
Responses to RC1: 

 

 

This paper constructed a global aerosol fine mode fraction (FMF) dataset using 

combined physical and statistical methods. The dataset showed overall superior 

performance over existing satellite products. This is a good paper, providing a useful 

set of information to study the distribution and potentially climate impact of 

anthropogenic aerosols. I recommend publication of the paper after addressing a few 

questions. Although my recommendation is a major revision, the comments should not 

be difficulty to fix, but I think will increase of the credibility of the method and data. 

 

Response: Thanks for your careful reading and comments. Your comments are valuable 

in improving the quality of our manuscript. 

 

1. A 10 fold cross validation seems too simple. It would be interesting to see how the 

method perform on different sites or different years. Therefore, an out of site validation 

(e.g., predicting FMF at AERONET sites whose data are not used for training) or out 

of period validation (i.e., using part of the time series as training and the rest as 

validation) is highly recommended to increase the robustness of the results. 

 

Response: Thank you for this valuable recommendation. We have conducted a 

validation based on measurements from four independent National Oceanic and 

Atmospheric Administration Surface Radiation Budget (SURFRAD) network sites not 

used for training in the deep-learning model. The SURFRAD network provides long-

term, multi-band AOD observations at a temporal resolution of three minutes. As shown 

in Figure R1, the four sites (black triangles) are located across the US, covering 

different land types from forested land to barren land (Tables R1 and R2). The land 

types were based on MODIS MCD12C1 data from the International Geosphere-

Biosphere Programme scheme. 

 

Figure R1. (a) Locations of AERONET sites (green dots) and four independent 

SURFRAD sites (black triangles, Table R1) for the independent validation of the Phy-



DL FMF algorithm. The base map shows the land types from MODIS MCD12C1 data 

(the International Geosphere-Biosphere Programme scheme) in 2010. Table R2 

provides details about the land-type legend. 

 

 

Table R1. SURFRAD sites used for out-of-site validation and their locations and land 

types. 

Sites Longitude 

(oW)  

Latitude 

(oN) 

Land type 

Desert Rock (DRA) 116.02 36.62 Barren or sparse 

Fort Peck (FPK) 105.10 48.31 Grasslands 

Goodwin Creek (GWN) 89.87 34.25 Woody savannas 

Penn State (PSU) 77.93 40.72 Mixed forests 

 

 

Table R2. Land types and corresponding values from MODIS MCD12C1 data (the 

International Geosphere-Biosphere Programme scheme). 

Value Land type Value Land type 

1 Evergreen needleleaf 9 Savannas 

2 Evergreen broadleaf 10 Grasslands 

3 Deciduous needleleaf 11 Permanent wetlands 

4 Deciduous broadleaf 12 Croplands 

5 Mixed forests 13 Urban and built up 

6 Closed shrubland 14 Crop natural vegetation mosaic 

7 Open shrublands 15 Snow and ice 

8 Woody savannas 16 Barren or sparse 

 

We used the same AERONET method (SDA) to calculate the FMF at the 

SURFRAD sites. SURFRAD data were not included in the model training, so 

SURFRAD FMFs can be regarded as the out-of-site validation for the Phy-DL FMF 

algorithm. Figure R2 shows how SURFRAD and Phy-DL FMFs compare. The 

correlation coefficient (R) was 0.51, and the root-mean-square error (RMSE) was 0.144, 

somewhat poorer performance than AERONET validation results (i.e., R=0.68 and 

RMSE=0.136).  



 

Figure R2. Phy-DL FMF at 500 nm as a function of SURFRAD FMF. The black and 

red solid lines are the 1:1 line and the best-fit line obtained from linear regression, 

respectively. The black dashed and dotted lines represent the expected error (EE) 

envelopes of ±20% and ±40%, respectively. 

 

Furthermore, the Phy-DL FMF performance was validated at each SURFRAD site. 

Figure R3 shows the bias of Phy-DL FMF (Phy-DL FMF minus SURFRAD FMF), 

retrievals falling within the ±20% EE envelope, and RMSEs at each SURFRAD site. 

In general, most of the sites have a mean bias and an RMSE lower than 0.1 and 0.15, 

respectively, with over 70% of the retrievals falling within the ±20% EE envelope. The 

out-of-site validation reveals that the Phy-DL FMF algorithm is reliable even in regions 

without AERONET sites for model training. 

 

Figure R3. Boxplots of bias (Phy-DL FMF minus SURFRAD FMF), percentage of 

FMF estimates falling within the EE envelope of ±20% (dash-dotted line), and RMSEs 

at the four independent SURFRAD sites. The upper, middle, and lower lines in each 

box present the 75th, median, and 25th percentiles, respectively. The red point in each 

box represents the mean value of the FMF bias. 



 

Changes in the manuscript: We have revised the manuscript as follows: 

(1) Added a new figure (i.e., Figure 4) to the manuscript. 

 
Figure 4. (a) The locations of AERONET sites (green points) and four independent 

SURFRAD sites (black triangles) for the independent validation of the Phy-DL FMF 

algorithm. The base map shows the land types from MODIS MCD12C1 data (the 

International Geosphere-Biosphere Programme scheme) in 2010. Table S1 provides 

details about the land-type legend. (b) Phy-DL FMF at 500 nm as a function of 

SURFRAD FMF. The black and red solid lines are the 1:1 line and the best-fit line 

obtained from linear regression, respectively. The black dashed and dotted lines 

represent the expected error (EE) envelopes of ±20% and ±40%, respectively. (c) 

Boxplots of bias (Phy-DL FMF minus SURFRAD FMF), percentage of FMF estimates 

falling within the EE envelope of ±20% (dash-dotted lines), and RMSEs at the four 

independent SURFRAD sites. The upper, middle, and lower lines in each box present 

the 75th, median, and 25th percentiles, respectively. The red point in each box 

represents the mean value of the FMF bias. 

 

 

 

 

 

 

 



(2) Added Table S3 and Table S4 to the supplementary file. 

Table S3. SURFRAD sites used for out-of-site validation and their locations and land 

types. 

Sites Longitude 

(oW) 

Latitude 

(oN) 

Land type 

Desert Rock (DRA) 116.02 36.62 Barren or sparse 

Fort Peck (FPK) 105.10 48.31 Grasslands 

Goodwin Creek (GWN) 89.87 34.25 Woody savannas 

Penn State (PSU) 77.93 40.72 Mixed forests 

 

Table S4. Land types and corresponded values from MODIS MCD12C1 data (the 

International Geosphere-Biosphere Programme scheme). 

Value Land type Value Land type 

1 Evergreen needleleaf 9 Savannas 

2 Evergreen broadleaf 10 Grasslands 

3 Deciduous needleleaf 11 Permanent wetlands 

4 Deciduous broadleaf 12 Croplands 

5 Mixed forests 13 Urban and built up 

6 Closed shrubland 14 Crop natural vegetation 

mosaic 

7 Open shrublands 15 Snow and ice 

8 Woody savannas 16 Barren or sparse 

 

(3) In section 3.1 entitled “Phy-DL FMF validation”, we have added the following text: 

Four sites from the National Oceanic and Atmospheric Administration’s Surface 

Radiation Budget (SURFRAD) network were selected for the independent validation 

of the Phy-DL FMF algorithm, providing long-term, multi-bands AOD observations at 

the temporal resolution of three minutes. As shown in Figure 4a, the four sites (black 

triangles) are located across the US, covering different land types from forested land to 

barren land. The land types were based on MODIS MCD12C1 data from the 

International Geosphere-Biosphere Programme scheme. We used the same AERONET 

method (SDA) to calculate the FMF at the SURFRAD sites. SURFRAD data were not 

included in the model training, so SURFRAD FMFs can be used to do the out-of-site 

validation for the Phy-DL FMF algorithm. Figure 4b shows how SURFRAD and Phy-

DL FMFs compare. The correlation coefficient (R) was 0.51, and the root-mean-square 

error (RMSE) was 0.144, somewhat different than AERONET validation results (i.e., 

R=0.68 and RMSE=0.136). 

Furthermore, the Phy-DL FMF performance was validated at each SURFRAD site. 

Figure 4c shows the bias of Phy-DL FMF (Phy-DL FMF minus SURFRAD FMF), 

percentage of retrievals falling within the ±20% EE envelope, and RMSEs at each site. 

In general, most of the sites have a mean bias and an RMSE lower than 0.1 and 0.15, 

respectively, with over 70% of the retrievals falling within the ±20% EE envelope. The 

out-of-site validation reveals that the Phy-DL FMF algorithm is reliable even in regions 

without AERONET sites for model training.  



2. How are the input variables selected? Are they all necessary or there might be some 

redundant inputs? Since MODIS AE is used as input, I don’t see how some meteorology 

variables, such as boundary layer height, winds, RH are physically related to FMF. 

 

Response: Thank you for the question. One of the most important reasons for 

considering meteorological variables in the deep-learning model is that the physical 

approach (SDA) does not include these potential meteorological influences. O’Neill et 

al. (2008) have reported that when the temperature is low, the error of the fine-mode 

AOD calculated by the SDA is clearly large (Figure R4). Although the developers of 

the SDA know about this issue, the relationship between meteorological factors and the 

FMF is complex, difficult to describe in equations. Therefore, we incorporate 

meteorological variables into deep learning to model these complex relationships with 

the FMF.    

 

 
Figure R4. Variation in Δτf with detector temperature (PEARL CIMEL, May 1 to 

August 31, 2007). Copied from the Spectral Deconvolution Algorithm (SDA) technical 

memo. 

 

We implemented the Generalized Additive Model (GAM) to fit the meteorological 

variables to the FMF and investigated their nonlinear relationships. Figure R5 reveals 

that the meteorological variables considered, i.e., PBLH, temperature, surface pressure, 

RH, and wind speed, all had significant non-linear relationships with the FMF (at the 

99% significance level). Both PBLH and surface pressure had similar influences on the 

FMF, i.e., a positive (negative) response when PBLH and surface pressure values were 

low (high). This is because high PBLH and surface pressure values can increase the 

diffusion of fine particles, decreasing the magnitude of the FMF (Tai et al., 2010). 

Meanwhile, the negative response of the FMF to wind speed also reflects the influence 

of fine-particle diffusion, as well as the contribution of dust particles strengthened by 



wind speed (Luo et al., 2016). Increasing temperatures corresponded to decreasing 

FMFs, partly due to unfavorable diffusion conditions (Tai et al., 2010). On the other 

hand, more fine particles are released by heating during colder seasons than during 

warmer seasons (Ramachandran, 2007). RH had a strong positive influence on PM2.5 

concentrations when RH was between 25% and 75%. This reflects the secondary 

particle formation boosted by the increasing RH, contributing to the fine particles (Tai 

et al., 2010). 

 

Figure R5. GAM fitting plots for the meteorological variables and the FMF. Shaded 

areas in the GAM plots indicate 95% confidence intervals, and the y-axes show the 

covariate and effective degrees of freedom of the smoothing. Asterisks (**) after each 

p-value indicate the 99% confidence interval of fitting. 

 

Changes in the manuscript: We have revised the manuscript as follows: 

(1) Added a new figure (i.e., Figure S2) in the supplementary file.  

 

Figure S2. GAM fitting plots for the meteorological variables and the FMF. Shaded 

areas in the GAM plots indicate 95% confidence intervals, and the y-axes shows the 



covariate and effective degrees of freedom of the smoothing. The asterisks (**) after 

each p-value indicate the 99% confidence interval of fitting. 

 

(2) In section 2.3 entitled “Meteorological data”, we have added the following text: 

Previous studies have reported that meteorological variables are significantly 

correlated to fine-mode and coarse-mode aerosols. Tai et al. (2010), Liang et al. (2016), 

and Shen et al. (2018) all revealed that meteorological variables like temperature, RH, 

and wind speed explain much of the variations in PM2.5 concentrations (> 50%). Xiang 

et al. (2019) and Gui et al. (2019) found a negative association between BLH and PM2.5, 

and Kang et al. (2014) found that fine-mode aerosols and air pressure were correlated 

significantly. In this study, to investigate the correlation between meteorological 

variables and the FMF, we implemented the Generalized Additive Model (GAM). 

Figure S2 reveals that the meteorological variables considered in this study, i.e., PBLH, 

temperature, surface pressure, RH, and wind speed, all had significant non-linear 

relationships with the FMF (at the 99% significance level). Both PBLH and surface 

pressure had similar influences on the FMF, i.e., a positive (negative) response when 

PBLH and surface pressure values were low (high). This is because high PBLH and 

surface pressure values can increase the diffusion of fine particles, decreasing the 

magnitude of the FMF (Tai et al., 2010). Meanwhile, the negative response of the FMF 

to wind speed also reflects the influence of fine-particle diffusion, as well as the 

contribution of dust particles strengthened by wind speed (Luo et al., 2016). Increasing 

temperatures corresponded to decreasing FMFs, partly due to unfavorable diffusion 

conditions (Tai et al., 2010). On the other hand, more fine particles are released by 

heating during colder seasons than during warmer seasons (Ramachandran, 2007). RH 

had a strong positive influence on PM2.5 concentrations when RH was between 25% 

and 75%. This reflects the secondary particle formation boosted by the increasing RH 

that contributed to the fine particles (Tai et al., 2010). Therefore, in this study, we used 

surface temperature, air pressure, PBLH, RH, and wind speed as inputs to the deep-

learning model. 

 

3. Although the proposed model produces the best FMF among different satellite 

products, there is still an obvious bias compared with AERONET. Also at some sites 

the agreement is low, such as Australia, North Africa, Mid East, etc. These all seem to 

be desert regions, could this be related to surface, or optical property assumption for 

non-spherical particles? Some more in-depth error analysis would be helpful to fully 

evaluate the performance of the technique. 

 

Response: Thank you for the question. We analyzed this issue further. As shown in 

Figure R6, more than 75% of the sites located on barren land have low percentages of 

Phy-DL FMFs (< 60%) falling within the ±20% EE envelope. About 4% of the sites 

have high percentages of Phy-DL FMFs (> 90%) falling within the ±20% EE envelope.  

 



 

Figure R6. Bar plots of the percentage of sites with > 90% of retrievals falling within 

the ±20% EE envelope (blue bars) and the percentage of sites with < 60% of retrievals 

falling within the ±20% EE envelope (red bars) for five land types. 

 

The barren land type is a bright surface compared to other land types where the 

other sites are located (Table R1). AODs over the bright surface used for the Phy-DL 

FMF retrieval were significantly overestimated, with the worst performance compared 

to other vegetated land-cover types (Levy et al., 2010; Petrenko and Ichoku, 2013). This 

suggests that the performance of the Phy-DL FMF algorithm is poor when applied to 

regions with barren land. Figure R7 shows the bias of the Phy-DL FMF and the 

percentage of retrievals falling within the EE envelope of ±20% as a function of NDVI. 

As NDVI increased from < 0.1 to > 0.8, the percentage of FMF retrievals falling within 

the ±20% EE envelope also rose from < 70% to > 85%, and the range of bias decreased 

significantly. Because a higher NDVI value indicates a darker surface, Figure R7 

reveals that the Phy-DL FMF algorithm performs better over dark surfaces than over 

bright surfaces, resulting in a lower accuracy over the barren land type than vegetated 

land types.  

 

Figure R7. Box plots of the FMF bias (estimated FMF minus AERONET FMF) as a 

function of NDVI. The black horizontal dashed line indicates the zero bias. The gray 

dot in each box represents the mean value of the FMF bias. The upper, middle, and 

lower horizontal lines in each box show the 75th, median, and 25th percentiles, 

respectively. The green dots connected by the dashed curve are percentages of FMF 

retrievals falling within the EE envelope of ±20%. 

 

The Ångström Exponent (AE) from the MODIS DT aerosol product is still highly 



uncertain. The core of the SDA method relies on AE as input (Yan et al., 2017). The 

low accuracy of AE can significantly influence the performance of the Phy-DL FMF 

algorithm. As shown in Figure R8, AEs from the MODIS MOD08 product used as 

input to the Phy-DL FMF algorithm performed the worst over barren land, with the 

highest RMSE (> 1) and the lowest percentage of retrievals falling within the EE 

envelope of ±0.45 (< 45%). This would result in a lower performance of the Phy-DL 

FMF algorithm when applied to regions with barren land. 

 

Figure R8. RMSEs (bars) and percentages of MOD08 AE falling within the EE 

envelope of ±0.45 (dash-dotted line) against AERONET observations for five land 

types. The EE envelope (±0.45) was adopted from Levy et al. (2013). 

 

Changes in the manuscript: We have revised the manuscript as follows: 

(1) Added new figures (i.e., Figure S3 and Figure S4) to the supplementary file.  

 

 



Figure S3. (a) Bar plots of the percentage of sites with > 90% of retrievals falling within 

the ±20% EE envelope (blue bars) and the percentage of sites with < 60% of retrievals 

falling within the ±20% EE envelope (red bars) for five land types. (b) Box plots of the 

FMF bias (estimated FMF minus AERONET FMF) as a function of NDVI. The black 

horizontal dashed line indicates the zero bias. The gray dot in each box represents the 

mean value of the FMF bias. The upper, middle, and lower horizontal lines in each box 

show the 75th, median, and 25th percentiles, respectively. The green dots connected by 

the dashed curve are percentages of FMF retrievals falling within the EE envelope of 

±20%. 

 

 

Figure S4. RMSEs (bars) and percentages of MOD08 AE falling within the EE 

envelope of ±0.45 (dash-dotted line) against AERONET observation for five land types. 

The EE envelope (±0.45) was adopted from Levy et al. (2013). 

 

(2) In section 3.1 entitled “Phy-DL FMF validation”, we have added the following text: 

Figure S3a shows that more than 75% of the sites located on barren land have low 

percentages of Phy-DL FMFs (< 60%) falling within the EE envelope of ±20%. About 

4% of the sites have high percentages of Phy-DL FMFs (> 90%) falling within the ±20% 

EE envelope. This suggests that the accuracy of Phy-DL FMF over barren land is much 

lower than over other land types. The barren land type is a bright surface compared to 

other land types where the other sites are located (Table S3). AODs over the bright 

surface used for the Phy-DL FMF retrieval were significantly overestimated, with the 

worst performance compared to other vegetated land-cover types (Levy et al., 2010; 

Petrenko and Ichoku, 2013). This suggests that the performance of the Phy-DL FMF 

algorithm is poor when applied to regions with barren land. Figure S3b shows the bias 

of the Phy-DL FMF and the percentage of retrievals falling within the EE envelope of 

±20% as a function of NDVI. As NDVI increased from < 0.1 to > 0.8, the percentage 

of FMF retrievals falling within the ±20% EE envelope also rose from < 70% to > 85%, 

and the range of bias decreased significantly. The Ångström Exponent (AE) from the 

MODIS DT aerosol product is still highly uncertain. The core of the SDA method relies 

on AE as input (Yan et al., 2017). The low accuracy of AE can significantly influence 

the performance of the Phy-DL FMF algorithm. As shown in Figure S4, AEs from the 



MODIS MOD08 product used as input to the Phy-DL FMF algorithm performed the 

worst over barren land, with the highest RMSE (> 1) and the lowest percentage of 

retrievals falling within the EE envelope of ±0.45 (< 45%). This would result in a lower 

performance of the Phy-DL FMF algorithm when applied to regions with barren land. 
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