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Abstract. CE2Climate change increases the occurrence and severity of droughts due to increasing temperatures,
altered circulation patterns, and reduced snow occurrence. While Europe has suffered from drought events in the
last decade unlike ever seen since the beginning of weather recordings, harmonized long-term datasets across
the continent are needed to monitor change and support predictions. Here we present soil moisture data from 66
cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events.
The CRNS sites are distributed across Europe and cover all major land use types and climate zones in Europe.
The raw neutron count data from the CRNS stations were provided by 24 research institutions and processed
using state-of-the-art methods. The harmonized processing included correction of the raw neutron counts and a
harmonized methodology for the conversion into soil moisture based on available in situ information. In addition,
the uncertainty estimate is provided with the dataset, information that is particularly useful for remote sensing
and modeling applications. This paper presents the current spatiotemporal coverage of CRNS stations in Europe
and describes the protocols for data processing from raw measurements to consistent soil moisture products. The
data of the presented COSMOS-Europe network open up a manifold of potential applications for environmental
research, such as remote sensing data validation, trend analysis, or model assimilation. The dataset could be
of particular importance for the analysis of extreme climatic events at the continental scale. Due its timely
relevance in the scope of climate change in the recent years, we demonstrate this potential application with a
brief analysis on the spatiotemporal soil moisture variability. The dataset, entitled “Dataset of COSMOS-Europe:
A European network of Cosmic-Ray Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich:
https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).

1 Introduction

The years 2003, 2010, 2015, and 2018 are considered as
the most notable years of the 21st century in Europe in
terms of summer drought and also witnessed numerous heat-
related deaths (Stott et al., 2004; Ionita et al., 2017; Laaha5

et al., 2017; Schuldt et al., 2020; Sutanto et al., 2020)
and extensive forest fires (Fink et al., 2004; Grumm, 2011;
Turco et al., 2017). This has stimulated a debate on how
changes in the occurrence and characteristics of drought
are related to climatic variability (e.g., Hanel et al., 2018;10

Hisdal et al., 2001TS9 ; Seneviratne et al., 2012; Sheffield
et al., 2012TS10 ). During the most recent heat wave in
2018, daily temperature anomalies reached up to 14 ◦C
in Scandinavia and central Europe and impacted the en-
ergy and carbon balance of European terrestrial ecosystems15

(Graf et al., 2020). This heat wave was exacerbated by a
drought caused by a persistent circulation anomaly (Korn-
huber et al., 2019TS11 ), which additionally fostered unprece-
dented wildfires in Europe (e.g., Yiou et al., 2020). Re-
cently, Humphrey et al. (2021) have shown that soil mois-20

ture variability explains 90 % of the interannual variability
in global carbon uptake. The corresponding feedback be-
tween soil moisture and the atmosphere amplifies tempera-
ture and moisture anomalies and intensifies the direct effects

of drought and soil water stress. In this respect, ground-based 25

soil moisture measurements are indispensable to better un-
derstand the land-surface–atmosphere interactions leading to
droughts and soil water stress.

Recent advances in measurement techniques, such as
cosmic-ray neutron probes, allow continuous non-invasive 30

soil moisture measurements that integrate over scales be-
yond the traditional point measurement (Zreda et al., 2012;
Bogena et al., 2015; Andreasen et al., 2017TS12 ). In the
1950s it was discovered that neutron scattering could be used
as a method of measuring soil moisture (e.g., Gardner and 35

Kirkham, 1952), and this was to become the main means of
quantifying water storage in soils for the next three decades.
The neutron probe contains a radioactive source that gener-
ates fast neutrons that are decelerated by the hydrogen of the
soil water to thermal neutrons, so that the detected thermal 40

neutron count rate is closely related to the soil water con-
tent. Thanks to the pioneering work of Topp et al. (1980),
from the 1980s the electromagnetic measurement technol-
ogy became established for simple and continuous monitor-
ing of soil moisture dynamics. As a result, neutron probes 45

were hardly used anymore, and interest in neutron scatter-
ing in soils declined until the introduction of the cosmic-ray
neutron measurement method (Zreda et al., 2008) generated
renewed interest. Recently, neutron scattering is again con-
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sidered one of the most promising soil moisture measure-
ment techniques, as cosmic neutron sensors (CRNSs) pro-
vide non-invasive soil moisture at the field scale with an ef-
fective radius of 130 to 240 m and a penetration depth of
15 to 55 cm depending on soil wetness (Köhli et al., 2015;5

Schrön et al., 2017). In contrast to the classical active neutron
probe, the CRNS is placed above ground and detects cosmo-
genic neutrons. The CRNS can be calibrated by comparing
the neutron count rate with gravimetric soil moisture sam-
pling data averaged over the CRNS footprint by a weighting10

function (Schrön et al., 2017). The CRNS shows excellent
data acquisition reliability and can be applied also in veg-
etated areas with low to medium biomass such as cropped
fields (Rivera Villarreyes et al., 2011; Franz et al., 2013TS13 )
and forests (Bogena et al., 2013; Heidbüchel et al., 2016;15

Vather et al., 2020). During the last decade, several studies
applied and progressed the CRNS technique both on station-
ary and mobile platforms up to the scale of square kilome-
ters (Fersch et al., 2020; Schrön et al., 2018) and by mon-
itoring stations installed in a broad variety of climate con-20

ditions, namely continental (e.g., Baatz et al., 2014), tem-
perate (e.g., Evans et al., 2016), semi-arid (e.g., Zreda et
al., 2012), and tropical (e.g., Hawdon et al., 2014). The ad-
vantages of the CRNS technique have promoted its appli-
cation in various fields, such as hydrology (e.g., Dimitrova-25

Petrova et al., 2020a; Schattan et al., 2020), snow monitoring
(e.g., Bogena et al., 2020; Schattan et al., 2017), precipita-
tion monitoring (Franz et al., 2020), vegetation monitoring
(e.g., Franz et al., 2013TS14 ; Jakobi et al., 2018), validation of
remote sensing products (e.g., Montzka et al., 2017; Duygu30

and Akyürek, 2019TS15 ), land surface modeling (e.g., Shut-
tleworth et al., 2013TS16 ; Baatz et al., 2017TS17 ; Brunetti et
al., 2019TS18 ; Iwema et al., 2017, Patil et al., 2021), and agri-
cultural management (e.g., Finkenbiner et al., 2018TS19 ; Li et
al., 2019).35

According to Andreasen et al. (2017a), there are currently
more than 200 stationary CRNSs operated worldwide, often
as regional networks in hydrological observatories (e.g., Bo-
gena et al., 2018; Kiese et al., 2018; Lui et al., 2018TS20 ) or
in entire countries (Zreda et al., 2012; Hawdon et al., 2014;40

Evans et al., 2016). This paper introduces the network of ex-
isting CRNS stations in Europe (COSMOS-Europe for short)
and how the data are processed in a harmonized way. We
present the current instrumentation and the protocols devel-
oped to process the raw measurements and how the CRNS45

stations have been recalibrated to derive soil moisture in a
more consistent way. Based on the processed CRNS soil
moisture time series, we then performed a brief analysis on
the spatiotemporal occurrence of drought events in Europe.

2 Overview of the COSMOS-Europe sites50

For the COSMOS-Europe dataset presented here, CRNS data
from 66 sites in 12 European countries (in alphabetical order:

Figure 1. Locations of the COSMOS-Europe sites (the symbols
show the climatic zone to which they belong) as well as sites, which
are currently under construction or sites whose data we could not
use.

Austria, Denmark, France, Germany, Greece, Italy, Norway,
Poland, Spain, Switzerland, Turkey, United Kingdom) were
collected. The geographical distribution and location of the 55

COSMOS-Europe sites is shown in Fig. 1CE3 . The key en-
vironmental and soil-related physical properties at the sites
are given in Table 1. The key physical and soil-related site
properties relevant to CRNS processing are summarized in
Table 2. 60

The COSMOS-Europe sites cover eight climatic zones
(following the Köppen–Geiger climate classification; Beck
et al., 2018), with the vast majority of stations located in
the humid continental climate zone (n= 34) and in the
temperate oceanic climate zone (n= 21). The remaining 65

sites are located in six further climate zones. According to
site owner information, the majority of COSMOS-Europe
sites are managed grassland (n= 23) and cropland (n= 23),
while the remaining sites are covered by forest (n= 7), for-
est clear-cut (n= 1), shrubland (n= 5), heathland (n= 2), 70
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orchard/plantation (n= 2), bare rock/glacier (n= 1), moor-
land (n= 1), and sparse vegetation (n= 1).

The soils of the COSMOS-Europe sites range from or-
ganic soils with a high organic matter content TS29 (max:
0.173 g g−1 TS30 ) to mineral soils with very low organic mat-5

ter content (min: 0.004 g g−1 TS31 ). This variability is also re-
flected in the wide range of soil porosities ranging from 0.365
to 0.841. Two of the sites, Weisssee and Zugspitze, are lo-
cated in rocky, alpine terrain. The Weisssee data only show
limited and short snow-free periods where soil moisture data10

are available and with high uncertainties due to the difficult
soil sampling in that area. The data from Zugspitze are not
used for soil moisture analysis due to the absence of soil but
offer great potential for other hydrological studies, such as
snow water equivalent monitoring.15

The measurements of neutron count rates and correspond-
ing correction data (i.e., atmospheric pressure and air humid-
ity) at the COSMOS-Europe sites cover very different peri-
ods of time (cf. Fig. 2 and Table 1). The shortest time se-
ries comes from the Zerbst site, which was put into operation20

in late 2020. The longest time series from the Wüstebach1
site spans a period of approximately 10 years (mid-2011 to
present). The average length of the observation periods of all
sites is 5.7 years (±2.78).

The geographic distribution of the COSMOS-Europe sta-25

tions also reflects strong gradients of cutoff rigidities – a
quantity describing the shielding of incoming cosmic-ray
particles by Earth’s geomagnetic field. Therefore, the dynam-
ics and intensity of cosmic rays at stations in northern Europe
are significantly higher than at stations further south. The cut-30

off rigidity ranges from 1.21 GeV for the Aas site in Norway
to 8.37 for the Cakit Basin site in Turkey.

More than 50 additional sites are indicated in Fig. 1 (black
cross) which are not specifically addressed in this paper.
They either belong to other networks with dedicated data35

publications (e.g., COSMOS-UK or the intensive research
experiment in Marquardt near Berlin), were installed just
recently (e.g., Prague and northwest Germany), or refer to
planned COSMOS locations in the near future (e.g., Finland
and Ireland). There are even more stations across Europe40

that operate sub-snow cosmic-ray neutron detectors (Gugerli
et al., 2019TS33 ). Due to the slightly different measurement
technique, the point-scale footprint, and the exclusive focus
on snow monitoring, those sensors were not included in this
paper and deserve dedicated articles.45

3 Methods

Measured neutrons are a proxy for soil water content, but
systematic factors and stochastic effects also influence the
neutron signal. Research in the last decades has led to a pro-
found understanding of these influencing factors and has fa-50

cilitated a more accurate extraction of the soil moisture sig-
nal from the cosmic-ray neutron data. The processing frame-

work is described below, while its technical implementation
is supported by public tools and software libraries dedicated
to CRNS research, e.g., Corny by Schrön (2021) and Crspy 55

by Power et al. (2021).

3.1 Data pre-processing

In a first step, all datasets, i.e., raw neutron counts and sup-
porting data, were aggregated to hourly time steps. Subse-
quently, following Zreda et al. (2008), a running 24 h average 60

with a minimum of 12 measurements in the smoothing win-
dow was used to reduce the inherent noise of the raw neutron
counts and to reduce the measurement uncertainty.

To ensure data consistency, the raw neutron counts were
screened for data quality. Suspicious neutron count rates 65

(Nraw) that fulfill one of the following conditions were
flagged.

– Extreme single outliers: Nraw<50 or Nraw>10000
counts per hour (cts h−1).

– Positive suspicious peaks: Nraw>24 h moving average 70

+2 times the standard deviation of the 24 h rolling sum.

– Negative suspicious peaks: Nraw<24 h moving average
−2 times the standard deviation of the 24 h rolling sum.

Neutron count rates can be strongly affected by the presence
of snow cover, resulting in inaccurate soil moisture measure- 75

ments. Unfortunately, in most cases no additional snow mea-
surements were available at the CRNS sites. Therefore, we
used the ECMWF climate reanalysis data product ERA5-
Land (Muñoz Sabater, 2019) to indicate snow cover events.
For this, we flagged neutron count data when the 24 h moving 80

average of the ERA5 SWE (snow water equivalent) product
exceeded 1 mm.

To indicate unrealistically high values in the CRNS-
derived soil moisture time series, we flagged values for soil
moisture that were greater than local soil porosity. Because 85

local measurements of soil porosity were not available, we
estimated porosity using available information on bulk den-
sity and soil organic carbon content. We assumed that soil
organic matter was 2 times the organic carbon content and
assumed densities of 1.4 and 2.65 g cm−3 for the organic 90

matter and the other soil minerals, respectively. Missing data
on soil texture, porosity, and organic carbon were taken
from the global raster-based soil dataset SoilGrids (Hengl et
al., 2017).

It is important to note that the published dataset still in- 95

cludes the original and flagged data, while suspicious records
were not included in the further data processing and analysis
(see Fig. A5 for the used data flags). In this way, users can
apply their own pre-processing techniques to the raw neutron
count data. The final soil moisture product is cleaned from all 100

negative influences to avoid inexperienced users using unre-
alistic soil moisture data.
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Figure 2. Availability of atmospheric pressure, absolute humidity, and neutron count rates at the COSMOS-Europe sites (sorted by descend-
ing latitude). The dates of the local reference soil sampling for CRNS calibration are also shown. The timeline shown ends in June 2021,
while data and calibration dates for some sensors extend to November 2021.TS32

https://doi.org/10.5194/essd-14-1-2022 Earth Syst. Sci. Data, 14, 1–26, 2022
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The local air temperature, air humidity, and atmospheric
pressure data needed for the correction of raw neutron counts
often contained gaps due to measurement failure or due to
removing suspicious data using max/min filters (see Fig. 2).
These data gaps were filled with ERA5 data following the5

idea of Power et al. (2021). To ensure consistency of the data,
linear regression models of the individual data time series
were created to scale the ERA5 data to the local data prior
to gap filling. Linear regression is necessary to compensate
for differences in bias and slope, e.g., because due to the low10

spatial resolution of ERA5 (∼ 31 km), the average altitude,
humidity, and atmospheric pressure for the ERA5 grid does
not match those at the COSMOS-Europe site. These devia-
tions occur especially in the high mountains due to strong el-
evation differences, e.g., for atmospheric pressure at the Leu-15

tasch site (see Fig. A2). The regression analysis showed that
the ERA5 data mostly agreed well with the local measure-
ments (Figs. A1 and A2), with mean correlations between
ERA5 and local measurements of 0.95 for atmospheric pres-
sure and 0.86 for absolute humidity. When the correlation20

coefficients for humidity and atmospheric pressure were less
than 0.7 and 0.8, respectively, the local measurements were
replaced entirely by ERA5 data to avoid inconsistencies in
the gap-filled time series.

3.2 Correction of raw neutron counts25

Variations of the incoming cosmic-ray intensity can have
many causes, from galactic and solar disturbances to atmo-
spheric and meteorological influences. Most of these anoma-
lies are expected to change proportionally in every domain
of the neutron energy spectrum and thus can be addressed by30

applying a set of correction factors,

N =Nraw ·Cp ·Ch ·Cinc ·Cveg. (1)

The determination of the correction factors is explained in
the following.

3.2.1 Atmospheric pressure correction35

Since the cosmic-ray flux through the atmosphere is expo-
nentially attenuated as a function of the traversed cumula-
tive mass, measured neutron count rates can be normalized
to standard atmospheric pressure by applying the standard
pressure correction approach (Desilets and Zreda, 2003):40

Cp = e
β(P−P0 TS34 ), (2)

where Cp is atmospheric pressure correction factor, P0 is the
reference atmospheric pressure (1013.25 hPa), P is the ac-
tual atmospheric pressure, and β = 0.0076 is the barometric
coefficient that is related to the local mass attenuation length45

of neutrons in air. We also tested the application of regionally
variable values for β according to Desilets and Zreda (2003,
2006TS35 ) but found only negligible variations over Europe.

However, future work should further investigate the influence
of local β variability on the atmospheric pressure correction. 50

3.2.2 Air humidity correction

We accounted for the effect of atmospheric water vapor fluc-
tuations on neutron count rate using the approach of Rosolem
et al. (2013)TS36 :

Ch = 1+αh, (3) 55

with α = 0.0054 and h the absolute humidity (g m−3) mea-
sured at 2 m height.

3.2.3 Incoming neutron correction

The galactic cosmic radiation, or incoming radiation I (t),
that penetrates the upper atmosphere varies in time mainly 60

due to the well-known 11-year cycle of the solar activity.
At high solar power (the solar maximum), the stronger so-
lar magnetic field deflects a larger proportion of galactic par-
ticles away from Earth and reduces I (t). Conversely, during
low solar activity (the solar minimum) the weaker solar mag- 65

netic field allows more galactic protons to enter the atmo-
sphere increasing I (t). Shorter-term fluctuations have a sim-
ilar effect on I (t) but with lower amplitude. Changes in the
shape of the geomagnetic field, which occur on timescales
from years to decades, are of secondary importance com- 70

pared to temporal fluctuations of I (t). These temporal varia-
tions are measured locally with so-called neutron monitors
(NM), which are sensitive to high-energy secondary neu-
trons (>20 MeV) but insensitive to local environmental fac-
tors (Simpson, 2000TS37 ). The incoming radiation varies also 75

spatially with strong gradients from the pole to the Equa-
tor, corresponding to the cutoff rigidity of the Earth’s mag-
netic field. A worldwide network of NM stations provides
near-real-time access to incoming cosmic-ray data (https:
//nmdb.euTS38 , last access:TS39 ). Assuming that the incom- 80

ing radiation along the rigidity lines is similar, a nearby
NM should be able to provide representative data for other
places on Earth with similar cutoff rigidity Rcut. The local
Rcut can be estimated for individual CRNS stations using ap-
proaches provided by Butikofer et al. (2007)TS40 . Since ev- 85

ery detector comes with an individual efficiency, the value
I (t) could be normalized with an arbitrary but constant ref-
erence Iref, which we chose to be 150 cts h−1. However, NM
stations are rare, representing only a few latitudes and of-
ten not providing continuous signals over long periods of 90

time. The NM at Jungfraujoch (Switzerland) is one of the
few stations that provides reliable long-term data that can be
used for COSMOS stations in Europe due its central location.
Hence, scaling of the Jungfraujoch signal is needed to match
the widespread distribution of COSMOS stations in Europe. 95

According to Schrön et al. (2016), the intensity correction

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Earth Syst. Sci. Data, 14, 1–26, 2022 https://doi.org/10.5194/essd-14-1-2022

https://nmdb.eu
https://nmdb.eu
https://nmdb.eu


H. R. Bogena et al.: A European network of cosmic-ray neutron soil moisture sensors 11

factor can be calculated as follows:

Cinc =

[
1+ γ

(
I

Iref
− 1

)]
−1, (4)

in which I is the count rate of incoming cosmic-ray neutrons
of a neutron monitoring station, Iref is the incoming count
rate at an arbitrary time, and is an amplitude scaling factor5

to adjust for the mentioned geomagnetic effects. It depends
on the cutoff rigidity of the local site and the neutron moni-
tor used (see, e.g., Hawdon et al., 2014). For this paper, we
use the approach from Hawdon et al. (2014) to bridge the
regional difference of cutoff rigidities between the local site10

and the NM.

3.2.4 Biomass correction

Biomass can affect neutron count rates and should be con-
sidered when large temporal changes in biomass occur at
a CRNS site. Therefore, we consider the biomass correc-15

tion method proposed by Baatz et al. (2015) using the dry
biomass B in kg m2:

Cveg = [1− 0.009248B]−1. (5)

This correction was applied at the Wuestebach1 site, where a
large change in biomass had occurred in the CRNS footprint20

area due to clear-cutting of a forest. For the other sites, there
were no strong biomass changes or no detailed information
on biomass changes was available. As soon as changes in the
biomass occur or information for a site is available, these can
be taken into account.25

3.3 Sensor calibration

3.3.1 In situ reference soil data

For the calibration, we used in most cases available infor-
mation on gravimetrically measured soil moisture from soil
samples taken within the CRNS footprint. The soil samples30

were weighted vertically according to Schrön et al. (2017);
i.e., for each sample at depth d and penetration depth D, we
evaluate the weight in the representative sample volume (d1
to d2) to generate the profile average soil moisture:

θprofile =

∑
θdwd∑
wd

,where wd =

d2∫
d1

wddd ∝Wd1 −Wd2 . (6)35

In addition, we applied horizontal weighting of the verti-
cally averaged in situ soil moisture according to Schrön et
al. (2017). For this, regions of equal contribution (annuluses
of 20 % quantiles) to the neutron signal were defined depend-
ing on the local conditions (i.e., atmospheric pressure, air hu-40

midity, average soil moisture) that influence the spatial sen-
sitivity of the CRNS. All sampling points that fall within an
annulus A are arithmetically averaged and thus receive the

same weights, which are calculated according to the weight-
ing scheme of Schrön et al. (2017). More specifically, θhoriz 45

is integrated over the entire domain to find the radii r1 and
r2 that define the five annuluses A(r1, r2) within which all
samples are equally averaged:

θhoriz =
1
5

5∑
A=1

θA,where θA = 〈θr 〉∀r ∈ (r1, r2)

with

r2∫
r1

Wrdr =
A

5

∞∫
0

Wrdr. (7)

In particular, this method ensures that soil samples taken us- 50

ing the outdated COSMOS scheme (25, 75, 200 m), which
assumed larger CRNS footprints, are not double weighted.
Due to the long distances of the COSMOS sampling scheme,
there may be no soil samples in one annulus. In this case, the
samples in the next larger ring receive double the weight; i.e., 55

the soil samples taken at 25 m distance are also representative
for the soil moisture in the first annulus around the sensor.
This problem does not arise for COSMOS-Europe sites sam-
pled according to the revised weighting scheme of Schrön et
al. (2017), as soil samples were also taken in the near field of 60

the CRNS (i.e., 2–10 m distances). The in situ reference soil
moisture of COSMOS-Europe sites and the weighted aver-
ages used for the CRNS soil moisture calibration are pre-
sented in Fig. A4.

3.3.2 Conversion of neutron count rate to soil moisture 65

To convert neutron count rates to soil moisture, we used the
conventional relationship between neutrons and soil moisture
initially introduced by Desilets et al. (2010). According to
Köhli et al. (2021)TS41 , it can be expressed in an equivalent
but more unambiguous formulation with fewer parameters: 70

θ (N )=
0.0808

N/N0− 0.372
− 0.115 ≡ p0

1−N/Nmax

p1−N/Nmax
, (8)

where Nmax is the maximum neutron flux under dry condi-
tions which mainly depends on the individual detector sen-
sitivity. Parameters p0 =−0.115, p1 = 0.346, and Nmax =

1.075 ·N0 can be derived from the parameters used so far in 75

the Desilets equation.
Hydrogen in the organic matter as well as the lattice water

content of soils affects how epithermal neutrons interact with
the soil and thus affects the shape of the calibration function
(Zreda et al., 2012). We accounted for this effect by fitting 80

Nmax of the calibration to the total soil water, which is the
sum of the water equivalents of lattice water and organic mat-
ter and the gravimetrically measured reference soil moisture.
The volumetric soil moisture is then obtained by subtract-
ing the lattice and organic matter water from CRNS total soil 85

moisture multiplied with the soil density. We averaged the
soil property values, in case multiple calibration dates were
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available. In order to increase the signal-to-noise ratio of the
neutron counts we applied a moving average with a window
size of 24 h for the Nmax calibration. It should be noted that a
24 h window is well suited for drought studies but may mask
the signal from wetting events, which tend to occur much5

faster.

3.4 Soil moisture uncertainty

The statistical uncertainty of CRNS-derived soil moisture
scales with the number of counts in a given period. How-
ever, this count rate is inversely related to soil moisture, so10

drier soils result in more accurate measurements (Desilets et
al., 2010; Bogena et al., 2013). In addition, the size of the
CRNS detector determines the count rate, i.e., a larger detec-
tor volume improves the count statistics and thus reduces the
uncertainty of the soil moisture product (Weimar et al., 2020;15

Schrön et al., 2021). Different neutron detectors with dif-
ferent sizes and efficiencies are used in this study, so it is
important to consider the CRNS-specific uncertainty (e.g.,
when using the data for validations). Due to the non-linearity
of the neutron–soil-moisture relationship, the propagated un-20

certainty±σθ is highly asymmetric (Iwema et al., 2021). For
simplicity, it can be estimated by a symmetrical approxima-
tion approach suggested by Jakobi et al. (2020):

± σθ = θ (N )− θ (N ± σN )

σθ ≈ σN
p2Nmax

(N −p3Nmax)4√
(N −p3Nmax)4

+ 8σ 2
N (N −p3Nmax)2

+ 15σ 4
N , (9)

where the count rate N follows from the Desilets equation,25

σN = C
√
Nraw is its Gaussian uncertainty, and p2 = 0.0752,

p3 = 0.346. We provide both the symmetric and asymmet-
ric uncertainty of the CRNS-based soil moisture products in
order to facilitate applications where only one of the two op-
tions can be used. It is important to note that these stochastic30

uncertainty estimates do not account for other (systematic)
uncertainties, e.g., due to unconsidered biomass effects (Av-
ery et al., 2016TS42 ), N0 calibration errors, and unconsidered
variations in incoming neutron flux (Baroni et al., 2018), at-
mospheric pressure (Gugerli et al., 2019TS43 ), and air humid-35

ity (Iwema et al., 2021). Please note that additional uncertain-
ties may have occurred when filling gaps in the air pressure
and humidity data with ERA5 data.

3.5 CRNS footprint radius and penetration depth

The footprint radius (i.e., R86) was obtained as the 86 %40

cumulative contribution quantile of the weighting functions
from Schrön et al. (2017). For this, we integrated the weights
up to 600 m distance considering the influences of soil mois-
ture (as the sum of the CRNS soil moisture, lattice water, and
organic carbon), air humidity, and pressure. Subsequently,45

we obtained the average penetration depth (i.e.,D86) follow-
ing Schrön et al. (2017), additionally considering the influ-
ence of soil bulk density.

3.6 Normalized quantiles of soil moisture

As suggested by Cooper et al. (2021), we use normalized 50

quantiles to better indicate extreme soil moisture situations.
First, the soil moisture values are normalized relative to the
minimal and maximal observed soil moisture of the consid-
ered time series; i.e., the soil moisture values (θ ) are scaled
between 0 and 1 (p): 55

p = (θ − θmin)θmax/θmin, (10)

where θmin is the minimum observed soil moisture and θmax
is the maximum observed soil moisture. Subsequently, p is
used to obtain the quantile represented by each soil moisture
value: 60

Q= θsort (p · n) , (11)

where θsort represents the soil moisture values sorted in in-
creasing order and n is the total number of soil moisture ob-
servations. From Q the median of all soil moisture values
(θmed) is subtracted, and the variance is scaled by dividing 65

by the standard deviationCE8 (θSD) to obtain the normalized
quantiles of soil moisture (Qnorm):

Qnorm = (Q− θmed)/θSD. (12)

Each Qnorm is then plotted against an observed value of the
CRNS estimated soil moisture. 70

3.7 Implementation of the data processing

The raw neutron counts and meteorological data were con-
verted into a uniform data structure (Fig. A5b) and stored
in a database within the decentralized data infrastructure
TEODOOR (TEreno Online Data repOsitORy, Kunkel et 75

al., 2013). The data pre-processing, corrections, calibration,
and uncertainty estimation were implemented in the pro-
gramming language Python. These scripts were applied to
the raw data stored in the database using Node-RED, a graph-
ical tool for deploying workflows (Node-RED, 2021). Node- 80

RED offers the possibility to connect different data flows in
a simple way, using so-called nodes. Each node has a de-
fined and unique task. When data are transmitted to a node,
the node can process these data and then transmit them to
the next node. In this way, different corrections or other im- 85

plementations in the data post-processing can be added or
removed individually. As an interface for accessing the data
in the TERENO database, the Sensor Observation Service
(SOS) of Open Geospatial Consortium was used. Here, the
data are processed by a separate proxy that forwards the re- 90

quests to a virtual Python environment. In the last step, the

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Earth Syst. Sci. Data, 14, 1–26, 2022 https://doi.org/10.5194/essd-14-1-2022



H. R. Bogena et al.: A European network of cosmic-ray neutron soil moisture sensors 13

processed data were written back directly to the database via
email or SOS.

The raw data as well as the processed data are accessi-
ble via the TERENO Data Discovery Portal (DDP) at http:
//www.tereno.net (last access:TS44 ). The data portal enables5

the query, visualization, and access to data and metadata of
the stations presented in this paper. Additionally, detailed in-
formation on each CRNS station is provided in the metadata
(Fig. A5a) and can be retrieved from the data portal.

4 Results and discussion10

4.1 Spatiotemporal occurrence of drought events in
Europe

The provision of a continental-scale dataset on soil moisture
dynamics opens up numerous possibilities for analysis, es-
pecially with respect to large-scale climatic and hydrological15

applications. In the following, we present first analyses on
the spatiotemporal occurrence of drought events in Europe
based on the processed time series of CRNS soil moisture.

Figure 3 visualizes the results of the CRNS soil mois-
ture processing for the COSMOS-Europe sites. The CRNS20

soil moisture (left subplot) shows strong temporal variations
as well as large differences between the COSMOS-Europe
sites. Due to these strong variations in CRNS soil mois-
ture, similarities in the absolute values are difficult to dis-
cern, e.g., the impact of large-scale drought events on CRNS25

soil moisture. Therefore, following the approach of Cooper
et al. (2021), Fig. 3 also presents the normalized quantiles
of CRNS soil moisture (right subplot) to better indicate ex-
treme soil moisture situations, i.e., to better distinguish be-
tween “normal low” soil moisture and “extremely low” soil30

moisture. In this way, the widespread impacts on the recent
drought events of 2018, 2019, and 2020 on CRNS soil mois-
ture in Europe become more apparent. The 2018 drought, in
particular, is clearly visible with pronounced negative val-
ues in the normalized soil moisture quantiles across all lat-35

itudes, indicating that the whole of Europe was affected by
the drought.

In the following, we explore if CRNS soil moisture infor-
mation can be a valuable basis for more accurate assessment
of the uniqueness and potential impacts of drought events40

at regional to continental scales. In Fig. 4 the monthly mean
CRNS soil moisture of all COSMOS-Europe sites since 2011
are presented, along with the spatial mean and SD (upper
subplot).

Despite the different time series lengths, the seasonal vari-45

ations in soil moisture can be clearly seen. We selected three
drought events to examine differences in soil moisture be-
tween sites, with all data for the period of record presented
as normalized quantiles of soil moisture for each site (Fig. 4,
lower subplot). It is evident that sites even within the same50

climate zone with broadly similar weather patterns can have
very different ranges and extremes of soil moisture.

This finding confirms results by Cooper et al. (2021) for
the United Kingdom, who in particular suggested hetero-
geneity of soil properties as an explanation for the variabil- 55

ities, and results of Dong and Ochsner (2018), who found
that soil moisture at the regional scale is more controlled by
soil texture than precipitation. However, when comparing the
three events, it becomes evident that 2018 had more locations
with pronounced extremes and that these occurred predomi- 60

nantly in the climate zone Cfb, while 2018 was not notably
different from other drought years in the monthly soil mois-
ture averages shown in Fig. 4 (upper subplot). This demon-
strates again the advantage of normalized soil moisture quan-
tiles for a more in-depth analysis of extreme events. 65

Finally, we investigated whether the CRNS data allow us
to draw conclusions about longer-term trends in soil mois-
ture in Europe. For this, we contrasted monthly mean soil
moisture from 2014–2017 with monthly mean soil moisture
from 2018 to 2021 in Fig. 5, using the 26 sites fully cov- 70

ering this period. From Fig. 5, it is evident that as of 2018,
soil moisture was lower not only in the summer months but
throughout the year. Although the considered soil moisture
data cover only 7 years, they can be considered as an indica-
tor of the magnitude and direction of the trend in soil water 75

supply that Europe can expect as climate change progresses.

4.2 How representative and accessible is the soil
moisture data?

The representativeness of the individual stations for the de-
picted land use type and geographical location is relevant, 80

especially with regard to the validation of large-scale model
applications of remote sensing products, which usually show
coarser spatial resolutions and correspondingly “averaged”
representation of site properties (e.g., Colliander et al., 2017;
Montzka et al., 2020). In a few cases, the COSMOS-Europe 85

sites represent larger site heterogeneity. This is reflected in
particular in the resulting larger variability of soil moisture
in the in situ calibration data measured for the individual
sites (see Fig. A4). An example is the CRNS station at the
FürstenseeCE9 site in Germany (Rasche et al., 2021). The 90

footprint represented by the CRNS measurement at this site
includes a sand lens in the center of the footprint, which is
surrounded by peat soils. The resulting heterogeneity, par-
ticularly of soil properties such as bulk density, soil or-
ganic matter content, and lattice water, challenges the har- 95

monized data processing applied for COSMOS-Europe and
leads to greater uncertainty in the derived soil moisture prod-
uct, which is not easy to quantify.

While aspects such as soil heterogeneities or varying land
use can be of great importance for local or CRNS method- 100

ological questions, this is rather an obstacle for large-scale
questions. Especially with regard to the future develop-
ment of the European network of CRNS stations, attention
should be paid to the selection of sites that guarantee a
high representativeness and homogeneity. With respect to the 105
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14 H. R. Bogena et al.: A European network of cosmic-ray neutron soil moisture sensors

Figure 3. Time series of CRNS soil moisture (a) and normalized quantiles of CRNS soil moisture (b) of the COSMOS-Europe sites ordered
from north to south according to latitude (unrealistic soil moisture values are excluded, i.e., larger than porosity). The timeline shown ends
in June 2021, while data and calibration dates for some sensors extend to November 2021.

Earth Syst. Sci. Data, 14, 1–26, 2022 https://doi.org/10.5194/essd-14-1-2022
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Figure 4. Time series of monthly mean CRNS soil moisture (gray lines in panel a) and normalized quantiles of CRNS soil moisture of
the COSMOS-Europe sites (black dots in panels b–d). For three exemplary days during recent drought periods in Europe (8 August 2018,
7 July 2019, and 2 June 2020), the normalized quantiles are highlighted and differentiated by climate zone. These days were selected as they
exhibited the lowest hourly soil moisture during the drought events. The mean of normalized quantiles of CRNS soil moisture for these days
is also shown.

Figure 5. Comparison of monthly mean soil moisture from 2014 to
2017 and monthly mean soil moisture from 2018 to 2021 using 26
COSMOS-Europe sites that cover these periods.

use of COSMOS-Europe data to derive conclusions about
continental-scale trends in soil moisture, it is decisive that
the network ensures the most representative coverage of key
environmental and geographic gradients throughout Europe
(e.g., altitude, climate, landforms, geology). This is currently5

the case only to a limited extent (see also Fig. 1). The clear
majority of stations are concentrated in central Europe, while
Scandinavia, eastern Europe, or the Mediterranean region in

particular are covered by only very few stations. This lim-
its the interpretability of the data, especially with regard to 10

comparisons between different climate zones.
Another important question in this context is whether ob-

servations at a limited number of points can provide re-
gional improvements in the prediction of hydrologic states
and fluxes. For example, Baatz et al. (2017)TS45 assimilated 15

measured soil moisture data from a CRNS network into the
area-differentiated land surface model CLM 4.5 (Oleson et
al., 2013) and showed that updating states and hydraulic pa-
rameters leads to better regional hydrologic predictions. This
indicates that the COSMOS-Europe data could be beneficial 20

for model applications at the continental scale despite the
limited coverage in some areas of Europe, i.e., even though
the measurements are not area-wide such as remote sensing
data.

Furthermore, at present only a low number of CRNS sta- 25

tions are automatically transferring neutron count data to
the TERENO database that hosts the COSMOS-Europe data.
However, a near-real-time availability of the data would be
necessary in particular for the use of the data for the im-
provement of flood models, e.g., in context of the European 30

Flood Awareness System (EFAS, Smith et al., 2016). Efforts
should be made in the future to equip more stations with au-
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tomatic data transfer capabilities to enable rapid transfer of
neutron counts to the TERENO database. Here, the imple-
mented automated routines for data pre-processing, correc-
tion, and neutron counts to soil moisture allow for immediate
provision of COSMOS-Europe data products.5

Finally, we would like to point out that there are still alter-
native data products to some of the CRNS stations used here,
which were processed using less comprehensive methods.
Although our processing methods closely follow the com-
monly used method presented by Zreda et al. (2012), there10

are some important differences as we make use of the latest
CRNS research findings from the last 10 years. For example,
the US COSMOS database (http://cosmos.hwr.arizona.edu/,
last access:TS46 ) does not contain corrections for air hu-
midity, which were suggested by Rosolem et al. (2013)TS4715

and Köhli et al. (2021)TS48 . Another main difference of our
processing scheme is the weighting of the in situ calibra-
tion data according to neutron transport theory (Schrön et
al., 2017). We therefore expect soil moisture deviations that
can be substantial depending on the date of previous process-20

ing schemes.

5 Data availability

The dataset, entitled “Dataset of COSMOS-Europe: A
European network of Cosmic-Ray Neutron Soil Mois-
ture Sensors”, is stored in a common data format and25

shared via Forschungszentrum Jülich (https://teodoor.icg.
kfa-juelich.de/ibg3butt/ibg.butt.download?FileIdentifier=
519e0691-7eb3-4351-aff5-c0a0335933ab, last access:
24 September 2021); https://doi.org/10.34731/x9s3-kr48
(Bogena and Ney, 2021).30

Potential users can also access the data of the individual
CRNS stations in a dedicated section for COSMOS-Europe
in the TERENO data portal TEODOOR at https://ddp.tereno.
net/ddp/dispatch?searchparams=keywords-Cosmic%20Ray
(last access:TS49 ). Here, metadata information about the35

stations (e.g., site owner) as well as the raw data and the
processed data products can be accessed. Please note that
downloads will only be made possible via a token and are
provided with a disclaimer with the terms of use.

6 Conclusions and outlook40

In this data paper, we present soil moisture data from 65
CRNS stations that are distributed across Europe and cover
all major land use types and climate zones. The raw neu-
tron count data from the CRNS stations were processed us-
ing state-of-the-art methods in a harmonized way including45

correction of the raw neutron counts and conversion into soil
moisture based on available in situ information. In addition,
information on the data uncertainty is added to the dataset –
information that is particularly useful for remote sensing and
modeling applications. It should be noted that the sites have50

individual heterogeneous conditions, which cannot always be
adequately reflected by a standard processing scheme. In ad-
dition, the data processing used in this work represents the
state of the art, but this may change as a result of future re-
search. We therefore provide raw data and will update the 55

published dataset with an incremental version number if new
processing procedures become accepted in the future.

We show that the COSMOS-Europe dataset enables a
good representation of the magnitude and distribution of
drought events. However, so far, only the central part of Eu- 60

rope is particularly well covered by COSMOS-Europe, while
there are still large gaps in the peripheral areas of Europe.
The density of COSMOS stations in Europe is still not suf-
ficient to completely represent soil moisture patterns across
all parts of the continent. Thus, future efforts should invest in 65

higher observational coverage. One emphasis in the further
development of COSMOS-Europe must be to convince coun-
tries to put CRNS stations into operation that do not yet op-
erate CRNS stations or hardly any. In addition, efforts should
be made in the future to equip more stations with automatic 70

data transfer capabilities to enable near-real-time accessibil-
ity of soil moisture information, e.g., to support flood fore-
casting. The data presented here can be used for a manifold of
hydrological applications, such as drought assessment, flood
risk assessment, and snow water estimation. 75

Similar to COSMOS-Europe, several other large-scale
COSMOS networks already exist in the USA, Australia, and
India. The obvious next step is to build on the methods de-
veloped in this study to create a global network of continen-
tal COSMOS networks, similar to the FLUXNET initiative 80

for eddy covariance measurements of land–atmosphere ex-
change fluxes (FLUXNET, 2021) or the International Soil
Moisture Network (ISMN) that provides in situ soil mois-
ture data from 2842 stations worldwide (Dorigo et al., 2021).
Initial networking efforts in this direction have already been 85

undertaken.
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Figure A1. The correlations between air humidity from local measurements and ERA5 for the COSMOS-Europe sites.
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Figure A2. The correlations between atmospheric pressure from local measurements and ERA5 for the COSMOS-Europe sites.
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Figure A3. Detected unrealistic CRNS soil moisture estimates due the presence of snow at the site (i.e., times of snow water equivalent from
ERA5 larger than 1 mm) and soil moisture values exceeding the local soil porosity.
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Figure A4. Soil profiles of the in situ calibration data for the COSMOS-Europe sites. The weighted average soil moisture values are also
shown. The varying colors indicate the different sampling dates.
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Figure A5. Data structure in the TERENO Data Discovery Portal (DDP). Each station comprises metadata (a) with detailed site information
and two time series. One time series contains the raw CRNS data, the meteorological data, and the processed data with the associated
diagnostics (b). The second time series provides the raw calibration data (c).
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