10

15

20

25

30

https://doi.org/10.5194/essd-2021-326
Preprint. Discussion started: 30 September 2021
(© Author(s) 2021. CC BY 4.0 License.

Earth System g
Science

Data:

Open Access

A global land aerosol fine-mode fraction dataset (2001-2020) retrieved from
MODIS using hybrid physical and deep learning approaches

Xing Yan®", Zhou Zang!, Zhanging Li?*, Nana Luo® Chen Zuo?, Yize Jiang®, Dan Li!, Yushan Guo?,
Wenji Zhao*, Wenzhong Shi°, Maureen Cribb?

IState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal
University, Beijing, 100875, China

2Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, MD, 20740, USA
3School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102612,
China

“College of Resource Environment and Tourism, Capital Normal University, Beijing, China

Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China

*Correspondence to: Xing Yan (yanxing@bnu.edu.cn); Zhanging Li (zli@atmos.umd.edu)

Abstract. The aerosol fine-mode fraction (FMF) is potentially valuable for discriminating natural aerosols from anthropogenic
ones. However, most current satellite-based FMF products are highly unreliable. Here, we developed a new satellite-based
global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1<
spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF dataset is comparable to Aerosol Robotic
Network (AERONET) measurements, based on the analysis of 361,089 data samples from 1170 AERONET sites around the
world. Overall, Phy-DL FMF showed a root-mean-square error of 0.136 and correlation coefficient of 0.68, and the proportion
of results that fell within the #20% expected error window was 79.15%. Phy-DL FMF showed superior performance over
alternate deep learning or physical approaches (such as the spectral deconvolution algorithm presented in our previous studies),
particularly for forests, grasslands, croplands, and urban and barren land types. As a long-term dataset, Phy-DL FMF is able
to show an overall significant decreasing trend (at a 95% significance level) over global land areas. Based on the trend analysis
of Phy-DL FMF for different countries, the upward trend in the FMFs was particularly strong over India and the western USA.
Overall, this study provides a new FMF dataset for global land areas that can help improve our understanding of spatiotemporal
fine- and coarse-mode aerosol changes. The datasets can be downloaded from https://doi.org/10.5281/zen0d0.5105617 (Yan,
2021).
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1 Introduction

Evaluating the impact of anthropogenic aerosols on climate change and human health relies on the ability to separate the
proportion of anthropogenic aerosols from the total aerosol loading (Anderson et al., 2005; Zheng et al., 2015). Although
satellite remote sensing can provide global-scale data on aerosol content that are represented by the aerosol optical depth
(AOD), accurate monitoring of anthropogenic aerosols is still a major challenge. This is because a key parameter called the
aerosol fine-mode fraction (FMF), which is used for discriminating anthropogenic aerosols from natural ones (Bellouin et al.,
2005), has been regarded as highly unreliable according to satellite-based AOD retrievals, especially over land (Levy et al.,
2013; Yan et al., 2017; Liang et al., 2021; Yang et al., 2020; Zang et al., 2021a).

Satellite-based FMF retrievals based on physical methods have been performed previously,; currently, five global-scale
FMF products exist (Figure 1) that exhibit different temporal resolutions from 1 to 16 days (Levy et al., 2007; Garay et al.,
2020; Chen et al., 2020a). Of these, POLarization and Directionality of the Earth’s Reflectances (POLDER) can perform multi-
angle and multi-spectral polarized measurements, which provide unique advantages in the retrieval of aerosol FMF (Dubovik
et al., 2011; Dubovik et al., 2019). Therefore, in recent years, several POLDER-based FMF retrieval methods have been
proposed (Zhang et al., 2016; Zhang et al., 2021), such as the generalized retrieval of aerosols and surface properties (Dubovik
et al., 2014). However, POLDER ended its mission in 2013, whereas the Moderate Resolution Imaging Spectroradiometer
(MODIS) has operated for about 20 years and continues to perform well. Currently, only the MODIS Dark Target (DT) method
has been used to generate global aerosol FMF products over both land and ocean. However, the MODIS DT-derived FMF
over land is highly unreliable and is not recommended for use even though it has evolved to the Collection 6.1 (C6.1) level
(Levy et al., 2013; Chen et al., 2020a). To improve the accuracy of MODIS land-based FMF retrievals, improvements have
been made to physical approaches, such as the Look-Up-Table-based Spectral Deconvolution Algorithm (LUT-SDA) (Yan et
al., 2017; Yan et al., 2019) and the Yonsei Aerosol Retrieval algorithm (Choi et al., 2016). Using the LUT-SDA model in
previous research, we developed a 10-year global land FMF dataset (Yan et al., 2021b) with moderately improved retrieval
accuracy (root-mean-square error, RMSE = 0.22). No multi-angle and multi-spectral polarized information, Lipponen et al.

(2018) noted that MODIS-based FMF retrievals using physical methods still suffer from these major limitations.
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Figure 1: Overview of the time periods covered by different satellites that provide global-scale FMF products. Acronyms used in this figure:
AATSR: Advanced Along-Track Scanning Radiometer; MISR: Multi-angle Imaging SpectroRadiometer; MODIS: Moderate Resolution
Imaging Spectroradiometer; POLDER: POLarization and Directionality of the Earth’s Reflectances; VIIRS: Visible Infrared Imaging

Radiometer Suite.

In recent years, deep learning approaches have been applied to satellite satellite-based atmospheric research (Zang et al.,
2021b; Yan et al., 2020a; Yuan et al., 2020; Shen et al., 2018; Ong et al., 2016), including FMF retrieval (X. Chen et al., 2020).
Compared with classical machine learning methods, deep learning is more capable of approximating nonlinear relationships
(Yanetal., 2021c). For example, X. Chen et al. (2020) used a convolutional neural network (CNN) to develop a deep learning
model for MODIS FMF retrievals called the Neural Network based AEROsol retrieval (NNAero) method. The NNAero-
derived FMF is a significant improvement over the MODIS DT-derived FMF, with the RMSE decreasing from 0.34 (DT) to
0.1567 (NNAero). However, this method has only been applied and validated over northern and eastern China, and not globally.
As an important limitation, Zhang et al. (2016) noted that satellite-measured multispectral reflectance of ground-based data
alone was not sufficient to retrieve FMFs with high accuracy. This limitation increases the difficulty of preparing training data
for the deep learning approach. The physical method may provide a means to alleviate this deficiency, raising the question of
whether combining the physical method and deep learning can improve the FMF retrieval accuracy.

To address the above issues, we synergize the advantages of the physical method and deep learning to retrieve aerosol
FMFs over land on a global scale using MODIS data. We tested and validated this hybrid model using two decades of data
(2001-2020) and produced a new long-term FMF dataset called Phy-DL FMF (physical-deep learning FMF). Contrary to
previous studies, the proposed hybrid model considers both physical characteristics and nonlinear relationships to constrain
the FMF calculation. This long-term dataset shows good promise for shedding light on the impacts of human activities on

atmospheric aerosols, providing a foundation for understanding the variations in fine mode aerosols on a global scale.

3
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2 Materials and methods
2.1 MODIS data

The MODIS sensor onboard Terra has provided long-term observations on a global scale every day since February 2000
(Levy et al., 2010), available at the Atmosphere Archive & Distribution System Distributed Active Archive Center. In this
study, MODIS C6.1 L1B MODO02SSH data (i.e., top-of-the-atmosphere (TOA) reflectances from Band 1 to Band 7), MODIS
C6.1 L3 MODO09CMG data (surface reflectances from Band 1 to Band 7), and MODIS C6.1 L3 MODO8 daily data were
obtained from 2001 to 2020 for retrieving FMFs. Table S1 summarizes details about the MODIS data used in this study.

2.2 AERONET data

The AERONET is a worldwide, sun—sky photometer network providing ground-level aerosol properties, recently updated
to Version 3 (Holben et al., 1998). To retrieve FMFs from AERONET solar extinction data, (O'neill et al., 2001a; O'neill et
al., 2001b; O'neill et al., 2003) developed the Spectral Deconvolution Algorithm (SDA) method. The FMFs based on this
inversion method (i.e., SDA FMF) have been included in the standard AERONET data offering, with an estimated uncertainty
of 0.1 (O'neill et al., 2001b; O'neill et al., 2003). Since there is not enough Level 2.0 data for use as training data for modelling
purposes, here, we used the Level 1.5 SDA FMF dataset generated from data from 1170 global AERONET sites covering the
period of 2001 to 2020 as the ground truth for further modelling and validation (Figure S1a). These AERONET sites are spread
around the world, enabling the construction of a universal model and allowing for a more thorough validation of the new FMF

product.

2.3 Meteorological data

Due to the impact of meteorological factors on FMF (Yan et al., 2021a), five meteorological variables (i.e., 2-m air
temperature, planetary boundary layer height, surface pressure, 10-m U/V wind components, and relative humidity) were
obtained from ERA5 (Figure S1b-f). ERAS is the fifth-generation product produced by the European Centre for Medium-
Range Weather Forecasts, with hourly data available since 1950 and at a 0.25“spatial resolution. Given the overpass time and
spatial resolution of MODIS data, only monitoring-time meteorological data collected from 10:00 to 11:00 local time were

used and resampled to 1 <L <to obtain daily averages.

2.4 Combining physical and deep learning models (Phy-DL) for retrieving FMFs

The physical model used in this research is the LUT-SDA (Yan et al., 2017). This method follows the SDA to build a
LUT for the satellite-based FMF retrieval. Based on Eq. (1), a set of hypothetical values for the Angstrém exponent (AE)

4
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derivative ('), the AE («), the AE of fine-mode AOD (¢, ), and AOD (at 500 nm) are input to the SDA for the FMF

calculation (77 ), thus creating the LUT:

1 a'-a,' a'-

a, = {(a-a, - +b¥) +[(@ —a, - Z—Z 4 b¥) +dcr(1-a)]F+ e,
2(1-4a) a-a a-a

c Cc (1)

where a, b*, ¢*, «_ ', and ¢, are fixed parameters described by O'neill (2010). In this study, the MODIS MODO08 DT-based

AOD and AE are used as input to the LUT-SDA for the global land physical-model-based FMF (Phy-based FMF) retrieval
(Yanetal., 2021b).

The deep learning model used in this study is called EntityDenseNet (Yan et al., 2020). The EntityDenseNet incorporates
the Entity Embeddings method (Guo and Berkhahn, 2016) that can directly process spatial or time-based features, such as
location, season, and month. It includes one input layer, two hidden layers, and one output layer. Each hidden layer has one
fully connected layer, one rectified linear unit (ReLU) layer, one batch normalization (BN) layer, and one dropout layer. The

feed-forward operation of each hidden layer can be written as

a™ =BN{f[W"™' D@")+b"} (2
where n is the layer number, a" is the output vector from layer n, D() is the dropout layer for the thinning vector a" , W™
and b"" are weights and biases, respectively, at layer n+1, f[] is the ReLU activation function, and BN is the batch

normalization function.

In this study, we combine Phy-based FMF into EntityDenseNet along with satellite measurements and meteorological
data to reduce FMF retrieval biases. As shown by Yan et al. (2021b), the global land Phy-based FMF is still unreliable. Due
to its unknown and known error sources (e.g., MODIS-derived AE) and nonlinearity in the data itself, a linear model may not
be able to correct these errors. In addition, current physical retrieval methods do not use all the information provided by satellite
observations for aerosol size information retrievals (Zang et al., 2021). Lipponen et al. (2018) showed that satellite TOA
reflectance and geometry data can significantly improve the aerosol size data retrieval accuracy of the machine learning model.
Some studies have also suggested that surface reflectance and meteorological factors can also impact the FMF retrieval
accuracy (Yan et al., 2021a; X. Chen et al., 2020). Thus, besides Phy-based FMF, we input MODIS TOA reflectance data,
geometry data, surface reflectance, and meteorological data into EntityDenseNet for the final Phy-DL FMF calculation (Table
S1). In the deep learning model training process, 70%, 20%, and 10% of all input data are randomly separated into groups of
data for training, validation, and testing, respectively. The validation data are used for the hyperparameter optimization (node
numbers and dropout rate in each hidden layer) of the deep learning model. The testing data are used to evaluate the

performance of the trained deep learning model. When the trained model is finally optimized by the validation and testing data,

we apply this trained deep learning model to reconstruct global land FMFs for the period of 2001 to 2020.
5
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Figure 2: Technical flowchart for the production of the global land FMF product.

145

2.5 Other global FMF products for comparison

Phy-DL-derived FMFs were compared with the following FMF products from three other satellite missions (Table S2):
a. POLDER/GRASP FMF:
Launched in December 2004, POLDER-3 onboard the Polarization and Anisotropy of Reflectances for Atmospheric
150 Sciences coupled with Observations from a Lidar satellite was operational from March 2005 to October 2013, making multi-
angular polarization measurements. By capitalizing on the small and fairly neutral polarized reflectances (Deuze et al., 2001),
POLDER/GRASP is able to provide the fine-mode AOD (fAOD, radius < 0.35 pm) in two categories: “high-precision” and
“models”. Because “high-precision” fAODs perform better than “models” fAODs (Wei et al., 2020), we used monthly “high-
precision” POLDER/GRASP fAODs and AODs (both at 490 nm) at a spatial resolution of 1 =for calculating FMF (at 490 nm)
155 (FMF=fAOD/AQOD).
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b. Multi-angle Imaging SpectroRadiometer (MISR) FMF:

The MISR instrument onboard the National Aeronautics and Space Administration Earth Observing System Terra satellite
has been continuously working since 2000 (Diner et al., 1998; Kahn and Gaitley, 2015). MISR has nine push-broom cameras
with different nominal viewing angles, allowing it to distinguish aerosol type, including aerosol size (Garay et al., 2020). The
MISR algorithm retrieves small-mode AODs (at 550 nm) due to aerosol particles with radii less than 0.35 pm at a spatial
resolution of 0.5< We used it to calculated FMF as the ratio of fAOD and AOD for further comparison in this study.

c. MODIS FMF:

The latest C6.1 MODIS aerosol product (Levy et al., 2013) no longer includes global-scale FMFs, so we used FMFs at
550 nm from the previous collection (C5) for comparison purposes (Levy et al., 2007). Although this MODIS FMF product is
not reliable over land (Levy et al., 2010), it was used in numerous previous studies (Ramachandran, 2007; Vinoj et al., 2014)
including for PMy s estimations (Li et al., 2016; Zhang and Li, 2015).

3. Results
3.1 Phy-DL FMF validation

Figure 3 shows the validation of the Phy-DL FMFs against AERONET FMFs. By matching 20 years of estimated Phy-
DL FMFs with AERONET FMFs (number of match-ups, N = 361,089), we first evaluated the overall performance of Phy-DL
FMF (Figure 3a). The correlation coefficient (R) was 0.68, and the root-mean-square error (RMSE) was 0.136. Approximately
90% and 79% of retrievals fell within the expected error (EE) envelopes of #40% and #20%, respectively (these envelopes
have been adopted from X. Chen et al. (2020)). Figure 3b shows the biases of the Phy-DL FMFs (estimated FMF minus
AERONET FMF) as a function of the AERONET FMFs. The Phy-DL FMFs slightly underestimated the FMFs, with a negative
median bias in each FMF bin. As each FMF increased, a higher percentage of retrievals fell within the #220% EE envelope,
ranging from 42.85% (when FMF < 0.3) t0 91.17% (when FMF > 0.8). This indicates that the Phy-DL FMF retrieval performed
better when the fine-mode aerosols dominated. Figure 3c shows the validations of Phy-DL FMFs over different AERONET
sites around the world. Most sites in the eastern USA and Europe have over 70% of Phy-DL FMFs falling within the EE
envelope of #20%. Over 90% of Phy-DL FMFs fell within the #220% EE envelope at some sites in the Amazon, southern
Africa, and southeast Asia. However, at coastal AERONET sites in the Caribbean and Mediterranean regions, Australia, and
South America, less than 60% of Phy-DL FMFs fell within the #220% EE envelope. A similar result was found for some

AERONET sites near deserts in southern South America, Central Asia, Northwest China, and Central Australia.
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Figure 3: (a) Phy-DL FMF at 500 nm as a function of AERONET FMF. The black and red solid lines are the 1:1 line and the best-fit line
obtained from linear regression, respectively. The black dashed and dotted lines represent the expected error (EE) envelopes of #220% and
#40%, respectively. (b) Box plots of the FMF bias (estimated FMF minus AERONET FMF) as a function of AERONET FMF. The black
horizontal dashed line indicates the zero bias. The red dot in each box represents the mean value of the FMF bias. The upper, middle, and

lower horizontal lines in each box show the 75th, median, and 25th percentiles, respectively. The blue dots connected by the dashed curve
are percentages of FMF retrievals falling within the EE envelope of #220%. (c) Global distribution of percentages of Phy-DL FMFs falling
within the EE envelope of £20% at the AERONET sites.

Figure S2 shows the frequencies of three FMF levels (low: FMF < 0.5, medium: 0.5 < FMF < 0.8, high: FMF > 0.8,
Supplementary section S1) based on Phy-DL and AERONET FMF data from 2001 to 2020. Over 60% of AERONET-derived
FMFs were low over Central Asia, Central Australia, and the sub-Sahara; the AOD of these locations was dominated by coarse-
mode aerosols (dust). Phy-DL-estimated FMFs were also low over Central Asia and the sub-Sahara, but slightly
underestimated over Central Australia (frequency < 40%). Over 90% of both AERONET and Phy-DL FMFs were at the

medium level in South America, Western Africa, Australia, Western Asia, and the Western USA. Approximately 45-55% of
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Phy-DL and AERONET FMFs were at the medium level in the Eastern USA, Europe, and Central Africa. Over 60% of Phy-
DL and AERONET FMFs were at a high level in Northern India, Southeast Asia, and Southeast China.

3.2 Global land FMF spatial distribution and trends from 2001 to 2020

Figure 4a shows the global distribution of mean Phy-DL FMFs over land from 2001 to 2020. A high proportion of fine-
mode aerosols with FMFs greater than 0.77 can be seen in populated regions, including Southern China, Southeast Asia,
Eastern Europe, and the Eastern USA. Low FMF values (< 0.55) were observed in Australia, Northwest China, Central Asia,
the Saharan region, southern South America, and the Southeastern USA, where coarse-mode aerosols from large deserts
dominate. Figure 4b shows the spatial distributions of the Phy-DL and AERONET FMF linear trends from 2001 to 2020. In
general, both datasets show decreasing trends (i.e., <-3x10 yr1) in Northeast China, Central Asia, Europe, the Saharan region,
Southern Africa, South America, Mexico, and the eastern USA. In contrast, Southeast Asia, India, Central Australia, Central
Africa, and the western USA show significant increasing trends of over 310 yrl, The increasing FMF trend over central
Australia is sporadic and could be related to an increase in fire activity (Andela et al., 2017). In South America and Africa, the
long-term decrease in burning during the past two decades (Andela et al., 2017; Deeter et al., 2018) has contributed to a
significant decrease in FMFs. However, the reduced biomass burning in Central Africa is also partially offset by the dramatic
growth in anthropogenic emissions (Zheng et al., 2019), leading to a slight increasing trend in FMF (31073 to 71073 yr?).
The decreasing FMF trends in Europe and the eastern USA are driven by reduced anthropogenic emissions from transportation
sources (Crippa et al., 2016; Jiang et al., 2018). The decreasing FMF trend in Northeast China is likely more associated with
a decrease in industrial and residential emissions due to the implementation of clean air policies (Van Der Werf et al., 2017;
Yang et al., 2018; Zheng et al., 2019). In the western USA, the dramatically increasing FMF trend is likely partly attributed to
the increase in smoke from wildfires (Parks and Abatzoglou, 2020; O'dell et al., 2019). In India, the significant increase in
FMF likely reflects an increase in vehicular anthropogenic emissions and crop residue burning (Jethva et al., 2019; Manoj et
al., 2019). Figure 4c shows the time series of the global monthly mean Phy-DL and AERONET FMFs from 2001 to 2020.
Both time series show similar annual cycles and decreasing trends (i.e., negative slopes). However, only the Phy-DL-estimated
FMF decreasing trend was significant (-1.9x10- yr* at 95% significance level). This is because the Phy-DL dataset has greater
spatial coverage than that of the point-scale AERONET dataset.
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Figure 4: (a) Global distribution of Phy-DL FMF mean values over the 2001-2020 period. Only those pixels with over 120 retrievals yr?
were considered. (b) Global distribution of Phy-DL FMF linear trends from 2001 to 2020. Only those pixels with trends at the 95%
significance level were considered. The red and blue dots represent AERONET stations with increasing and decreasing linear trends,
respectively, at the 95% significance level. (c) Global monthly mean Phy-DL FMF (red line) and AERONET FMF (blue line). The shaded
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areas around each line represent the monthly mean FMF value 0.1 <the monthly standard deviation. The double-asterisks “**” indicate
that the linear trend was at the 95% significance level.

235 Figure 5 shows the global distributions of seasonal Phy-DL-estimated FMFs from 2001 to 2020. In Central Africa, spring
had the lowest FMF, especially in northern Central Africa, due to the transportation of dust (Huebert et al., 2003). Meanwhile,
FMFs in summer and autumn were higher than those during winter. This is partly attributed to the high temperature and
humidity conditions conducive to the formation of fine-mode aerosols (Tan et al., 2015). In addition, dense vegetation produces
a larger amount of submicron aerosols through biomass emissions (Carslaw et al., 2010), which may have also had an effect
240 on increasing FMF values.

Sl ——  cemmmes
seasonal mean 0.48 0.54 0.6 0.66 0.72 0.78 0.82 0.86 0.9

Figure 5: Phy-DL-estimated FMF seasonal mean values from 2001 to 2020. The seasons are defined as spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February) for both the

11
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Northern Hemisphere and Southern Hemisphere. Only those pixels with 120 retrievals yr! were considered when calculating the mean

values.

In India, FMFs are noticeably higher in autumn and winter, especially in Northern India (i.e., the Indo-Gangetic Plain),
where the FMF was greater than 0.87. During spring and summer, FMFs were usually less than 0.63 over India. Mhawish et
al. (2021) also reported the same seasonal pattern. This is likely related to spring in India being the pre-monsoon season when
dust particles from nearby deserts are frequently transported to the country (Gautam et al., 2009). During that season, the
dominant coarse-mode aerosols decrease from west to east over the Indo-Gangetic Plain (Kalapureddy and Devara, 2008),
thereby leading to lower FMFs, particularly in the western Indo-Gangetic Plain. In the post-monsoon seasons (autumn and
winter), the higher FMF is attributed to the low boundary layer and non-convective atmosphere, which induces haze and
stagnant conditions. Frequent biomass burning events also occur during these seasons (Ramachandran, 2007), which
contributes to higher FMFs.

In Central Africa and the Amazon, FMFs in summer and autumn were higher than those in spring and winter (seasons
here correspond to the seasons in the Northern Hemisphere). This coincides with local biomass burning, which mainly occurs
from early summer to the middle of autumn (Generoso et al., 2003; Perez-Ramirez et al., 2017). Accordingly, fine-mode
aerosols including black carbon and organic carbon can contribute to higher FMFs in summer and autumn. Although Australia
had low FMFs (< 0.6) in all seasons, some sporadic pixels in autumn had FMFs near 0.7, which may also be related to the
frequent wildfires in autumn (Shi et al., 2021; Liu et al., 2021).

In the eastern USA, FMFs are the highest in summer; however, in the western USA, FMFs are highest in winter. Across
the entire USA, FMFs were lowest in spring. In the eastern USA, it is thought that accelerated photochemical reactions and
stagnant conditions in summer produce the highest amount of ammonium sulfate in all seasons (Tai et al., 2010). Moreover,
ammonium nitrate is the main component of fine-mode particles in the western USA whose content peaks in winter (Hand et
al., 2012). This explains why FMF maxima occur in different seasons on both sides of the country.

In Eastern China, summer and autumn had higher FMFs (> 0.8) than those in spring and winter (< 0.78). This is probably
because warm seasons with relatively high humidity and temperature can enhance the generation of secondary fine particles
by gas-to-particle conversions (Tan et al., 2015). In addition, springtime dust transportation in Northeastern China results in
increasing coarse dust particles, thereby affecting the FMF (Huebert et al., 2003). In contrast, Southeastern Asia had
exceedingly higher FMFs in winter and spring (> 0.86) than those in summer and autumn (< 0.8), owing to the intense biomass
burning from January to April (Yin et al., 2019).

3.3 Comparison between Phy-DL, DL-based, and Phy-based FMFs

To analyze the differences in FMFs obtained by different methods, FMFs generated by the Phy-DL method, deep
learning (DL) method (meaning no Phy-based FMF as input), and Phy-based method (i.e., the LUT-SDA) from 2008 to 2017

were compared using AERONET FMFs as the ground truth. Figure 6a shows the three FMF estimations that were averaged
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into 20 bins with AERONET measurements AOD >0.2 based on the method in Levy et al. (2007). Compared with Phy-based
FMF, DL-based FMF has better estimation for low FMF (<0.6), showing the overall improvement in R from 0.51 to 0.60.
However, there is still significant underestimation for DL-based FMF when AERONET FMF is greater than 0.6. Phy-DL FMF
ameliorated both the underestimation for high FMF values and overestimation for low FMF values, with the highest R (0.81)

among three FMFs. The regression equation of Phy-DL FMF also improved tremendously, with smaller intercept and slope

closer to 1.
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Figure 6: Phy-DL (red), Phy-based (blue), and DL-based FMF (green) estimation compared with AERONET FMFs for AOD > 0.2 (at 500
nm, using data from 2008 to 2017). (a) The dots and the error bars indicate the means and standard deviations of the FMF estimates in 20
bins of AERONET FMF. The solid blue and red lines are the best-fit lines from linear regression. The black dashed line represents the 1:1
line. Linear regression relations and correlation coefficients (R) are given. (b) Boxplots of bias (estimated FMF minus AERONET FMF)
and percentage of FMF estimates falling within the EE envelope of #20 % (dotted, dashed lines) as a function of land type. The upper,
middle, and lower lines in each box presents the 75th, median, and 25th percentiles, respectively. The diamond in each box represents the
mean value of the FMF bias. (¢) The RMSE for each land type against that of the AERONET FMFs.

Figures 6b and 6¢ compare the accuracy between Phy-DL, Phy-based, and DL-based FMFs over five land types (forests,
grasslands, croplands, urban, and barren). The five land types were selected based on MODIS MCD12C1 data from the
International Geosphere-Biosphere Programme scheme. Figure 6b shows that Phy-DL FMF had the lowest bias with mean
values close to 0, smallest range of bias, and highest FMF retrievals (within +20% EE) over all land types. Although DL-
based FMF had a slightly smaller range of bias and higher FMF retrievals (within +20% EE) than those of Phy-based FMF
over forests, croplands, and urban land types, DL-based FMF still had the largest mean bias and showed the worst performance
over barren land types. In addition, the DL-based FMF had the highest RMSE among all the FMFs for all land types. Figure
6b shows that Phy-DL, Phy-based, and DL-based FMFs all had the best performance over forests, with RMSE values of 0.120,
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0.211, and 0.223, respectively (Figure 6c). Likewise, all performed the worst over barren land, showing a significant negative
bias, with less than 50% of the FMF retrievals falling within the +20% EE envelope. Overall, Phy-DL-estimated FMFs showed
a significant improvement over the Phy-based and DL-based FMFs, especially over forests, croplands, and urban land types,
where the RMSEs and biases were noticeably reduced.

For further evaluation, Phy-based, DL-based and Phy-DL FMF were validated against AERONET FMFs over AERONET
sites to show their spatial performance (Figure S3). DL-based FMF have generally the highest RMSE, with 93.2% sites having
RMSE greater than 0.11, compared to 81.0% sites for Phy-based FMF and only 34.8% sites for Phy-DL FMF. Especially, in
Australia, India, southern South America, Mediterranean region and North America, DL-based FMF has RMSE dominantly
exceeds 0.23 but the RMSE of Phy-based FMF ranges from 0.11~0.23 and Phy-DL FMF is lower than 0.17. Phy-DL FMF
performed well in eastern Asia, southern Africa, Europe and eastern US, with RMSE typically lower than 0.11. In contrast,
Phy-based FMF in these regions has RMSE greater than 0.11, and DL-based FMF even has large amount of site with RMSE
over 0.23. Regarding to R, 69% sites of Phy-DL FMF have R over 0.6, but only 21% sites of Phy-based FMF and 11% sites
of DL-based FMF reach R over 0.6. According to Figure S3b, d and f, although DL-based FMF has fewer sites with R less
than 0.1 in Europe and North America than Phy-based FMF, there are limited sites for both FMFs in eastern China, India,
southeastern Asia, Saharan region and eastern US having high R (>0.6). However, most of sites for Phy-DL FMF achieves
this high R.

Figure 7 compares the annual mean FMF from 2008-2017 based on Phy-based, DL-based and Phy-DL FMF estimations.
In general, high FMFs (> 0.7) were well captured by both estimation methods over Eastern China, Southeast Asia, Europe,
Southern Africa, the eastern USA, and Mexico. However, compared to DL-based and Phy-DL FMF, Phy-based FMF tends to
underestimate the hotspots of FMF, such as eastern China and central Africa. While in some regions with comparatively low
FMF (<0.55), the estimations also show large differences. For example, in northeast Australia and southern South America,
Phy-DL and AERONET FMFs agreed well with values less than 0.55, but Phy-based FMFs were clearly overestimated by
~0.1. In addition, in regions dominated by coarse mode aerosol such as Saharan region and central Asia, only Phy-DL FMF
captured this low FMF (<0.45), while Phy-based FMF shows overestimation by ~0.1. DL-based FMF also captured the low
FMF in central Asia, yet overestimated the FMF in Saharan region. In central Africa, FMF value is relatively high (>0.7)
according to AERONET. Phy-DL and DL-based FMF captured this high value yet Phy-based FMF is greatly underestimated,
with FMF less than 0.7. In Australia, only Phy-DL FMF well agreed with AERONET FMF of values less than 0.6, while both
DL-based and Phy-based FMF show severely overestimations with FMF values reach over 0.65.
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Figure 7: Annual mean (a) Phy-DL FMF estimates, (b) Phy-based FMF estimates, and (c) DL-based FMF estimates. The colored dots in
(a),(b), and (c) show annual mean AERONET FMFs. Areas outlined in black show regions with noticeably large differences in the FMF
estimates. Only those pixels with over 120 retrievals yr-* were considered. Data from 2008 to 2017 were averaged.
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3.4 Comparison with other satellite-based FMF products

Figure 8a—d shows the performance of MISR, POLDER, MODIS, and Phy-DL FMFs against AERONET FMFs. Because
these three satellite FMF products cover different yet overlapping time ranges, we only compare retrievals made from 2008 to
2013 when all products were available. The Phy-DL FMF performed the best, with R and RMSE values of 0.78 and 0.100,
respectively. In addition, 96.31% (84.74%) of Phy-DL FMFs fell within the EE envelope of #40% (320%), an improvement
over other FMF products. The next best-performing FMFs were from POLDER and MISR. POLDER shows R and RMSE
values of 0.48 and 0.233, respectively, and 76.05% (46.99%) of the retrievals falling within the EE envelope of 240% (320%),
while MISR FMF has R and RMSE of 0.42 and 0.204, and 85.01% (45.85%) retrievals between the EE envelop of #40%
(#20%). Both POLDER and MISR FMFs were underestimated compared to AERONET FMFs, especially when the
AERONET FMF was greater than 0.6. In contrast, MODIS FMFs were overestimated compared to AERONET FMFs,
especially for AERONET FMFs greater than 0.6, where MODIS FMFs reached values near 1. The overall performance of
MODIS FMFs was also the worst, with R and RMSE values of 0.37 and 0.282, respectively, and 68.88% (44.48%) of the
retrievals falling within the EE envelope of 340% (320%). Figure 8e shows the probability density functions (PDFs) of the
FMF biases (estimated FMF minus AERONET FMF). The Phy-DL PDF reveals that most of the biases were close to zero,
suggesting the robustness of the Phy-DL method. MISR and POLDER PDFs show underestimations, with most of the biases
near -0.2 and -0.1, respectively. The MODIS PDF shows overestimations with biases concentrated near 0.05. Overall,
compared with AERONET FMFs, of the four FMF products, the Phy-DL-estimated FMFs agreed the best. Figure S4 shows
the global distributions of RMSE from validations of MISR, POLDER, MODIS, and Phy-DL FMFs against AERONET FMFs
at the AERONET sites. Concerning MISR FMFs, 47.9% of the sites had RMSEs higher than 0.23, and 5.3% of the sites had
RMSEs lower than 0.11, showing the worst performance. Concerning POLDER FMFs, 29.7% of the sites had RMSEs higher
than 0.23, mainly in the USA, the Amazon, Southern Africa, Western Europe, and Southeast Asia. MODIS FMFs performed
well in Eastern China, India, Europe, and the eastern USA, with 40.0% of the sites having RMSEs lower than 0.11. Concerning
Phy-DL FMFs, 65.2% of the sites had RMSEs lower than 0.11. In addition, the number of match-ups of Phy-DL-estimated
and AERONET FMFs was the highest (N = 566), indicating a higher data coverage compared with the other FMF products.
In terms of R (Figure S5), at 82.2% of the AERONET sites, R for MISR FMFs was less than 0.2 (Figure S5a before S5b). At
33.8% of the AERONET sites, mainly in Eastern China, India, and Australia, R for MODIS FMFs was greater than 0.5, but at
most sites in the USA and Europe, R was less than 0.2 (Figure S5a). At 39.7% of the AERONET sites, R for POLDER FMFs
was greater than 0.5 in Europe, the Amazon, and Eastern China, but at most sites in the USA, India, and Australia, R was less
than 0.2 (Figure S5c). The R for Phy-DL FMFs was greater than 0.5 at 79.0% of the AERONET sites, agreeing better with
AERONET FMFs than did POLDER and MODIS FMFs in the USA, Africa, Southeast Asia, and Europe (Figure S5d).
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Figure 8: Evaluation of (a) MISR (550 nm), (b) POLDER (490 nm), (¢) MODIS (550 nm), and (d) Phy-DL FMFs (500 nm) against
AERONET FMFs (500 nm) from 2008 to 2013. Black and red solid lines are 1:1 reference lines and best-fit lines from linear regression,
respectively. Black dashed and dotted lines represent the EE envelopes of #20% and 240%, respectively. The number of samples (N), RMSE,

correlation coefficient (R), and linear regression relation are given in each panel. (e) Probability density functions of the FMF bias (estimated

FMF minus AERONET FMF) for MISR (blue), POLDER (orange), MODIS (red), and Phy-DL (green) FMFs.
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Figure 9 compares the spatial distributions of annual mean MISR-, MODIS-, POLDER-, and Phy-DL-estimated FMFs
from 2008 to 2013. In general, Phy-DL FMFs were higher than the satellite-based FMFs over areas of known biomass burning
and urban areas, including the eastern USA, the Amazon, Southern Africa, Eastern China, and Australia. Phy-DL and
AERONET FMFs in Eastern China reached over 0.7, while POLDER, MISR, and MODIS FMFs were significantly
underestimated (~0.6-0.7, ~0.5-0.6, and generally < 0.4, respectively). In the western USA, Phy-DL and AERONET FMFs
were higher than 0.6, but MODIS FNFs were < 0.4, and MISR and POLDER FMFs were < 0.6. In Central Africa, POLDER,
Phy-DL, and AERONET FMFs were similar (> 0.7), but MISR FMFs ranged from 0.6 to 0.7, and MODIS FMFs exceeded
0.8. In Australia and the Amazon, Phy-DL and MISR FMFs agreed well with AERONET FMFs (0.5-0.6 for Australia and
~0.6-0.7 for the Amazon), but POLDER and MODIS FMFs (< 0.4) were significantly underestimated compared with
AERONET FMFs. Figure S6 shows the bias, the percentage of FMF retrievals falling within the EE envelope of #20%, and
the RMSEs of MISR, MODIS, POLDER, and Phy-DL FMFs over five land types (forests, grasslands, croplands, urban, and
barren), using data from 2008 to 2013. Over all land types considered and compared with the satellite-based retrievals, Phy-
DL FMFs had biases nearest to 0, a higher percentage of FMFs falling within the EE envelope (> 67%), and the lowest RMSE
(< 0.127). Both POLDER and MISR FMFs had significant negative biases of -0.2 and -0.1, respectively, over all land types.
MODIS FMFs had significant positive biases over forests and grasslands and negative biases over croplands, urban areas, and
barren areas. Over forests, grasslands, croplands, and urban areas, MODIS FMFs had the largest RMSE (> 0.280), and MISR
FMFs had the lowest percentage of FMFs falling within the EE envelope (< 40%). Over barren land and of all FMF products,
POLDER FMFs were the poorest (23.68% of the FMFs falling within the EE envelope, and RMSE = 0.326).
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Figure 9: Annual mean FMFs based on (a) Phy-DL, (b) POLDER, (c) MISR, and (d) MODIS. The colored dots show annual mean
AERONET FMFs. Areas outlined in black circles show regions with noticeably large differences in the FMF estimates. Only those pixels

395  with over 120 retrievals yr were considered in the Phy-DL estimation. Data from 2008 to 2013 were averaged.
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Next, we conducted a comprehensive comparison of these satellite-based FMF products over Central Africa. Regarding
FMF annual mean values (Figure 10a—d), the POLDER and Phy-DL FMFs agreed the best with AERONET FMFs, which
captured the high values in the middle part of Central Africa (> 0.76) and the low values along the coasts (< 0.7). Although
MISR FMFs also captured the low FMFs over coastal regions, FMFs were underestimated in the interior (< 0.7). However,
MODIS FMFs were significantly overestimated along the western coast (> 0.85) and underestimated in the southeastern part
of Central Africa (< 0.4). Linear trends were also calculated for all the FMF products (Figure 10e—h). Note that only the linear
trends significant at the 95% level were examined. AERONET showed a significant increasing trend in the northern part of
Central Africa (+0.01 yr'?) and a decreasing trend in the southern region (-0.01 yr?). Of all the FMF products, Phy-DL FMF
trends agreed best with AERONET FMF trends. POLDER and MODIS FMF trends were greatly enhanced in the southern
region (+0.05 yr), while MISR FMF trends did not reflect the AERONET FMF trends well. Overall, Figure 10 illustrates that

in Central Africa, compared with the three satellite-based FMF products, Phy-DL FMFs are more accurate and reliable.
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Figure 10: (a—d) Spatial distributions of annual mean FMF (averaged from 2008 to 2013) over Central Africa based on Phy-DL, MISR,
MODIS, and POLDER. The colored dots show annual mean AERONET FMFs. (e—h) Spatial distributions of the FMF linear trend from
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sites. Only pixels and dots with linear trends at the 95% significance level are shown.

To compare seasonal differences between the evaluated methods, Figure 11 compares the seasonal mean MISR-, MODIS-,
POLDER-, and Phy-DL-estimated FMFs from 2008 to 2013, and Figure S7 shows their differences (i.e., satellite estimates
minus Phy-DL estimates). In all seasons, Phy-DL FMFs were generally higher than MISR FMFs over urban areas and regions
where biomass burning was prevalent, such as the USA, Eastern China, and India. During fine-mode-particle-dominated
seasons (FMF > 0.8), such as summertime for the eastern USA and wintertime for Eastern China and India, differences between
Phy-DL and MISR FMFs reached < -0.18. MODIS FMFs (< 0.2) were much lower than Phy-DL FMFs (> 0.6) in sub-Saharan
Africa, India, China, Australia, and the western USA in all four seasons, with differences < -0.5. Conversely, during winters
in the Amazon and Central Africa, MODIS FMFs (> 0.74) were slightly higher than Phy-DL FMFs (~0.66); the differences of
POLDER FMFs (~0.2) were globally lower than Phy-DL FMFs in all four seasons. In the eastern USA during autumn and
winter, POLDER FMFs were < 0.2 and Phy-DL FMFs were > 0.6, resulting in large differences (< -0.4). Figure S8 shows
MISR-, MODIS-, POLDER-, and Phy-DL-estimated FMF frequencies at three levels (low: FMF < 0.5, medium: 0.5 < FMF <
0.8, high: FMF > 0.8) from 2008 to 2013. In the low-level category, MODIS and POLDER FMFs were more frequent than
AERONET FMFs (50% and 20%, respectively), especially over the Amazon and western USA. The frequencies of MISR,
Phy-DL, and AERONET FMFs in this category were in good agreement. In the medium-level category, high frequencies of
Phy-DL and AERONET FMFs occurred over Australia and the Amazon (> 80%), and low frequencies of Phy-DL and
AERONET FMFs occurred in sub-Saharan Africa, Central Africa, and Eastern China (< 30%). The MISR slightly
overestimated the frequency of medium-level FMFs in Central Africa and underestimated it in Northern Australia and the
Amazon. The frequencies of medium-level POLDER FMFs were underestimated over the Amazon and western USA and
overestimated over Southeast China. MODIS was unable to capture medium-level FMFs globally, with frequencies of < 20%.
High-level FMFs mainly appeared over areas experiencing biomass burning and urban regions, with frequencies commonly <
50%. The frequencies of MODIS, Phy-DL, and AERONET FMFs in the high-level category over Central Africa, Southern
China, and the eastern USA agreed well. However, the frequencies of high-level MODIS FMFs were overestimated over the
Amazon and underestimated over Northern India. The frequencies of high-level POLDER FMFs were captured well over
Central Africa, but significantly underestimated over Northern India, Southern China, and the eastern USA. Moreover, MODIS

was unable to capture high-level FMFs globally with frequencies of < 20%.
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Figure 11: Seasonal mean FMF, averaged from 2008 to 2013, based on (from top to bottom) Phy-DL, MISR, MODIS, and POLDER.

Columns from left to right are for spring, summer, autumn, and winter.

4. Data availability

The global land FMF dataset (2001-2020) developed in this study, Phy-DL FMF, is available at
https://doi.org/10.5281/zen0do0.5105617. The FMF data are in the Geotiff format on a daily scale.

5. Conclusion

This study developed an improved long-term global aerosol FMF (at 500 nm) dataset (2001-2020) over land by
combining physical and deep learning approaches called Phy-DL FMF. This new dataset was extensively evaluated against
AERONET FMEF retrievals, revealing its higher accuracy (RMSE = 0.136, based on 361,089 validation samples; 79.15% of
the data fell within the 220 % EE envelope) and generally good agreement with AERONET FMFs with respect to mean values,
trends, and frequencies. Compared with physical-based (calculated using LUT-SDA, i.e., Phy-based FMF) and deep learning-
based (DL-based FMF) FMF results, the accuracy of Phy-DL FMFs was substantially improved over five land types (forests,
grasslands, croplands, urban area, and barren land), thereby showing less underestimations for high FMF values and less
overestimations for low FMF values. Geographically, Phy-DL FMFs captured the low FMFs well over the Saharan region,
Central Asia, Australia, and southern South America, while Phy-based FMFs showed significant overestimations. Phy-DL
FMFs were also compared with three satellite-based official global FMF products (MISR, POLDER, and MODIS DT-based
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FMFs). Phy-DL FMFs showed a significant improvement in terms of the accuracy and spatial distribution of trends. In Central
Africa, Eastern China, Australia, the Amazon, and the western USA, Phy-DL FMFs agreed well with AERONET FMFs, while
the other three satellite-based FMFs showed significant underestimations. In particular, in Southern Africa, the accuracy of the
annual average was substantially improved, and the linear trends of Phy-DL FMFs corresponded better with AERONET FMFs.
The Phy-DL FMF dataset also captured the seasonality and frequencies of FMFs well, thereby showing better agreement with
AERONET FMFs.

By examining Phy-DL FMFs from 2001 to 2020, we found a significant decreasing trend of -1.9 x 10 yr? at the
significance level of 95%, which was not revealed by AERONET point-scale measurements. However, both Phy-DL and
AERONET FMFs showed significant increasing trends in FMF over the western USA and India (> +3 %102 yr1). The new
dataset captured high-level FMFs (> 0.80) over Southern China, South Asia, Eastern Europe, and the eastern USA. FMFs were
consistently < 0.3 in Northwest China, the Saharan region, and southern South America, indicating coarse-particle desert
emissions. The promising results generated from the Phy-DL FMF dataset suggest that this newly developed dataset may be
useful for investigating the impact of fine- and coarse-mode aerosols on the atmospheric environment and climate, thus

deepening our understanding of global aerosol size variations.
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