting the most variable start and end dates (Figure 5b). 
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3.2 Environmental conditions during PCIsgrowth windows 

Rates of chlorophyll-a increase during the PCIs exhibit log-normal distributions (Figure 6a). The 375 

mean chlorophyll-a rate is lowest in the single PCI category and highest in the fall PCIs. Mean 

surface water temperature has a distinct bimodal spring-fall distribution (Figure 6b). For the 

single PCIs, the corresponding mean temperatures are evenly distributed across the annual range, 

which reflects the large spread in the timing of the single PCIs (Figure 5b). Total P 

concentrations are lowest during the spring PCIs (Figure 6c), consistent with a greater control of 380 

P limitation on algal growth during spring compared to summer and fall (Kirillin et al., 2012). 

Secchi depth during the PCIs ranges from 0.01 to 15.4 m, with fall PCIs experiencing the lowest 

mean Secchi depth (Figure 6d), as turbidity generally increases after the spring 

bloom.Chlorophyll-a rates during the growth windows exhibit log-normal distributions (Figure 

6a). The mean chlorophyll-a rate is lowest in the single growth window category and highest in 385 

the summer growth windows. Mean surface water temperature has a distinct bimodal spring-

summer distribution (Figure 6b), which is expected for northern temperate and cold-temperate 

lakes where surface water temperature during the ice-free period follows the seasonal air 

temperature trend (Kirillin et al., 2012). For the single growth windows, temperature is evenly 

distributed across the annual range, which aligns with the large variability in the timing of single 390 

growth windows (Figure 5b). Total phosphorus concentrations are lowest during the spring 

growth windows, which likely reflects a greater control of P limitation on algal growth during 

spring compared to summer and fall (Kirillin et al., 2012; 6c). Secchi depth during the growth 

windows ranges from 0.01 to 14.6 m, with summer growth windows experiencing the lowest 

mean Secchi depth, as turbidity generally increases after the spring bloom (Figure 6d). 395 

4 Dataset: examples of trendstrend analyses  

The PCIgrowth window delineation and the estimation of RCIchlorophyll-a rates can in principle 

be applied to any lake for which time series chlorophyll-a concentration data are available. By 

creating a dataset comprising many lakes and covering multi-year time periods, it becomes 

possible to extractanalyze global trends in lake chlorophyll-a.productivity. Here, we provide a 400 

few illustrative examples of how the dataset can be interrogated, thereby setting the stage for its 

use and extension by other researchers. 
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4.1 Chlorophyll-a rates: trophic status, and latitude and climate zone 

When grouped by trophic status, mean and median chlorophyll-a growth rates (RCIs) show the 

expected increase from oligotrophic to hypereutrophic lakes (Figure 7a). The rates in the 405 

different trophic categories, however, cover very large and overlapping ranges. When grouped 

according to latitude, lakes between 40 and 50° N exhibit the widest range in RCIschlorophyll-a 

rates (Figure 7b),) that, in part due to, reflects the high proportion of lakes in this latitude range. 

The highest latitude lakes (60-70° N) tend to have the lowest RCIschlorophyll-a rates, which 

may reflectis expected given the cooler temperatures experiencedand lower solar irradiance they 410 

experience (Lewis, 2011(Lewis, 2011).  

The lakes are spread across three climate zones: cold and mesic; cool, temperate, and dry; and 

warm, temperate, and mesic (Figure 7c). There is considerable overlap in RCI across the climate 

zones, with no systematic differences in the mean and median RCI values between the zones. 

While variations in chlorophyll-a rates of increase (RCIs) are often assumed to reflect 415 

comparable differences in algal biomass growth rates, it is important to note that the chlorophyll-

a to biomass ratio varies within and among lakes. In particular, chlorophyll-a to biomass ratios 

are known to be sensitive to variations in solar radiation, temperature, algal species, and cell size 

(Baumert and Petzodt, 2008; Inomura et al., 2019; Geider, 1987; Álvarez et al., 2017). The 

summer ratio of chlorophyll-a to biomass (the latter typically expressed as particulate organic 420 

carbon concentration) generally increases with increasing latitude because algae are adapted to 

harvest the more variable daylight conditions, including longer summer photoperiods, at higher 

latitudes (Behrenfeld et al., 2016; Taylor et al., 1997). By contrast, cooler temperatures at higher 

latitudes may result in higher chlorophyll-a to biomass ratios because of lower growth rates, at 

least when the algae are nutrient-replete (Behrenfeld et al., 2016). Thus, the use of a relative rate 425 

(NRCC) as the threshold value for defining a PCI, and as a metric reported in the dataset, 

facilitates comparisons between lakes of different trophic status or standing stock of chlorophyll-

a. 

While differences in chlorophyll-a rates usually indicate comparable differences in algal biomass 

growth rates, it is important to note that the chlorophyll-a to biomass ratio varies within and 430 

among lakes. In particular, chlorophyll-a to biomass ratios are known to be sensitive to 

variations in solar irradiance and temperature (Behrenfeld et al., 2016). The summer ratio of 
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chlorophyll-a to biomass (typically expressed as particulate organic carbon concentration) 

generally decreases with increasing latitude because the algae are adapted to the more variable 

daylight conditions, including longer summer photoperiods, at higher latitudes (Behrenfeld et al., 435 

2016). By contrast, cooler temperatures at higher latitudes may result in higher chlorophyll-a to 

biomass ratios because of lower growth rates, at least when the algae are nutrient-replete 

(Behrenfeld et al., 2016).  

4.2 Chlorophyll-a rates: temperature and climate warming 

The start and end daysdates of the spring and, single PCIsand summer growth windows show 440 

temporal trends towards occurrence earlier in the year (Figure 8a). Earlier The trends are most 

pronounced for the spring windows, which likely reflects a greater sensitivity of springtime algal 

activity could be linked to globalclimate warming. The latter is expected to result incauses earlier 

ice break-up and produces earlier surface water temperature conditions favorable for algal 

growth (Markelov et al., 2019). This hypothesis is consistent with the correlations between the 445 

chlorophyll-a rates and water temperature (Figure 8b).  

The start and end daysdates of the spring PCIsgrowth windows show a positive correlation with 

increasing temperature (Figure 8b). By contrast, little or even negative correlations are seen for 

the fall PCIs.summer growth windows. Thus, all other conditions unchanged, a warmer climate 

would see earlier spring blooms, but little temporal shifts for the fall PCIssummer growth 450 

windows and, possibly, even a slight delay. For the spring and single PCIsgrowth windows, the 

duration of the window shows a maximum around 10° C. Therefore, moderate temperatures near 

or slightly above close to 10° C should, on average, produce the longest lasting algal growth 

events. The sameNo dinstinct trend is not seen for the fall PCIs, possiblysummer growth 

windows, presumably because they occur when water temperatures are already above 10° C.    455 

4.3 SurfaceChlorophyll-a rates: solar irradiance 

Solar radiation during PCIs: seasonal distributions and distances to lakesis essential for 

phytoplankton growth (Inomura et al., 2020). For example, at the single lake scale, Tian et al. 

(2017) showed that SSR is a major predictor of growing-season chlorophyll-a concentrations in 

the Western Basin of Lake Erie. A paleolimnological study of Lake Tanganyika also provided 460 

evidence for a positive correlation between multi-centennial oscillations of SSR and diatom 
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productivity dating back to ~1000 CE (McGlue et al., 2020). Nonetheless, the relationship 

between algal growth and SSR has yet to be compared across a large set of lakes.  

The mean SSR during spring PCIs in the dataset is approximately 100 W m-2 (Figure 9), which is 

lower than the mean SSR values of single and fall PCIs that are both close to 175 W m-2. This 465 

difference in mean SSR between spring and fall PCIs is expected, given the longer daylight 

hours and more intense sunlight experienced in summer and fall compared to early spring. The 

similarity in mean SSR between single and fall PCIs may be related to the observation that, at 

higher latitudes (>55°N), single PCIs occur more commonly than double PCIs (Figure 4d). 

Higher latitude lakes tend to bloom only once during the summer months, taking advantage of 470 

the period of the year with the highest SSR (Behrenfeld et al., 2016; Lewis, 2011). In support of 

this, Figures 5b and 5c show that single PCIs tend to occur between late spring and early fall. On 

the other hand, at lower latitudes (40-45°N), double PCIs are more common than single PCIs, 

likely due to higher temperatures and longer periods of sufficient daylight experienced during the 

spring and fall “shoulder seasons” at these latitudes. 475 

Despite the defining importance of sunlight for photosynthesis, in situ SSR time series data are 

rarely measured systematically as part of lake monitoring programs (Sterner et al., 1997). 

Although gridded reanalysis datasets that include solar radiation parameters exist, their 

comparibility with in situ SSR measurements remains in question (Wohland et al., 2020). In 

gathering open source data, we compiled in situ SSR measurements from locations as close as 480 

possible to the lakes with chlorophyll-a data. Nonetheless, much of the SSR values in our dataset 

were collected at considerable distances from the corresponding lakes (up to ~300 km, Figure 

10). For our dataset, only ~10% of the locations where SSR was measured are less than 20 km 

away from the corresponding lakes, while ~40% are 20-50 km away, ~43% are 50-100 km away, 

and ~7% are more than 100 km away. Hence, in a significant number of cases, the actual mean 485 

SSR during a PCI may differ from the in situ mean SSR reported here, due to differences in 

cloud cover and levels of atmospheric aerosols (among other factors) (Alpert and Kishcha, 

2008). Users are therefore advised to consider this limitation when making use of the SSR values 

in our dataset. Overall, we recognize a need for SSR data to be more systematically measured 

and reported as part of lake monitoring programs, in particular for oligotrophic lakes. 490 
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5Solar radiation is used directly by photosynthetic organisms for carbon fixation (Melkozernov 

and Blankenship, 2007). In addition, SSR exerts a strong control on lake surface water 

temperature (Jakkila et al., 2009) and the timing of ice breakup in seasonally ice-covered lakes  

(Kirillin et al., 2012b), both of which influence lake primary productivity. While the global 

distribution of mean annual SSR is primarily a function of latitude (Kirillin et al., 2012b), 495 

atmospheric controls (e.g., cloud cover) cause regional variability, as well as variability over 

time (Alpert and Kishcha, 2008; Cutforth and Judiesch, 2007; Wild, 2009). It is important to note 

that SSR is not related directly to global warming (Kirillin et al., 2012b), nor is it controlled by 

the cycles in the sun’s energy output (Wild, 2009). 

To determine to what extent SSR explains variations in chlorophyll-a growth rates, we removed 500 

the effect of temperature by normalizing the rates using the temperature dependency function 

(which we refer to as “ftemp”) proposed by Rosso et al. (1995). This function describes the non-

linear temperature dependence of cellular metabolic activity and requires that a minimum, 

maximum, and optimum growing temperature be assigned. Dividing the in situ chlorophyll-a 

rate during the growth window by the corresponding ftemp value corrects for the effect of 505 

differences in temperature between growth windows. 

The temperature-corrected chlorophyll-a growth rates indicate that the relationship between SSR 

and algal growth is a function of the trophic status (i.e., nutrient availability), as seen in Figure 9. 

Lakes of higher trophic status are more sensitive to SSR than lakes of lower trophic status. For 

eutrophic lakes, the effect of SSR on the temperature-corrected chlorophyll-a rates is most 510 

pronounced in the low to moderate SSR range typical of the spring season (Figure 9a). The same 

effect is not seen when considering the rates without temperature correction (Figure 9b). Thus, 

the increasing SSR during spring is counterbalanced by cooler temperatures compared to the 

later summer growth window. Note that the summer chlorophyll-a growth rates show little 

influence from SSR, whether corrected or not for temperature, supporting the theory of a greater 515 

top-down control on algal growth during the summer versus the spring as proposed, among 

others, by Lyngsgaard et al. (2017). 

The chlorophyll-a growth rate data near or above 200 Wm-2 remain low, with no clear 

dependence on SSR.  This is likely indicative of a photoacclimation response of the algae, where 

they produce less chlorophyll-a in proportion to their total biomass so they can allocate more 520 
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resources to growth when nutrients – not light – are limiting growth (Lewis et al., 2018; Inomura 

et al., 2020). Furthermore, when light intensity during the summer months reaches damaging 

levels, algae may start producing additional photosynthetic pigments to protect their chlorophyll 

(so-called sunscreen pigments). However, nutrient availability may limit the amount of pigments 

that can be synthesized, impeding the photoacclimation response (Lewis et al., 2018). This 525 

nutrient limitation of the photoacclimation response would explain the differences in the 

temperature corrected growth rate’s sensitivity to SSR as a function of trophic status (Figure 9a). 

Lakes of higher trophic status (i.e., less nutrient limitation) show a larger response to changes in 

SSR, presumably because they have sufficient nutrients to produce additional chlorophyll-a in 

response to an increase in SSR. 530 

5 Key findings 

The following points summarize the general trends that emerged from our analysis of the dataset.  

1. Higher water temperatures and reduced ice-cover cause algal growth windows to start earlier 

in the year, extending the growing season and potentially increasing annual net primary 

productivity of northern lakes under ongoing and future climate warming. 535 

2. Chlorophyll-a growth rates increase with nutrient availability while they decrease at higher 

latitudes due to cooler temperatures and lower SSR. 

3. Oligotrophic lakes tend to have the highest proportion of single annual growth windows, 

likely reflecting the dominant role of nutrient limitation.  

4. Temperature-corrected chlorophyll-a growth rates suggest a relationship with SSR that 540 

depends on the trophic state of lakes: 

a. compared to mesotrophic and oligotrophic lakes, eutrophic lakes exhibit a higher 

sensitivity to SSR, especially in the low to moderate irradiance levels experienced 

during spring; 

b. at the upper end of SSR, chlorophyll-a growth rates remain low and independent of 545 

SSR, which may reflect a photoacclimation response of algae.   

5. The low SSR sensitivity of chlorophyll-a growth rates during summer and fall suggests a 

stronger top-down control on algal growth compared to the earlier spring growth windows.  
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6. In summary, light limitation is an important control on chlorophyll-a growth rates during 

spring, whereas lower nutrient availability and increased grazing from zooplankton tend to be 550 

more significant during summer. 

6 Conclusions 

We present a novel way to delineate annual periods of chlorophyll-a increase (PCIs) in lakes 

that, presumably, overlap with periods of algal growth.  We apply this approach to derive the 

chlorophyll-a rates of increase (RCIs) during the PCIs of 343 lakes from cold and cold-temperate 555 

regions in the northern hemisphere and covering the period 1964-2019. The derived RCIs are 

assembled in an open-source dataset, together with additional information on the lakes, including 

water quality, trophic state, and surface solar radiation. Note that the dataset can be paired with 

other databases, such as HydroLAKES (Messager et al., 2016), HydroATLAS (Linke et al., 

2019), and GLCP (Meyer et al., 2020), to access additional lake and/or watershed attributes. Our 560 

dataset is designed to support comparative analyses of the controls on lake chlorophyll-a 

dynamics and, by extension, also algal dynamics, within and between lakes. We present several 

examples of such analyses. We hope these will encourage others to use the dataset in their own 

research and to further expand the dataset’s geographical reach and information content. We 

present a novel way to delineate periods of rapid algal growth, or growth windows, in lakes 565 

based on time series chlorophyll-a measurements. We apply this approach to derive the 

chlorophyll-a growth rates occurring during the growth windows of 357 lakes from cold and 

cold-temperate regions in the northern hemisphere, using data collected between 1964 and 2019. 

The derived growth rates are assembled in an open-source dataset, together with additional 

information on the lakes including data on water quality, trophic state, and solar radiation. Note 570 

that the dataset can be paired with databases such as the Error! Hyperlink reference not valid., 

Error! Hyperlink reference not valid. and Error! Hyperlink reference not valid. databases to access 

additional lake and/or watershed attributes. Our dataset is designed to support comparative 

analyses of the controls on algal productivity within and between lakes. We present several 

examples of such analyses. We hope these will encourage others to use the dataset in their own 575 

research and to further expand the dataset’s geographical reach and information content.  

https://www.hydrosheds.org/page/hydrolakes
https://www.hydrosheds.org/page/hydroatlas
https://environmentaldatainitiative.org/edis-featured-data-contributions/glcp-dataset/
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Table 1: Summary of variables in the PCI dataset. Associated lake data (e.g., lake depth, surface area, volume, 

climate zone) are available in the supplementary information. 
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Table 1: Summary of variables in the derived growth window dataset. 

 

 

Variable Units Description Comments 

Timing NA Three possible PCIs: spring, 

fall, or single PCI 

A single PCI occurs when 

there is only one maximum 

in the smoothed yearly 

chlorophyll-a concentration 

time series for the year 

Period of chlorophyll-a 

increase (PCI) start day 

 Day of year when the PCI 

begins 

 

Period of chlorophyll-a 

increase (PCI) end day 

 Day of year when the PCI 

ends 

 

Rate of chlorophyll-a 

increase (RCI) 

µg L-1 day-1 Difference in chlorophyll-a 

concentration between start 

and end of the PCI divided by 

the duration of the PCI 

One RCI value is associated 

with each PCI 

Normalized rate of change 

in chlorophyll-a (NRCC) 

day-1 RCI divided by the initial 

chlorophyll-a concentration 

Accounts for variable 

standing stock of 

chlorophyll-a   

Rate of particulate organic 

carbon (POC) increase 

mg L-1 day-1 Same calculation as RCI but 

using start and end POC 

concentrations  

Proxy for the rate of change 

in total algal biomass 

RCI:rate of POC increase mg chlorophyll-a 

mg-1 POC 

 

 Accounts for variable 

chlorophyll-a content of 

algal biomass    

Mean PCI surface water 

temperature 

°C Mean value during the PCI 

and the 14-day pre-PCI 

 

Mean PCI surface solar 

radiation 

W m-2 Mean value during the PCI 

and the 14-day pre-PCI 

 

Mean PCI total 

phosphorus (TP) 

mg L-1  

 

Mean values during the PCI 

 

(Co-)limiting macronutrients 

Mean PCI soluble reactive 

phosphorus (SRP) 

mg L-1 

Mean PCI total Kjeldahl 

nitrogen (TKN) 

mg L-1 

Mean PCI Secchi depth m Proxy for turbidity 

Mean PCI pH pH units  

Trophic Status Index (TSI) Range: 0-100 Calculated from chlorophyll-a 

concentrations across all years 

the lake was sampled 

Basis for assigning trophic 

status 

Trophic status NA Trophic status class assigned 

based on TSI: Oligotrophic, 

Mesotrophic, Eutrophic, or 

Hypereutrophic 

TSI thresholds are those of 

the North American Lake 

Management Society 
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 830 

Figure 1: Distribution of the 343357 lake sampling locations in the PCIgrowth window dataset. Lake Sampling points are 
clustered by proximity, where marker size and value indicate the number of unique locations represented by each point (light 

blue markers with white text).. Enlarged sections show each lake sampling location (blue markers) and along with the location of 
the 320322 paired SSR stations (orange markers).. Base map credit: ESRI, 2011. 
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Figure 2: Workflow for detecting PCIs and processing growth window data. For each lake sampling point, chlorophyll-a (Chl-a) 
data are smoothed with a Savitzky-Golay filter and then PCIsgrowth windows are detected based on peaks in the chlorophyll-a 
concentration. PCIsGrowth windows are flagged as spring, fallsummer, or single PCIs. The data density is shown at key points 850 
along the workflowgrowth windows. 
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865 
Figure 3. Example of spring and fall PCIssummer growth windows in Lake Windermere’s north basin in 1988. The solid grey line 

is Peaks in the smoothed data indicate the end of the growth window, and the window begins when the rate of increase in 
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chlorophyll-a concentration (µg L -1), and the solid black line is the chlorophyll-a concentration smoothed with a Savitzky-Golay 

filter. The dashed line is the normalized rate of change in chlorophyll-a (NRCC) (day-1) where the first derivative is divided by 

the smoothed chlorophyll-a concentration and is plotted using the right axis. The PCI begins when the NRCC surpasses a 870 
threshold of 0.4 day-1 as shown in the first (spring) PCI and ends when the NRCC turns negative, which is when the peak 

chlorophyll-a concentration is reached. When a peak is detected but the NRCC does not surpass a threshold of 0.4 day-1, the PCI 

begins when the NRCC surpasses 0 day-1as shown in the second (fall) PCI. The PCI05 µgL-1day-1 (median rate for the distinct 
switch to a “rapid growth” period in mesotrophic-hypereutrophic lakes) for the first time. The growth window and pre-
PCIgrowth window (two weeks leading up to the PCIgrowth window) are shown in darkblue and light greyorange shading, 875 
respectively. 
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 880 

Figure 4.  Distributions of (a) year of occurrence, (b) mean time between samples, (c) lake trophic status index, and (dc) lake 
latitude for each PCIgrowth window in the dataset. Data are grouped by “double PCIGW” or “single PCIGW” year. The data is 
skewed toward more recent years and higher latitudes. Lakes in the oligotrophic category (TSI < 40) have a higherthe highest 
proportion of single PCIs. These “raincloud plots” show the same data visualized in 3 different ways for each group: frequency 

distribution, boxplot with quartiles (outliers as represented as points), and a jitter plot of data points as different ways to 885 
visualize the data (Allen et al., 2021) (Allen et al., 2021). Note that the amplitude of the frequency distribution is not proportional 

between categoriesgrowth windows. 

 

 

 890 

 

 



36 
 

 

Figure 5: Frequency. Distributions of (a) duration, (b) start day (day of year), and (c) end day (day of year),b) timing of the 
PCIsgrowth windows, grouped by PCIgrowth window type. Single PCIsgrowth windows have both the longest range in length 895 
while fall PCIs tend to be and the shortest. Single PCIs have the largest range of start and end days while the spring and fall 

PCIs tend to start and end within a smaller window. These raincloud plots show the same data visualized in 3 different ways for 

each group: frequencymost even distribution, boxplot with quartiles (outliers represented as points), and a jitter plot of data 

points. 

 of start and end dates. 900 
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Figure 6. Distributions of selected water quality variables during PCIsthe growth window period: (a) log rate of chlorophyll-a 
increaserate, (b) mean surface water temperature, (c) log mean total phosphorus (TP), and (d) mean Secchi depth. The mean 920 
rate of chlorophyll-a increase is lowest in the single PCI category and highest in the fall PCIs.  For the single PCIs, temperature 

is evenly distributed across the annual range as they occur throughout the ice-free season. Total phosphorus concentrations are 

lowest during the spring PCIs, which likely reflects a greater control of P limitation on algal growth during spring compared to 

summer and fall. Each PCI category has a similar range in Secchi depth, between 0 and 5 m. Raincloud plots show the frequency 

distribution, boxplot with quartiles (outliers as represented as points), and a jitter plot of data points for each group. 925 
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 935 

Figure 7. Rate of Chlorophyll-a increase (RCI)growth rate trends in the dataset,: grouped by (a) trophic status, and (b) latitude, 

and (c) climate zone.. Lakes of a higher trophic status have a higher mean RCI while chlorophyll-a growth rates and lakes at 

higher latitudes have lower RCI (with considerable overlap between all categories). Grouping by climate zone shows minimal 

effect on RCI.chlorophyll-a growth rate during the growth windows. The number of lakes represented by each violin is shown in 

grey text on the panels. Climate zones are as follows: 7 = cold and mesic; 8 = cool, temperate, and dry; 10 = warm, temperate, 940 
and mesic. White circles indicate the mean value for each violin. 
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Figure 8. (a) time series of the start and end daysdates for the spring, fallsummer, and single PCIsgrowth windows for all the 
lakes in the dataset; spring and single PCIall growth window categories trend toward earlier start and end days, while fall PCI 

start days are occurring earlierdates, especially in the yearspring. (b) Start and end daysdates of the PCIsgrowth windows as a 955 
function of temperature (top two rows in panel B, linear regression trendlineline in blackdark blue) suggest a positive 
relationship between PCIgrowth window timing and surface water temperature in the spring and a negative relationship in the 
fall. Longer PCIssummer. Growth window length (dark blue trendline shows locally weighted scatterplot smoothing) shows that 
longer growth windows occur at moderate surface water temperatures which are observed less often during the fall PCIs 

(trendline fitting data in the bottom row is locally weighted scatterplot smoothing). that aren’t seen in the summer months. 960 
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Figure 9: Mean PCI surface solar radiation (SSR) grouped by PCI type (single, spring, or fall). White circles show the mean 

value for each violin. The mean SSR during spring PCIs is lower than that of single and fall PCIs, which have similar 965 
distributions. 
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 Figure 10: Frequency distribution of distances between the lake sampling points and the nearest surface solar radiation (SSR) 

sampling stations, in decimal degrees. Most lake-SSR distances are within 200 kilometres of each other. Cloud cover, 970 
atmospheric aerosols, and their interactions are a major control on incident SSR at a given surface location, therefore, the SSR 

values may become less representative of the paired lake with increasing distances. The middle line in the boxplot shows the 

median value.Figure 9. Comparison of trends in the relationship between mean growth window SSR with (a) temperature 
corrected chlorophyll-a rate and (b) specific chlorophyll-a rate without temperature correction. Data are grouped by trophic 
status, and hue indicates growth window type. Lakes of a higher trophic status show an increased sensitivity to solar radiation, 975 
especially during the spring (panel A) while summer growth windows do not show sensitivity to solar radiation or water 
temperature, suggesting top-down control from zooplankton grazing. Low chlorophyll growth rates at SSR near or greater than 
200 Wm-2 indicate a photoacclimation response in the algae. 


