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Abstract. We present a long-term data set of 1°× 1° monthly mean total column water vapour (TCWV) based on global

measurements of the Ozone Monitoring Instrument (OMI) covering the time range from January 2005 to December 2020.

In comparison to the retrieval algorithm of Borger et al. (2020) several modifications and filters have been applied accounting

for instrumental issues (such as OMI’s "row-anomaly") or the inferior quality of solar reference spectra. For instance, to

overcome the problems of low quality reference spectra, the daily solar irradiance spectrum is replaced by an annually varying5

mean Earthshine radiance obtained in December over Antarctica. For the TCWV data set only measurements are taken into

account for which the effective cloud fraction < 20%, the AMF > 0.1, the ground pixel is snow- and ice-free, and the OMI row

is not affected by the "row-anomaly" over the complete time range of the data set. The individual TCWV measurements are

then gridded to a regular 1°× 1° lattice, from which the monthly means are calculated.

The investigation of sampling errors in the OMI TCWV dataset shows that these are dominated by the clear-sky bias and cause10

on average deviations of around -10%, which is consistent with the findings from previous studies. However, the spatiotemporal

sampling errors and those due to the row anomaly filter are negligible.

In a comprehensive intercomparison study we demonstrate that the OMI TCWV data set is in good agreement to reference

data sets of ERA5, RSS SSM/I, and ESA Water Vapour CCI CDR-2: over ocean orthogonal distance (ODR) and piece-wise

linear regressions (PWLF) indicate slopes close to unity with very small offsets and high correlation coefficients of around15

0.98. However, over land, distinctive positive deviations of more than +10 kg m−2 are obtained for high TCWV values. These

overestimations are mainly due to extreme overestimation of high TCWV values in the tropics, likely caused by uncertainties in

the retrieval input data (surface albedo, cloud information) due to frequent cloud contamination in these regions. Nevertheless,

for TCWV values smaller than 25 kg m−2, the OMI TCWV data set shows very good agreement with the reference datasets.

Also, a temporal stability analysis proves that the OMI TCWV data set is consistent with the temporal changes of the reference20

data sets and shows no significant deviation trends.

Since the TCWV retrieval can be easily applied to further satellite missions, additional TCWV data sets can be created from

past missions such as GOME-1 or SCIAMACHY, which under consideration of systematic differences (e.g. due to different

observation times) can be combined with the OMI TCWV data set in order to create a data record that would cover a time span

from 1995 to the present. Moreover, the TCWV retrieval will also work for all missions dedicated to NO2 in future such as25

Sentinel-5 on MetOp-SG.
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The MPIC OMI total column water vapour (TCWV) climate data record is available at https://doi.org/10.5281/zenodo.5776718

(Borger et al., 2021).

1 Introduction

Water vapour is the most important natural greenhouse gas in the Earth’s atmosphere altering the Earth’s energy balance by30

playing a dominant role in the atmospheric thermal opacity and having a major amplifying influence on several factors of an-

thropogenic climate change through various feedback mechanisms (Kiehl and Trenberth, 1997; Randall et al., 2007; Trenberth

et al., 2009). Though its great importance not only on processes on global/climate scale, the complex interactions between

the components of the hydrological cycle (including water vapour) and the atmosphere are still one of major challenges of

climate modelling and for a better understanding of the Earth’s climate system in general (Stevens and Bony, 2013). Moreover,35

the amount and distribution of water vapour are highly variable, so that for global observations these must also be measured

with high spatiotemporal resolution. Considering that changes in water vapour are closely linked to changes in temperature

via the Clausius-Clapeyron equation, i.e. for typical atmospheric conditions a temperature increase of 1 K yields an increase in

the water vapour concentration by approximately 6-7% (Held and Soden, 2000), it is essential to monitor the variability and

change of the amount and distribution of water vapour on global scale accurately.40

To observe the water vapour distribution on global scale, satellite measurements provide invaluable information. Due to its

spectroscopic absorption properties, water vapour can be retrieved from satellite spectra in various different spectral ranges,

ranging from the radio (e.g. Kursinski et al., 1997), microwave (e.g. Rosenkranz, 2001), thermal infrared (e.g. Susskind et al.,

2003; Schlüssel et al., 2005; Schneider and Hase, 2011), short and near-infrared (e.g. Bennartz and Fischer, 2001; Gao and

Kaufman, 2003; Schrijver et al., 2009; Dupuy et al., 2016; Schneider et al., 2020) to the visible spectral range (e.g. Noël et al.,45

1999; Lang et al., 2003; Wagner et al., 2003; Grossi et al., 2015).

Within the past decade, substantial progress has been made to retrieve total column water vapour (TCWV) within the visible

blue spectral range (e.g. Wagner et al., 2013; Wang et al., 2019; Borger et al., 2020; Chan et al., 2020) allowing to make use

of measurements from satellite instruments like TROPOMI (Veefkind et al., 2012) and even GOME-2 (Munro et al., 2016)

for which so far only retrievals in the visible red and near-infrared spectral range have been available. In comparison to these50

aforementioned spectral ranges, TCWV retrievals in the visible "blue" have several advatanges, for instance similar sensitivity

for the near-surface layers over land and ocean due to a more homogenous surface albedo distribution than at longer wave-

lengths (Koelemeijer et al., 2003; Wagner et al., 2013; Tilstra et al., 2017). Moreover, any satellite mission dedicated to NO2

monitoring is covering this spectral range.

For investigations of climate change or global warming, respectively, the Ozone Monitoring Instrument (Levelt et al., 2006, 2018)55

onboard NASA’s Aura satellite is particularly interesting: launched in July 2004 it offers an almost continuous measurement

data record of more than 16 years up until today. In this study, we make use of OMI’s long-term data record and retrieve total

column water vapour (TCWV) from its measurements in the visible blue spectral range in order to generate a climate data set.

The paper is structured as follows: in Sect. 2 we describe the data set generation and briefly explain the retrieval methodology
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and the applied modifications in comparison to the TCWV retrieval from Borger et al. (2020). Then in Sect. 3, we investi-60

gate potential sampling errors and how the limitation to clear-sky satellite observations influences the representativeness of

the TCWV values of the data set. Furthermore, in Sect. 4 we characterize the data set via an intercomparison to the various

different reference TCWV data sets and also analyze its temporal stability in Sect. 5. Finally, we briefly summarize our results

in Sect. 6 and draw conclusions.

3



2 OMI TCWV data set65

2.1 Ozone Monitoring Instrument

The Ozone Monitoring Instrument OMI (Levelt et al., 2006, 2018) onboard NASA’s Aura satellite is a nadir-looking UV-vis

pushbroom spectrometer that measures the Earth’s radiance spectrum from 270–500 nm with a spectral resolution of approxi-

mately 0.5 nm following a sun-synchronous orbit with an equator crossing time around 13:30 LT. The instrument employs a 2D

CCD consisting of 60 across-track rows which in total cover a swath width of approximately 2600 km with a spatial resolution70

of 24 km× 13 km at nadir increasing to 24 km× 160 km towards the edges of the swath. Launched in July 2004, OMI provides

an almost continuous measurement record until today with more than 90000 orbits.

However, since July 2007 OMI has suffered from the so-called "row-anomaly" (RA), a dynamic artefact causing abnormally

low radiance readings in the across-track rows, i.e. several rows of the CCD detector receive less light from the Earth, and

some other rows appear to receive sunlight scattered off a peeling piece of spacecraft insulation. One plausible explanation for75

these effects is a partial obscuration of the entrance port by insulating layer material that may have come loose on the outside

of the instrument (Schenkeveld et al., 2017; Boersma et al., 2018). Thus, in this study, the affected measurements are excluded

for the entire period of the data set.

2.2 Methodology and modifications of the spectral analysis

To retrieve total column water vapour (TCWV) from UV-vis spectra from OMI, we apply the TCWV retrieval of Borger et al.80

(2020) developed for the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5P. The retrieval is based on the

principles of Different Optical Absorption Spectroscopy (DOAS, Platt and Stutz, 2008) with a fit window between 430–450 nm

and consists of the common two-step DOAS approach: first, the absorption along the light path is calculated:

ln

(
I

I0

)
≈−

∑
i

σi(λ) ·SCDi + Ψ + Φ (1)

where I0 and I represent the solar irradiance and the radiance backscattered from Earth, respectively, and i denotes the index85

of a trace gas of interest, σi(λ) its respective molecular absorption cross section, SCDi =
∫
s
cids its concentration integrated

along the light path s (the so called slant column density), Ψ summarizing terms accounting for the Ring effect and additional

pseudo-absorbers, and Φ a closure polynomial accounting for Mie and Rayleigh scattering as well as parts of the low-frequency

contributions of the trace gas cross sections.

Second, to convert the slant column density to a vertical column density (VCD), we apply the so called airmass factor (AMF):90

VCD =
SCD

AMF
(2)

The AMF accounts for the non-trivial effects of atmospheric radiative transfer and depends on the conditions of the retrieval

scenario (i.e. aerosol and cloud effects, viewing geometry, and surface properties) as well as the profile shape of the trace gas

of interest. The algorithm of Borger et al. (2020) makes use of the relation between the H2O VCD and the profile shape and

iteratively finds the optimal VCD by assuming an exponential water vapour profile shape.95
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For the application of the algorithm to OMI measurements several modifications had to be applied to the algorithm of Borger

et al. (2020). For climate studies such as trend analyses it is evident to provide a consistent data record. Thus, all rows that

have ever been affected by the so called "row-anomaly" are excluded from the data set for the complete time series, which

corresponds to approximately half of the OMI swath. Also, instead of a daily solar irradiance an Earthshine radiance is used

as reference spectrum within the DOAS analysis. The rationale for using an Earthshine radiance over a solar irradiance is as100

follows:

– The daily OMI solar irradiance spectra (OML1BIRR version 3) are very noisy and have several gaps causing high H2O

SCD fit errors and thus leading to an overall poor quality of the H2O VCD data set.

– By using an annual mean solar irradiance spectrum from the year 2005 (also used during the QA4ECV project; Boersma

et al., 2018) a good fit quality can be obtained, however, OMI is also suffering from degradation effects (Schenkeveld105

et al., 2017). Thus, for the case of climate trend analyses it will be almost impossible to disentangle if a trend signal

originates from the spectral degradation of OMI or indeed from a geophysical trend (see also Fig. A1). By using an

Earthshine radiance as reference spectrum these degradation effects will largely cancel out.

– By using an Earthshine radiance as reference spectrum, also the across-track biases within the OMI swath are strongly

reduced (see Panel (c) in Fig. 1) and consequently no destriping is necessary during post-processing (see also Anand110

et al., 2015).

– However, as a disadvantage of the use of Earthshine spectra, the retrieved H2O slant columns do not represent absolute

slant columns because the Earthshine reference spectra also contain H2O absorptions. Hence, a slant column representa-

tive for the chosen reference sector has to be added to the retrieved values.

For the creation of annual Earthshine reference spectra we selected the Antarctic continent as reference sector (high surface115

albedo due to snow and ice cover) and the time period of December (i.e. during austral summer) yielding a relatively high

signal-to-noise ratio for our radiance measurements despite large solar zenith angles. Furthermore, only pixels above an altitude

of 2000 m above sea level are selected: as the air temperatures are very low there, the water vapour concentrations are very

low as well, thus representing a reference atmosphere that is as dry as possible (i.e. the reference SCD or better saying the

absolute value of its uncertainty has to be as minimal as possible). Also, to avoid the inclusion of noisy measurements (in120

particular from the descending part of the OMI orbit), only pixels with a solar zenith angle (SZA) < 80° are considered. From

these measurements we calculate the monthly-mean radiance for December for each year for every OMI row and then use the

resulting reference spectra for the retrievals of the upcoming year.

Figure 1 illustrates the effect of different reference spectra on the H2O SCD distribution for an examplary orbit. Distinctive

stripe patterns are prominent in particular when using the daily solar irradiance as reference spectrum (Panel (a) in Fig. 1).125

Although the usage of the annual-mean solar irradiance (Panel b) can reduce the strength of the stripes, they are still clearly

visible. In contrast, no across-track stripes are detectable for the case of the Earthshine reference and overall the SCDs are also

lower due to the H2O absorption in the Earthshine reference (Panel c).
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Further details about destriping in general and a comparison of the temporal behaviour of the irradiance based and Earthshine

SCD are available in Appendix A.130

Figure 1. Examplary orbit showing the impact of different reference spectrum on the OMI H2O SCD distribution: a) daily solar irradiance,

b) annual-mean solar irradiance, and c) monthly mean Earthshine reference. Orbit 34382, date 01-01-2011.

2.3 VCD conversion and data set generation

To account for the potential water vapour contamination within the Earthshine reference spectra, the SCDs based on the

Earthshine reference have to be corrected for the corresponding offset. In this study, we determine this offset ∆SCD for each

row based on the difference of the Earthshine based SCDs and solar irradiance based SCDs for the first 5 years of OMI

operation (see Appendix A). Equation (2) can then be rewritten as:135

VCD =
eSCD + ∆SCD

AMF
(3)

where eSCD denotes the SCD derived using the Earthshine reference.

The AMFs are calculated as described in Borger et al. (2020). For the determination of the AMF, additional information about

the retrieval scenario like cloud cover and surface properties is necessary. We use the cloud information from the OMI L2 NO2

product (OMNO2, Lamsal et al., 2021) and the modified OMI surface albedo version of Kleipool et al. (2008) as described in140

Borger et al. (2020). We also tested the surface albedo information from the OMNO2 product, however, within the framework

of a trend analysis study (Borger et al., 2022) we observed spatial artefacts in the surface albedo trends which likely arise
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from the use of an older version of the MODIS data for the albedo calculation (Lok Lamsal, personal communication). The

distribution of TCWV trends is mainly determined by the trends in the SCD. The albedo or AMF trends usually only determine

whether the trend signal becomes stronger or weaker, but this only affects trends over land, since an albedo climatology from145

Kleipool et al. (2008) is used over ocean. As the ice flags from the OMI processor sometimes indicate snow/ice-free surfaces

over Antarctica or Greenland, we additionally use the monthly mean sea ice cover information from ERA5 (Hersbach et al.,

2020) and the annual mean land cover information from MODIS Aqua (Sulla-Menashe et al., 2019).

To create the OMI TCWV data set, we have chosen the time range from January 2005 to December 2020 and only include

observations with an effective cloud fraction < 20% and AMF > 0.1. Furthermore, the pixels have to be free of snow and ice and150

must not be affected by the row anomaly. So while about 50% of the orbit is missing because of the RA-filter, the remaining

data still cover an “effective” swath of about 1300 km and is thus still larger than the swaths of GOME-1, SCIAMACHY, or

GOME-2A (all about 1300 km) or of the order of SSM/I (about 1394 km). Thus, OMI still achieves complete coverage of the

Earth about every 2-3 days, which should provide enough observational data for good representativeness in case of a monthly

mean (see also Appendix C and the good agreement to the reference data in Sect. 4). In total, this leaves about 30% of TCWV155

dat afrom an RA-filtered orbit and about 12% of data from a complete orbit. The results of every orbit are then gridded to a

1°× 1° lattice for every day. From these daily grids, the monthly mean H2O VCD distributions are then calculated ensuring

that a continuous TCWV time series is available for as many grid cells as possible.

Figure 2 shows the global mean OMI H2O VCD averaged over the complete time range of the TCWV data set. The resulting

distribution demonstrates that the retrieval is capable to capture the macroscale water vapour patterns like high VCD values in160

the tropics (in particular over the maritime continent) and low values towards the polar regions, but also characteristic regional

patterns like the South Pacific convergence zone.

Figure 2. Global mean OMI H2O VCD distribution from 2005 until 2020 based on the OMI analysis using Earthshine reference spectra and

corrected for the H2O SCD bias. Areas with no valid values are coloured grey.
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3 Sampling errors and clear-sky bias

Although satellite observations enable the analysis of trace gas concentrations on global scale, a fundamental problem is that

typically a satellite measurement is only taken once a day for one location. Furthermore, satellite measurements are usually165

only available under cloud-free conditions, especially in the visible or infrared spectral range and thus no continuous time

series is guaranteed. Consequently, they cannot provide a complete picture of geophysical variability, which leads to sampling

errors in the calculation of averaged values (e.g. monthly means).

Moreover, the question arises to what extent the limitation to cloud-free pixels influences the monthly averages determined

from the OMI satellite measurements, i.e. whether in the OMI TCWV data set a so-called "clear-sky bias" exists. Gaffen and170

Elliott (1993) investigated this bias using radiosonde ascents and found that the TCWV is about 0-15% lower under cloud-free

conditions than under cloudy conditions. Similarly, Sohn and Bennartz (2008) found a clear-sky bias between MERIS and

AMSR-E of about 10%.

To estimate the sampling errors, we follow the methods of Xue et al. (2019) and Gleisner et al. (2020): we choose hourly-

resolved ERA5 data with a spatial resolution of 0.25°× 0.25° as reference data and collocate the ERA5 data with OMI overpass175

times. These data are then resampled to the 1°× 1° resolution of the OMI TCWV data set and the monthly averages are

calculated (TCWVsampled). We then take the complete, original ERA5 data, resample it to the same spatial resolution and

calculate monthly means from this data as well (TCWVtrue). The difference between the two data sets then represents the

sampling error:

εsampling = TCWVsampled −TCWVtrue (4)180

With this definition, the sampling error summarises the uncertainties due to gaps in the swath, temporal differences or missing

data (e.g. due to clouds) (Xue et al., 2019).

Figure 3 shows the mean absolute and relative sampling errors for the complete time range of the OMI TCWV data set (January

2005 to December 2020). Overall, it can be seen that most deviations are negative, i.e. the actual TCWV is underestimated.

Regarding the absolute deviations, the strongest deviations can be seen in the area of storm-tracks in the mid-latitudes (e.g.185

North Atlantic) and the polar regions with values around −5 kg m−2. The smallest deviations are found in the quasi-permanent

cloud-free regions in the subtropics. As expected, the relative differences increase from the equator towards the poles due to

the decreasing TCWV values and reach values stronger than -30%.

To investigate to what extent these deviations are related to the clear-sky bias, we proceed similarly to the calculation of the

sampling error: we collocate the ERA5 data to the OMI overpass time and once apply a cloud filter (effective cloud fraction <190

20%) and once not. Then we resample both data sets to 1°× 1° and calculate monthly means. The difference of both data sets

then represents the clear-sky bias:

εclear = TCWVclear −TCWVall (5)

To determine seasonal structures, the global distributions of the absolute and relative clear-sky bias for the different seasons

were determined from the monthly differences (see Fig. 4). Overall, the distributions of the clear-sky bias correspond very195
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Figure 3. Global distributions of the mean sampling errors derived from monthly mean sampling differences for the time range Jan-

uary 2005 to December 2020. Panel (a) depicts absolute sampling error (i.e. εsampling) and Panel (b) relative sampling error (i.e.

εsampling/TCWVtrue). Grid cells for which no data is available are coloured grey.

closely to the distributions of the sampling error, both in strength and in pattern. Moreover, the absolute and relative deviations

show only slight changes between the different seasons.

Figures 5 and 6 summarize the sampling error and clear-sky bias distributions, respectively. For the sampling error we obtain

a mean absolute deviation of −1.6 kg m−2 (median −1.4 kg m−2) and a mean relative deviation of -9.5% (-6.2%) and for the

clear-sky bias we get a mean absolute deviation of −1.7 kg m−2 (median −1.3 kg m−2) and a mean relative deviation of -10.0%200

(-5.9%). However, the distributions of the absolute and relative deviations for the sampling error and the clear-sky bias are

highly left-skewed and thus the mean value in particular is influenced by the long tails of the distributions. Nevertheless, for

the clear-sky bias the obtained values agree well with the findings of Gaffen and Elliott (1993) and Sohn and Bennartz (2008).

Since the effect of the clear-sky bias is already included in the sampling error and the results for both errors are very similar,

it can be assumed that the spatial and temporal sampling errors play only a minor or negligible role compared to the clear-sky205

bias.

In addition to the sampling error and the clear-sky bias, we also examined in Appendix C to what extent the monthly means

would change if no RA-filter is applied, i.e. if all data of the complete OMI swath were available. It turns out that although

deviations arise due to the RA-filter, these deviations are almost an order of magnitude smaller than those of the clear-sky bias

and the global distribution of the deviations is mostly noisy. Due to this small influence of the RA-filter, we conclude that the210

filtered OMI TCWV data are a good representation of the actual TCWV values.

9



Figure 4. Global distributions of the absolute differences (εclear; left column) and relative differences (εclear/TCWVall; right column) of

the mean differences between clear-sky and all-sky ERA5 based on the OMI cloud information for winter (DJF; a & b), spring (MAM, c

& d), summer (JJA, e & f), and autumn (SON, g & h) for the time range January 2005 to December 2020. Grid cells for which no data is

available are coloured grey
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Figure 5. Distributions of the absolute differences (εsampling; Panel a) and relative differences (εsampling/TCWVtrue; Panel b) of the

monthly mean differences between clear-sky and all-sky ERA5 data based on the OMI cloud information. The solid and dashed orange line

indicate the mean and the median of the distributions, respectively.

Figure 6. Distributions of the absolute differences (εclear; Panel a) and relative differences (εclear/TCWVall; Panel b) of the monthly mean

differences between clear-sky and all-sky ERA5 data based on the OMI cloud information. The solid and dashed orange line indicate the

mean and the median of the distributions, respectively.

11



4 Intercomparison to existing water vapour climate data records

To evaluate the overall quality of the OMI TCWV data set, we conducted an intercomparison study for which we use the

merged, 1-degree total precipitable water (TPW) data set version 7 from Remote Sensing Systems (RSS) (Mears et al., 2015;

Wentz, 2015), TCWV data from the reanalysis model ERA5 (Hersbach et al., 2019, 2020), and the ESA Water_Vapour_CCI215

(WV_cci) climate data record CDR-2 as reference.

The RSS data set consists of merged geophysical ocean products whereby the values are retrieved from various passive satellite

microwave radiometers. These microwave radiometers have been intercalibrated at the brightness temperature level and the

ocean products have been produced using a consistent processing methodology for all sensors (more details in Wentz, 2015;

Mears et al., 2015). The major advantages of microwave TCVW retrievals are their high precision and accuracy and that220

they are insensitive to clouds, so that TCWV values can also be retrieved even under cloudy-sky conditions. A disadvantage,

however, is that these retrievals are (mostly) only available over the ocean surface.

Thus, we also compare the OMI TCWV data to the ESA WV_cci CDR-2. At the moment of preparation of this manuscript, the

CDR-2 is a beta-version of the combined microwave and near-infrared imager based TCWV data record (COMBI). The CDR

combines microwave and near-infrared imager based TCWV over the ice-free ocean as well as over land, coastal ocean and225

sea-ice, respectively. The data record relies on microwave observations from SSM/I, SSMIS, AMSR-E and TMI, partly based

on a fundamental climate data record (Fennig et al., 2020) and on near-infrared observations from MERIS, MODIS-Terra and

OLCI (Danne et al., 2022).

Within comparisons between different satellite data sets a major drawback is the influence of sampling errors due to different

observation times, pixel footprint sizes or orbit patterns. To minimise this source of error, data from reanalysis models are230

useful. ERA5 is the fifth generation ECMWF reanalysis (Hersbach et al., 2020) and combines model data with in situ and

remote sensing observations from various different measurement platforms. For our purpose, we use the "monthly averaged

reanalysis by hour of day" from the Copernicus Climate Data Store on a 1°× 1° grid. To account for OMI’s observation time

(around 13:30 LT), we first calculate the local time for each longitude in the ERA5 data set, then select the TCWV data for the

time period between 13:00-14:00 LT and finally merge the selected data.235

For the intercomparison, it is also important to consider that the reference data sets are not perfect or error-free and that the

comparisons across the different TCWV regimes are not consistent. Thus, we perform an orthogonal distance regression (ODR;

Cantrell, 2008) and a piece-wise linear regression (PWLF). In the case of the ODR it is necessary to use reasonable ratios of

the relative errors of the compared data sets instead of using absolute errors in order to obtain meaningful results. Mears et al.

(2015) found that the uncertainty of daily microwave TCWV observations for TCWV = 10 kg m−2 was around 1 kg m−2 and for240

TCWV = 60 kg m−2 around 2–4 kg m−2. Hence, we assume that the uncertainty of the RSS data set is 5% or at least 1 kg m−2.

For ERA5 and ESA CDR-2 we can assume similar uncertainties over ocean, since the TCWV values there are also mainly

based on microwave observations. Unfortunately, no uncertainties are provided for TCWV over land. Thus, for the sake of

simplicity, we assume that the relative errors of the reference data sets over land are twice as high as over ocean, i.e. 10% or

at least 2 kg m−2. For the OMI TCWV data set we assume an uncertainty of 20% (Borger et al., 2020), but at least 2 kg m−2.245
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We also tested other error assumptions and it turned out that the exact choice of errors is negligible for the regression results

as long as the ratio of uncertainties remains similar.

4.1 Intercomparison to RSS SSM/I

The results of the intercomparison between OMI and the RSS TCWV data set are summarized in Figure 7. Figure 7a depicts

the 2D histogram from the comparison between the monthly mean values from RSS and the OMI TCWV data set. The data is250

distributed closely along the 1-to-1 diagonal (black dashed line) and yields a correlation coefficient of R = 0.98. The results

of the orthogonal distance regression (ODR, red solid line) indicate an overall very good agreement with slopes of around

1.01. For the PWLF regression, similar results with a slope around 1.04 are obtained for TCWV values > 9.5 kg m−2, which

represents the vast majority of the comparison set (approximately 90%).Figure 7b illustrates the zonally averaged monthly

mean difference of OMI minus RSS TCWV within the latitude-time space. In general, the deviations between OMI and RSS255

are quite low with a positive bias of +1.0±1.5 kg m−2. Within the tropics (i.e. between −20 to 20 °N) we obtain a mean deviation

of +2.0±1.6 kg m−2 and in the extratropics values of +0.7±1.3 kg m−2. However, within the tropics, also distinctive periodic

patterns of positive deviations are observable.

Figure 8 shows the global mean TCWV difference between OMI and RSS SSM/I over the complete time period of the OMI

TCWV data set. Consistent with the findings from Fig. 7 highest positive deviations can be found in the tropical Pacific ocean260

and near the coastlines of South America, Africa, and Indonesia whereas strongest negative deviations are obtained around the

South Pacific convergence zone and East Siberian Sea. In the case of the tropical Pacific ocean the distribution of the systematic

positive deviations matches quite well regions of cold water or of the so called "cold tongue" which is frequently affected by

low clouds. Since the highest water vapour concentrations occur in the lower troposphere, small deviations of a few 100 m in

cloud height can have relatively large effects on the AMF. In the case of Central America or Atlantic ocean, a too low albedo265

due to additional absorption by phytoplankton (Kleipool et al., 2008) could explain the systematic positive deviations.

Additional comparisons taking into account only valid grid cells according to the "common-mask" from ESA WV_cci are

presented in Appendix B. This mask filters regions where no continuous time series of data is available or where the data are

affected by high uncertainties e.g. due to frequent cloud cover. Therefore only high quality measurements are compared to each

other. However, since mainly regions over land surface are affected, the comparisons with the filtered data are almost identical270

to the unfiltered data.

4.2 Intercomparison to ERA5

The results of the intercomparison to ERA5 are depicted in Figure 9. To investigate potential dependencies on the surface type,

we separated the data into data over ocean (Fig. 9a & b) and data over land (Fig. 9c & d). The intercomparison for data over

ocean reveals similar results as the intercomparison between OMI and RSS: the ODR results indicate a slight overestimation275

(slopes of around 1.03) together with a correlation coefficient close to unity (R of around 0.98). Moreover, the periodic pattern

of positive deviations in the tropics occurs again, with an overall small positive bias of +1.7±1.7 kg m−2, which increases to

+3.4±1.7 kg m−2 in the tropics (−20 to 20 °N) but is around +1.1±1.3 kg m−2 in the extratropics.
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Figure 7. Intercomparison between monthly mean TCWV from OMI and Remote Sensing Systems (RSS) merged SSM/I data set for data

over ocean. Panel (a) illustrates a 2D histogram in which the colour indicates the count density; the red solid line represents the results

of the orthogonal distance regression (ODR) and the solid black line the results of the piecewise linear regression (PWLF). The results of

the respective fits are given in the bottom right box and the correlation coefficient in the top left corner. The dashed black line indicates

the 1-to-1 diagonal. Panel (b) depicts the TCWV difference of OMI minus RSS within the latitude-time space; reddish colours indicate an

overestimation, blueish colours an underestimation of the OMI TCWV data set.

Figure 8. Global mean TCWV difference of OMI minus RSS SSM/I for the time range January 2005 until December 2020. Areas with no

valid values are coloured grey.

For data over land, the picture is different: although the ODR gives similar results for the slope as for data over ocean, the

distribution in the 2D histogram (Fig. 9c) shows particularly strong positive deviations of approximately +10 kg m−2 at high280

TCWV values and an overall systematic offset of around +1.43 kg m−2. Within the PWLF analysis we find a good agreement to

the reference data for TCWV values up to about 25 kg m−2 (which represents approximately 74% of all data points) with slopes

of around 0.96. However, for higher TCWV values we find distinctive positive overestimations of up to 24%. Nevertheless,
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even for low TCWV values a systematic offset of approximately +2.52 kg m−2 is obtained.

According to the corresponding latitude-time difference plot (Fig. 9d), the systematic positive deviation in the tropics is now285

much stronger with values around +6.2±3.4 kg m−2 (for latitudes < 20◦), however, in the extratropics the positive deviation is

around +1.7±1.2 kg m−2 on average and thus of similar magnitude as for the ocean comparisons. Closer inspection of the mean

TCWV difference between OMI and ERA5 (see Fig. 10) reveals that the strong deviations over the tropical landmasses mainly

occur in the regions that are affected by frequent cloud cover such as the Amazon basin, Central Africa and the maritime

continent.290

Hence, the reasons for the distinctive positive deviations with respect to ERA5 may arise from different causes. For the case of

the OMI TCWV retrieval two main uncertainty sources may cause the strong, systematic positive deviations: First, there is the

possibility that the used land surface albedo from Borger et al. (2020) is too low, leading to an underestimation of the AMF and

consequently to an overestimation of the H2O VCD. However, Borger et al. (2020) also showed that their modified albedo map

led to overall better results for the case of the TROPOMI TCWV retrieval. On the other hand, there may also be uncertainties295

in the retrieval input data of the cloud information from L2 NO2 product: If for example the surface albedo is underestimated

in the input of the cloud algorithm, this leads to an overestimation of the cloud top height and thus to an underestimation of

the AMF, and finally to an overestimation of the H2O VCD. For the case of ERA5, the frequent cloud cover can be also major

source of uncertainty, as only few satellite measurements (or none at all in the thermal infrared) are available due to the frequent

cloud contamination which might lead to clear-sky dry biases in the cloud-affected regions and increased uncertainties within300

the assimilation process due to the complex radiative transfer in cloudy scenarios (e.g. Li et al., 2016). Likewise, these remote

regions are affected by an overall sparseness in the observation density of in situ measurements, so the ERA5 TCWV values

are likely to be based mainly on modelled data. Overall, the strong positive deviation of the OMI TCWV data set thus likely

results from a combination of an overestimation of the OMI TCWV retrieval and an underestimation of the ERA5 data.

Thus, considering these large uncertainties in the OMI retrieval and that the uncertainties in ERA5 for data over tropical305

landmasses are not negligible anymore, we conclude that the OMI TCWV data set can well represent the global distribution of

the atmospheric water vapour content at least over ocean. Over land, however, the data set should be treated with caution due to

the systematic positive deviations from the reference data sets, especially in areas of high TCWV values (i.e. above 25 kg m−2).

An additional comparison in which particularly critical regions were filtered using the ESA WV_cci "common mask" (see

Fig. B1) is given in the Appendix B. When this mask is applied, only high quality measurements are taken into account for310

the intercomparison. As a result, the extreme overestimations are filtered out and the distribution in the 2D histogram for the

overland comparison improves considerably (see Fig. B3a). The slope of the ODR is now around 0.97, which is closer to the

results of the PWLF regression for TCWV < 25 kg m−2.

4.3 Intercomparison to ESA Water Vapour CCI climate data record

For the intercomparison with the ESA WV_cci climate data record CDR-2 we resampled the CDR from its native spatial315

resolution (0.5°× 0.5°) to the lattice of the OMI TCWV data set. Furthermore, though the CDR covers a time span from July

2002 to December 2017, we focus on the time period January 2005 to March 2016, as the CDR’s difference relative to ERA5
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Figure 9. Same as Fig. 7, but now with ERA5 data for data over ocean (top row) and for data over land (bottom row).

over land is only stable over the MERIS and MODIS period, i.e., from 2002 until March 2016 if looking at clear-sky data. For

the sake of completeness, the results for the comparison over the complete time range are depicted in the Appendix-Figures B4

and B5.320

Figure 11 summarizes the results of the intercomparison. Not surprisingly, the results for data over ocean (Fig. 11a) are similar

to the findings of the RSS SSM/I and ERA5 comparison as measurements from the same (or similar) sensors have been

considered: the ODR results indicate slight overestimations of around 2% with correlation coefficients of around 0.97 and

the time-latitude diagram indicates an average deviation of +1.3±1.8 kg m−2 (+2.5±1.9 kg m−2 in tropics, +0.8±1.5 kg m−2 in

extratropics). Similar to the intercomparison of ERA5, the intercomparison over land (Fig. 11c) shows roughly similar ODR fit325

results as over ocean, but here we also find striking positive deviations for high TCWV values and an overall positive offset of

2.41 kg m−2. Again, when applying a piecewise linear regression analysis we obtaingood agreement with slopes of around 0.95
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Figure 10. Same as Fig.8, but for ERA5.

for TCWV values to about 25 kg m−2 but still a distinctive positive offset of 3.73 kg m−2 for low TCWV values and distinctive

overestimations of up to 33% for higher TCWV values, which is even higher than for the comparison to ERA5. Consequently,

the systematic deviations are also much stronger (see. Fig. 11d) and reach values of around +7.3±3.6 kg m−2 in the tropics,330

around +2.8±1.4 kg m−2 in the extratropics, and a global average of +4.2±3.2 kg m−2. These even higher deviations compared

to the analysis with ERA5 could be due to the different observation times of the data sets: MERIS on Envisat and MODIS on

Terra have an overpass time of 10:00 LT and 10:30 LT, respectively, and follow a descending orbit, whereas OMI measures at

13:30 LT in an ascending orbit.

Overall, similar to the comparison to ERA5 the strongest positive deviations occur again over the tropical landmasses that are335

mostly affected by frequent cloud cover (see Fig. 12). However, we also observe systematic overestimations along coastlines

(e.g. Central America) and in some mountain regions (e.g. Himalaya) which eventually arise from sampling issues of the

different satellite products.

In Appendix B we present a comparison in which critical regions were filtered using the "common mask" from the ESA WV

CCI CDR. When this mask is applied, there are clear improvements for the comparison over land: the prominent overestimates340

at high TCWV values are filtered out and the distribution is now closer to the 1-1 diagonal (see Fig. B3b). For the ODR, the

slope is around 0.97, which agrees quite well with the slopes obtained for the PWLF regression for TCWV < 25 kg m−2.
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Figure 11. Same as Fig. 7, but now with ESA WV CCI CDR-2 data for data over ocean (top row) and for data over land (bottom row).

Figure 12. Same as Fig.8, but for ESA WV CCI CDR-2.
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5 Temporal stability

In addition to a good agreement to existing reference data sets, the temporal stability is an important property of a climate

data record. As the ESA WV_cci CDR data set only covers the time range up to December 2017, we focus on the comparison345

to the RSS SSM/I and ERA5 data sets as these two cover the complete time range of OMI TCWV data set. For the sake of

completeness, however, we also show the results for ESA WV_cci CDR.

To assess the stability of the OMI TCWV data set, we derive the global mean relative deviation ε for every time step:

ε=
mean(OMI−TCWVref)

mean(TCWVref)
(6)

and then calculate temporal trends of these deviations using ordinary linear least-squares regression following the approach350

of Danielczok and Schröder (2017) and Beirle et al. (2018) and assess the significance of the results based on a two-sided

Student’s t-test. For the calculation of global means only data points or grid cells are taken into account for which for every

time step data from the OMI TCWV and reference data set are available. In the case of the ESA WV_cci CDR a "common

mask" has been provided (see also Fig. B1).

Figure 13 illustrates the temporal variability of the relative differences of the OMI TCWV data set and RSS SSM/I, ERA5,355

and ESA WV_cci CDR for the time range January 2005 to March 2016 (blue dashed lines) and January 2005 to the end of the

respective data set (blue solid lines). For the time series until March 2016 we find trends of +0.78 % dec−1 for the comparison

to RSS SSM/I, +0.82 % dec−1 for the comparison to ERA5, and −1.00 % dec−1 for the comparison to the ESA data.

For the time series until the end of the reference data set we find trends of −0.08 % dec−1 for the comparison to RSS SSM/I

and −0.18 % dec−1 for the comparison to ERA5 and where these trends are not significantly different from 0 % dec−1. For the360

comparison to the ESA data there is a stronger trend (around −0.52 % dec−1) than for the other two data sets, however also the

time range is much shorter and does not cover the complete time range of the OMI TCWV data set. Altogether, the obtained

trends of the relative deviations are in line with typical stability requirements for climate data products of ±1 % dec−1 (see

e.g. Beirle et al. (2018) and references therein or the ESA WV_cci user requirements; https://climate.esa.int/media/documents/

Water_Vapour_cci_D1.1_URD_v3.0.pdf; last access: 26 July 2022).365

6 Summary

In this study, we present a long-term 16-year data record of total column water vapour (TCWV) retrieved from multiple years

of OMI observations in the visible blue spectral range by means of Differential Optical Absorption Spectroscopy. To derive

TCWV from OMI measurements, we applied the TCWV retrieval developed for TROPOMI (Borger et al., 2020) and modified

the spectral analysis to account for the degradation of OMI’s daily solar irradiance. Thus, annual Earthshine reference spectra370

were calculated from radiance measurements over Antarctica during December (austral summer).

The estimation of the sampling errors in the OMI TCWV data set results in average errors of about -10% (and -6% for the

median) and that the largest deviations occur mainly in the the mid-latitude storm tracks and polar regions. Further investiga-

tions show that the large deviations of the sampling error correlate well with the deviations of the clear-sky bias. However, the
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Figure 13. Stability analyses of the global mean relative deviations of the OMI TCWV data set with respect to the ERA5, ESA WV CCI

CDR-2, and RSS SSM/I. Red line: global mean relative deviation; blue line: results of linear regression; dotted black line: 25th and 75th

percentile, respectively. Dashed lines represent data for the time range from January 2005 to March 2016 and solid lines represent data for

the time range from January 2005 to the finish of the respective data set. The bias and RMS provided in the legends correspond to the time

seriues of the global mean deviation for the respective time range.

investigation of a seasonal effect of the clear-sky bias did not show any seasonal dependence. Considering the dominant role375

of the clear-sky bias on the sampling error, we conclude that the spatiotemporal sampling errors are rather negligible.

Within an intercomparison study, the OMI TCWV data set proves to be in good agreement to the reference data sets of RSS

SSM/I, ERA5, and the ESA WV_cci CDR-2 in particular over ocean surface. However, over land surface the OMI data set
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systematically overestimates high TCWV values compared to ERA5 and the ESA CDR by more than 24% especially in the

tropical regions affected by frequent cloud cover. The reasons for these overestimations are manifold, but likely due to an380

overestimation of the OMI TCWV retrieval due to uncertainties in the retrieval input data (surface albedo, cloud information)

on the one hand and an underestimation of the reference data due to missing or uncertain observations on the other hand. Nev-

ertheless, the validation also shows that for TCWV < 25 kg m−2 good agreement to the reference data can be obtained and also

for the case when regions of large uncertainty are filtered. Considering the temporal stability analysis no significant deviation

trends could be obtained with respect to ERA5 and RSS SSM/I which demonstrates that the OMI TCWV data set is well suited385

for climate studies.

Altogether, the OMI TCWV data set provides a promising basis for investigations of climate change: on the one hand, it covers

a long time series (more than 16 years and with measurements still in operation), and on the other hand, these measurements

are based on a single instrument, so that no bias corrections between different sensors need to be taken into account (e.g. in

trend analysis studies). Although OMI is affected by degradation effects, we were able to successfully suppress these effects by390

using Earthshine reference spectra. Furthermore, the data set is based on a retrieval in the visible blue spectral range, where a

similar sensitivity for the near-surface layers over ocean and land is given and thus a consistent global data set can be obtained

from measurements of only one sensor.

In the future, we plan to complement the data set with TCWV measurements from TROPOMI to ensure the continuation of the

data set after the end of the OMI mission. Since the TCWV retrieval can be easily applied to other UV-vis satellite instruments,395

additional data sets from other instruments from past and present missions such as GOME-1/2 and SCIAMACHY, but also to

future instruments such as Sentinel-5 on MetOp-SG can be created and eventually combined with the OMI TCWV data set

taking into account the different instrumental properties (e.g. observation time). This would allow the construction of a data

record that extends from 1995 to today. Similarly, a combination of data from low-earth orbit satellites and geostationary satel-

lite instruments such as GEMS, TEMPO or Sentinel-4 could be a promising option to fill temporal gaps in daily observations,400

but also to investigate (semi-) diurnal cycles of the water vapour distribution.

7 Data availability

The MPIC OMI total column water vapour (TCWV) climate data record is available at https://doi.org/10.5281/zenodo.5776718

(Borger et al., 2021).
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Appendix A: Irradiance based vs. Earthshine SCD

To reduce the across-track biases of the retrieved H2O SCDs based on a solar reference spectrum, a destriping algorithm can

be performed during post-processing. For instance, one way to destripe the swath of an OMI orbit is to415

1. calculate the median SCD for each OMI row along-track,

2. calculate the across-track median SCD from the along-track median SCDs,

3. calculate the deviation of the along-track median SCDs from this across-track median SCD,

4. subtract the deviation from the SCDs of the respective OMI row.

For the case of an Earthshine reference this is already implictly accounted for during the spectral analysis, however, one still420

has to consider that the Earthshine reference spectrum is not perfectly pristine of the trace gas of interest. For example in our

case, although the water vapour concentrations in Antarctica are very low, the Earthshine reference might still be contaminated

because of the long light path at such high solar zenith angles.

Figure A1 illustrates the time series of the global monthly mean H2O SCDs derived from the annual-mean solar irradiance (and

destriped following the aforementioned destriping process) and the Earthshine reference for SZA < 80°. Until 2009 the offset425

between both SCDs remains constant at values around 0.2× 1023 molec cm−2. Between 2009 and 2015 the irradiance based

SCDs first decrease and then increase distinctively compared to the Earthshine based SCDs and from 2015 onwards a strong

increase in the irradiance based SCDs can be observed. In contrast, the Earthshine SCDs show no jumps or steps and remain

at the same magnitude after 2015 and over the complete time range in general.

To get an overview of how the SCD difference (i.e. solar irradiance based minus Earthshine SCD) behaves with time over the430

complete OMI swath, Fig. A2 depicts the monthly mean SCD difference for each OMI row. Between 2005 and 2009 the SCD

differences remain quite constant for each row, however, after 2009 artefacts arise first at rows 55-60 and then start to expand to

other rows and become even stronger. This clearly illustrates that a OMI TCWV product based on a solar irradiance fit cannot

be used for trend analyses.
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Figure A1. Globally averaged monthly-mean of the destriped H2O SCDs derived from annual-mean solar irradiance and H2O SCDs derived

using the annual Earthshine reference from 2005 until 2020.

Figure A2. Global mean monthly averaged difference between annual-mean irradiance and Earthshine H2O SCD for each OMI row sepa-

rately. Only observations with a solar zenith angle < 80◦ and which are snow- and ice-free are included. Rows affected by the "row-anomaly"

(coloured in grey) are excluded for the complete time series.
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Appendix B: Intercomparisons taking into account the common mask from ESA WV_cci435

The intercomparison in Sect. 4 also considers regions for which only a small number of measurements are available, for exam-

ple due to frequent cloud cover or seasonality of the solar zenith angle. On the one hand the small sample size of measurements

leads to a higher statistical uncertainty with regard to the monthly mean, and on the other hand also to a non-continuous time

series when data are missing for the complete month. Moreover, the errors of the individual measurements are also significantly

larger in these regions. With the help of the "common-mask" of the ESA WV_cci CDR-2 (see Fig. B1), these regions can be440

identified and filtered for additional intercomparisons.

The results of the intercomparisons with the "filtered" data are shown in Fig. B2 for data over ocean and in Fig. B3 for data

over land. For all comparisons, the correlation coefficients remain at approximately a similar level (i.e. above 0.95) as for the

non-"filtered" comparisons. For the comparisons over ocean hardly any changes are obtained, as the filter is mainly applied

over land surfaces. However, there is a remarkable improvement for the comparison over land: although the fit results of the445

ODR change only slightly, the extreme overestimates at high TCWV values are now filtered out and the distributions are now

closer to the 1-1 diagonal. Overall, the results for the "filtered" comparison over land also agree very well with the results of

the piecewise linear regression, for which similar slope regression results were found for TCWV < 25 kg m−2.

Figure B1. "Common mask" of the ESA WV CCI CDR-2. Yellow grid cells indicate data points which are accounted for within a temporal

stability analysis. Invalid grid cells are coloured grey.

25



Figure B2. Correlation analysis of the OMI TCWV data set and RSS SSM/I, ERA5, the ESA WV CCI CDR-2 for data over ocean taking

into account only valid grid cells according to "common mask" in Figure B1.

Figure B3. Same as Fig. B2, but for data over land.
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Figure B4. Same as Fig. 11, but now with ESA WV CCI CDR-2 data for data over ocean (top row) and for data over land (bottom row) for

the complete time range.
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Figure B5. Same as Fig.12, but now for ESA WV CCI CDR data over the complete time range.
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Appendix C: Representativeness of row-anomaly filtered data in comparison to full swath

Due to the row anomaly filter, approximately 50% of the complete satellite swath of OMI is not considered in the TCWV450

data set. This raises the question of how much the monthly mean values would differ if the data of the complete swath were

available. To investigate this, we follow the same scheme as in Sect. 3 and use the same ERA5 data as a reference. We select

the ERA5 data to match the OMI overpass, once applying the row-anomaly filter and once not. However, in both cases the

clear-sky filter based on the OMI cloud information is applied (effective cloud fraction < 20%).

Figure C1. Global distributions of the mean differences between row-anomaly (RA) filtered and full swath ERA5 based on the OMI cloud

information for the time range January 2005 to December 2020. Panel (a) depicts the absolute differences (i.e. RA-filtered minus full swath)

and Panel (b) relative differences (i.e. (RA-filtered minus full swath) / full swath). Grid cells for which no data is available are coloured grey.

Figure C2. Distributions of the absolute differences (RA-filtered minus full swath; Panel a) and relative differences ((RA-filtered minus

full swath) / full swath; Panel b) of the monthly mean differences between RA-filtered and full swath ERA5 data based on the OMI cloud

information. The solid and dashred orange line indicate the mean and the median of the distributions, respectively.
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Compared to the clear-sky bias, the deviations are much weaker and no particular spatial patterns are discernible in the global455

distributions except in the deep Pacific tropics and parts of Southeast Asia (see Fig. C1). Furthermore, the histograms for the

absolute and relative deviations in Fig. C2 show a normal distribution for both cases with mean values of −0.30 kg m−2 and

-2.1% (and for the median −0.23 kg m−2 and -1.1%). Considering the much larger uncertainties of the OMI TCWV retrievals

of typically 20% and more and that the clear-sky bias is almost one order of magnitude larger, the obtained deviations are

negligible and thus the monthly means from the RA-filtered data are a good representation compared to the monthly means460

from the data for a full swath, even though only half of the satellite data is actually used.
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