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Abstract. A common strategy for calculating the direction and rate of carbon dioxide gas (CO2) exchange between the ocean 

and atmosphere relies on knowledge of the partial pressure of CO2 in surface seawater (pCO2(sw)), a quantity that is frequently 

observed by autonomous sensors on ships and moored buoys, albeit with significant spatial and temporal gaps. Here we present 

a monthly gridded data product of pCO2(sw) at 0.25° latitude by 0.25° longitude resolution in the Northeast Pacific Ocean, 

centered on the California Current System (CCS) and spanning all months from January 1998 to December 2020. The data 15 

product (RFR-CCS; Sharp et al., 2021; https://doi.org/10.5281/zenodo.5523389) was created using observations from the most 

recent (2021) version of the Surface Ocean CO2 Atlas (Bakker et al., 2016). These observations were fit against a variety of 

collocated and contemporaneous satellite- and model-derived surface variables using a random forest regression (RFR) model. 

We validate RFR-CCS in multiple ways, including direct comparisons with observations from sensors on moored buoys, and 

find that the data product effectively captures seasonal pCO2(sw) cycles at nearshore sites. This result is notable because global 20 

gridded pCO2(sw) products do not capture local variability effectively in this region, suggesting that RFR-CCS is a better option 

than regional extractions from global products to represent pCO2(sw) in the CCS over the last two decades. Lessons learned 

from the construction of RFR-CCS provide insight into how global pCO2(sw) products could effectively characterize seasonal 

variability in nearshore coastal environments. We briefly review the physical and biological processes — acting across a 

variety of spatial and temporal scales — that are responsible for the latitudinal and nearshore-to-offshore pCO2(sw) gradients 25 

seen in the RFR-CCS reconstruction of pCO2(sw). RFR-CCS will be valuable for the validation of high-resolution models, the 

attribution of spatiotemporal carbonate system variability to physical and biological drivers, and the quantification of multi-

year trends and interannual variability of ocean acidification. 
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1 Introduction 

The concentration of carbon dioxide gas (CO2) in Earth’s atmosphere has rapidly increased from about 280 parts per million 

in 1750 to over 400 parts per million today (Joos and Spahni, 2008; Dlugokencky and Tans, 2019). This rise in CO2 

concentration is a direct result of human activities such as fossil fuel combustion, deforestation, and agriculture (Ciais et al., 35 

2014; Friedlingstein et al., 2020). The presence of human-produced or “anthropogenic” CO2 in the atmosphere — along with 

other anthropogenic greenhouse gases — leads to planetary warming, with a disproportionate amount of heat (~90%) being 

absorbed by the ocean (von Schuckmann et al., 2020). About a quarter of annually produced anthropogenic CO2 dissolves 

directly into the ocean (Friedlingstein et al., 2020), mitigating its warming potential. However, dissolved CO2 reacts with 

seawater to form carbonic acid, which rapidly dissociates and acidifies (primarily) surface ocean environments (Caldeira and 40 

Wickett, 2003), with adverse effects for many marine organisms and ecosystems (Orr et al., 2005; Fabry et al., 2008; Pörtner, 

2008; Doney et al., 2009; 2020). Closing the global carbon budget involves accurately estimating the amount of CO2 taken up 

by the ocean (e.g., Hauck et al., 2020). A primary method for calculating the amount of CO2 transferred to the ocean requires 

knowing the difference between the partial pressure of CO2 in the atmosphere and surface seawater. 

 45 

Compared to atmospheric CO2 partial pressure (pCO2(atm)), which can be determined with some certainty at a given location 

even without direct observations due to the well-mixed nature of the atmosphere, surface seawater CO2 partial pressure 

(pCO2(sw)) is more variable and therefore more difficult to constrain (Wanninkhof et al., 2014; Landschützer et al., 2014; Woolf 

et al., 2019). This variability is a result of ocean mixing, equilibration kinetics between the atmosphere and ocean, biological 

processes, and thermal effects on pCO2(sw). Filling temporal and spatial data gaps in the observational coverage of pCO2(sw) can 50 

therefore be challenging (Hauck et al., 2020; Fay et al., 2021) and a variety of strategies have been attempted over several 

decades (Takahashi et al., 1993; Rödenbeck et al., 2015), becoming even more prevalent and varied in the literature over time. 

Briefly, statistical interpolations (Takahashi et al., 1993; 2002; 2009; Rödenbeck et al., 2013; 2014; Jones et al., 2015; Shutler 

et al., 2016), multiple linear regressions (Schuster et al., 2013; Iida et al., 2015; Becker et al., 2021), machine-learning-based 

regression methods (Landschützer et al., 2013; 2014; 2016; 2018; Nakaoka et al., 2013; Zeng et al., 2014; Laruelle et al., 2017; 55 

Ritter et al., 2017; Gregor et al., 2017; 2018; Chen et al., 2019; Denvil-Sommer et al., 2019), and biogeochemical-model-based 

approaches (Valsala and Maksyutov, 2010; Majkut et al., 2014; Verdy and Mazloff, 2017) have been common tactics, each 

one with its own strengths and weaknesses. Recently, ensemble averages of multiple data- or model-based approaches have 

become popular options as well (Gregor et al., 2019; Lebehot et al., 2019; Fay et al., 2021). 

 60 

One widely used machine-learning-based pCO2(sw) gap-filling strategy relies on a two-step approach consisting of unsupervised 

clustering using a self-organizing-map (SOM) followed by construction of a feed-forward neural network (FFN) for each 

cluster (Landschützer et al., 2013). This “SOM-FFN” approach is well-established in the literature (Landschützer et al., 2013; 

2014; 2015; 2016; 2018; Laruelle et al., 2017; Ritter et al., 2017; Denvil-Sommer et al., 2019), and is recognized as one of the 
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most effective approaches for filling gaps in the observational pCO2(sw) record (Rödenbeck et al., 2015). The SOM-FFN 65 

approach was recently applied to coastal ocean areas, resulting in the first globally continuous, multi-year data product of 

monthly coastal ocean pCO2(sw) at 0.25° resolution (Laruelle et al., 2017). Even more recently, that coastal product was 

combined with an updated open-ocean product (Landschützer et al., 2020a) to produce a uniform 12-month climatology of 

pCO2(sw) across the coastal to open-ocean continuum (Landschützer et al., 2020b; 2020c). 

 70 

The data products provided by Laruelle et al. (2017) and Landschützer et al. (2020b) — hereafter L17 and L20, respectively 

— are important advancements toward characterizing pCO2(sw) across the entire ocean domain for carbon budget analyses. 

Most data-based estimates of oceanic CO2 uptake have considered only the open ocean (e.g., Landschützer et al., 2014; Iida et 

al., 2015; Denvil-Sommer et al., 2019; Gregor et al., 2019; Watson et al., 2020) or are based on coarse spatial representations 

of the coastal ocean (Rödenbeck et al., 2013). However, coastal ocean CO2 uptake is estimated to be about 10% of the open-75 

ocean figure (Laruelle et al., 2010; 2014; Bourgeois et al., 2016; Roobaert et al., 2019; Chau et al., 2021), is far more spatially 

variable (Liu et al., 2010), and may be changing at a different rate relative to open-ocean CO2 uptake (Laruelle et al., 2018). 

Therefore, augmenting global open-ocean pCO2(sw) data products to include the coastal ocean is quite valuable (Fay et al., 

2021). Despite the greater spatial coverage and temporal resolution offered by these new gap-filled pCO2(sw) data products, 

significant challenges remain for accurately representing pCO2(sw). 80 

 

One of those challenges involves characterizing seasonal cycles in pCO2(sw), particularly in the nearshore coastal ocean. 

Although the L17 product effectively captures pCO2(sw) seasonality when averaged across relatively large coastal ocean 

regions, the authors assert that “the coastal SOM-FFN tends to systematically underestimate the amplitude of the seasonal 

pCO2 cycle” in locations where they can make comparisons with direct observations. This result is logical given that: (1) direct 85 

observations are made at discrete locations and times, whereas gridded products are averaged over some spatial area and time, 

which tempers extremes; and (2) fits obtained via least squares regressions or machine learning methods generally tend to 

perform better where temporal and spatial variability is low, and worse where variability is high (Landschützer et al., 2014), 

such as in the coastal ocean. However, this problem must be addressed if we hope to achieve realistic global representations 

of pCO2(sw) seasonality, which are necessary for investigating the processes that drive this variability (Roobaert et al., 2019) 90 

and for ensuring the fidelity of future air–sea CO2 flux projections (Hauck et al., 2020). Addressing carbon exchange in coastal 

margins has recently been highlighted as a fundamental and emerging research topic in ocean carbon research (Dai, 2021). 

 

Here, we present a reconstruction of pCO2(sw) (1998–2020) in a broad region of the Northeast Pacific that includes the 

California Current System (CCS), surrounding open-ocean regions, and the highly variable continental shelf of the North 95 

American west coast spanning from southern Alaska to Baja California. We apply a random forest regression (RFR) approach 

(Breiman, 2001) to fill observational gaps, constraining pCO2(sw) across the coastal to open ocean continuum. We show that 
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the RFR approach in the Northeast Pacific produces realistic monthly maps of surface pCO2(sw) from 1998 to 2020 and that 

these maps reliably capture seasonal pCO2(sw) variability in the coastal and open ocean. 

 100 

We compare pCO2(sw) values from our gap-filled product — “RFR-CCS” — to coastal ocean mooring measurements and other 

direct observations, and to the available global-scale 0.25° resolution SOM-FFN products in the region (i.e., L17 and L20). 

We speculate as to why nearshore seasonal cycles are better represented by RFR-CCS than by global-scale gap-filled products, 

and discuss implications for how to best capture seasonal variability in global products going forward. We describe spatial and 

seasonal patterns in pCO2(sw) revealed by RFR-CCS, and discuss the physical and biological processes that likely produce those 105 

patterns. Finally, we compare air–sea CO2 flux computed from RFR-CCS to that from a recently released CO2 flux product 

(Gregor and Fay, 2021), and discuss the implications of sporadic sampling on calculations of CO2 flux in the coastal ocean. 

2 Methods 

2.1 Sea surface fCO2 data acquisition and conversion to pCO2 

Sea surface CO2 fugacity (fCO2(sw)) data, along with ancillary variables, were obtained from the Surface Ocean CO2 Atlas 110 

(SOCAT; Pfeil et al., 2013; Bakker et al., 2016) version 2021 (SOCATv2021) for latitudes between 15 °N and 60 °N and 

longitudes between 105 °W and 140 °W (hereafter referred to as “the study region”). SOCAT is an international effort to 

synthesize quality-controlled fCO2(sw) observations for the global surface ocean, and has released datasets of individual surface 

ocean fCO2(sw) observations and gridded values since 2011, with annual releases since 2015. SOCATv2021 contains nearly 30.6 

million fCO2(sw) observations globally and over 1.4 million fCO2(sw) observations within the study region. 115 

 

SOCAT data in the study region were filtered to retain fCO2(sw) observations with a measurement quality control (QC) flag of 2 

(“good”) and dataset QC flags of A through D (fCO2(sw) accuracy of 5 µatm or better). This is identical to the QC procedure 

followed by the SOCAT team for producing gridded data products (Sabine et al., 2013; Bakker et al., 2016). SOCATv2021 

provides ancillary variables along with fCO2(sw), including contemporaneous observations of sea surface temperature (SST) and 120 

sea surface salinity (SSS), as well as atmospheric pressure at the ocean surface (Patm) from the National Centers for 

Environmental Prediction (NCEP) reanalysis; these values were used only for fugacity to partial pressure conversions (Eq. 

(1)). Though SST and SSS are considered surface values, it is important to note that these are primarily underway 

measurements taken a few meters beneath the surface, and that non-trivial differences in temperature and salinity may exist 

between the measurement depth and the surface (Robertson and Watson, 1992; Donlon et al., 2002; Goddijn-Murphy et al., 125 

2015; Woolf et al., 2016; Ho and Schanze, 2020; Watson et al., 2020). Also, while SST and SSS are not assigned explicit QC 

flags in SOCAT, these parameters do undergo quality control checks during the calculation of fCO2(sw) (Lauvset et al., 2018). 
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Sea surface CO2 fugacity represents CO2 partial pressure corrected for the non-ideality of CO2 gas. It was converted to sea 

surface CO2 partial pressure (pCO2(sw)) following (Weiss, 1974): 130 

𝑝CO!(#$) = 𝑓&'!(#$) ∙ 𝑒𝑥𝑝 )𝑃()*
+,!∙.
/∙0

+
12

 (1) 

where 𝐵 and 𝛿 are virial coefficients, 𝑅 is the ideal gas constant, and 𝑇 is SST in Kelvin. 

 

 
Figure 1. Annual mean pCO2(sw) from the 0.25° resolution gridded dataset computed as an average over the monthly 135 

climatology from 1998 to 2020 for each grid cell. The two extremes of the colorbar can represent pCO2(sw) values less than or 

greater than the colorbar limits; the chosen range represents most of the values and emphasizes regional contrast. 

 

2.2 Binning of pCO2(sw) observations 

Sea surface CO2 partial pressure data were aggregated onto a 0.25° latitude by 0.25° longitude grid for each month from 140 

January 1998 to December 2020 using a bin-averaging procedure that consisted of computing the means (µ) and standard 

deviations (s) of all observations of pCO2(sw) included within each grid cell. Observations prior to 1998 were excluded as an 

increase in fCO2(sw) data coverage occurs around the start of 1998 and the first full year of SeaWiFS chlorophyll observations 

(which are used in our procedure to fill gaps in the pCO2(sw) dataset) is 1998. For cases in which observations in a given grid 
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cell originated from two or more platforms (e.g., cruises or autonomous assets), platform-weighted µ and s were computed by 145 

first taking the means and standard deviations of all observations made by each platform, then taking the means of those values. 

This ensured that all platforms contributing observations to a given grid cell were weighted equally, mitigating unwanted 

biases toward high-resolution measurement systems (Sabine et al., 2013). 

 

Table 1. Sources of data for interpolation of surface pCO2. Chlorophyll-a (CHL) and mixed layer depth (MLD) were log10-150 

transformed to produce a distribution of values that was closer to normal before constructing the regression model. Gaps in 

CHL data were filled by linear interpolation over time within each grid cell (see Appendix A). Month of the year was 

transformed by cosine and sine functions to retain its cyclical nature. 

Predictor Variable Source Citation 
Original Resolution 

Processing 
Spatial Temporal 

Sea surface temperature 
(SST) OISSTv2 Huang et al. 

(2021) 0.25º daily monthly averages 

Sea surface salinity (SSS) ECCO2 Menemenlis 
et al. (2008) 0.25º daily monthly averages 

Chlorophyll-a (CHL; 
log10-transformed) 

SeaWiFS (1998-2002); 
MODIS (2003-2020) 

NASA 
Ocean Color 1/6º monthly interpolated to 0.25º 

resolution 

Wind speed (U) ERA5 Hersbach et 
al. (2020) 0.25º monthly none 

Atmospheric pCO2 
(pCO2(atm)) 

NOAA Marine 
Boundary Layer 
Reference xCO2 

Dlugokencky 
et al. (2020) 

sin(lat) 
of 0.05 weekly 

monthly averages, 
interpolated to 0.25º lat. 
resolution, multiplied by 
NCEP sea level pressure 

Mixed layer depth (MLD; 
log10-transformed) HYCOM Chassignet et 

al. (2007) 1/6º monthly interpolated to 0.25º 
resolution 

Distance from shore Calculated from 
gridded lat–lon 

Greene et al. 
(2019) - - - 

Year - - - - - 
Month of year (converted 
to two separate predictors 

using sine and cosine) 
- - - - - 

 

This bin-averaging procedure is identical to the one followed by the SOCAT team for producing monthly datasets for coastal 155 

regions with 0.25° resolution as well as for open-ocean regions with 1° resolution (Sabine et al., 2013; Bakker et al., 2016). 

However, here we produced a monthly gridded dataset with 0.25° resolution for a region of the northeast Pacific (15 °N to 60 

°N, 105 °W to 140 °W) that spans both the coastal and open ocean. Means of pCO2(sw) from this gridded dataset (averages over 

the monthly climatology from 1998 to 2020 for each spatial grid cell) are shown in Fig. 1. Some of the apparent fine-scale 

spatial variability in this bin-averaged map is not indicative of true environmental conditions, but originates from the 160 

combination of large temporal variability within each grid-cell and uneven sampling of each grid cell across and within years. 

This form of temporal variability is exactly the kind of spurious result that advanced pCO2(sw) mapping techniques are intended 



7 
 

to circumvent. Figure B1 shows the number of years containing an observation within each month of our gridded pCO2(sw) 

dataset. Unsurprisingly, temporal coverage is highest close to the coast, especially in the summer months. 

2.3 Predictor variable acquisition and processing 165 

Of the 4,014,844 grid cells that represent the surface ocean gridded in three dimensions at 0.25° resolution over 276 months 

(1998–2020) in the study region, just 1.25% have an associated gridded pCO2(sw) value. To fill gaps in this dataset, relationships 

between pCO2(sw) and various predictor variables need to be determined. The predictor variables used in this study are primarily 

derived from satellite observations or reanalysis models, due to the condition that they be resolved with temporal and spatial 

continuity across the study region and selected time span. 170 

 

Predictor variables are intended to capture conditions that mechanistically influence pCO2(sw) (e.g., SST and atmospheric 

pCO2); serve as a proxy for mechanisms that influence pCO2(sw) (e.g., sea surface chlorophyll); or, in the case of temporal and 

spatial information, constrain additional patterned variability not captured by the mechanistic variables alone. The chosen 

predictor variables for this study (Table 1) have all been used before for pCO2(sw) gap-filling methods (e.g., Landschützer et 175 

al., 2014; Gregor et al., 2018; Denvil-Sommer et al., 2019; Watson et al., 2020); temporal and spatial predictors were included 

to ensure robust representation of pCO2(sw) seasonal cycles (Gregor et al., 2017). Included in Table 1 are the sources of each 

dataset, the original resolutions of each dataset, and the steps that were taken to process each dataset. Appendix A provides 

more detail about the acquisition and processing of the driver variables, and includes figures showing annual means of selected 

variables.  180 

2.4 Construction of non-linear relationships using random forest regression 

We used the random forest regression approach (Breiman, 2001) to identify relationships between pCO2(sw) and predictor 

variables in order to fill gaps in the gridded pCO2(sw) dataset. This method averages the results from a number of 

decision/regression trees (i.e., a “forest”) built on bootstrapped replicates of the dataset — which individually have low bias 

and high variance — to produce a final regression model with reduced variance (Friedman et al., 2001). RFR is the machine 185 

learning method of choice for this study as early testing showed better performance than the SOM-FNN method in the 

Northeast Pacific. Further, RFR is less computationally expensive than fitting a neural network and has been shown to produce 

results comparable to the SOM-FFN approach in terms of overall performance (Gregor et al., 2017). It should be noted, 

however, that the two approaches differ mechanistically and therefore adapt to variability within a training dataset in different 

ways. Finally, while RFR has been explored more frequently in recent years as a method of spatiotemporal pCO2(sw) gap-filling 190 

both globally (Gregor et al., 2017; 2018) and regionally in the Gulf of Mexico (Chen et al., 2019), far fewer RFR-based 

pCO2(sw) products exist than neural-network-based products. So, this study provides a good opportunity to further demonstrate 

the utility of RFR for producing monthly fields of pCO2(sw), in this case on a regional scale in the Northeast Pacific. 
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Each decision tree within a random forest regression model is built on a different subset of the training dataset (that contains 195 

both the predictor variables and corresponding gridded pCO2(sw) values). This subset is generated by bootstrapping, in which 

a random set of training data points is selected with replacement — meaning the same data point can be selected more than 

once (Breiman, 1996). The number of data points in the bootstrapped dataset is equal to a defined fraction (“InBagFraction” 

in Table 2) of the original dataset; however, a fraction equal to 1 does not mean the bootstrapped dataset is identical to the 

original dataset, because selection is made with replacement. Since each regression tree is built on a different subset of the 200 

training data, it will contain somewhat different relationships between the predictor variables and the corresponding gridded 

pCO2(sw) values. 

 

Table 2. Model parameters for the random forest regression. Parameter names are the default property names for the MATLAB 

TreeBagger class. 205 

Parameter Explanation Value 

NumTrees Number of decision trees to build for random forest 1200 

MinLeafSize Minimum number of observations in a given terminal node (i.e., the last node in a 
decision tree) 5 

NumPredictorsToSample Number of randomly selected predictor variables to choose from at each node split 6 

InBagFraction Fraction of input data to sample with replacement for each bootstrapped dataset 1.0 

 

The process of building a decision tree begins at the top “node” of the tree with the values of a single predictor variable being 

used to split that tree’s bootstrapped subset of the training dataset into two smaller subsets (not necessarily of equal size) 

containing the most similar pCO2(sw) observations (i.e., sets of pCO2(sw) observations with the smallest variance among them). 

These subsets are then further divided into progressively smaller sets of similar observations, until either the variance among 210 

the pCO2(sw) observations in a node drops below a prescribed tolerance level or the number of observations in the node reaches 

the user-defined minimum (“MinLeafSize” in Table 2). To ensure that the algorithm does not always pick the same predictor 

variable (e.g., the one most highly correlated with pCO2(sw) overall) for the split at every node, we limit it to choosing from a 

different random subset of the predictor variables (equal in number to “NumPredictorsToSample” in Table 2) at each node. 

This introduces another “random” element into the tree-building process. The random forest contains a large number of these 215 

regression trees (“NumTrees” in Table 2) each built on a different, random bootstrapped subsample of the training data. Once 

the random forest is built, a set of predictor variables can be provided to the model and the average of the pCO2(sw) values 

provided by each regression tree is used as the pCO2(sw) prediction for that particular set of inputs. 

 

We constructed a RFR model using the MATLAB “TreeBagger” function with the predictor variables given in Table 1 and 220 

the parameters given in Table 2, along with gridded pCO2(sw) values that were obtained as described in Sects. 2.1 and 2.2. To 
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produce the Northeast Pacific random forest regression pCO2(sw) product (RFR-CCS) that is the main result of this work (Sharp 

et al., 2021; https://doi.org/10.5281/zenodo.5523389), the full dataset of gridded pCO2(sw) values was used. For optimization 

and evaluation, subsets of the full dataset were used as described in the following sections. 

2.5 Optimization of random forest regression model 225 

The predictor variables used (Table 1) and the values for the model parameters (Table 2) were determined by iteratively 

optimizing the model performance. First, default model parameters were used to train a RFR model using a subset of the data 

for training (80% of full dataset, distributed randomly across the space and time domains of interest) and a number of possible 

predictor variables: latitude, longitude, sea surface height, bottom depth, and those given in Table 1. During model selection, 

the generalization skill for the RFR model was assessed using a validation dataset comprised of 10% of the full dataset, none 230 

of which was included in the training data. After the initial model fit, predictors with a “feature importance” (computed during 

the RFR fit) significantly lower than all other predictors were sequentially dropped (latitude, longitude, and sea surface height), 

and this did not substantially change the training or validation root mean squared error (RMSE). Remaining predictor variables 

were dropped one at a time for subsequent fits, and the goodness-of-fit and generalization skill of the model were assessed 

using the RMSE values calculated from applying the model to the training and validation datasets, respectively. The set of 235 

predictors with the lowest RMSE after dropping one predictor was carried into the next iteration. If removing a predictor did 

not increase the validation RMSE significantly, then that predictor was removed from the set of predictors (only bottom depth 

was dropped in this step). The final set of predictor variables is shown in Table 1. 

 

Next, different values for model parameters (Table 2) were tried iteratively with the retained predictors to identify the optimal 240 

values, again by minimizing the RMSE of the validation dataset. Although lower values for the minimum terminal node size 

performed better in this analysis, additional testing indicated that retaining the default value of 5 was important to prevent 

overfitting. To determine the appropriate number of trees, we examined how the out-of-bag mean squared error changed as 

more and more trees were included in the random forest (up to 5000 trees) and selected a number of trees well past the point 

at which this error had stabilized (1200 trees). Finally, the remaining 10% of the full dataset that was withheld from both the 245 

model training and model validation (i.e., the “test data”) was used to quantify the mapping uncertainties from the RFR 

approach (discussed further in Sects. 2.7 and 3.5). The predictor variable feature importances for the final RFR-CCS fit are 

given in Fig. B2. 

2.6 Evaluation of random forest regression approach and resulting data product 

Once predictor variables and model parameters were optimized, the skill of the RFR approach was further evaluated by splitting 250 

the full dataset into different subsets of training data and test data. Evaluation models (RFR-CCS-Evals) were constructed in 

three different ways: (1) by removing a random (20%) subset of cruises/measurement platforms from the training data (repeated 

10 times with different subsets removed each time; n=10), (2) by removing all observations from every fifth year from the 
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training data (repeated five times such that data from every year was removed from one of the trials; n=5), and (3) by removing 

all moored autonomous pCO2(sw) measurements (i.e., discrete time series sites primarily located in the coastal ocean) from the 255 

training data (n=1). The first two strategies were relevant for assessing bulk error statistics for the method applied across the 

region, and the third strategy for evaluating the ability of the RFR to represent local seasonal variability without the use of 

high temporal resolution mooring data. These RFR-CCS-Evals are distinct model variants that are only used for assessment; 

the final RFR-CCS model uses all available training data. 

 260 

Each data split for an RFR-CCS-Eval was applied directly to SOCATv2021 observations, before bin-averaging the data 

according to the procedure given in Sect. 2.2; as a result, a gridded training dataset and a gridded test dataset were produced 

from each split. Data splits were performed in this way to ensure that autocorrelation among measurements from a specific 

platform did not bias the error statistics. Each split was repeated n times, and error statistics (bias, RMSE, and R2) from 

comparing pCO2(sw) predicted from the RFR-CCS-Eval models versus pCO2(sw) from the gridded test dataset were averaged. 265 

 

The final RFR-CCS data product was evaluated through comparisons with gridded pCO2(sw) observations from SOCATv4 

(Bakker et al., 2016) and pCO2(sw) observations from surface ocean moorings (Sutton et al., 2019). Of the surface ocean 

moorings within the study site that are not located within an inland sea and have available data from all twelve months of the 

year, four (CCE2, NH10, Cape Elizabeth, Châ bá) are located within 40 km of shore and one (CCE1) is about 215 km from 270 

shore. RFR-CCS was also compared to global-scale gap-filled pCO2(sw) products that are available in the region. Namely, we 

focused on the coastal multi-month pCO2(sw) product from Laruelle et al. (2017; i.e., L17) and the combined coastal and open 

ocean pCO2(sw) climatology from Landschützer et al. (2020b; i.e., L20). 

2.7 Uncertainty analysis 

Uncertainty in pCO2(sw) for each grid cell was calculated according to the approach used by Landschützer et al. (2014; 2018) 275 

and Roobaert et al. (2019), in which total uncertainty in pCO2(sw) results from a combination of observational uncertainty, 

mapping uncertainty, and gridding uncertainty. Observational uncertainty (θobs) is uncertainty inherent to the original 

measurements of pCO2(sw), evaluated as the average of reported uncertainties in the fCO2(sw) observations from our training 

dataset, which are flagged by SOCAT with a dataset QC flag of A or B (fCO2(sw) accuracy of 2 µatm or better) and of C or D 

(fCO2(sw) accuracy of 5 µatm or better); we weighted θobs by the number of observations assigned each flag. Mapping uncertainty 280 

(θmap) is uncertainty contributed by the RFR mapping procedure, and was evaluated as separate values for the coastal (< 400 

km from shore) and open ocean (> 400 km from shore) using the mean of the root mean squared errors for a subset of test data 

(10%) withheld from both the model training data (80%) and model validation data (10%) (see Sect. 2.5). Gridding uncertainty 

(θgrid) is uncertainty attributable to aggregating observations into monthly 0.25° resolution grid cells, and was evaluated as 

separate values for the coastal and open ocean by taking the average unweighted standard deviation among pCO2(sw) values 285 

within each grid cell in which two or more platforms were represented. Grid cells with mooring observations were excluded 
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from the θgrid calculation to avoid the high number of observations swamping out the signal from other platforms. These three 

components were combined to obtain total pCO2(sw) uncertainty (θpCO2) applicable to each open-ocean grid cell and to each 

coastal grid cell: 

 290 

𝜃3&'! = 1𝜃45#! + 𝜃*(6! + 𝜃789:!  (2) 

 

Whereas θpCO2 represents the uncertainty in pCO2(sw) for a given grid cell in a given month, uncertainty averaged regionally or 

over time will not scale exactly with θpCO2 due to the spatial correlation of pCO2(sw) values and the autocorrelation features of 

the model error (e.g., Landschützer et al., 2014). 295 

2.8 Calculation of CO2 flux 

The flux of CO2 across the ocean–atmosphere interface (FCO2) was calculated using a bulk formula: 

𝐹CO! = 𝑘$ × 𝐾; × ∆𝑝CO! (3) 

where kw is the gas transfer velocity, K0 is the CO2 solubility constant, and ΔpCO2 is the difference between CO2 partial 

pressure in seawater and in the overlying atmosphere (pCO2(sw) - pCO2(atm)) The salinity- and temperature-dependent equations 300 

of Weiss (1974) were used to calculate K0. 

 

Gas transfer velocities were parameterized using a quadratic dependence on wind speed (Wanninkhof, 1992): 

𝑘$ = 𝛤<<; ∙ 𝑈! ∙ :660 𝑆𝑐⁄  (4) 

where 𝛤<<; is a gas exchange coefficient normalized to Sc = 660, U2 is the squared wind speed, and Sc is the Schmidt number 305 

for CO2. Our calculations used 𝛤<<; = 0.276, which is a gas exchange coefficient that is specific to ERA5 reanalysis winds and 

scaled to a bomb-14C flux estimate of 16.5 cm hr−1 (Fay et al., 2021). Sc was calculated using the fourth order polynomial fit 

of Wanninkhof (2014). U was obtained from ERA5 reanalysis (Hersbach et al., 2020). Flux calculations used monthly averages 

of squared 3-hourly wind speeds to retain the influence of the quadratic wind term (Fay et al., 2021). 

3 Results and Discussion 310 

3.1 Evaluation by comparison to withheld data 

As described in Sect. 2.6, training and test datasets were created by splitting the full dataset prior to bin-averaging. Evaluation 

models (RFR-CCS-Evals) were constructed by fitting RFR models using the various gridded training datasets. Values of 

pCO2(sw) predicted by RFR-CCS-Evals were compared to corresponding values from gridded test datasets. Error statistics (bias, 
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RMSE, and R2) averaged over the n sets of evaluation tests are given in Table 3. When RFR-CCS is compared against all the 315 

gridded observations used to construct it, error statistics are predictably strong (last row in Table 3), with a mean bias of 0.00 

µatm and an RMSE of 13.33 µatm (R2 = 0.93). These error statistics demonstrate the ability of the RFR model to fit the training 

data; the evaluation tests provide insight into the model’s ability to predict independent data. 

 

Table 3. Error statistics for comparisons of predicted pCO2(sw) from evaluation models versus gridded pCO2(sw) from test 320 

datasets. The number of times each test was repeated is given by n; where n is greater than one, different subsets of data were 

removed for each iteration of the test and error statistics are the mean of all iterations. 

Test # Removed from training dataset Mean bias 
(µatm) 

RMSE 
(µatm) R2 

1 (n = 10) Random (20%) subset of cruises -0.37 26.96 0.66 

2 (n = 5) Every 5th year 1.57 30.03 0.63 

3 (n = 1) Moored autonomous observations 8.39 43.28 0.55 

RFR-CCS None; full dataset used 0.00* 13.33* 0.93* 
* These statistics represent model training statistics (i.e., evaluated with the same data used to train the model) rather than model validation 
statistics. 
 325 

Tests 1 and 2 are good indicators of the overall skill of RFR-CCS. The mean absolute bias for each of those tests is less than 

2 µatm and the RMSEs are near or below 30 µatm. These error statistics can be compared with those of L17, who obtained 

biases with a mean of 0.0 and RMSEs ranging from 20.5 µatm to 53.1 µatm (mean of 39.2 µatm) for independent evaluations 

of coastal pCO2(sw) values fit using the SOM-FFN method in ten separate global subregions at 0.25° resolution. For an open-

ocean comparison, Denvil-Sommer et al. (2019) obtained an RMSE of 15.86 for an independent evaluation of pCO2(sw) values 330 

fit using a similar neural network approach (LSCE-FFNN) for the subtropical North Pacific (18 to 49 °N) at 1° resolution. The 

error statistics for our study region, which spans the coastal to open ocean continuum on a finely resolved spatial grid, lie 

comfortably between those coastal and open-ocean comparison points. 

 

Test 3 is a good indicator of how well the RFR approach is able to reproduce the values and seasonalities of coastal pCO2(sw) 335 

at fixed locations when mooring data at a given location is not provided as training data, as each of the moorings makes 

continuous pCO2(sw) measurements throughout the year and all but one of the mooring locations included in SOCATv2021 in 

this region are within 40 km of shore. The positive mean bias (8.39 µatm) suggests that RFR-CCS somewhat overestimates 

pCO2(sw) at grid cells corresponding to mooring locations, but this is strongly influenced by high biases at the Cape Elizabeth 

and Châ bá mooring locations (Table B1). The relatively high RMSE (43.28 µatm) is a result of higher variability in coastal 340 

grid cells compared to the open-ocean; this is confirmed by a comparison to the offshore CCE1 mooring (Table B1), where 

the RMSE from the mooring-excluded RFR-CCS-Eval is just 10.6 µatm. 
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Figure 2. Monthly values of pCO2(sw) from mooring observations (black), RFR-CCS (blue), the mooring-excluded RFR-CCS-345 

Eval model (orange), and L17 (green). The envelope around the black line equals the standard deviation of all mooring 

observations within each month, representing the natural variability of the 3-hourly mooring measurements; the envelopes 

around the blue and orange lines represent the RFR-CCS and RFR-CCS-Eval results plus one standard uncertainty (43.6 µatm; 

Sect. 3.5); the envelope around the green line represents the L17 data product plus the RMSE of an independent data evaluation 

in the province associated with CCE2 (52.5 µatm; Table 3 of Laruelle et al., 2017; Province P7). 350 

 

Figure 2 provides an example of one coastal mooring record (CCE2, which is positioned on the shelf break off the coast of 

Point Conception, CA, at 34.324 °N, 120.814 °W) compared to pCO2(sw) predicted in the corresponding grid cell (centered at 

34.375 °N, 120.875 °W) by the mooring-excluded RFR-CCS-Eval model (Test 3) as well as the full RFR-CCS model. For 

comparison, pCO2(sw) in the same grid cell provided by the L17 coastal product is also shown. At the CCE2 mooring location, 355 

RFR-CCS reproduces mooring-observed monthly pCO2(sw) with a mean bias of -2.2 µatm and an RMSE of 16.1 µatm (R2 = 

0.81). These error statistics are expected to be relatively favorable, as the RFR-CCS model is trained using mooring 

observations from CCE2. In contrast, the mooring-excluded RFR-CCS-Eval reproduces monthly mooring-observed pCO2(sw) 

at CCE2 with a mean bias of -4.6 µatm and an RMSE of 28.9 µatm (R2 = 0.41). This can be compared to the L17 coastal 

pCO2(sw) product, which reproduces monthly mooring-observed pCO2(sw) at CCE2 with a mean bias of -44.2 µatm and an 360 

RMSE of 57.3 µatm (R2 = 0.06). Notably, the mooring-excluded RFR-CCS-Eval captures pCO2(sw) variability at CCE2 more 

effectively than the L17 product, even though RFR-CCS-Eval was trained without mooring observations and the L17 training 

dataset (i.e., SOCATv4) includes CCE2 mooring observations through 2014. Similar results are obtained for comparisons to 

other mooring records (Table B1; Fig. B3), with RFR-CCS always producing the best error statistics (as expected) and RFR-

CCS-Eval always producing a better R2 than L17, indicating that coastal seasonality at mooring locations is better captured by 365 

our regional random forest regression model, even when mooring observations themselves are not included in the model 

training. This is an important conclusion, especially in light of the recommendation by Hauck et al. (2020) that the inclusion 
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of coastal areas and marginal seas in pCO2(sw) mapping methods will be critical for improving the ocean carbon sink estimate. 

If these areas are to be included, it is sensible to attempt to capture their unique modes of variability as accurately as possible. 

 370 

 
Figure 3. Differences between annual means (a, c) and seasonal amplitudes (b, d) of pCO2(sw) from RFR-CCS-clim versus the 

L20 climatology (a, b; RFR-CCS-clim – L20) and versus a climatological average of the L17 product (c, d; RFR-CCS-clim – 

L17). 

3.2 Evaluation by comparison to global pCO2(sw) products 375 

Across the study area, values of pCO2(sw) from RFR-CCS were compared against corresponding values from L17 and L20. For 

temporal compatibility with L17 and L20, a climatology of average monthly values from RFR-CCS spanning 1998 to 2015 

(“RFR-CCS-clim”) was created for these comparisons. Figure 3 shows mapped differences in annual means and seasonal 

amplitudes (calculated as the maximum climatological pCO2(sw) minus the minimum) of pCO2(sw) between RFR-CCS-clim 
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versus L20 (top panels) and RFR-CCS-clim versus a climatological average of L17 (bottom panels); monthly mean differences 380 

in are given in Fig. B4. 

 

The most notable feature of the annual mean difference maps is that RFR-CCS-clim produces much higher annual mean 

pCO2(sw) than both L17 and L20 in the nearshore coastal ocean and slightly higher pCO2(sw) in the remainder of the study area. 

Similarly, RFR-CCS-clim produces much higher seasonal variability than both L17 and L20 in the nearshore coastal ocean, 385 

especially north of about 34 °N. On average, RFR-CCS-clim produces an area-weighted annual mean pCO2(sw) that is greater 

than L17 by 19.0 µatm and L20 by 8.4 µatm, and an area-weighted seasonal amplitude that is greater than L17 by 13.0 µatm 

and L20 by 5.6 µatm. 

3.3 Evaluation by comparison to gridded observations of pCO2(sw) 

Values of pCO2(sw) from RFR-CCS, L17, and L20 were compared against the SOCATv4 gridded pCO2(sw) data product. 390 

SOCATv4 was used in the development of the coastal L17 product, whereas SOCATv5 was used in the development of the 

open-ocean product for the merged L20 climatology, and SOCATv2021 was used in the development of RFR-CCS. Therefore, 

comparisons were made to both the gridded open-ocean observations (1° resolution) and gridded coastal observations (0.25° 

resolution) from SOCATv4 to include only data points that were available to the training of all three data products. To match 

the resolution of the gridded open-ocean observations from SOCATv4, aggregation from a 0.25° resolution grid to a 1° 395 

resolution grid was performed for RFR-CCS, RFR-CCS-clim, and L20. L17 was only compared to gridded coastal 

observations from SOCATv4, because the two are gridded to the same spatial resolution and cover the same coastally-limited 

spatial domain. 

 

Figure 4 shows two-dimensional histograms of bin-averaged differences between RFR-CCS-clim, L20, RFR-CCS, and L17; 400 

each compared against gridded observations from SOCATv4. For comparisons to climatological products (RFR-CCS-clim 

and L20), gridded SOCATv4 observations were averaged to a monthly climatology across 1998–2015 for consistency with 

the products. The regional RFR-CCS product and its climatology outperform both global SOM-FFN products: RFR-CCS-clim 

shows better agreement with gridded monthly means of observations from SOCATv4 than does L20 (R2 = 0.85 versus R2 = 

0.73) and RFR-CCS (within the coastally-limited spatial domain of L17) shows better agreement with gridded observations 405 

from SOCATv4 than does L17 (R2 = 0.96 versus R2 = 0.61). In particular, the two global products (L20 and L17) struggle to 

match pCO2(sw) values in the nearshore coastal ocean (within 100 km of the coast), indicated by dark blue cells in Fig. 4. 

 

Mismatches between global pCO2(sw) products and observations in the nearshore coastal ocean are not unexpected, as regional 

error statistics for reconstructed global pCO2(sw) are typically larger than the global mean error statistics (Laruelle et al., 2017; 410 

Landschützer et al., 2020c); and it is generally more challenging to model pCO2(sw) in environments with high temporal and 

spatial variability, such as in the nearshore coastal ocean (Landschützer et al., 2014). This result emphasizes the importance of 
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carefully addressing nearshore pCO2(sw) when constructing global products if one hopes to achieve an accurate representation 

of coastal ocean variability. This may be achieved (1) by using a greater number of model clusters for coastal ocean 

reconstructions (L17 uses just 10 biogeochemical clusters for the global coastal ocean), (2) by increasing the spatial and/or 415 

temporal resolution of pCO2(sw) data products to better account for small-scale variability (Gregor et al., 2019), (3) by carefully 

accounting for mismatches between the temperature (and salinity) at which pCO2(sw) is measured versus that at which it is 

reported in surface data products (Ho and Schanze, 2020; Watson et al., 20202), or (4) by taking an ensemble approach to 

pCO2(sw) gap-filling to reduce errors overall, and especially in undersampled regions (Gregor et al., 2019; Fay et al., 2021). 

Ultimately, it will be critical to continue to expand our observational capabilities by means of shipboard underway systems 420 

(Pierrot et al., 2009), uncrewed surface vehicles (Meinig et al., 2015; Sutton et al., 2021), biogeochemical Argo floats 

(Roemmich et al., 2019), moored buoys (Sutton et al., 2019), and other platforms, and to make strides toward incorporating 

these novel measurements into pCO2(sw) gap-filling schemes (Gregor et al., 2019; Djeutchouang et al., 2022). 

 

 425 
Figure 4. Two-dimensional histograms showing bin-averaged comparisons of pCO2(sw) from (a) RFR-CCS-clim and (b) L20 

to SOCATv4 gridded observations that have been averaged to a climatology; and comparisons of pCO2(sw) from (c) RFR-CCS 

and (d) L17 to SOCATv4 gridded monthly observations in the coastally-limited spatial domain of L17. Grid cells are color-

coded by the average base ten logarithm of distance from shore (km) of the observations included within each bin; the 

transparency of each grid cell is set by the relative number of observations within each bin. 430 
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Figure 5. Climatological mean pCO2(sw) from five NOAA ocean moorings and the corresponding grid cells in RFR-CCS-clim, 

L20, and a climatological average of L17. Shading represents the standard deviation of all monthly values for each mooring 435 

or data product. 
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3.4 Evaluation by comparison to seasonal observations of pCO2(sw) at ocean moorings 440 

Values of pCO2(sw) from RFR-CCS-clim, L17, and L20 were compared against monthly climatologies from mooring 

observations to evaluate how well each product captured seasonal variability at fixed time-series sites. Figure 5 shows 

climatologies of mooring-observed pCO2(sw) (each averaged over available years and normalized to their annual mean) 

compared to pCO2(sw) from RFR-CCS-clim, L20, and climatological monthly averages of L17 (each normalized to their annual 

mean) in the grid cell corresponding to the mooring location. Overall, RFR-CCS-clim does a much better job of capturing the 445 

variability in mooring observations than does either L17 or L20 (Table 4). 

 

Table 4. Seasonal amplitudes of pCO2(sw) (µatm) from mooring observations and corresponding grid cells of climatological 

averages (from 1998–2015) of RFR-CCS-clim, L17, and L20. 

Mooring: CCE1 CCE2 Cape Elizabeth Châ bá NH10 

Mooring 36.3 76.5 116.7 163.0 94.5 

RFR-CCS-clim 32.4 64.0 133.6 129.5 97.4 

L17 21.1 6.3 37.2 35.6 26.9 

L20 23.0 6.3 22.1 21.2 18.9 

 450 

3.5 Uncertainty calculations 

Three components comprised the estimate of uncertainty for pCO2(sw) values from RFR-CCS: observational uncertainty (θobs), 

mapping uncertainty (θmap), and gridding uncertainty (θgrid). According to the procedure detailed in Sect. 2.7, θobs was calculated 

as 3.3 µatm, θmap as 4.4 µatm for the open ocean and 35.3 µatm for the coastal ocean, and θgrid as 3.7 µatm for the open ocean 

(n = 268) and 25.1 µatm for the coastal ocean (n = 889). These three components were combined to obtain total pCO2(sw) 455 

uncertainty (θpCO2) according to Eq. (2), resulting in θpCO2 equal to 6.6 µatm for the open ocean and 43.4 µatm for the coastal 

ocean. The open-ocean value determined through this analysis compares well with the grid-level uncertainty estimated in open-

ocean grid cells by Landschützer et al. (2014), which ranged from 8.6 and 17.7 µatm for different regions. The large coastal 

uncertainty value emphasizes the high degree of variability in monthly pCO2(sw) near ocean margins. 

 460 

As noted in Sect. 2.7, uncertainties reported here are appropriate for a given grid cell (i.e. monthly 0.25° latitude by 0.25° 

longitude bin). Values averaged over time or over larger regions will have reduced pCO2(sw) (and CO2 flux) uncertainties due 

to the spatiotemporal correlation of pCO2(sw) and the autocorrelation features of the model error (e.g., Landschützer et al., 

2014). 
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 465 

3.6 Spatial and seasonal patterns of sea surface pCO2 

In the open-ocean, relatively high pCO2(sw) values can be observed off southern Baja California (Fig. 6a) and extending toward 

the northwest, especially during summer months and into autumn (Fig. 7) when higher sea surface temperatures drive higher 

pCO2(sw) (Nakaoka et al., 2013). This area also corresponds to low chlorophyll (Fig. A2) and the lowest wind speeds across 

the study region (Fig. A4), suggesting that a lack of nutrient from deep convection may be limiting biological production, also 470 

driving high pCO2(sw). Relatively low open-ocean pCO2(sw) values can be observed in the northern part of the study region from 

about 45 °N to 60 °N (Fig. 6a). Wintertime cooling drives low pCO2(sw) in this area, though that effect is compensated by 

dissolved inorganic carbon (DIC) brought to the surface by deep winter mixing (Ishii et al., 2013). Figure B5 illustrates 

competing effects between temperature and winds by displaying correlations between SST and pCO2(sw), which are mainly 

positive below 50 °N, and between wind speed and pCO2(sw), which are mainly positive above 50 °N. 475 

 

 
Figure 6. Annual mean pCO2(sw) (a) and the seasonal amplitude of pCO2(sw) (b) from RFR-CCS. Also shown are annual mean 

pCO2(sw) and the seasonal amplitude of pCO2(sw) measured at ocean mooring locations. 

 480 

In the summer, high biological production in the northern portion of the study region (Fig. A2) removes DIC, keeping pCO2(sw) 

relatively low. This low-pCO2(sw) region extends southward along the California coast to about 34 °N, between both offshore 

and nearshore high-pCO2(sw) waters. The southward extension of the low-pCO2(sw) region is consistent with what we know 
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about the dynamics of the CCS: whereby a narrow band of nearshore waters is high in DIC in the spring and summer due to 

the direct effects of wind-driven upwelling (Fig. 7), but a wider band of waters farther offshore is lower in DIC due to 485 

drawdown by high biological production stimulated by nutrients delivered to the euphotic zone by upwelling (Hales et al., 

2005; Fassbender et al., 2011; Fiechter et al., 2014; Turi et al., 2014). 

 

In the coastal ocean, high pCO2(sw) occurs in the central CCS (~34 °N to ~42 °N), with values of 400 µatm or greater beginning 

in April off Pt. Conception (34 °N) and propagating northward to around Cape Arago (43 °N) through October (Fig. 7). This 490 

corresponds to the latitudinal band of the CCS with the strongest and most consistent equatorward winds (Huyer, 1983), which 

induce upwelling of CO2-rich subsurface waters by wind-driven Ekman transport very near the coast and wind-stress-curl-

driven Ekman pumping farther offshore (Checkley and Barth, 2009). This nearshore band of high summertime pCO2(sw) has 

been previously reported by observational (Hales et al., 2012) and modelling (Fiechter et al., 2014; Turi et al., 2014; Deutsch 

et al., 2021) studies. It corresponds with naturally low surface pH values and aragonite saturation states, which will be 495 

exacerbated by increasing atmospheric CO2 concentrations (Gruber et al., 2012; Hauri et al., 2013), with likely deleterious 

effects for calcifying organisms (Feely et al., 2008). 

 

 
Figure 7. Monthly mean pCO2(sw) fields from RFR-CCS. 500 

 

Relatively low coastal pCO2(sw) values (340 µatm or lower) develop during April off the coasts of Oregon, Washington, and 

Vancouver Island, and propagate northward toward southern Alaska through September (Fig. 7). Low summertime pCO2(sw) 

in the northern CCS (~42 °N to ~50 °N) has been demonstrated before (Hales et al. 2005; 2012; Evans et al., 2011; Fassbender 

et al., 2018), and corresponds to the weaker and more variable equatorward winds in summer in the northern CCS (Checkley 505 

and Barth, 2009) as well as the effect of DIC drawdown by high primary productivity, which offsets upwelling-induced 
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increases in pCO2(sw). Primary productivity in the northern CCS can be enhanced relative to the rest of the CCS due to factors 

like riverine nutrient delivery and distribution, submarine canyon-enhanced upwelling, and physical retention of phytoplankton 

blooms (Hickey and Banas, 2008). 

 510 

The coastal ocean from Vancouver Island northward is a high-pCO2(sw) region from October to March (Fig. 7), which is broadly 

consistent with observations of high pCO2(sw) in the western Canadian coastal ocean during autumn and winter (Evans et al., 

2012; 2022). This high pCO2(sw) is perhaps due to the influence of deep tidal mixing (Tortell et al., 2012) and wintertime light 

limitation of DIC drawdown by primary production. The northern coastal area shifts to a low-pCO2(sw) region from April to 

September, again consistent with observations (Evans et al., 2012; 2022) and likely reflecting surface DIC drawdown by 515 

primary production in the region (Ianson et al., 2003). 

 

The coastal ocean from the Southern California Bight (SCB) southward along Baja California (~22 °N to ~34 °N) shows 

relatively low pCO2(sw) seasonality (Fig. 6b). In this region, pCO2(sw) is generally lower than in offshore waters of the same 

latitude, which matches well with previous results (Fig. 6a; Hales et al., 2012; Deutsch et al., 2021). One exception is directly 520 

off the southern tip of Baja California, where especially high summertime pCO2(sw) is observed. This may in part reflect the 

tendency for wind-driven upwelling to bring significant amounts of CO2-rich subsurface waters to the surface just south of 

major topographic features (van Geen et al., 2000; Friederich et al., 2002; Fiechter et al., 2014). Coastal pCO2(sw) within the 

Gulf of California (GoC) appears to be strongly influenced by thermally induced seasonal effects, though the lack of 

observational data coverage in the GoC within SOCATv2021 (Fig. 1), especially within the non-summer months (Fig. B1), 525 

may mask more dynamic variability. 

 

The seasonal amplitude of pCO2(sw) (Fig. 6b) exhibits interesting variation in the central and northern CCS. Here, nearshore 

seasonality is extremely high due to dominant effects from upwelling and primary production; however, seasonality farther 

offshore is extremely low, likely due to compensating effects by thermally driven changes to pCO2(sw) (high temperature in 530 

summer increases pCO2(sw), low temperature in winter decreases pCO2(sw)) and biologically/physically driven changes to 

pCO2(sw) (high primary production in summer decreases pCO2(sw), deep mixing in winter increases pCO2(sw)). Elsewhere, a 

hotspot of high seasonality exists offshore around 40 °N, possibly due to thermal control of pCO2(sw) without strong biophysical 

compensatory effects. 

3.7 Carbon uptake in the RFR-CCS domain 535 

A recently published data product (SeaFlux; Gregor and Fay, 2021) described by Fay et al. (2021) harmonizes calculations of 

global CO2 flux by standardizing the areas covered by different global pCO2(sw) products and by scaling the gas exchange 

coefficient to different wind products. As part of this procedure, the L20 climatology is used to fill spatial gaps in some of the 

pCO2(sw) products. As we have demonstrated here, filling gaps with this climatology may result in an underestimate of the 
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seasonal pCO2(sw) cycle in certain locations, especially nearshore (Fig. 5). For comparison we calculate monthly CO2 flux in 540 

our study region from SeaFlux and from RFR-CCS, resulting in the monthly climatologies shown in Fig. 8. 

 

 

 
 545 

Figure 8. Monthly CO2 flux per unit area for the nearshore coastal (a) and open-ocean (b) portions of the RFR-CCS domain, 

calculated from the SeaFlux ensemble average (dotted black line; individual products in thin dotted lines) and from RFR-CCS 

(solid blue line). The grey shaded area represents variability in SeaFlux pCO2(sw) products, calculated as plus and minus one 

standard deviation. Also shown is the spatially distributed CO2 flux per unit area calculated from RFR-CCS (c), from SeaFlux 

(d), and the difference between them (e). Red colors in panels c and d indicate net release of CO2 to the atmosphere whereas 550 

blue colors indicate net uptake of CO2.; in panel e, red colors indicate where the RFR-CCS CO2 flux per unit area is greater 

and blue colors where the SeaFlux CO2 flux per unit area is greater. The solid black line denotes the boundary between the 

nearshore coastal (a) and open ocean (b), calculated as 100 km from the coast. All calculations are performed using ERA5 

winds and an identical gas exchange coefficient (𝛤<<; = 0.276). 

 555 
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Overall, the SeaFlux ensemble (with ERA5 winds) suggests an oceanic uptake of 69.2 Tg C yr-1 for the RFR-CCS domain 

between 1998 and 2019 (inclusive) compared to an uptake of 60.0 Tg C yr-1 calculated from RFR-CCS. Of the excess 9.2 Tg 

C yr-1 uptake from SeaFlux, 5.7 Tg C yr-1 come from the open ocean and 3.5 Tg C yr-1 from the nearshore coastal ocean 

(within 100 km of the coast). Given that the nearshore coastal ocean only comprises about 9% of the RFR-CCS region yet 

~38% of the discrepancy, the discrepancy in coastal uptake is more significant on a per area basis than the open-ocean 560 

discrepancy, as can be observed visually in Fig. 8. This discrepancy may reflect more coastal outgassing captured by RFR-

CCS than the SeaFlux ensemble, consistent with the annual mean differences shown in Figs. 3a and 3c. Still, the RFR-CCS 

results do lie within the variability of SeaFlux pCO2(sw) products (Figs. 8a and 8b). 

3.8 Effect of sporadic sampling on coastal CO2 flux calculations 

RFR-CCS includes pCO2(sw) values for the coastal and offshore ocean in the Northeast Pacific that are representative of monthly 565 

conditions. However, air–sea carbon dioxide exchange, which is driven by the difference between oceanic and atmospheric 

pCO2, operates on shorter timescales. It has been demonstrated in the past that inadequate sampling frequency can be a 

significant factor biasing CO2 flux (FCO2) estimates (e.g., Monteiro et al., 2015). 

 

To demonstrate this potential bias, Fig. 9 shows FCO2 at the CCE2 mooring over the course of 2015: (1) calculated from RFR-570 

CCS monthly pCO2(sw) matched to NOAA Marine Boundary Layer monthly pCO2(atm) and monthly averages of squared 3-

hourly ERA5 winds (blue), (2) calculated from 3-hourly mooring measurements of pCO2(sw) and pCO2(atm) matched to squared 

3-hourly ERA5 winds (grey), and (3) as the one-standard-deviation envelope obtained by the following Monte Carlo process: 

assigning one randomly selected pair of 3-hourly mooring measurements of pCO2(sw) and pCO2(atm) from each month as the 

monthly values, matching them with squared 3-hourly ERA5 winds to calculate FCO2, and repeating this 100,000 times to 575 

obtain statistically meaningful values (green). 

 

The FCO2 values provided by the 3-hourly mooring measurements are as close as possible to the true flux. Those provided by 

RFR-CCS are a best-case scenario for monthly flux approximations in the absence of continuous measurements (because the 

RFR model was trained on monthly mean pCO2(sw) values from 3-hourly observations at CCE2). Those provided by the Monte 580 

Carlo analysis provided reasonable ranges of FCO2 that might be obtained from sporadic sampling of one measurement per 

month without the benefit of an advanced interpolation routine like RFR-CCS. 

 

The annual FCO2 calculated from RFR-CCS (-0.26 mol C m-2 yr-1) agrees fairly well with that from the 3-hourly mooring 

measurements (-0.18 mol C m-2 yr-1). The smaller uptake from the mooring measurements likely reflects the effect of transient 585 

outgassing events in the spring and summer, when positive DpCO2 coincides with high wind speeds. The range from the Monte 

Carlo analysis (-0.00 to -0.36 mol C m-2 yr-1) highlights the variety of outcomes in calculated FCO2 that might result from 
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sporadic sampling in the coastal ocean, representative of a region with no high-resolution mooring measurements that may be 

observed by a ship’s underway system only a few times a year. 

 590 

 
Figure 9. Hourly flux of CO2 across the air–sea interface (FCO2) calculated from 3-hourly mooring observations (grey), 

monthly values from RFR-CCS (blue), and the one-standard-deviation envelope of a Monte Carlo analysis (n = 100,000) 

whereby one randomly-selected 3-hourly mooring observation from each month is selected to represent that month (green). 

The bar chart on the right gives annual FCO2 based on 3-hourly mooring observations (-0.18 mol C m-2 yr-1) and RFR-CCS 595 

(-0.26 mol C m-2 yr-1), along with the uncertainty in annual FCO2 from mooring measurements based on the Monte Carlo 

analysis (-0.00 to -0.36 mol C m-2 yr-1). 

 

In large portions of the open ocean, low temporal variability and high spatial correlation means that the aliasing problem may 

be a relatively low-priority concern for calculations of FCO2 from sporadic pCO2(sw) measurements (Bushinsky et al., 2019). 600 

However, the dynamic coastal ocean is dominated by processes that influence pCO2(sw) and FCO2 on short spatial and temporal 

scales, making observational frequency a significant factor that can bias annual FCO2 calculations. This bolsters the case for 

the expansion and enhancement of coastal carbon observing systems even with pCO2(sw) gap-filling methods, such as the one 

described here, at our disposal. 

4 Conclusions 605 

This work presents a data product, called RFR-CCS, of surface ocean pCO2 in the California Current System and surrounding 

ocean regions. RFR-CCS was constructed from pCO2(sw) observations in the Surface Ocean CO2 Atlas version 2021 (Bakker 

et al., 2016), which were related to predictor variables (Table 1) using a random forest regression approach. Validation 

exercises (Table 3) reveal that this approach is able to predict independent pCO2(sw) values with a skill commensurate to 

expectations (mean bias near zero and RMSE ≈ 30 µatm), considering the highly variable coastal ocean comprises a large 610 

portion of the study region. 

 



25 
 

RFR-CCS captures variability in pCO2(sw) in the Northeast Pacific, especially at coastal time-series locations, more effectively 

than do global-scale data products of pCO2(sw). This is evident through comparisons to gridded monthly observations in the 

SOCAT database (Figure 4), to monthly observations at fixed mooring sites (Figures 2 and B3; Table B1), and to seasonal 615 

amplitudes of pCO2(sw) measured at those moorings (Figure 5; Table 4). The improvements made by RFR-CCS mainly 

represent the enhanced ability of regional data fits to capture local-scale variability compared to global data fits. Going forward, 

perhaps global-scale gap-filled pCO2(sw) products that include a clustering step would benefit from the creation of a greater 

number of clusters in the coastal ocean, allowing for more robust reconstruction of local variability. Improvements detailed 

here may also be due to the flexibility of RFR in capturing multiple different length scales of variability (Gregor et al., 2017), 620 

which may make the method especially useful for regions that span both the coastal and open ocean. The CCS is also 

particularly data-rich, and this work demonstrates the excellent resolution of nearshore variability that can be achieved in gap-

filled pCO2(sw) products when coastal observing systems are sustained over time. Examination of the spatiotemporal 

distribution of pCO2(sw) observations contained in the SOCAT database (Bakker et al., 2016; www.socat.info) suggests that 

analyses similar to this one could be effective for other coastal regions around North America, the western North Pacific, and 625 

the eastern North Atlantic. However, different predictor variable–pCO2(sw) relationships are likely to exist in these distinct 

ocean regions since each has a unique physical and biogeochemical setting. 

 

Spatial and seasonal patterns of pCO2(sw) revealed by RFR-CCS reflect interactions of physical and biological processes that 

differ substantially with latitude, season, and distance from shore (Figures 6 and 7). For example, high annual mean pCO2(sw) 630 

in a narrow band of the central coastal CCS reflects spring and summer upwelling; low annual mean pCO2(sw) and CO2 uptake 

in the northern coastal CCS and the offshore CCS in general reflects CO2 drawdown by primary production, largely stimulated 

by nutrients delivered by coastal upwelling. Generally, across the study region, interpretations of pCO2(sw) variability and the 

processes that drive it coincide with local-scale explanations in the coastal environment, suggesting high heterogeneity in 

coastal carbon cycling. 635 

 

Finally, in the context of sea surface pCO2 gap-filling strategies, this study highlights important factors that should be 

considered when working in coastal areas or regions that span the coastal to open ocean continuum. For one, although a global 

gap-filled product may demonstrate mean annual values and average seasonal amplitudes of pCO2(sw) that represent a broad 

region effectively, this does not mean that local scale variability within that region has been captured just as well. Data-rich 640 

regions like the CCS confirm this notion, especially when variability at fixed time-series sites like moored autonomous 

platforms is considered. Misrepresentation errors of this nature are especially concerning in dynamic nearshore environments, 

where local-scale processes can result in surface biogeochemical characteristics that change rapidly over short timescales. 

These rapid changes can have direct consequences for local biological responses and for CO2 flux, both of which operate on 

relatively short timescales. To address potential errors associated with misrepresentation of pCO2(sw) variability, the 645 

spatiotemporal coverage of carbon observing systems must be improved, especially at ocean margins. Further, innovative 
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implementation and assessment of machine-learning approaches (Gregor et al., 2017; Gloege et al., 2021), biogeochemical 

models (DeVries et al., 2019; Friedlingstein et al., 2020), and ensemble approaches (Lebehot et al., 2019; Fay et al., 2021) 

should continue to be explored to best leverage the existing data. 

  650 
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5 Appendices 

Appendix A. Processing of predictor variables 

SST (Fig. A1) was obtained from the NOAA daily Optimum Interpolation Sea Surface Temperature (OISST) analysis product 

(Reynolds et al., 2007; Huang et al., 2021). This data product combines satellite and in situ observations of SST using an 

optimum interpolation (OI) technique, providing daily SST values at 0.25° resolution. We averaged daily gridded SST values 655 

from OISSTv2.1 for each month from 1998 to 2020 to obtain the required monthly 0.25° resolution datasets to match with our 

gridded pCO2. 

 

 
Figure A1. Gridded means of SST from satellite observations from 1998–2020. 660 

 

Sea surface salinity (SSS) was obtained from the NASA Estimating the Circulation and Climate of the Ocean (ECCO) project. 

The ECCO2 state estimate (Menemenlis et al., 2008) uses a Green’s function approach (Menemenlis et al., 2005) to make 

optimal adjustments to parameters, initial conditions, and boundary conditions of a general circulation model to produce a 

daily ocean state estimate. We averaged daily gridded SSS values from the ECCO2 state estimate for each month from 1998 665 

to 2020 to obtain the required monthly 0.25° resolution datasets to match with our gridded pCO2. 
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Figure A2. Gridded means of Chlorophyll-a concentration from satellite observations from 1998–2020. 

 670 

 
Figure A3. Sea surface chlorophyll concentration at 55° N, 135° W. Data from satellite observations are in orange and 

interpolated data are in blue. 

 

Sea surface chlorophyll-a concentration estimates (CHL; Fig. A2), based on Sea-Viewing Wide Field-of-View Sensor 675 

(SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, were obtained from the Oregon State 

University (OSU) Ocean Productivity website (http://www.science.oregonstate.edu/ocean.productivity). The OSU Ocean 

Productivity website provides both monthly and 8-day CHL files at either 1/6° or 1/12° resolution. We obtained monthly 1/6° 
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resolution files for 1998–2002 (SeaWiFS-based) and 2003–2020 (MODIS-based), and interpolated each to a 0.25° resolution 

grid using a standard two-dimensional linear interpolation for each monthly file. For high-latitude wintertime gaps in the CHL 680 

datasets, we interpolated CHL for each grid cell through time using one-dimensional linear interpolation when observations in 

the previous and subsequent month were available. To avoid anomalous values at the beginning and end of the time series, 

empty grid cells were filled with nearest-neighbor interpolation when a previous or subsequent observation was not available 

(Fig. A3). CHL was log10-transformed to produce a distribution of values that was closer to normal before constructing the 

regression model. 685 

 

 
Figure A4. Gridded means of wind speed from ERA5 reanalysis from 1998–2020. 

 

Wind speed data (Fig. A4) were obtained from the ERA5 reanalysis product (Hersbach et al., 2020), produced by the European 690 

Centre for Medium-Range Weather Forecasts (ECMWF). The ERA5 atmospheric reanalysis provides a detailed record of 

atmospheric parameters from 1950 to the present day. We obtained monthly, 0.25° resolution wind speed data at 10 meters 

above the surface from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Wind speed (U) was 

calculated from its vector components (north–south wind, vw, and east–west wind, uw): 

𝑈 = :𝑣=! + 𝑢=!  (A1) 695 
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Atmospheric CO2 partial pressure (pCO2(atm)) was obtained from the NOAA Marine Boundary Layer (MBL) Reference 

(Dlugokencky et al., 2020). This data product is derived from weekly air samples of atmospheric CO2 mole fraction (xCO2) at 

a subset of sites from the NOAA Cooperative Global Air Sampling Network. The product is provided as weekly latitudinal 

averages with a resolution of sin(lat) = 0.5. We interpolated weekly xCO2 values to monthly xCO2 values relative to the middle 700 

of each month. To convert xCO2 to pCO2(atm), xCO2 was multiplied by monthly sea level pressure (P) from NCEP reanalysis, 

which was corrected for water vapor pressure (VPH2O) as described by Dickson et al. (2007): 

𝑝CO!(#$) = 𝑥CO![𝑃 − 𝑉𝑃>!'] (A2) 

 

Mixed layer depths (MLD), based on output from the Hybrid Coordinate Ocean Model (HYCOM) (Chassignet et al., 2007), 705 

were obtained from the OSU Ocean Productivity website. We obtained monthly 1/6° resolution MLD files and interpolated 

each to a 0.25° resolution grid using a standard two-dimensional linear interpolation for each monthly file. MLD was log10-

transformed to produce a distribution of values that was closer to normal before constructing the regression model.   

 

Distance from shore (Dist.) for each grid cell was calculated using the “dist2coast.m” function from the Climate Data Toolbox 710 

for MATLAB (Greene et al., 2019), applied to each latitude-longitude grid cell. That function accepts input of latitude and 

longitude coordinates and returns the great circle distance to the nearest coastline. 

 

Year (yr) was normalized to an epoch of 1997 (i.e., yrnorm = yr – 1997). Month of year (mn) was transformed into two separate 

predictor variables (mnsin and mncos) using sine and cosine functions to maintain its cyclical nature (after Gregor et al., 2018): 715 

mnsin = sin(2p×mn/12) (A3) 

mncos = cos(2p×mn/12) (A4) 
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Appendix B. Supplementary figures and tables 

 720 

 
 

Figure B1. The number of years containing a pCO2(sw) observation within each month over the 23 years of our gridded pCO2(sw) 

data product from 1998–2020. 

 725 
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Figure B2. Predictor variable feature importances, calculated for the random forest regression model fit used to produce RFR-

CCS (Sharp et al., 2021; https://doi.org/10.5281/zenodo.5523389). 

  730 
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Figure B3. Like Fig. 2 in the main text, monthly values of pCO2(sw) from mooring observations (black), RFR-CCS (blue), the 735 

mooring-excluded RFR-CCS-Eval model (orange), and L17 (green). The envelopes around the black lines equal the standard 

deviations of all mooring observations within each month, representing the natural variability of the 3-hourly mooring 

measurements; the envelopes around the blue and orange lines represent the RFR-CCS and RFR-CCS-Eval results plus one 
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standard uncertainty (43.6 µatm; Sect. 3.5); the envelopes around the green lines represents the L17 data product plus the 

RMSE of an independent data evaluation in the province most closely associated with the mooring locations (52.5 µatm; Table 740 

3 of Laruelle et al., 2017; Province P7). 

 

 

 
 745 

 
 

Figure B4. Monthly mean differences in pCO2(sw) values between RFR-CCS-clim and L20 (top) and RFR-CCS-clim and L17 

(bottom). 

 750 
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Figure B5. Correlations (top) and the p-values of those correlations (bottom) in each grid cell of RFR-CCS between pCO2(sw) 

and SST (left) and pCO2(sw) and wind speed (right). 755 
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Table B1. Mean biases (MB), root mean squared errors (RMSE), and coefficients of determination (R2) for comparisons of 760 

RFR-CCS, the mooring-excluded RFR-CCS-Eval, and L17 to mooring observations. 

Model 
CCE1 CCE2 Cape Elizabeth Châ bá NH10 

MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 

RFR-CCS -1.5 8.0 0.86 -2.2 16.1 0.81 8.0 24.6 0.82 12.8 29.4 0.84 -7.1 26.3 0.66 

RFR-CCS-Eval -2.0 10.5 0.77 -4.6 28.9 0.41 25.8 54.8 0.47 34.9 60.5 0.48 -9.2 34.3 0.49 

L17 -11.7 21.5 0.39 -44.2 57.3 0.06 5.1 48.9 0.18 21.2 64.1 0.09 2.8 33.4 0.27 

 

6 Code availability 

Matlab code used to process data and create figures included in this manuscript is provided at 

https://github.com/jonathansharp/RFR-CCS. The majority of this code is also compatible with the open-source software GNU 765 

Octave.  

7 Data availability 

The RFR-CCS data product (Sharp et al., 2021) is available as a NetCDF and MATLAB file at 

https://doi.org/10.5281/zenodo.5523389. Gridded variables used in constructing the product can be accessed at 

https://figshare.com/articles/dataset/RFR-CCS/15152013. 770 
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