
Responses to RC2: 

 

The authors need to address the following major points. 

Response: We thank the reviewer for insightful and very pertinent comments to 

improve the paper.  

 

1. The motivation of this manuscript is to address the following issues raised by the 

authors, the first issue is the Chen et al (2020) method is not applied on a global scale, 

the second issue is that ‘Zhang et al (2016) noted that satellite –measured multi-spectral 

reflectance of ground-based data alone was not sufficient to retrieve FMFs with high 

accuracy’ (the meaning of this sentence is not quite clear to me), my interpretation is 

that the use of (only) spectral information from satellite measurements is not enough 

for the retrieval of FMF, this two reasons are not really solid enough to continue the 

work proposed in this manuscript. Both manuscripts mentioned above focus on the 

original level 2 spatial scale (with a very quick look at these two papers), while this 

work focuses on the level 3 data, the average of spatial resolution from kilometre to 

degree can make all problems significantly easier, both technically and scientifically. 

Even later, the authors point to their own previous publication (Yan et al., 2021b) and 

claimed ‘As shown by Yan et al. (2021b), the global land Phy-based FMF is still 

unreliable.’, in which the authors even started ‘seasonal FMF characteristics and trends’ 

analysis using the ‘unreliable’ dataset. This is quite misleading for the understanding of 

the motivation for the developments in this manuscript, even from the very first step. I 

think the work should start from level 2 dataset rather than level 3. 

 

Response: Thank you for this question. The key motivation for our paper is to improve 

the MODIS-based global land FMF retrieval accuracy. The MODIS-based global 

aerosol product MOD08/MYD08 does not include FMF data because of its high 

uncertainty. In this study, we only use MODIS level 3 data (i.e., AOD and AE from the 

MOD08 product) because it is more accurate than level 2 data (Kharol et al., 2011).  

We mention the issue “Zhang et al. (2016) noted that satellite-measured multi-

spectral reflectance of ground-based data alone was not sufficient to retrieve FMFs with 

high accuracy” because O’Neill et al. (2008) showed that when the temperature is low, 

the error of the fine-mode AOD calculated by the physical method, i.e., the Spectral 

Deconvolution Algorithm (SDA), is clearly large (SDA technical memo, O’Neill et al., 

2008, Figure R1). So if we want to obtain more accurate FMF retrievals, 

meteorological variables must be considered. However, the relationship between 

meteorological factors and FMF is complex, difficult to describe by equations. 

Therefore, we used a deep-learning model to consider the impact of meteorological 

factors. This is another motivation of this research. We mention the issue “As shown by 

Yan et al. (2021b), the global land Phy-based FMF is still unreliable.” We note that Yan 

et al. (2021b) still used the SDA to calculate the FMF without considering the impact 

of meteorological factors. 

 



 
Figure R1. Variation in Δτf with detector temperature (PEARL CIMEL, May 1 to 

August 31, 2007). Copied from the Spectral Deconvolution Algorithm (SDA) Technical 

memo. 

 

Changes in the manuscript: In the Introduction, we express the motivation more 

clearly as follows: 

Zhang et al. (2016) noted that satellite-measured multi-spectral reflectance of 

ground-based data alone was not sufficient to retrieve FMFs with high accuracy. 

O’Neill et al. (2008) showed that when the temperature is low, the error of the fine-

mode AOD calculated by the physical method, i.e., the Spectral Deconvolution 

Algorithm (SDA), is clearly large (SDA technical memo, O’Neill et al., 2008). 

Although this issue has long been known, the relationship between meteorological 

factors and FMF is complex, difficult to describe by equations in the SDA. Benefiting 

from its powerful ability to describe nonlinear relationships, using a deep-learning 

model may overcome the deficiencies of the SDA in calculating FMFs. 

 

 

2. The second major point the authors highlighted is that the method is a combination 

of physical and deep learning approach, this is also quite confusion. As presented in 

section 2.4, this dataset is created by the new algorithm described in this manuscript for 

the first time, however, my feeling is that it is a mixture of previous publications without 

a clear description of the method itself.  Meanwhile, the authors mark this paper as a 

'Data description paper' in the submission. I never saw a 'Data description paper' 

without a clear and solid 'Method description paper' before. The key physical part is the 

LUT-SDA, described in equation (1). Firstly, I am confused why we have two af here? 

Second, I can not understand how the combination between the physical method and 

deep learning is achieved. To my personal view, it is still a deep learning method with 

certain parameters from some physical derivation, however, your major input, aerosol 



optical thickness, is derived from a physical model (MODIS retrieval algorithm) as well, 

you cannot claim it is a combination of physical and deep learning method becuase 

some inputs for the deep learning is from a product derived from a physical method. 

 

Response: There are three modes for the combined physical and machine-learning 

model shown in Figure R2 (Prof. Shen Huanfeng, 2021 China Annual Conference on 

Theories and Methods of Geographic Information Science).  

The first mode is called “Concatenation”: The physical model outputs as the 

machine-learning model inputs or the machine-learning model outputs as the physical 

model inputs (Figure R3a), which is the exact mode employed in our study. Shen et al. 

(2018) also used this mode to estimate PM2.5 by integrating the physical retrieval of 

AOD and other datasets via the deep-learning model. 

The second mode is called “Embedding”: This mode uses a machine-learning 

model as the simulator to replace one part of the physical model, accelerating the overall 

computational process (Figure R3b). For example, Krasnopolsky et al. (1998) used the 

neural network approach to approximate the atmospheric longwave radiation 

parameterization for the NCAR Community Atmospheric Model, resulting in faster 

estimation results. 

The third mode is called “Integration”: This involves adding physical constraints 

into the objective function to optimize the result by solving the minimum value of this 

objective function (Figure R3c). T. Li et al. (2021) used a geographically weighted loss 

function, which served as the spatial constraint for building their AOD–PM2.5 

relationship. 

Therefore, our method using the LUT-SDA FMF as input for the deep-learning 

model is a way of combining physical and machine-learning models, i.e., concatenation. 

 

 

Figure R2. Three combination modes for physical and machine-learning models 

(copied from the Microsoft PowerPoint presentation prepared by Prof. Shen Huanfeng 



and presented at the 2021 China Annual Conference on Theories and Methods of 

Geographic Information Science). 

 

 

Figure R3. Core structures for the three combination modes (a. concatenation, b. 

embedding, c. integration) for physical and machine-learning models (copied from the 

Microsoft PowerPoint presentation prepared by Prof. Shen Huanfeng and presented at 

the 2021 China Annual Conference on Theories and Methods of Geographic 

Information Science). 

 

In the revised paper, we have clarified Equation (1). We have also added detailed 

information about the Phy-DL FMF calculation in the main text and the Supplementary 

Information document. A new detailed schematic diagram was added to the 

Supplementary Information document (see Figure S1 below).  

 

Changes in the manuscript: 

We added a new figure (Figure 2) to section 2.4 entitled “Combining physical and deep-

learning models (Phy-DL) for retrieving FMFs”. 



 

Figure 2. Visual representation of the SDA-based FMF retrieval LUT. 

 

 

More details in section 2.4: 

In this study, we used a “concatenation” mode to combine a physical model and a 

deep-learning model, i.e., the outputs of the physical model were used as the inputs for 

the deep-learning model (Figure S1). The physical model used is the LUT-SDA (Yan et 

al., 2017). The LUT-SDA is designed for satellite FMF retrievals when only AODs at 

two wavelengths are available (such as DT AOD products). As shown in Eq. (1) of the 

SDA (O'Neill et al., 2001a), a minimum of AODs at three wavelengths are needed to 

first obtain the Ångström exponent (AE) derivative ( ). The AE of the fine-mode AOD 

(
f ) and the FMF can then be calculated.  
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where a, b*, c*, 'c , and c  are fixed parameters described in section 1 of the 

Supplementary Information document, based on O'Neill (2010). Since AODs at two 

wavelengths are not sufficient to calculate  , for the global physically based FMF 

retrieval, we first divide the whole world into nine regions [as done by Sayer et al. 

(2014)] and use historical AERONET observed data to determine value ranges in 

these regions. The   range of values is based on the first and third quartiles of 

AERONET measurements in different seasons. For example, in Southeast Asia, 

ranges from 0.12 to 0.60 in spring (Yan et al., 2021). In these nine regions, a set of 

hypothetical values for  [as determined by Yan et al. (2021)], f , and AE ( ) are 

imported into the SDA [Eq. (1)] to build the relationship with FMF (Figure 2).  

Different LUTs based on the SDA for these regions are thus created. Based on the 

constructed LUT, initial results are obtained using a cost function: 

1 1 1 2( , ' , ) min[( )]f AE AEFMF LUT SDA MODIS       ,   (2) 



where 1FMF , 1' , and 1

f  are uncorrected initial results of FMF,  , and 
f  by the 

LUT-SDA, AELUT SDA  is the   in the LUT, and AEMODIS  is the MODIS MOD08 

DT-based AE. After performing thebias error correction [described in Supplementary 

Information, Section 2, O’Neill et al. (2003)] and the mean of extreme (MOE) 

modification [described in Supplementary Information, Section 3, O’Neill et al. (2008)], 

the final FMF output is 
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We added detailed information about the Phy-DL FMF calculation in the 

Supplementary Information document: 

A new detailed flowchart was added to describe the Phy-DL FMF calculation: 

 
Figure S1. Schematic diagram describing the Phy-DL FMF calculation in this study. 

 

1. The parameters in Eq. (1) 

The parameters in Eq. (1) are same as those described by O’Neill et al. (2010): 

. (1) 

The parameters are: 
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where   is the reference wavelength (μm). In this study,   is 0.5 μm. 
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2. '  bias error correction 

This study used Appendix A1 of O’Neill et al. (2003) to correct the '  bias and 

propagate this correction through all derived parameters: 

1 2 2.65 [ ( 0.78) / (2 0.18 ]' )0error exp FMF     , 

where 1FMF  is the uncorrected estimate of FMF  as shown in Eq. (2) of the main 

paper. Then 
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3. Mean of extreme (MOE) modification 

The error in f derived by the SDA is (O’Neill et al., 2003):  
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where 1k 10 , 2k 2.5  , a  is the nominal root mean square error in AOD at the 

reference wavelength, a  
is the AOD at the reference wavelength (in this study, 0.5 

μm), c' 0.15  , c 0.15  , and   

upper lowera=(a  - a )/2  

upper lowerb=(b  - b )/2  
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When we obtain the
2 =f f  （ ）, the SDA sets the theoretical maximum of f  
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The final output of corrected FMF ( outputFMF ) is: 
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3.The third major point is the comparison between different satellite products, the 

authors need to be aware that it is really the same parameter in the comparison or not, 

‘bad’ agreements between satellite FMF products and the AERONET FMF product do 

not reveal anything because these FMF are not the same FMF due to different 

assumptions in particle size distribution and the ‘cutting criteria’ in the level 2 retrieval 

process, the FMF derived from this paper is somehow with knowledge (maybe certain 

inputs as well, not sure about it) from AERONET, it is not surprise at all to have a better 

agreement with AERONET measurements later. It really makes no sense to include the 



MODIS comparison since it is already removed in the new version of dataset. The 

remove of FMF product in MODIS dataset also indicates how uncertain such a 

parameter can be. 

Response: The validation for satellite FMF products followed Levy et al. (2007) 

(Figure R4). They pointed out that “although the actual products provided by MODIS 

and AERONET are not necessarily physically identical, in many cases they are 

comparable”, supporting the direct comparison between satellite FMF products and 

AERONET FMFs. In addition, other validations of satellite FMF products, from 

POLDER (Wei et al., 2020; Li et al., 2020) to MISR (Dey and Di Girolamo, 2010), also 

directly used AERONET FMFs for comparison purposes. Zhang et al. (2021) inter-

compared their newly retrieved FMFs and MODIS MYD04 FMFs directly with 

AERONET FMFs (Figure R5). Levy et al. (2007) made it clear that “The improvement 

to the MODIS FMF product is mainly its correlation to AERONET FMF.” Therefore, 

we inter-compared satellite FMF products (from MISR, POLDER, and MODIS) and 

Phy-DL FMFs directly with AERONET FMFs. 

 

Figure R4. MODIS aerosol size retrievals compared with AERONET derived products. 

The solid shapes and error bars represent the mean and standard deviation of the 

MODIS retrievals, in 20 bins of AERONET-derived product. Both the retrievals from 

V5.1 (orange) and V5.2 (green) are shown. The regressions (solid lines) are for the 

cloud of all points (not shown). The η over land retrieved at 0.55 mm, compared with 

AERONET η retrieved by the O’Neill et al. (2003) method. Note that η is defined 

differently for MODIS and AERONET and that we only show results for τ > 0.20. 

Copied from Levy et al. (2007). 



 

Figure R5. Comparison between the results of this study and MODIS FMFs with 

AERONET FMFs. Copied from Zhang et al. (2021). 

 

Furthermore, we conducted a validation based on measurements from four 

independent National Oceanic and Atmospheric Administration Surface Radiation 

Budget (SURFRAD) network sites not used for training in the deep-learning model. 

The SURFRAD network provides long-term, multi-bands AOD observations at a 

temporal resolution of three minutes. As shown in Figure R6, the four sites (black 

triangles) are located across the US, covering different land types from forested land to 

barren land. 

 

Figure R6. (a) Locations of AERONET sites (green dots) and four independent 

SURFRAD sites (black triangles, Table R1) for the independent validation of the Phy-

DL FMF algorithm. The base map shows the land types from MODIS MCD12C1 data 

(the International Geosphere-Biosphere Programme scheme) in 2010. Table R2 

provides details about the land-type legend. 

 

Table R1. The sites from SURFRAD used for out of site validation and their 

locations. 

Sites Longitude 

(oW) 

Latitude 

(oN) 

Land type 



Desert Rock (DRA) 116.02 36.62 Barren or sparse 

Fort Peck (FPK) 105.10 48.31 Grasslands 

Goodwin Creek (GWN) 89.87 34.25 Woody savannas 

Penn State (PSU) 77.93 40.72 Mixed forests 

 

Table R2. Land types and corresponding values from MODIS MCD12C1 data (the 

International Geosphere-Biosphere Programme scheme). 

Value Land type Value Land type 

1 Evergreen needleleaf 9 Savannas 

2 Evergreen broadleaf 10 Grasslands 

3 Deciduous needleleaf 11 Permanent wetlands 

4 Deciduous broadleaf 12 Croplands 

5 Mixed forests 13 Urban and built up 

6 Closed shrubland 14 Crop natural vegetation mosaic 

7 Open shrublands 15 Snow and ice 

8 Woody savannas 16 Barren or sparse 

 

The inter-comparison results in Figure R7 shows that when validated by 

independent FMF observations not used for training in the deep-learning model 

(SURFRAD FMFs), Phy-DL FMFs still outperform the other satellite products, with 

the highest R (0.51), lowest RMSE (0.143), and the greatest number of retrievals falling 

within the EE envelopes of ±20% (69.08%) and ±40% (89.05%). POLDER and MISR 

FMFs have the second best performance. PODLER results have an RMSE of 0.232 and 

R of 0.32, with 76.10% (48.23%) of retrievals falling within the EE envelope of ±40% 

(20%). MISR results have an R and RMSE of 0.22 and 0.212, respectively, with 82.61% 

(45.38%) of retrievals falling within the EE envelope of ±40% (20%). MODIS results 

were the poorest, with an especially high RMSE (0.465) and low percentages of 

retrievals falling within the EE envelopes of ±40% (37.23%) and 20% (18.09%). 

Overall, at the independent SURFRAD sites, Phy-DL FMFs are still more accurate and 

reliable than the other FMF products. 

 



 

Figure R7.  Evaluation of monthly mean (a) MISR (550 nm), (b) POLDER (490 nm), 

(c) MODIS (550 nm), and (d) Phy-DL FMFs (500 nm) against SURFRAD FMFs (500 

nm) from 2008 to 2013. Black and red solid lines are 1:1 reference lines and best-fit 

lines from linear regression, respectively. Black dashed and dotted lines represent the 

EE envelopes of ±20% and ±40%, respectively. The number of samples (N), root-mean-

square error (RMSE), correlation coefficient (R), and linear regression relation are 

given in each panel.  

 

Changes in the manuscript: 

(1) We have added this validation between independent SURFRAD FMFs and satellite 

products in the Supplementary Information document: 

 



 

Figure S7.  Evaluation of (a) MISR (550 nm), (b) POLDER (490 nm), (c) MODIS 

(550 nm), and (d) Phy-DL FMFs (500 nm) against SURFRAD FMFs (500 nm) from 

2008 to 2013. Black and red solid lines are 1:1 reference lines and best-fit lines from 

linear regression, respectively. Black dashed and dotted lines represent the EE 

envelopes of ±20% and ±40%, respectively. The number of samples (N), root-mean-

square error (RMSE), correlation coefficient (R), and linear regression relation are 

given in each panel.  

 

(2) In section 3.4 entitled “Comparison with other satellite-based FMF products”, we 

have added: 

The inter-comparison results in Figure R7 shows that when validated by 

independent FMF observations not used for training in the deep-learning model 

(SURFRAD FMFs), Phy-DL FMFs still outperform the other satellite products, with 

the highest R (0.51), lowest RMSE (0.143), and the greatest number of retrievals falling 

within the EE envelopes of ±20% (69.08%) and ±40% (89.05%). PODLER results have 

an RMSE of 0.232 and R of 0.32, with 76.10% (48.23%) of retrievals falling within the 

EE envelope of ±40% (20%). MISR results have an R and RMSE of 0.22 and 0.212, 

respectively, with 82.61% (45.38%) of retrievals falling within the EE envelope of ±40% 

(20%). MODIS results were the poorest, with an especially high RMSE (0.465) and 

low percentages of retrievals falling within the EE envelopes of ±40% (37.23%) and 

20% (18.09%). Overall, at the independent SURFRAD sites, Phy-DL FMFs are still 

more accurate and reliable than the other FMF products. 

 

4. The fourth major point is the application of this dataset, my personal view is that it 



is too early to sell it as a dataset which is mutual enough for a trend analysis, especially 

since the application of (both fine and coarse as total) aerosol optical thickness is still 

quite questionable. Even at the last part of the manuscript, the authors claim some 

significant trends from the new satellite product are not revealed by AERONET 

measurements due to the scale issue, this simply reveals the limited representative of 

these AERONET sites in your regions, rather than anything with respect to the satellite 

data quality. 

 

Response: Thank you for this question. There have been several studies on improving 

FMF retrievals, some including published datasets, e.g., Chen et al. (2020) 

(https://pan.baidu.com/share/init?surl=PhHDLuXv1ltEPZN1wQ68lA, password: aero) 

and Zhang et al. (2021) (can be requested from the corresponding author: 

lizq@radi.ac.cn). Chen et al. (2020) compared FMF validation studies with a focus on 

East Asia for different methods (Table R3). Compared with these previous retrieval 

results, Phy-DL FMF retrievals have better accuracy and lower uncertainty (R=0.68, 

RMSE=0.136, 90.53% of retrievals falling in the EE envelope of ±40%). Although not 

highly accurate, many studies have applied these published FMF datasets. 

Ramachandran (2007) used the MODIS FMF to explore FMF seasonal characteristics 

in India (Figure R8). B. Li et al. (2012) also used the MODIS FMF to investigate the 

spatial and temporal variations of global fine- and coarse-mode AODs (Figure R9). 

The MODIS global aerosol FMF (MOD08/MYD08) has been recalculated from 

MODIS regional aerosol products (MOD04/MYD04). Due to the high uncertainty of 

the MOD04/MYD04 FMF, the latest MODIS C6 global aerosol FMF is no longer 

available. However, Zhang et al. (2021) used the MODIS C6 MOD04/MYD04 FMF 

for comparison purposes with their newly retrieved FMF, both plotted as a function of 

AERONET FMF (Figure R5). In addition, Zhang and Li (2015) applied the MODIS 

C6 MOD04/MYD04 FMF for PM2.5 retrievals to isolate the fine-particle contribution 

(Figure R10). Wei et al. (2021) used the FMF derived from POLDER to retrieve PM10 

over China. The key parameter, the columnar volume-to-extinction ratio VE10, was 

retrieved by building relationships with FMF (Figure R11). 

 

 

Table R3. Overview of published FMF validation studies with a focus on East Asia for 

different methods applied to data from multi-spectral sensors. Copied from Chen et al. 

(2020). 

 

 



 

Figure R8. Averaged intra-annual (2001–2005) fine-mode fraction values at (a) 

Chennai, (b) Mumbai, (c) Kolkata, and (d) New Delhi. Vertical bars denote ±1σ from 

the mean. Copied from Ramachandran (2007). 

 

 

 

Figure R9. Global inter-annual variation of fine-mode (AODf), coarse-mode (AODc), 

and total AOD. Copied from Li et al. (2012). 

 

 

 



 

Figure R10. Flowchart of the PM2.5 remote sensing method. Copied from Zhang and 

Li (2015). 

 

 
Figure R11. Relationship between the FMF and VE10 at seven typical AERONET sites. 

Colors represent the frequency of samples in each bin, with FMF intervals of 0.02 and 

VE10 intervals of 0.02 μm3 μm−2. There are 1193 valid intervals in total. The black dots 

and whiskers represent the mean values and standard deviations for four aerosol types. 

The black solid line shows the fitting curve. Copied from Wei et al. (2021). 

 

This study examined not only the accuracy of Phy-DL FMFs (AERONET 

validation), but the performances of FMF products from different satellite products 

using independently derived SURFRAD FMFs (i.e., SURFRAD FMFs not used in the 

model training). In the revised manuscript, the new SURFRAD validation shows that 

the Phy-DL FMF retrieval is the most accurate of three FMF products (Figure R7). 

Global trends in Phy-DL and AERONET FMFs over a twenty-year period agreed well. 

These results suggest that the Phy-DL FMF is reliable enough, even better than existing 

products. Considering the wide application of MISR and POLDER FMF products that 

are still highly uncertain, we believe it is reasonable to publish our Phy-DL FMF as a 

new product, given its demonstrated improved accuracy. 
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