
We would like to thank the referee for reviewing our manuscript. Below we reply to the 

issues raised by the referee, where  

blue repeats the reviewer's comments, 

black is used for our reply, 

and green italics is used for modified text and new text added to the manuscript. 

 

Review of manuscript essd-2021-319 entitled “A 16-year global climate data record of total 

column water vapour generated from OMI observations in the visible blue spectral range” by 

Christian Borger, Steffen Beirle, and Thomas Wagner. 

 

General comments 

 

This manuscript presents a total column water vapour (TCWV) data set derived from 16 

years of OMI observations. The retrieval method was developed in a previous publication 

(Borger et al., AMT, 2020). It has been slightly improved in order to meet the long term 

stability requirements for a climate data record. The manuscript describes briefly the 

modified aspects of the retrieval algorithm and gives additional details on the data quality 

control applied for this specific purpose. The latter seems to reject a significant fraction of the 

raw data, although this number is not indicated. Most of the manuscript is devoted to a 

comparison/validation analysis of the OMI TCWV results with respect to satellite microwave 

radiometer data (SSM/I), reanalysis data (ECMWF’s ERA5), and the ESA/CCI/CDR-2 water 

vapour product. The comparison results are fairly documented, including scatter plots, 

Hovmoeller diagrams and maps, although some synthetic statistics are missing (see the 

specific comments below). However, the conclusions sound far too optimistic to me, given 

the poor agreement found between the OMI data and the validation data. Especially, the large 

positive biases over land and near the coastlines in the tropics are striking and not sufficiently 

commented or explained. Two main reasons are hypothesized: too low land surface albedo 

and incorrect cloud information, both leading to an underestimation of the AMF. These paths 

should be further explored in order to achieved a more reliable product meeting the climate 

data quality requirements.  Although it is shown that the results are improved when a special 

could mask is used, this is only an artificial way to improve the quality of the product. 

 

Regarding the temporal stability, it is not clear how the significance of the global mean bias, 

RMSE, and trend differences are established. It seems to me that the numbers are beyond the 

limits usually required for water vapour climate data (e.g. an error of 0.1%/decade in the 

global mean TCWV trend represents nearly 20% of the signal). Moreover, the uncertainty 

due to different time and space sampling with the different reference products should also be 

quantified. 

Many thanks for pointing out the GCOS requirements! For our value of 1.0%/decade we have 

followed the User Requirements of the ESA CCI WV 

(https://climate.esa.int/media/documents/Water_Vapour_cci_D1.1_URD_v3.0.pdf). If we 

understand correctly, the value of 0.3%/decade in the GCOS document refers to radiosonde 

measurements or their WVMR measurements (see requirement tables in Appendix 1 of the 

GCOS document suggested below in the Specific Comments). Please also note that the 

requirement mentioned refers to the global mean. However, we are also interested in regional 

trends, which usually have significantly higher magnitudes. 

In addition, we determined the sampling error (and the clear-sky bias) and added the 

following text to the revised version: 

Although satellite observations enable the analysis of trace gas concentrations on global 

scale, a fundamental problem is that typically a satellite measurement is only taken once a 



day for one location. Furthermore, satellite measurements are usually only available under 

cloud-free conditions, especially in the visible or infrared spectral range and thus no 

continuous time series is guaranteed. Consequently, they cannot provide a complete picture 

of geophysical variability, which leads to sampling errors in the calculation of averaged 

values (e.g. monthly means). 

Moreover, the question arises to what extent the limitation to cloud-free pixels influences the 

monthly averages determined from the OMI satellite measurements, i.e. whether in the OMI 

TCWV data set a so-called "clear-sky bias" exists. Gaffen and Elliott (1993) investigated this 

bias using radiosonde ascents and found that the TCWV is about 0-15% lower under cloud-

free conditions than under cloudy conditions. Similarly, Sohn and Bennartz (2008) found a 

clear-sky bias between MERIS and AMSR-E of about 10%. 

To estimate the sampling errors, we follow the methods of Xue et al. (2019) and Gleisner et 

al. (2020): we choose hourly-resolved ERA5 data with a spatial resolution of 0.25°x 0.25° as 

reference data and collocate the ERA5 data with OMI overpass times. These data are then 

resampled to the 1°x1° resolution of the OMI TCWV data set and the monthly averages are 

calculated (TCWV_sampled). We then take the complete, original ERA5 data, resample it to 

the same spatial resolution and calculate monthly means from this data as well 

(TCWV_true). The difference between the two data sets then represents the sampling error: 

 

e_sampling = TCWV_sampled – TCWV_true (4) 

 

With this definition, the sampling error summarises the uncertainties due to gaps in the 

swath, temporal differences or missing data (e.g. due to clouds) (Xue et al., 2019).  

Figure 3 shows the annual mean absolute and relative sampling errors for the year 2006. 

Overall, it can be seen that most deviations are negative, i.e. the actual TCWV is 

underestimated. Regarding the absolute deviations, the strongest deviations can be seen in 

the area of storm-tracks in the mid-latitudes (e.g. North Atlantic) and the polar regions with 

values around -5 kg m-2. The smallest deviations are found in the quasi-permanent cloud-

free regions in the subtropics. As expected, the relative differences increase from the equator 

towards the poles due to the decreasing TCWV values and reach values stronger than -30%. 

 

 

 
Figure 3. Global distributions of the mean sampling errors derived from monthly mean 

sampling differences for the time range January 2005 to December 2020. Panel (a) depicts 

absolute sampling error (i.e. "sampling) and Panel (b) relative sampling error (i.e. 

"sampling=TCWVtrue). Grid cells for which no data is available are coloured grey. 

 

 



To investigate to what extent these deviations are related to the clear-sky bias, we proceed 

similarly to the calculation of the sampling error: we collocate the ERA5 data to the OMI 

overpass time and once apply a cloud filter (effective cloud fraction < 20%) and once not. 

Then we resample both data sets to 1°x 1° and calculate monthly means. The difference of 

both data sets then represents the clear-sky bias: 

 

e_clear = TCWV_clear – TCWV_all (5) 

 

To determine seasonal structures, the global distributions of the absolute and relative clear-

sky bias for the different seasons were determined from the monthly differences (see Fig. 4). 

Overall, the distributions of the clear-sky bias correspond very closely to the distributions of 

the sampling error, both in strength and in pattern. Moreover, the absolute and relative 

deviations show only slight changes between the different seasons. 

 

 
Figure 4. Global distributions of the absolute differences ("clear; left column) and relative 

differences ("clear=TCWVall; right column) of the monthly mean differences between clear-

sky and all-sky ERA5 based on the OMI cloud information for winter (DJF; a & b), spring 



(MAM, c & d), summer (JJA, e & f), and autumn (SON, g & h) for the time range January 

2005 to December 2020. Grid cells for which no data is available are coloured grey. 

 

 

Figures 5 and 6 summarize the sampling error and clear-sky bias distributions, respectively. 

For the sampling error we obtain a mean absolute deviation of -1.6 kg m-2 (median -1.4 kg 

m-2) and a mean relative deviation of -9.5% (-6.2%) and for the clear-sky bias we get a mean 

absolute deviation of -1.7 kg m-2 (median -1.3 kg m-2) and a mean relative deviation of -

10.0% (-6.0%). However, the distributions of the absolute and relative deviations for the 

sampling error and the clear-sky bias are highly left-skewed and thus the mean value in 

particular is influenced by the long tails of the distributions. Nevertheless, for the clear-sky 

bias the obtained values agree well with the findings of Gaffen and Elliott (1993) and Sohn 

and Bennartz (2008). Since the effect of the clear-sky bias is already included in the sampling 

error and the results for both errors are very similar, it can be assumed that the spatial and 

temporal sampling errors play only a minor or negligible role compared to the clear-sky 

bias. 

 

 
Figure 5. Distributions of the absolute differences ("sampling; Panel a) and relative 

differences ("sampling=TCWVtrue; Panel b) of the monthly mean differences between clear-

sky and all-sky ERA5 data based on the OMI cloud information. The solid and dashed orange 

line indicate the mean and the median of the distributions, respectively. 

 

 



 
Figure 6. Distributions of the absolute differences ("clear; Panel a) and relative differences 

("clear=TCWVall; Panel b) of the monthly mean differences between clear-sky and all-sky 

ERA5 data based on the OMI cloud information. The solid and dashed orange line indicate 

the mean and the median of the distributions, respectively.  

 

 

In addition to the sampling error and the clear-sky bias, we also examined in Appendix C to 

what extent the monthly means would change if no RA-filter is applied, i.e. if all data of the 

complete OMI swath were available. It turns out that although deviations arise due to the 

RA-filter, these deviations are almost an order of magnitude smaller than those of the clear-

sky bias and the global distribution of the deviations is mostly noisy. Due to this small 

influence of the RA-filter, we conclude that the filtered OMI TCWV data are a good 

representation of the actual TCWV values. 

 

Moreover, we also investigated trends in the clear-sky bias (which has the largest impact on 

the sampling error) and obtained absolute trends between +-0.04 kg/m^2 per year (and -

0.002kg/m^2 per year on global average), which is one order of magnitude smaller than 

typical TCWV trends (see e.g. Borger et al., 2022). 

 

 

In conclusion, it is my feeling that the proposed data set has significant defects that are not 

well understood. I recommend first a more insightful analysis of the error sources, especially 

over land and, if possible, the elaboration of an improved version of the data set, and second, 

a more  comprehensive discussion of the validation results in a revised version of the 

manuscript. 

 

Specific comments 

 

More should be said about the “row anomaly” which affects the OMI observations 

throughout almost the whole period analysed in this paper. Figure A2 shows that a large 

fraction of “rows” are discarded. Is it sufficient to discard these rows or could adjacent rows 

also be affected in some way? What is the impact of this screening on the representativeness 

of the final observations? 

The row anomaly is a dynamic artefact and initially spread from a few isolated rows over a 

large area of the detector, affecting about 50% of the swath. However, it is observed that it 

seems to have stabilised or not changed much for a few years (see e.g. Figure 22 in 



Schenkeveld et al., 2017). Based on the daily monitoring of the instrument and the rigid row-

anomaly screening, we can therefore at least assume that we are filtering the very largest part 

of the row anomaly to the best of our knowledge, although we cannot say one hundred 

percent that other rows are slightly affected.  

We investigated the extent to which the monthly means would change if the full swath had 

been taken into account and concluded that the impact is almost an order of magnitude 

smaller than other uncertainties (e.g. clear-sky bias). The following section is added to the 

appendix: 

Due to the row anomaly filter, approximately 50% of the complete satellite swath of OMI is 

not considered in the TCWV data set. This raises the question of how much the monthly mean 

values would differ if the data of the complete swath were available. To investigate this, we 

follow the same scheme as in Sect. 3 and use the same ERA5 data as a reference. We select 

the ERA5 data to match the OMI overpass, once applying the row-anomaly filter and once 

not. However, in both cases the clear-sky filter based on the OMI cloud information is 

applied (effective cloud fraction < 20%). 

Compared to the clear-sky bias, the deviations are much weaker and no particular spatial 

patterns are discernible in the global distributions except in the deep Pacific tropics and 

parts of Southeast Asia (see Fig. C1). Furthermore, the histograms for the absolute and 

relative deviations in Fig. C2 show a normal distribution for both cases with mean values of -

0.30 kg m-2 and -2.1% (and for the median -0.23 kg m-2 and -1.1%). Considering the much 

larger uncertainties of the OMI TCWV retrievals of typically 20% and more and that the 

clear-sky bias is almost one order of magnitude larger, the obtained deviations are negligible 

and thus the monthly means from the RA-filtered data are a good representation compared to 

the monthly means from the data for a full swath, even though only half of the satellite data is 

actually used. 

 

 
Figure C1. Global distributions of the monthly mean differences between row-anomaly (RA) 

filtered and full swath ERA5 based on the OMI cloud information for the time range January 

2005 to December 2020. Panel (a)  depicts absolute differences (i.e. RA-filtered minus full 

swath) and Panel (b) relative differences (i.e. (RA-filtered minus full swath) / full swath). 

Grid cells for which no data is available are coloured grey. 

 



 
Figure C2. Distributions of the absolute differences (RA-filtered minus full swath; Panel a) 

and relative differences ((RA-filtered minus full swath) / full swath; Panel b) of the monthly 

mean differences between RA-filtered and full swath ERA5 data based on the OMI cloud 

information. The solid and dashed orange line indicate the mean and the median of the 

distributions, respectively. 

 

So, although about 50% of the orbit is missing, this still covers a swath of about 1300km and 

is thus still larger than the swaths of GOME-1, SCIAMACHY or GOME-2A (all around 

960km) or in the order of magnitude of SSMI (about 1394km). Thus, OMI still achieves a 

complete coverage of the Earth about every 2-3 days, which should provide enough 

observational data for a good representativeness in the case of a monthly mean (see also the 

good agreement with the reference data). 

We added this information to the revised manuscript: 

So while about 50% of the orbit is missing because of the RA-filter, the remaining data still 

cover an “effective” swath of about 1300 km and is thus still larger than the swaths of 

GOME-1, SCIAMACHY, or GOME-2A (all about 1300 km) or of the order of SSM/I (about 

1394 km). Thus, OMI still achieves complete coverage of the Earth about every 2-3 days, 

which should provide enough observational data for good representativeness in case of a 

monthly mean (see also Appendix C and the good agreement to the reference data in Sect. 4). 

 

Why are two regression methods (OLS and ODR) used? In principle, a single statistic is 

sufficient, unless the difference of results from the two are discussed, but this is not done in 

this manuscript. I suggest either to choose one or to better justify the choice of two and 

analyse the obtained differences. 

We decided to use only the ODR, but also to show the results of the PWLF regression in the 

scatterplots instead. 

 

L77: replace “I and I0” by “I0 and I” 

We replaced the terms accordingly. 

 

L129: define also Delta_SCD 

We have added that Delta_SCD is the offset between Earthshine and normal SCD. 

 

L144: indicate which fraction of raw data is remaining 

If we only take the data that is already filtered according to the row anomaly as a basis, 

approx. 30% remains. If we take all the data of an orbit as a basis, approx. 12% remain. 



However, this also includes pixels above the polar regions for which a spectral analysis is not 

possible or does not make sense due to the high noise. 

We added the following text: 

In total, this leaves about 30% of data from an RA-filtered orbit and about 12% of data from 

a complete orbit. 

 

 

L154: “ESA Water Vapour CCI climate data record CDR-2” needs a reference 

At the moment, no reference for the data set is available yet. 

 

L154: “For the correlation analysis” is misleading or incorrect if referring to regression 

analysis. Please reword (e.g. For the intercomparison...) 

We have changed the phrase accordingly. 

 

L155: add a reference for the ODR method 

We have added Cantrell (2008) as a reference. 

 

L155-156: “In the case of the ODR it is necessary to use reasonable ratios of the relative 

errors of the compared data sets instead of using absolute errors in order to obtain meaningful 

results”. This statement needs to be justified by an adequate explanation or reference. 

Based on the descriptions of Cantrell (2008), one sees in equation (5) in his paper that the 

slope depends on a parameter W_i, which relates the uncertainties w_x and w_y of x and y to 

each other (see formula below).  

 

 
 

In the case that the error in y is significantly larger than in x, the ODR approaches ordinary 

linear regression. 

 

Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and 

application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, 

https://doi.org/10.5194/acp-8-5477-2008, 2008. 

 

L156-159:  these sentences sound in contradiction with the previous statement. Moreover, the 

sensitivity of the regression results to the relative errors should be discussed in more detail 

(e.g. in an Appendix) and the choice of 5%, 10%, and 20% for the three dataset (which 

appear quite arbitrary) should be clearly motivated/discussed. 

To motivate our choice, we have added the following text to the revised version: 

Mears et al. (2015) found that the uncertainty of daily microwave TCWV observations for 

TCWV=10 kg m-2 was around 1 kg m-2 and for TCWV = 60 kg m-2 around 2-4 kg m-2. 

Hence, we assume that the uncertainty of the RSS data set is 5% or at least 1 kgm−2. For 



ERA5 and ESA CDR-2 we can assume similar uncertainties over ocean, since the TCWV 

values there are also mainly based on microwave observations. Unfortunately, no 

uncertainties are provided for TCWV over land. Thus, for the sake of simplicity, we assume 

that the relative errors of the reference data sets over land are twice as high as over ocean, 

i.e. 10% or at least 2 kg m-2. For the OMI TCWV data set we assume an uncertainty of 20% 

(Borger et al., 2020), but at least 2kg m-2. We also tested other error assumptions and it 

turned out that the exact choice of errors is negligible for the regression results as long as 

the ratio of uncertainties remains similar. 

 

L169-171: “In general the deviations are quite low with values between +/- 2.5 kg/m2” be 

more specific in quantifying the differences here, e.g. indicate which fraction of data lie in the 

range of +/-2.5 kg/m2, or use quantiles or other statistics (mean, standard deviation, etc.). 

Note also that the correlation coefficient is not much relevant when the seasonal variations 

are included.  

We added the information of the mean bias together with the standard deviation for the 

comparison to every data set and also provide this information for the tropics (-20°N – 20°N) 

and for the extratropics. 

With regard to the correlation coefficient, we cannot fully agree, as it includes spatial 

variation in addition to temporal variation: namely, if we reverse the latitudes, we only obtain 

a correlation of R=0.63 for RSS and R=0.45 for ERA5 over land. 

 

L173-178: Be more quantitative again, here in the comments on Fig. 4. I would also suggest 

to include the coastlines of Africa and Indonesia in the list of regions with significant positive 

deviations. 

As mentioned above, we now provide the mean bias and the standard deviation. Moreover, 

we rephrased the sentence: 

Consistent with the findings from Fig. 7 highest positive deviations can be found in the 

tropical Pacific ocean and near the coastlines of South America, Africa, and Indonesia 

whereas […] 

 

L176: Be more specific on the impact of the “cold tongue” and “too low albedo” on the 

observed deviations. 

The area of the "cold tongue" is often affected by low maritime clouds (cloud top height at 

approx. 1km). Since the highest water vapour concentration are found in the lower 

troposphere or boundary layer, deviations in the AMF of the order of 10% can occur even 

with slightly deviating cloud heights of a few 100m.  

In the area of Central America and the west coast of Africa, the albedo is influenced by the 

absorption by phytoplankton (Kleipool et al., 2008), which may not have been optimally 

corrected during the creation of the LER or ensures that already low albedo values can lead to 

further small deviations, which are then again large in relative terms (e.g. with albedo values 

of 0.05 to 0.04).   

We rephrased the text as follows: 

In the case of the tropical Pacific ocean the distribution of the systematic positive deviations 

matches quite well regions of cold water or of the so called "cold tongue" which is frequently 

affected by low clouds. Since the highest water vapour concentrations occur in the lower 

troposphere, small deviations of a few 100m in cloud height can have relatively large effects 

on the AMF. In the case of Central America or Atlantic ocean, a too low albedo due to 

additional absorption by phytoplankton (Kleipool et al., 2008) could explain the systematic 

positive deviations. 

 



L182: “the slight overestimation of 3-5%”: it is not clear what these numbers represent 

exactly. Is it a mean difference (bias)? Is it computed over all data or only a fraction? (Note 

that a slope of 1.03 does not mean that all the values are 3% higher, this depends also on the 

intercept value). 

Many thanks for this hint! Indeed, we have not expressed our approach clearly enough. By 3-

5% overestimation, we are referring to the slope of the fit line. Regarding the y-axis intercept, 

we will explicitly mention it if it is larger than the minimum assumed uncertainty (1kg over 

ocean, 2kg over land). For the ocean comparisons, the offsets are less than +-0.25kg/m^2, so 

they are negligible and thus the slope is sufficient as the sole indicator of over- or 

underestimation. For the comparisons for the data over land, however, they are systematically 

higher than the minimum uncertainty, so we have revised the text of the respective 

comparisons: 

For data over land, the picture is different: although the ODR gives similar results for the 

slope as for data over ocean, the distribution in the 2D histogram (Fig. 9c) shows 

particularly strong positive deviations of approximately +10 kg m−2 at high TCWV values 

and an overall systematic offset of around +1.43 kg m−2.Within the PWLF analysis we find a 

good agreement to the reference data for TCWV values up to about 25 kg m−2 (which 

represents approximately 74% of all data points) with slopes of around 0.96. However, for 

higher TCWV values we find distinctive positive overestimations of up to 24%. Nevertheless, 

even for low TCWV values a systematic offset of approximately +2.52 kg m−2 is obtained. 

[…] 

Similar to the intercomparison of ERA5, the intercomparison over land (Fig. 11c) shows 

roughly similar ODR fit results as over ocean, but here we also find striking positive 

deviations for high TCWV values and an overall positive offset of 2.41 kg m−2. Again, when 

applying a piecewise linear regression analysis we obtain good agreement with slopes of 

around 0.95 for TCWV values to about 25 kgm−2 but still a distinctive positive offset of 3.73 

kg m−2 for low TCWV values and distinctive overestimations of up to 33% for higher TCWV 

values, which is even higher than for the comparison to ERA5. 

 

 

L194: how is the change-point at 26 kg/m2 selected in the piecewise linear regression? 

The change point is automatically determined by a non-linear least-squares fit. 

 

L210: satellite measurements in the thermal infrared are NOT available/reliable in cloudy 

conditions. 

We have reworded the sentence as follows: 

[…] satellite measurements (or none at all in the thermal infrared) […] 

 

L209-215: I’m not convinced that the ERA5 uncertainty over tropical land areas contributes 

much to the huge bias observed in the differences (above 10 kg/m2). This idea should be 

further documented or discarded (also in the Conclusion). 

The regions in question are highly affected by quasi-permanent cloud cover, so observations 

are systematically missing and there may be a clear-sky bias, which can be in the order of a 

few kg/m^2 (see also Sect. 3 in the revised manuscript). And even if radiances are assimilated 

into cloudy-sky scenarios, their uncertainty is still large, as the radiative transfer of cloudy 

pixels is highly complex (e.g. Li et al., 2016). Especially even in the ESA WV_cci CDR 

these regions are flagged, although MODIS should have enough observations available for 

good statistics. We conclude that the large deviations in the tropics cannot, of course, be 

completely attributed to the uncertainties in ERA5, but they are not so small as to be 

negligible either. 



 

Li, J., Wang, P., Han, H. et al. On the assimilation of satellite sounder data in cloudy skies in 

numerical weather prediction models. J Meteorol Res 30, 169–182 (2016). 

https://doi.org/10.1007/s13351-016-5114-2 

 

 

L227: is there any update on the publication of the ESA CDR-2 data set? 

To the best of our knowledge, no publication is available at the moment. 

 

L225-254: Similar comments as for ERA5 apply here to the CDR-2 comparison (lack of 

statistics, etc.). 

See comment above about added statistics. 

 

L261: More details are needed on the linear regression method and significance tests. 

For the analysis, we use an ordinary least-squares fit, with the significance test or p-value 

based on a two-sided Students t-test (see also 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html). We added 

this information in the revised manuscript as follows: 

[…] and then calculate temporal trends of these deviations using linear ordinary linear least-

squares regression following the approach of Danielczok and Schröder (2017) and Beirle et 

al. (2018) and assess the significance of the results based on a two-sided Student’s t-test. 

 

L274: The stability requirement for water vapour climate data is rather at the level of 0.3 

%/decade (GCOS – 112, April 2007). 

See comment above in the General Comments section. 

 

Figure 3: the fit results would be more understandable if given as an equation: y = 1.03 x + 

0.18 rather than just two numbers. 

We have changed the legends in the figures accordingly. 

 

Figure 3: indicate that the OMI results here are over ocean (it is only obvious if one knows 

that SSM/I data over only over the oceans). 

We added in the Figure caption that the results correspond to data over ocean. 

 

Figure 4: add the piecewise linear regression lines (mentioned L194) on the plot. 

We have added information of the PWLF regression results in all relevant figures. 

 

Figure 9: the red dashed lines are not visible in the plots. 

We revised Figure 9 and removed the dashed red lines. 


