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Abstract.

The COVID-19 (COronaVIrus Disease 2019) pandemic provided the unique opportunity to evaluate the role of a sudden

and deep decline in air pollutant emissions in the ambient air
::::::
Having

:
a
:::::::::
prediction

::::::
model

::
for

:::
air

::::::
quality

::
at

:
a
::::
low

::::::::::::
computational

:::
cost

::::
can

:::
be

:::::
useful

:::
for

::::::::
research,

:::::::::::
forecasting,

:::::::::
regulatory,

::::
and

:::::::::
monitoring

:::::::::::
applications.

:::::
This

::
is

::
of

:::::::::
particular

::::::::::
importance

:::
for

::::
Latin

::::::::
America,

::::::
where

:::::
rapid

::::::::::
urbanization

::::
has

:::::::
imposed

:::
an

:::::::::
increasing

:::::
stress

:::
on

:::
the

:::
air

::::::
quality

::
of
:::::::

almost
::
all

::::::
cities.

::
In

::::::
recent5

:::::
years,

:::::::
machine

:::::::
learning

:::::::::
techniques

::::
are

:::::
being

::::::::::
increasingly

::::::::
accepted

::
as

:
a
::::::

useful
::::
tool

:::
for

::
air

:::::::
quality

::::::::::
forecasting.

:::
Out

::
of
::::::

these,

:::::::
Random

:::::
Forest

::::
has

::::::
proven

::
to

::
be

:::
an

::::::::
approach

:::
that

::
is

::::
both

::::::::::::::
well-performing

:::
and

::::::::::::::
computationally

:::::::
efficient

:::::
while

:::
still

:::::::::
providing

:::
key

::::::::::
components

:::::::::
reflecting

:::
the

:::::::::
non-linear

::::::::::
relationship

::::::
among

:::::::::
emissions,

::::::::
chemical

::::::::
reactions,

::::
and

:::::::::::::
meteorological

::::::
effects.

:::
In

:::
this

:::::
work,

:::
we

:::::::::
employed

:::
the

::::::::
Random

::::::
Forest

:::::::::::
methodology

::
to

:::::
build

::::
and

:::
test

::
a
::::::::::
forecasting

:::::
model

::::
for

:::
the

::::
city of numerous

citiesworldwide. Argentina, in general, and the Metropolitan Area of Buenos Aires(MABA) , in particular, were under strict10

control measures from March to May 2020. Private vehicle restrictions were intense, and primary pollutant concentrations

decreased substantially. To quantify .
:::
We

:::::
used

:::
this

::::::
model

::
to

:::::
study

:::
the

:::::
deep

::::::
decline

::
in

:::::
most

::::::::
pollutants

::::::
during

:::
the

:::::::::
lockdown

:::::::
imposed

::
by

:::
the

::::::::::
COVID-19

::::::::::::
(COronaVIrus

::::::
Disease

::::::
2019)

::::::::
pandemic,

:::
by

::::::::
analyzing

:::
the

::::::
effects

::
of

:::
the

::::::
change

::
in
:::::::::
emissions

:::::
while

:::::
taking

::::
into

::::::
account

:::
the

:::::::
changes

::
in

:::
the

:::::::::::
meteorology,

:::::
using

::::
two

:::::::
different

::::::::::
approaches.

:::::
First,

::::
built

:::::::
Random

:::::
Forest

:::::::
models

::::::
trained

::::
with

:::
the

::::
data

::::
from

::::::
before

:::
the

::::::::
beginning

:::
of

:::
the

::::::::::
lockdowns.

:::
We

::::
used

::
it

::
to

:::::
make

:::::::::
predictions

:::
of

:::
the

::::::::::::::
business-as-usual

::::::::
scenario15

:::::
during

:::
the

::::::::::
lockdowns,

:::
and

:::::::::
estimated the changes in , , , , and concentrations under the stay-at-home orders imposed against

COVID-19, we compared the observationsduring the different lockdown phases with both observations during the same period

in
::::::::::::
concentrations

:::
by

:::::::::
comparing

:::
the

::::::
model

::::::
results

::::
with

:::
the

:::::::::::
observations.

::::
This

:::::::
allowed

:::
us

::
to

::::::
assess

:::
the

::::::::
combined

::::::
effects

:::
of

::
the

:::::::::
particular

:::::::
weather

:::::::::
conditions

:::
and

:::
the

:::::::::
reduction

::
in

::::::::
emissions

::::::
during

:::
the

::::::
period

:::::
when

::::::::::
restrictions

::::
were

::
in

::::::
place.

:::::::
Second,

::
we

:::::
used

:::::::
Random

::::::
Forest

::::
with

:::::::::::::
meteorological

::::::::::::
normalization

::
to

::::::::
compare

:::
the

::::::::::::
observational

::::
data

::::
from

:::
the

:::::::::
lockdown

:::::::
periods20

::::
with

:::
the

::::
data

:::::
from

:::
the

:::::
same

:::::
dates

::
of

:
2019and concentrations that would have occurred under a business-as-usual (BAU)

scenario under no restrictions . We employed a Random Forest (RF) algorithm to estimate the BAU concentration levels. This

1



approach exhibited a high predictive performance based on only a handful of available indicators (meteorological variables,

air quality concentrationsand emission temporal variations) at a low computational cost. Results
:
,
:::::::::
decoupling

:::
the

::::::
effects

::
of

:::
the

::::::::::
meteorology

:::::
from

::::::::
short-term

::::::::
emission

::::::::
changes.

::::
This

::::::
allowed

:::
us

::
to

::::::
analyze

:::
the

:::::::
general

:::::
effect

:::
that

::::::::::
restrictions

::::::
similar

::
to

:::::
those25

:::::::
imposed

:::::
during

:::
the

:::::::::
pandemic

::::
could

:::::
have

::
on

::::::::
pollutant

::::::::::::
concentrations,

::::
and

:::
that

::::::::::
information

:::::
could

::
be

:::::
useful

::
to
::::::
design

:::::::::
mitigation

::::::::
strategies.

:

:::
The

::::::
results during testing showed that the model captured the observed daily

:::::
hourly

:
variations and the diurnal cycles of these

pollutants with a normalized mean bias (NMB) of less than 11
:
6% and Pearson correlation coefficients of the diurnal variations

of between 0.65 and 0.89
::::
0.64

:::
and

::::
0.91

:
for all the pollutants considered. Based on the Random Forest results, we estimated that30

the lockdown implied concentration decreases
::::::
relative

:::::::
changes

::
in

::::::::::::
concentration of up to 47% (CO), 60% () and 36% (

:::::
-45%

::
for

:
CO,

:::::
-75%

:::
for

:
NO,

:::::
-46%

:::
for

:
NO2,

:::::
-12%

:::
for

:
SO2 :::

and
:::::
-33%

:::
for PM10 ) during the strictest mobility restrictions. Higher

O3 concentrations
::
had

::
a
:::::::
positive

:::::::
relative

::::::
change

::
in
::::::::::::

concentration
:
(up to 87%)were also observed, which

::
an

::::::
80%),

::::
that is

consistent with the response in a VOC-limited chemical regime to the decline in NOx emissions. Relative changes with respect

to the 2019 observations were consistent with those estimated with
:::
The

:::::::
relative

:::::::
changes

::::::::
estimated

:::::
using

:::
the

:::::::::::::
meteorological35

:::::::::::
normalization

::::::::
technique

:::::
show

::::::
mostly

::::::
smaller

:::::::
changes

::::
than

:::::
those

:::::::
obtained

:::
by the Random Forest model

::::::::
predictive

::::::
model.

::::
The

::::::
relative

:::::::
changes

::::
were

:::
up

::
to

:::::
-26%

:::
for

::::
CO,

:::
up

::
to

:::::
-47%

:::
for

::::
NO,

:::::
-36%

::
for

:
NO2, but indicated that larger decreases in primary

pollutants and lower increases in
::::
-20%

:::
for PM10:::

and
:::
up

::
to

::::
27%

:::
for O3would have occurred.

:
. SO2::

is
:::
the

::::
only

::::::
species

:::
that

::::
had

:
a
:::::
larger

::::::
relative

:::::::
change

::::
when

:::
the

:::::::::::
meteorology

::
is

::::::::::
normalized,

::
up

::
to

:::::
20%. This points out to the need of

::
the

:::::
need

::
for

:
accounting

not only for the differences in emissions, but also in meteorological variables
::
in

:::::
order

:
to evaluate the lockdown effects on40

air quality. The findings of this study may be valuable for formulating emission control strategies that do not disregard their

implication on secondary pollutants. The data set used in this study and an introductory machine learning code are
:::
We

::::::
believe

:::
that

:::
the

::::::
model

::::
itself

::::
can

:::
also

:::
be

:
a
::::::::
valuable

::::::::::
contribution

::
to

:
a
::::::::::
forecasting

::::::
system

::
in

:::
the

::::
city,

::::
and

:::
that

:::
the

:::::::
general

:::::::::::
methodology

::::
could

::::
also

::
be

:::::
easily

:::::::
applied

::
in

::::
other

:::::
Latin

::::::::
American

:::::
cities

::
as

::::
well.

:::
We

::::
also

::::::
provide

:::
the

::::
first O3 :::

and SO2 :::::::::::
observational

::::::
dataset

::
in

::::
more

::::
that

:
a
::::::
decade

:::
for

:
a
:::::::::
residential

::::
area

::
in

::::::
Buenos

:::::
Aires,

:
openly available at https://data.mendeley.com/datasets/h9y4hb8sf8/145

(Diaz Resquin et al., 2021).

1 Introduction

In recent times, Machine learning has proved
:::::::
machine

:::::::
learning

:::
has

:::::
been

::::::
proven to be an efficient approach to

::
for

:
air quality

prediction , by relying on historical data to estimate the temporal variability of different pollutants for a specific site at a low

computational cost. Also, this kind of model has the ability to unravel underlying patterns in data and deal with complex50

interactions among predictive variables (Stafoggia et al., 2020).

During the last decade, Random Forest (RF)
::::::
random

:::::
forest

:
rose as a new method for the prediction of mean values of

atmospheric pollutants (Yu et al., 2016; Feng et al., 2019; Jiang and Riley, 2015). This is a supervised machine learning

method, consisting of applying multiple tree classifiers created at random using bagging (i. e., selecting samples stochasti-

cally to create new datasets, of which every classification tree is created).
:::
RF

:::::::
requires

:
a
:::::

short
:::::::
training

::::
time

::::
and

:::
can

:::::::
provide55
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::::::
reliable

::::::::::
information

:::
on

:::
air

::::::
quality,

:::::
with

:
a
::::::
strong

:::::::::::::
anti-overfitting

:::::
ability

:::::::::::::::
(Liu et al., 2021).

:
Many data science programming

languages have libraries where RF
::::::
random

:::::
forest

:
is already efficiently implemented (e. g., scikit-learn in Python

or randomForest in R). RF
:::::::
Random

:::::
forest

:
is faster and cheaper than other available models, such as regional chemi-

cal transport models (CTMs),
:

in terms of computation costs, it needs less input variables and it is a useful method when

information on air pollutant concentrations at a particular site is needed. According to Masih (2019), machine learning60

techniques may even provide better forecasting than CTMs , and
:::
and,

:
out of the different existing algorithms, RF

::::::
random

:::::
forest seems to stand out due to its simplicity and the quality of its results. ,

::::::
which

:::
can

:::::::
account

:::
for

:::::::::
non-linear

:::::::::::
relationships

:::::::
between

:::::::::
emissions,

::::::::
chemical

::::::::
reactions,

::::
and

:::::::::::::
meteorological

::::::
effects.

:::::
With

:::::::
respect

::
to

::::::::
complex

:::::::
reactive

:::::::
species,

:::
the

:::::::
random

:::::
forest

::::::
method

::::
has

:::
also

:::::
been

::::::::::
successfully

:::::
used

::
to

:::::
assess

:
O3 :::::

levels.
::::

For
:::::::
example

::::::::::::::::::::::::::
Zhan et al. (2018) satisfactorily

:::::::
applied

:::
the

::::::
random

:::::
forest

:::::::
method

::
to
:::::::

predict
:::::::::::::
spatio-temporal

:::::::::
variability

::
of

:::::
daily

:
O3 ::::::::::::

concentrations
:::::
across

::::::
China

:::::
using

::::::::::
information

:::
on65

::::::::::
meteorology,

::::::::
elevation

::::
and

::::::::
emission

:::::::::
inventories.

:
One of the most recent applications of machine learning methods has been

aimed at elucidating the interlinkage among the COVID-19 pandemic lockdown measures, human mobility and air quality

(Rahman et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Rahman et al., 2021; Velders et al., 2021; Yang et al., 2021).

The outbreak of the COVID-19 pandemic at the end of 2019, with its devastating consequences in terms of loss of life

and economic impact, has caused many governments around the world to impose different degrees of lockdown. For atmo-70

spheric scientists, it has also provided a unique opportunity to examine changes in air pollution under decreased emission

levels, in
::::
what

:::::::::::::::::::::::
Gaubert et al. (2021) called

:
an unintentional worldwide experiment. Many studies have, in general, iden-

tified significant decreases of most pollutants, except for O3, under the stay-at-home orders imposed against COVID-19

(Muhammad et al., 2020; Faridi et al., 2021; Srivastava, 2021; Grange et al., 2021).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Muhammad et al., 2020; Faridi et al., 2021; Srivastava, 2021; Grange et al., 2021; Yang et al., 2021).

:::::
These

::::::
drastic

::::::
changes

::
in
::::::::::::
anthropogenic

:::::::::
emissions

::
are

::
of
::::::
major

::::::
interest

::
to

:::::::
enhance

:::
our

::::::::::::
understanding

::
of

:::
the

::::::::
chemistry

::::::
related

::
to75

::
air

:::::::
quality,

:::::::::
particularly

:::::
when

:::
the

::::::::
behavior

::
of

::::::::
secondary

:::::::::
pollutants,

::::
like

:::::
ozone

:
(O3)

:::
or

::::::::::
components

::
of

:::::::::
particulate

:::::
matter

::::::
(PM),

:
is
::::::::
explored

::::::::::::::::::
(Gaubert et al., 2021). O3,

::
in

:::::::::
particular,

:::
has

:
a
::::::::
complex

:::::::
behavior

:::::::::
depending

::
on

:::::::
multiple

:::::::
factors.

:::::::
Nitrogen

:::::::::
monoxide

:
(NO)

::::
and

:::::::
nitrogen

::::::
dioxide

::
(NO2)

:::::::
conform

:
NOx,

::::
that

:::::::
together

::::
with

::::::
volatile

:::::::
organic

::::::::::
compounds

::::::
(VOCs)

::::
play

::::
vital

:::::
roles

::
in

:::
the

O3 ::::::::
formation

:::::::
process,

:::
and

::
its

:::::::::
production

:::
can

:::
be

:::::
either

::::::::::
VOC-limited

::
or

:
NOx::::::

-limited
::::::::::::::::::::::::::::::::::::::::::::::
(Shi and Brasseur, 2020; Liu et al., 2021; Li et al., 2019).

80

An early approach to analyze the changes in air quality due to the implementation of specific control measures was to

comparatively assess concentrations during the lockdown with concentrations of the same period of the previous year or the

mean value of a period of five years, using exclusively ground-based or satellite observations. However, the degree to which

the COVID-19 lockdown influenced air quality is not only a function of emissions,
:
but also of both meteorology and physical

and chemical atmospheric transformations (Kroll et al., 2020)
:::::::::::::::::::::::::::
(Kroll et al., 2020; Le et al., 2020). In consequence, pure statis-85

tical tests or observational comparisons might be inadequate to have a complete understanding of what influences pollutant

concentrations, since weather conditions, particle persistence, transport, radiation and seasonality affect concentrations by

linear and non-linear processes (Šimić et al., 2020). Another option for such comparison is to use models to simulate a

::
In

:::
this

::::::
work,

:::
this

:::::::::
challenge

:::
has

::::
been

:::::::::
addressed

:::::
using

::::
two

::::::::
different,

:::
but

:::::::::::::
complementary

::::::::::
approaches.

::::
The

::::
first

::::
one

:::::::
consists

::
in

:::::
using

:
a
::::::

model
:::

to
:::::::
simulate

::
a
:::::::::::
hypothetical

:
scenario in which

:::
the

:
restrictions were not implemented. Machine learning90
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methods, including the RF algorithm , have been capable of untangling the changes in pollutant concentrations caused by

the COVID-19 lockdown measures of weather-driven variability. Velders et al. (2021)have shown the efficiency of the RF

method for this task. With respect to reactive species, the RF method has been also used to assess levels. For example

Zhan et al. (2018) satisfactorily applied the RF method to predict spatio-temporal variability of daily concentrations across

China using information on meteorology, elevation and emission inventories
:::::
which

::
we

::::
did

:::::
using

:::
the

::::::
random

:::::
forest

:::::::::
algorithm95

::::
(RF),

:::
as

:::::::::
previously

:::::
done

::
by

::::::::::::::::::
Velders et al. (2021).

::::
The

::::::
second

::::
one

:::::::
consists

::
in

::
a
:::::::
random

:::::
forest

:::::
based

::::::::::::
normalization

:::
of

:::
the

::::::::::::
meteorological

::::::::
variables,

:::::
which

::::::
makes

:
it
:::::::
possible

::
to

::::::::
decouple

:::
the

:::::::
emission

:::::::
changes

:::::::::::::::::::::::::::::::::::::::::::::::::
(Shi et al., 2021; Grange and Carslaw, 2019; Vu et al., 2019).

The drastic changes in anthropogenic emissions induced by the global pandemic are of major interest to enhance our

understanding of the chemistry related to air quality , particularly when the behavior of secondary pollutants, like ozone ()or

components of particulate matter (PM), is explored (Gaubert et al., 2021). , in particular, has a complex behavior depending100

on multiple factors. and VOCs play vital roles in the
:::::
goals

::
of

::::
this

:::::
study

:::::
were:

::
(i)

:::
to

::::::
provide

:::::
novel

:::
air

:::::::
quality

::::
data

:::
for

:::
the

::::::::::
Metropolitan

:::::
Area

::
of

:::::::
Buenos

:::::
Aires

::::::::
(MABA),

:::::::::
Argentina,

::::::::
including

:::
the

::::
first

:
O3 formation process, and its production can be

either VOCs-limited or -limited (Shi and Brasseur, 2020; Liu et al., 2021; Li et al., 2019). In a VOCs-limited regime, emission

reduction can promote photochemical ozone formation due to the non-linear relationships between and its precursors. On the

other hand, in a -limited regime, reductions in concentrations lead to decreasing levels. Also, sometimes any change in VOCs105

or may alter concentrations and it could be referred to as a transitional (or mixed) regime. The goal of this study was twofold:

(i)
:::
and

:
SO2 ::::::::::

observational
:::::::
datasets

::
in

::
a

::::::::
residential

::::
area

::
in

:::::
more

::::
than

:
a
::::::
decade;

:::
(ii)

:
to explore the performance of the RF

::::::
random

:::::
forest method in predicting the air quality situation at two monitoring sites of the Metropolitan Area of Buenos Aires (MABA),

Argentina and (ii
::::::
MABA;

:::
(iii) to apply this method

:::::::::::
methodology to estimate the changes in air pollutant concentrations under

the COVID-19 control measures;
::::
and

:::
(iv)

::
to

::::::
assess

:::
the

:::::
effect

::
of

:::
the

::::::::
reduction

::
on

:::::::::
emissions

::
by

::::::::::
normalizing

:::
the

:::::::::::::
meteorological110

:::::::
variables. We implemented the RF algorithm to estimate the concentrations of CO, , NO2,

:
NO,

::::::
sulfur

::::::
dioxide

:
(SO2), O3, and

particles with aerodynamic diameter less or equal than 10 µm3 (PM10) using meteorological and air quality observations, as

well as the local diurnal variation of emissions as explanatory variables. Trained with data acquired in 2019 and 2020 before the

start of the pandemic
::::
with

:::
the

:::::::
variables

::::::::
available

:::
for

:::
this

:::
city, the RF method can only predict concentrations under a business-

as-usual (BAU) scenario. In this research, we comparatively assessed the monitored concentrations
:::
We

::::
then

::::::::
compared

:::
this

:::::
BAU115

:::::::::
estimations

::::
with

:::
the

::::::::::
observations

:
during two distinct phases of the COVID-19 lockdown with both the expected concentrations

resulting from the BAU RF simulations and the observations registered during the corresponding period in 2019. We also

provided the first and observational datasets in Buenos Aires in more than a decade
::::::::
lockdown

::::::
phases.

::::
We

:::
also

:::::
used

:
a
:::::::
random

:::::
forest

:::::::::::
normalization

:::::::::
technique

::::::
(RFN)

::
to

::::::::
decouple

:::
the

:::::
effects

:::
of

:::
the

:::::::::::
meteorology

::::
over

:::
the

:::::::::::
concentration

:::
of

:::
the

::::::::
pollutants

:::
by

::::::::::
normalizing

:::
the

::::::::::::
meteorological

::::::::
variables

:::::
based

:::
on

:::::::::::::
Shi et al. (2021).

::::
We

::::::::
compared

:::::
them

::::
with

:::
the

:::::::::
normalized

:::::::::::
observations

:::
for120

::
the

:::::
same

::::::
period

:::
of

:::
the

:::
the

:::::::
previous

:::::
year,

::::::::
allowing

::
us

:::
to

:::::
assess

:::
the

::::::
effect

::
of

::::::::
reducing

:::
the

:::::::::
emissions,

::::::::::::
independently

:::
of

:::
the

::::::::
particular

::::::::::::
meteorological

::::::::
situation

:::
that

::::::::
occurred

:::::
during

:::
the

:::::::
specific

::::::
periods

::::::::
analyzed. In addition, we studied the responses of

O3 to the reduction in emissions of its precursors (NOx and VOCs) because of its relevance regarding emission control and

health effects.

4



The remainder of this paper is structured as follows. Section 2 provides a description of the studied area, the different125

lockdown phases, the air quality and meteorological data and the structure of the random forest model
:::::
models

:
used to estimate

the relative changes (RC) during the lockdown. The evaluation of the model
:::::::
analysis

::
of

:::
the

:::::::
models

:::::::::::
performance

:
and the

analysis of the impact due to the emission reductions are in Section 3. Section 4 provides a description of the data and code

availability. Finally, Section 5 presents
:
a
::::::::
summary

::::
and the main conclusions of this work.

2 Material and methods130

2.1 Description of the studied area

The MABA comprises the Autonomous City of Buenos Aires (ACBA) and 40 surrounding Districts of the Greater Buenos

Aires (GBA). Located along the western coast of the Río de la Plata estuary, on a flat plain, the MABA is the third biggest

Megalopolis of Latin America and the Caribbean. It has a population of approximately 13 millions, with a heterogeneous

population density in the range 14–20 thousands inhab km−2
::::
range. Its active fleet reached 5.4 million vehicles by 2019135

(Anapolsky, 2020).

In terms of
:::::::::::
anthropogenic

:
air pollutant emissions , although road transportation is clearly the largest contributor of CO,

VOCs and PM in the area(Castesana et al., 2021), the
:
.
:::
The

:
MABA is also affected by the emissions from residential, com-

mercial and institutional buildings, mainly based on natural gas consumption, and from three power plants, located near the

shoreline of the La Plata River, which
:::::
mainly

:
burn natural gas ,

::::
and,

::
to

::
a

:::::
lesser

::::::
extent,

:
gas oil and fuel oil.

:::::
Under

:::::
these140

::::::::::::
circumstances, NOx :

is
:::::::

emitted
:::
by

::::::::
stationary

::::
and

::::::
mobile

::::::
sources

:::
in

:
a
::::::
similar

:::::::
amount

::::::::::::::::::::
(Castesana et al., 2021).

:::::
Since

::::
most

:::
of

::::::
Buenos

::::::
Aires’

::::::
vehicle

::::
fleet

::::
uses

:::::::::
low-sulfur

::::
fuel,

:::
the

:::::::
majority

::
of

:
SO2 ::::::::

emissions
:::
are

:::
due

::
to

::::::
heavy

::::
duty

:::::
diesel

:::::::
engines,

::::
used

:::
by

:::::
ships,

:::::
trucks

::::
and,

:::::::::::
occasionally,

:::::
small

::::::::
electricity

:::::::::
generators.

:

2.2 Description of the lockdown for the MABA

Argentina’s national government established different lockdown phases for the duration of the pandemic (Decree 297/2020,145

2020). Since 80% of Argentina’s COVID-19 cases were concentrated in the MABA, some policies applied to the MABA

region differed from those applied to the rest of the country. Starting on 20 March 2020, strict measures were imposed to

avoid a sharp increase in COVID-19 cases, emphasizing that the population should stay at home and avoid any social contact.

All non-essential stores, including toys, furniture and clothing
::::
stores, were closed until 11 May. Table 1 provides a summary

of the restrictions set for the MABA during each phase. Under severely restricted mobility, public transport and passenger150

car circulation decreased drastically. Local mobility dropped down 80% during the Intense lockdown phase and 65% for the

Flexible lockdown phase until the end of May (Aktay et al., 2020). It is worth noting that, before the COVID-19 pandemic, 1

million vehicles entered the city of Buenos Aires from the suburbs per day.

Considering the different degrees of the restrictions imposed, we evaluated the impact of the lockdown on air quality accord-

ing to two distinct periods. The first period, from 20 March to 12 April 2020, corresponded to the most restrictive lockdown155
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(LD). The second period, from 13 April to 25 May, was denominated partial lockdown (PLD) because some restrictions were

lifted. The period 1–15 March 2020, before the start of the first lockdown, was defined as BLD and was used to evaluate the

model. As from 16 March, flexible restrictions started, but were optional, therefore the period 16–19 March was not considered

in our research.

Being combustion the main air pollution source in the area, the significant decrease in traffic flow imposed by the lockdown160

led necessarily to a decrease in the emissions of traffic-related pollutants (D’Angiola et al., 2010; Puliafito et al., 2017; Diaz

Resquin et al., 2018; Castesana et al., 2021).

2.3 Meteorological data and description

The atmospheric general circulation in the MABA is controlled by the influence of the semi-permanent South Atlantic

High pressure system. This system influences the climate of the MABA throughout the year by bringing in moist winds from165

the northeast, which produce most of the precipitation in the area in the form of frontal systems, or storms produced by

cyclogenesis, in autumn and winter (Barros et al., 2006). In terms of the climate conditions of the MABA, temperatures at the

beginning of autumn range from warm to hot in the afternoon, but they are mild in the nights and the mornings. Later on in the

season, conditions are cooler, featuring mild afternoons, and cold nights and mornings.

To identify similarities and differences between the meteorological conditions during the lockdown phases and the testing170

period (BLD, LD and PLD) with those of the autumn of 2019 (March, April and May, MAM2019) we carried out a meteo-

rological analysis for all
:::
the periods. We used hourly and daily data from the Buenos Aires Central Observatory (OBS: Lat:

34º 35’ S Lon: 58º 29’ W). The site of the Meteorological Weather Service of Argentina is located in a residential area. It is

representative of the meteorology of the air quality conditions under study.

Average temperatures in the BLD (24.4 ◦C) and in the LD (21.1 ◦C) were higher than that in MAM2019 (18 ◦C) while the175

average temperature in the PLD (16.8 ◦C) was lower than that in MAM2019,
:
but close to the corresponding value in May 2019

(16 ◦C). Precipitation in March and April 2020 exceeded the accumulated values of the same months of 2019 (+60% and +

90% respectively). On the contrary, precipitation in May 2020 exhibited significantly lower values than those of 2019 (-75%).

During MAM2019, the average calm value was 6.7%, while during the BLD, the LD and the PLD, the corresponding calm

values were 3.6%, 4.7% and 8.6%. Average wind velocity, within the range 7.5–8.6 kmh−1
::::
range, was similar in all periods.180

In autumn 2020, the prevailing wind was from the NW-N sector with an average contribution of 34% against 26.5% in 2019.

The LD and the PLD periods had a similar direction of prevailing winds as autumn 2019, contrarily 45% of winds during the

BLD were from the NE–E sector.

Our analysis showed that there were meteorological differences in terms of temperature and precipitation between autumn

2019 and the periods analyzed in 2020 (BLD, LD, and PLD). This is indicative of the need of taking into account the influence185

of meteorological conditions for comparative purposes of air quality conditions that occurred in
::
the

:
different periods.
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Table 1. Description of the lockdown phases on the MABA. NU Not used (Not included in the model).

Initial Date
::::
Period

::::::
(2020) Phase Denomination Description Mobility

1 March 2020
:
–

::
15

::::
Mar. Before the lockdown BLD Pandemic had started in South America,

:
but no restrictions

were thus far implemented in Argentina.

100%

16 March 2020
:
–

::
19

::::
Mar. School Closedown and

Optional Lockdown

NU Countrywide, all schools and universities were closed. Peo-

ple were advised to stay at home. Theaters and cinemas

were shut. Public events over 200 people were cancelled.

Implementing home-office was recommended. Gatherings

were to be avoided.

90%

20 March 2020
:
–

::
30

::::
Mar. Strict Lockdown LD Bars, restaurants, shopping centers and stores in general

were closed, with the exception of food and medicine stores

::::
stores

:::
and

:::::::::
pharmacies. Only essential economic activities

were permitted. Circulation of passenger vehicles was only

allowed with a special permit. Public transport was limited

within the region. Most industrial activities were suspended.

Only groceries were allowed to be delivered. These restric-

tions apply countrywide, regardless of the amount of cases

informed. The country and the district borders were closed.

20%

31 March 2020
:::
Mar.

:
–
:::
12

:::
Apr.

:
Flexible Lockdown I LD Food delivery was permited

:::::::
permitted. 20%

13 April 2020
:::
Apr.

:
–
::
5

:::
May

:
District Differentiated

Lockdown I

PLD More economic activities were permitted. More stores were

permitted to open in several districts. The lockdown in the

MABA continued, but people started to be less careful about

the social distancing measures.

35%

6 May 2020
:
–
::
25

::::
May

:
District Differentiated

Lockdown II

PLD All non-essential stores, including toys, furniture and cloth-

ing
::::
stores, were permitted to open with specific protocols.

Children were allowed to go for a walk with an accompany-

ing adult on the weekends, but no farther than 500m from

home.

35%

2.4 Air quality data

We employed air quality data from two monitoring sites: Comisión Nacional de Energía Atómica (CNEA), operated by our

research group, and Parque Centenario (PC), managed by the Autonomous City of Buenos Aires (described below). Both sites

are mostly influenced by the emissions from mobile and residential sources, and, to a lesser extend, by the thermal power190

plants, located at least at 6 km from them (Diaz Resquin et al., 2018; Pineda Rojas et al., 2020).
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Figure 1. Location of MABA in Argentina (top left); zoom of the MABA(right). In yellow, the location of OBS, the site of the National

Meteorological Service monitoring site referred in this study, and in red, the air quality monitoring sites (shape files from IGN).

2.4.1 Comisión Nacional de Energía Atómica

From 23 February 2019 to 26 May 2020 a monitoring campaign was carried out in an open area (-34.57 ºS, -58.51 ºW)

situated 14 km away from the Buenos Aires City center (Figure 1) to assess the levels of different gases (CO, NO, NO2, SO2,

and O3) and their temporal variability in a residential area of the MABA.195

The main goal of this monitoring campaign was to assess the temporal variability of SO2 and O3 in the area for an entire

year. Although it may seem surprising, especially for a megacity like the MABA, there is scarce and fragmentary information

on the concentrations of SO2 and O3for this large urban conglomerate. Presently, O3 is routinely monitored in only one

site of the MABA, located in an industrial area. Past data for the region are only available from a few short-time campaigns

carried out in the early 2000s (Reich et al., 2006). Similarly, there is a lack of monitored SO2 concentrations because historical200

measurements carried out in the 1990s reported very low values, and therefore
::
the

:
decision makers decided not to measure this

pollutant on a regular basis. However, it has now become a pollutant of concern for local authorities
:
, that have recently decided

to start monitoring SO2 in two of the four air quality stations of the ACBA
::
in

:::
the

::::
near

:::::
future.

Air pollutant concentrations were continuously acquired as described in
:
(Table 2). Monitors were placed at an approximate

height of 10 m, and 100 m E from a main traffic artery with a high density of buses, light duty trucks and passenger cars.205

Another main artery is located 500 m N, having circulation of vehicles including trucks and buses in a low speed stop-and-go
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Table 2. Description of the equipment used in CNEA site

Pollutant
Instrument Description Calibration*

CO Horiba

APMA-370

Sampler with a non-dispersive infrared

absorption photometry sensor with a

solenoid valve with cross flow modula-

tion.

12.44 ppmV

O3 Horiba

APOA-370

Detector that operates with a cross

flow modulation, ultra-violet absorption

method in conjunction with the compar-

ative calculation method.

0.1 ppmV. ±

0.5% diluted

SO2 Horiba

APSA-370

UV Fluorescence detector. 0.05 ppmV ±

0.6% diluted

NO/
:
,

NO2

Horiba

APNA-370

Cross flow modulation type with re-

duced chemiluminescence detector.

0.099 ppmV

±1.4% diluted

(NO)

* The calibration of the ambient air gases detectors was performed by following U.S. EPA regulations and Horiba

standard procedures (see U.S. EPA CFR 40 Part 50, appendixes A1, C, D and F, and the corresponding user manual for

the Horiba AP devices). The APMA-370, APSA-370 and APNA-370 were calibrated using EPA certified calibration

gases and diluted with an Environics 6103, a NIST traceable mass flow controller dilutor, when needed.

pattern. The international airport Jorge Newbery, two thermal power plantsand
:
, the La Plata river

:::
and

:::
the

::::
port

:
are located

within a 19 km radius of the monitoring station.

Data was registered per one minute averages. Unfortunately, from 26 May onwards, restrictions on entering our institute

where the monitoring station was located led to the need to suspend the monitoring campaign.210

2.4.2 Parque Centenario

To include aerosol variations in this analysis and complement the information of CNEA’s site, we used PM10, CO, NO, and

NO2 data from PC station (34.61 ºS, 58.44 ºW), one of the surface air quality sites of the Environmental protection agency of

Buenos Aires city (APRA). This site is located in a residential-commercial area with medium vehicular flow and relatively low

incidence of stationary sources. A monthly technical report of the hourly-average concentrations registered in PC is available215

at APRA website (APRA, 2020). Although the city has three other monitoring stations, at least one of the essential periods

needed for this study was missing in each of them. Therefore, they did not serve our purpose
::::
were

:::
not

:::::
taken

::::
into

:::::::
account

:::
for

:::
this

:::::
study.
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2.4.3 Summary of the datasets

Relatively low concentration values for all the analyzed periods, with no exceedances for short term air quality standard for220

all the pollutants measured (Decree 1074/18, 2018; Act 1356, 2004) were registered in both sites. Air pollutants, except SO2,

exhibited well defined diurnal cycles .
:::
(see

::::
Fig.

::
S2

:::
of

::
the

::::::::::::::
Suplemmentary

::::::::
Material).

:

CO and NOx patterns were governed by traffic emissions (Figs. S1 and S2 of Supplementary Material), with the maximum

values in winter. Annual mean average values of NOx were ∼ 37 ppb for both CNEA and PC. Relevant differences in CO

were identified, with annual mean levels in PC doubling those measured in CNEA (0.51 ppm versus 0.26 ppm).225

PM10, which was only measured in PC, had a mean value of 21 µgm−3, with the maximum values at noon.

With respect to the pollutants that were only measured in CNEA, SO2 maximum concentrations were registered during

autumn (April) with monthly averages in the range 2–2.9 ppb
:::::
range. In terms of O3 concentrations, maximum daylight levels

were registered during summer. The diurnal cycle presented higher levels during the afternoon and was opposite to that of

::::
those

::
of

::::
NO

:::
and

:
NO2.230

2.5 Air pollution estimations
::::::::
Modeling

:::::::::
Approach

We used the machine learning RF method toestimate the hypothetical
::::::
random

:::::
forest

:::::::
method

:::
to:

:::
(i)

:::::::
estimate

:::
the

:::::::
relative

::::::
changes

:::::::
during

:::
the

:::
LD

::::
and

:::
the

:::::
PLD

::::::
phases

::::
and

:::
(ii)

::::::::
develop

:
a
::::::

model
:::

for
:::

air
:::::::

quality
:::::::
forecast

:::
for

::::
the

:::::::
MABA,

::
at

::
a
::::
low

:::::::::::
computational

:::::
cost.

:::
To

:::
this

::::
end,

::::
two

:::::::
different

::::::::::
approaches

::::
have

:::::
been

:::::::::::
implemented

:::::
using

::
a

::::::
random

::::::
forest

::::::::
algorithm

:::::::
(Figure

::
2).

::::
The

:::
first

::::
one

::::::::
estimates

::
the

:::::::::::
hypothetical

:::::::::
prospective

:
pollutant concentrations that would have occurred in the MABA during235

the
:::::
under

::
the

:::::::
regular

::::::::
emissions

:::::::::
conditions

:::::
(BAU

::::::::
scenario),

::::
with

:::
the

:::::::::
particular

::::::::::::
meteorological

:::::::::
conditions

:::
that

::::::::
occurred

::::::
during

::
the

::::::
period

:::::::::
analyzed.

::::
This

::::::
model,

::::::
named

::
as

:::::::
random

::::::
forest

::::::::
predictive

::::::
model

::
or

::::::
simply

:::
RF

:
,
:::
has

:::::
been

::::::
applied

:::
to

:::
the LD and

the PLD phases
::
to

:::::::
estimate

:::
the

:::::::::::::
concentrations if no lockdown measures had been imposed (BAU scenario). We selected the

RF algorithm based on its demonstrated ability to separate
:::
and

::::::::
compare

:::::
them

::::
with

:::
the

:::::::::::
observations

::::::
during

:::
the

:::::::::
lockdown

::::::
phases.

::::
This

::::
tool

:::::
could

::::
also

:::
be

::::
used

:::
to

:::::::
forecast

:::
the

:::
air

::::::
quality

::::::::
situation

::
in

:::
the

::::
city.

::::
The

::::::
second

:::::::::
approach,

:::::::
referred

:::
as

:::
RF240

:::::::::
normalized

::
or

::::
RFN

:
,
:::
has

::::
been

::::::::
designed

::
to

:::::::
decouple

:
the effects of meteorology and chemical reactions from the

::
the

:::::::::::
meteorology

::
by

::::::::::
normalizing

:::
the

:::::::::::::
meteorological

::::::::
variables,

::::::::
allowing

:
a
::::::::::

generalized
::::::::::
assessment

::
of

:::
the

:::::
effect

:::
of

:::
the

:::::::
changes

::
in

:::
the

::::::::
emission

:::::::
patterns.

::::
This

:::::::::
technique

:::
has

:::::
been

::::::
applied

::
to
::::::::

compare
:::
the

:::::::::::::
concentrations

::
of

:::
the

::::::::
different

::::::::
lockdown

:::::::
periods

::
to

:::::
those

:::
of

:::
the

::::
same

::::
time

::::::
frames

::
of

:::::
2019

::
in

:::::
order

::
to

::::
infer

:::
the

::::::
effects

::
of

:::
the

::::::
sudden

::::::::
reduction

::
in

:::::::::
emissions

:::::
during

:
COVID-19 driven decrease

in emissions (Zhan et al., 2018; Rahman et al., 2021; Velders et al., 2021). RF requires a short training time and can provide245

reliable information on air quality, with a strong anti-overfitting ability (Liu et al., 2021). Relations between different pollutants

can also be easily included, which is of particular interest for those that have a very complex chemistry, such as . It is also easy

to adapt the methodology to different time periods and sites. The
::::::
mobile

:::::::::
restrictions

::::::
period.

::
A
:::::::::::

summarized schematic of the

model building process
::::::::
modeling

::::::::
approach can be seen in Fig. 2.

Observations from February 2019 to May 2020 were divided in two different groups : before and after the start of the250

lockdown. The first group of observations,
:::
into

::::::::
different

::::::
groups

::::::::
following

:::
the

::::::::::::
methodology

::
by

::::::::::::::::::
Grange et al. (2021),

:::::
using
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Figure 2. Schematic description of model building and evaluation.

::::
8710

::::
total

::::
data

::::::
points

:::
for

::::::
CNEA

::::
and

:::::
9198

:::
for

:::
PC.

::::
The

:::::::
training

:::
of

:::
the

::::::
models

::::
was

:::::::::
conducted

:::::
using

::
a
:::::::
random

::::::
sample

:::
of

::
the

:::::
80%

::
of

:::
the

:::::
input

::::
data

:
from February 2019 to February 2020, was used to train and test the RF model (80%–20% split

ratio respectively) . From 1 March to 25 May 2020, the model was used in predictive mode to estimate pollutant concentrations

under the BAU scenario
:::::
2020.

:::
The

:::::::::
remaining

::::
20%

:::
was

::::
used

::
as

::::::
testing

:::
(t)

::
to

::::::
choose

:::
the

:::::
model

:::::::::::
configuration

::::
with

::::
best

::::::::
statistical255

::::::
metrics. The BLD period

::::
(360

:::
data

::::::
points,

::::
see

:::::
Table

::
1) was established as a

:::::::
different

:
evaluation period in order to check the

adequate performance of the model . From 20 March to 25 May ,
:::
two

::::::
weeks

:::::
before

:::
the

:::::::::
lockdown

::::::
periods.

:::::
Data

:::::::
collected

:::::
from

:::::
March

:::
20

::
to

::::
May

::
25

::::
and

::
the

:
RF estimates were compared to observations in order to

:::
used

::
to

:
quantify and interpret the changes

during the LD and the PLD.
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Measured
:::
The

:::::
target

::::::::
variables

::::
were

:::
the

::::::::
measured air pollutant concentrations were the target variables for

:
in
:
each monitoring260

site, namely , CO, NO
:
, NO2, O3, and SO2 (CNEA) and , CO, NO

:
, NO2, and PM10 (PC). The available predictive variables

were

::
As

:::::::::
predictive

::::::::
variables

::
we

::::::::::
considered:

:::
(i)

::::
data

:::::
taken

::::
from

:::
the

:::::::::::::
Meteorological

:::::::
Weather

:::::::
Service,

:::::::
namely wind speed, wind

direction, surface temperature, sea level pressure, relative humidity,
::
and

:::::::
relative

::::::::
humidity;

:::
(ii)

::::::::
boundary

:::::
layer

:::::
height

::::
and

::::
total

::::
cloud

:::::
cover

:::::
taken

::::
from

::::::
ERA5

:::::::::::::::::::
(Hersbach et al., 2020);

::::
(iii) the pollutant concentrations available

::::::::
measured in each of the sites,265

and a variable called daynight that can have values as morning, afternoon or night. Wind speed and wind direction data were

used to derive the U and V wind components to avoid model continuity errors at 0 and 360 degrees. The calm condition and

the sine of wind direction were also tested as predictors. Diurnal
:
;
:::
(iv)

::::
time

::::::::
variables

::::
such

::
as

:::::::
month,

::::
hour,

::::::::
weekday,

::::
and

:::
(v)

::::::
diurnal

:::
and

:::::::
weekly emission cycles for pollutants associated with gasoline and diesel emissions were added to improve the

agreement in the testing period with the variations throughout the day, as published by Castesana et al. (2021). Both cycles were270

tested for each pollutant. Weekly patterns used were taken from PREP-CHEM (Freitas et al., 2011). All meteorological and air

quality variables , as well as emission cycles,
:::::::::::::::::::::::::::::::::::
(Castesana et al., 2021; Freitas et al., 2011).

::::
For

:::
the

::::::::
predictive

::::::
model,

:::
all

:::::
these

:::::::
variables

:
were tested as explanatory variables for each pollutant, and those performing the best during testing

:::
for

:::
the

::::::
testing

::::::
dataset were selected. In general, a combination of meteorological variables was identified as explanatory variables for , , and

, with the subset {temperature, relative humidity, U, and V} exhibiting the most relevant role. Wind speed was only relevant275

for (CNEA), , and (PC), while wind direction resulted as an explanatory variable for in PC only . The only meteorological

variables relevant for were U, V. Noticeably,
::::
Table

::
3

:::::::
presents

:::
the

::::
final

::
set

:::
of

::::::::
predictive

::::::::
variables

::::
used

::
in

:::
the

:::
RF

::::::
model,

::
as

::::
well

::
as

:::
the

::::::::::::::
hyper-parameters

::::
that

::::
were

:::::::::
employed.

:::
For

:::
the

:::
RF

:::::::::::
normalized,

::
all

::::::::
variables

:::::
were

:::::
used

:::
and

:::::
only

:::
the

:::::::::::::
meteorological

::::::::
variables

:::::
were

::::::::::
normalized,

::::::::
following

::::
the

:::::::
approach

:::::::::
described

::
in

::::::::::::::
Shi et al. (2021),

::::::
which

:::::::
consists

:::
on

:::::::::
resampling

:::::
only

:::
the

:::::::
weather

::::
data

::::
over

::::
the

:::::
whole

:::::
study

:::::::
period,280

:::
and

::
is

:::::::::
considered

:::::::
adequate

:::
for

:::::::
studying

::::::::
emission

:::::::
changes.

::::
We

::::::::
employed

:::
the

:::::::::::::::
randomForest

:::::::
package

::
of

:::
the

:
R
::::::::::::
programming

:::::::
language

:::::::::::::::::::::
(Liaw and Wiener, 2002),

::::
and

::::
used the diurnal cycle of gasoline vehicles was needed for , , and for both sites, while

the diurnal cycle of diesel was required only for (CNEA) and (PC). Not surprisingly, prediction was most dependent on the

variable daynight and the simulated concentrations of the other pollutants, including , but excluding . Table 3 presents the

final set of predictive variables used in the RF model that best reproduced the observations during the BLD for each target285

variable
:::::::::::
rmweather

::
for

:::
the

::::::::::::
normalization

::::::
process

::::::::::::::::::::::::::::::::::::::::
(Grange et al., 2018; Grange and Carslaw, 2019).

2.6 Random Forest model evaluation
:::
and

::::::::::
assessment

:::::
tools

The RF model was tested during the BLD for adequate performance, focusing on the reproduction of: (i) the mean value
:::::
hourly

::::::::::::
concentrations, (ii) the mean diurnal cycles and (iii) the 24 h average concentration.

::::
mean

::::::
value. For each pollutant, differences between the mean value resulting from the RF (M̄ ) and that from the observations290

(Ō) were assessed using the ratio between these two values (M̄/Ō). Diurnal
:::
the

:::::::::
normalized

:::::
mean

::::
bias

::::::
(NMB)

:::
and

:::
the

:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

:::
(r)

:::
for

:::
the

::::::
hourly

:::::::::::::
concentrations

:::::
were

:::::::::
calculated.

::::
The

::::::
diurnal

:
cycles were comparatively assessed

by graphical inspection of the temporal series of the mean values and spreads of the modelled
:::::::
modeled

:
and observed con-
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Table 3. Random Forest model. Target variablesand ,
:
predictors

:::
and

:::::::::::::
hyper-parameters

:::
for

::
RF.

Site Target

Variable

Explanatory Variables ntree mtry

CNEA CO t2, rh2, U, V, gasoline diurnal cycle 1000

3
::
ws,

:::
wd,

::::
blh,

:::::::::
gas_emcycle

:

NO t2, rh2, U, V, gasoline and diesel diurnal

cycles 1500 3
:::
slp,

::::
ws,

::::
wd,

::::
blh,

::::
tcc,

::::::::::
gas_emcycle,

:::::::::
aer_emcycle

:

NO2 t2 , U, V, gasoline diurnal cycle,
::
ws

:
,
:::

wd
:
,

::::::::::::
aer_emcycle,blh,

:
CO, NO1000 3

SO2

wspd, daynight,
::
t2,

:::
rh2,

:::
ws,

::::
wd, CO, NO,

NO21000 3
:
,
::::::
daynight

:

O3

U, V, daynight,
:::
ws,

:::
wd,

:
CO, NO, NO2,

SO22000 3 ,
:::::::
daynight

PC CO t2, wspd, wdir, gasoline diurnal cycle 1000

2
:::
ws,

:::
wd,

:::
blh,

::::::::::
gas_emcycle,

::::
hour

NO t2,rh2, slp, U, V, calm, gasoline diurnal

cycle 1000 3
::
ws,

::::
wd,

::::
blh,

::::::::::
gas_emcycle,

::::::::::
aer_emcycle,

:::
hour

:

NO2 t2, U, V, gasoline diurnal cycle,

::::::::::
gas_emcycle,

::::::::::
aer_emcycle,

:
CO,

:
NO1000

3,
::::::
month,

:::::::
weekday,

::::
hour

PM10

wspd, diesel diurnal cycle,
::
ws,

::::::::::
gas_emcycle,

:::::::::::
aer_emcycle,

::
CO,

::
NO,

NO21000 3
:::::
,month,

:::::::
weekday,

::::
hour

rh2: 2m relative humidity; slp: sea level pressure; t2: 2m air temperature; U: 10m U

component of winds; V: 10m V component of winds; wd: 10m wind direction; ws: 10m

wind speed; gas_emcycle: gasoline related emission cycle; aer_emcycle: diesel related

emission cycle.

hyper-parameters: ntree (Number of trees to grow): 300 and mtry (Number of variables

randomly sampled as candidates at each split): Rounded down square root of the

number variables.

centrations of each pollutant, as well as the Pearson correlation coefficient (r). Daily average concentrations were assessed

considering the normalized mean bias (NMB), the Pearson correlation coefficient and the mean fractional bias (MFB). .
:

295
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NMB [%
:
] =

1

N

∑
N
k=1

Mk −Ok

Ok

N∑
k=1

(Mk −Ok)

N∑
k=1

Ok

::::::::::::

× 100 (1)

r =
1

N − 1

N∑
k=1

(
Mk − M̄

σM

)(
Ok − Ō

σO

)
(2)

MFB =
2

N

N∑
k=1

(
Ok −Mk

Ok +Mk

)
× 100300

The NMB is useful for comparing pollutants that cover different concentration scales and it is defined as the difference

between modeled and observed mean concentrations
:
, normalized by dividing by the mean observed concentration for that

period. The r
:
r
:
coefficient is useful to measure the linear relationship between two variables. The MFB is a measure of mean

relative bias and indicates systematic errors (Borrego et al., 2008).

Finally,
::
To

::::::
detect,

:::::
locate

:::
and

:::::::::::
characterize

:::::::
different

::::::::
pollution

::::::
sources

:::::::::::::::::::::::::::::::::::::::::
(Carslaw and Beevers, 2013; Grange et al., 2016),

:
bi-305

variate polar plots were built considering observations and RF results, using the openair library of the R programming lan-

guage (Carslaw and Ropkins, 2012; R Core Team, 2019).
:::::
These

::::
plots

::::::::
provided

:
a
:::::::::

graphical
::::::
support

::
to
:::::::

analyze
:::
air

::::::::
pollutant

::::::::::::
concentrations

:::::::
together

::::
with

::::
wind

:::::
speed

::::
and

::::
wind

::::::::
direction

::::
with

:::
and

:::::::
without

:::::::::
COVID-19

::::::::::
restrictions.

:::
We

::::
also

::::::::
calculated

:::::
them

::
for

:::::::
March,

:::::
April

:::
and

::::
May

:::::
2019

:::::::::::
(MAM2019),

:::
so

::
as

::
to

:::::
have

:
a
:::::::
baseline

:::
to

::::::
identify

:::::::
sources

::
of

:::
the

::::::::
different

:::::::::
pollutants.

::::::
Partial

:::::::::::
dependencies

::::
plots

::::
were

::::
also

::::
built

::
to

::::::::
highlight

:::
the

:::::::::::
relationships

:::::::
between

:::::::
pollutant

::::::::::::
concentrations

::::
and

::
all

::::::::::
explanatory

::::::::
variables310

::::::::
presented

::
in

:::::
Table

::
3,

:::
and

:::
can

:::
be

::::
seen

::
in

:::
the

:::::::::::
Suplementary

::::::::::
Information

:::::
(Figs.

:::
S9

::
to

:::::
S11).

3 Results and discussion

3.1 Evaluation
::::::::
Analysis of the results of the Random Forest model

::::::
models

In general, modelled
::
for

:::
the

::::::
testing

:::::::
dataset,

:::::::
modeled

:
CO, NO, NO2 , and PM10 concentrations in both sites were in good

agreement with the corresponding observations (see Table 4and Figs. ?? and ??). For the CNEA site, NMB showed a bias315

< 10% for all the pollutants and MFB of the daily concentrations was between -5.8% () and 12% (). For PC, NMB was

between -1.2% () and 8.6% (). Our results showed that the model tended to slightly overpredict the concentrations of all the

pollutants except for in CNEA and and in PC. MFB of
::
).

:::
The

:::::::::
agreement

:::
for the daily concentrations was between 1.1% (

:::::
hourly

::::::::::::
concentrations

:::
was

:::::::::::
satisfactory,

::::
with

:::::
NMB

::::::
< 6%

:::
for

::::
both

::::
sites

:::
for

::::
the

::::::
testing

::::::
dataset.

::::
The

:::::::
Pearson

::::::::::
correlation

:::::::::
coefficient

:::::
during

::::::
testing

::::
(rt) :::

was
::::::
above

:::
0.7

::
for

:::
all

::::::::
pollutants

::::::
except

:
PM10) and 9.2% (). Calculations

:
,
:::::::
probably

::::
due

::
to

::::
both

:
a
::::::::
complex320

::::::::
chemistry,

:::::
with

:::::::
primary

:::
and

:::::::::
secondary

::::::::
processes

::::::
being

:::::
highly

::::::::
relevant,

::::
and

:::
the

:::::
effect

::
of

::
a
::::
few

:::::::
regional

::::::
events

::::::
during

:::
the

::::::
period,

::::
with

:
a
::::
high

::::::
effect

::
on

:::::::::
particulate

::::::
matter.

:::
In

:::::::
addition,

::::::::::
calculations

:
of diurnal cycles utilizing RF outcomes reproduced
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Table 4. Summary of the evaluation statistics used in Random Forest
:::::::
predictive

:::::
model for the testing period

:::::
dataset (BLD

:
t) . NMB and MFB

are presented in percentage for the daily mean concentrations
:::::::

evaluation
:::::
period (d

:::
BLD)and Pearson Correlation coefficient for diurnal cycle

(dc). (
M̄
Ō

)
BLD::::::::

NMBBLD NMBd[%]
::::
NMBt:

rdc MFBd[%]
:
rt:

PC 1.04
:::
[%] 4.0

:::
[%] 0.81 6

::
PC

:
CO 1.03

::
3.7 3.3

::
1.9 0.77 5.5

:::
0.72

NO 1.08
:::
-3.1

:
8.6

::
5.5 0.74 9.2

:::
0.90

NO2 1.00
:::
-5.1

:
-0.4

::
3.0

:
0.89 3.2

:::
0.78

PM10 0.98
:::
-4.8

:
-1.2 0.78 1.1

:::
0.64

CNEA CO 1.10
::
9.6 10

:::
1.8 0.76 12

:::
0.73

:

1.01 1.2 0.76 3.3 NO 0.98
:::
-0.4

:
-1.3

::
5.6

:
0.64 -5.8

:::
0.75

:

NO2 1.03
::
3.9 3.4

:::
-0.3

:
0.89 6.3

:::
0.91

SO2 1.04
::
6.3 3.8

:::
-0.4

:
0.65 4.3

:::
0.70

O3 1.08
:
7
:

7.1
::

2.2 0.80 7.3
:::

0.85

adequately the bimodal behavior during BLD. The agreement was best for , where the Pearson correlation coefficient (rdc)was

0.89 for both sites while all other rdc were above 0.74. As shown in Figs. ?? and ??, the RF model adequately reproduced

the BLD daily concentrations for all the emitted pollutants
:::
clear

::::::::
bimodal

:::::::
behavior

::
of

::::
CO,

::::
NO,

:::
and

:
NO2 ::::

(Fig.
::
3).

:::::::::::
Nevertheless,325

:::::
biases

::::::
during

:::
the

::::
BLD

::::::
period

:::
are

:::::::::
moderately

:::::
larger

::::
than

::::::
during

:::
the

::::::
testing

::::::
period.

::::
This

:
is
:::
to

::
be

::::::::
expected,

:::::
given

:::
that

:::
the

::::::
model

:::
was

:::::::::
optimized

::
to

::::::::
reproduce

:::
the

::::::
testing

::::::
period.

:

Average daily concentrations for CNEA site. The line represents the 24 h average concentration and the shaded area

represents the daily levels between the 25 and 75 percentile.

Average daily concentrations for PC site. The line represents the 24 h average concentration and the shaded area represents330

the daily levels between the 25 and 75 percentile.

Results
:::
The

::::::
results

:
for O3 were also satisfactory, particularly considering its secondary nature with complex dynam-

icsdepending
:
,
:::::
which

::::::::
depends on multiple factors such as radiation energies, VOC and NOx concentrations and their ratio

(Seinfeld and Pandis, 1998). Model performance indicators were NMB = 7.1% and rdc = 0.80
::::
NMB

::::::t=2.2%::::
and

::::::::
rt = 0.85.

Other processes involved in O3 chemistry (like the ratios O3/VOCs and O3/NOx) in the MABA were analyzed, as a further335

way to test the RF model performance. The ratio O3–CO was used as a proxy for VOCs, because direct VOCs observations

were unavailable in the MABA and traffic-borne VOCs are intimately linked to CO (Bon et al., 2011; Cazorla et al., 2020).

Overall, 100
:::::
above

::
75% of O3–CO , –and O3–NOx and 73% of –daily

:::::
hourly ratios from RF were within a factor of 2 of those

resulting from the observations (see Figure
:::
Fig. S4

::
of

:::
the

:::::::::::::
Supplementary

:::::::
Material). The Pearson correlation coefficients (r)

between observed and estimated O3–CO and O3–NOx daily
:::::
hourly

:
ratios were found to be 0.79 and 0.89

:::
0.85

::::
and

::
0.9

:
respec-340

tively. In this context, this model was suitable to reproduce not only the levels of primary contaminants in the two analyzed sites,
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Figure 3. Diurnal
::::
Mean

::::::
diurnal cycles for the testing

:::::
dataset

:::
and

::::::::
evaluation period (from 1 March 2020 to 15 March 2020

:::
BLD)for CNEA.

The line represents the average diurnal cycle and the shaded area represents the standard deviation.

but also the formation of O3 at the CNEA site. On the other hand, higher discrepancies were found for (rdc = 0.65) although

NMB < 4%. The diurnal cycle of SO2 , which has been identified to be highly linked to diesel trucks (D’Angiola et al., 2010),

::::
(Fig.

::
3)

::::::
during

:::
the

:::::
BLD

:::::
period

:
had a sharp peak between 18:00 and 20:00 that could not be entirely captured by the model

:
,

:::
but

:
it
::::
was

:::::
linked

::
to

::
a

:::
day

::
of

::::::::::
particularly

::::
high

::::::::::::
concentrations

::::::
during

:::
that

::::
time

::::::
period. Concentrations from 12:00 to 17:00 were345

also overestimated . Bivariate polar plots showed a similar pattern for the RF results and the BLD observationsfor all pollutants

(Figures S6
:::::
during

:::
the

:::::
BLD.

:::::
Figure

::
3
:::::
shows

:::::
that,

:::::
during

::::
the

:::::
BLD,

:::
the

::::::
diurnal

::::::
cycles

::
of

:
O3 and S7)SO2 ::::::::

estimated
:::::
using

::::
RFN

:::
are

:::::::::
noticeable

::::::::
different

::::
from

:::::
those

::::::::
calculated

:::::
using

:::
RF

::::
and

:::
the

:::::::::::
observations.

::::
This

::
is
::::::
further

::::::::
evidence

::::
that

:::
the

::::::::::
atmospheric

:::::::::
conditions

::::
can

:::::
affect

:::
the

::::::::::::
concentrations

::
of

::::::::
pollutants

::
in

::
a

:::::::
relevant

:::
way

:::::
under

::::::
certain

:::::::
weather

:::::::::
conditions.

:
350

:::
One

:::
of

:::
the

::::::::::
advantages

::
of

::::::::
building

:
a
:::::::

random
::::::

forest
:::::
model

:::
is

:::
that

::
it
::::::

could
::::::
provide

::::
the

:::
key

:::::::::::
components

::::
that

:::::
reflect

::::
the

::::::::
non-linear

::::::::::
relationship

::::::
among

:::
the

:::::::::
emissions,

:::
the

:::::::::
chemistry,

:::
and

:::
the

:::::::::::
meteorology,

::::::::
analyzing

::::::::
variables

::::
such

:::
as

:::
the

::::::::::
permutation

16



Figure 4. Diurnal cycles
::::::
Average

::::
daily

:::::::::::
concentrations for the testing period (from 1 March 2020 to 15 March 2020) for

:::::
CNEA

:::
and PC

:::
sites.

The line represents the
::
24

:
h
:
average diurnal cycle

::::::::::
concentration and the shaded area represents the standard deviation

::::
daily

::::
levels

:::::::
between

::
the

::
25

:::
and

:::
75

:::::::
percentile.

::::::::
difference

::::::::
(variable

::::::::::
importance,

::::
Figs.

:::
S6

::
to

:::
S8

::
of

:::
the

:::::::::::::
Supplementary

::::::::
Material)

:::
and

:::
the

::::::
partial

::::::::::::
dependencies.

:::
The

:::::::
analysis

:::
of

::
the

::::::::
variable

:::::::::
importance

:::::
plots

:::::
shows

::::
that

:::
the

::::::::
boundary

:::::
layer

::::::
height

:::
and

:::
the

:::::
wind

:::::
speed

:::::
were

::::::::
important

::::::::
variables

::
to
:::::::

predict

:::
CO

::::::::::::
concentrations

::
in

::::
both

::::
sites

:::
for

::::::::::
normalized

:::
and

::::
not

:::::::::
normalized

:::::::
models.

::::
This

:::::
result

::
is
:::::::::
consistent

::::
with

:::
the

::::
fact

::::
that,

::
at

:::
the355

:::::::
temporal

:::::
scale

::::::
studied

::::
here,

:::
CO

::::
can

::
be

:::::::::
considered

::
as

::
a

::::::
passive

:::::
tracer

::::::::::::::::
(Saide et al., 2011).

:::
For

::::
NO

:::
and NO2 ::

the
::::
most

:::::::::
important

:::::::
variables

:::::
were

:::
the

:::::
other

::::::::
pollutants

::::::::
included

::
in

:::
the

:::::::
models

:::
and

:::
the

:::::::
surface

::::::::::
temperature

::::::
(Table

:::
3),

:::::
which

::::
was

::::
also

::::::::
expected

::::::
because

::::::::::
temperature

::::
has

:::::::
influence

::
in
:
NOx::::::::

chemistry.

:::::
Partial

::::::::::::
dependencies

::::
plots

:::::
(Figs.

:::
S9

::
to
::::

S11
:::
of

:::
the

::::::::::::
Supplementary

:::::::::
Material)

::::::::
enlighten

:::
the

:::::::::::
relationships

:::::::
between

::::::::
pollutant

::::::::::::
concentrations

:::
and

:::::::::::
temperature.

::
As

:::
an

:::::::
example,

::
in

:::::::
CNEA,

:::::
while

:::
CO,

::::
NO

:::
and

:
NO2 ::::::::::::

concentrations
::::
were

::::::::
inversely

::::::
related

::::
with360

::::::::::
temperature,

:
SO2 :::::::

presented
:::
the

::::::::
opposite

::::::::
behavior.

::
As

:::::::::
described

::
by

::::::::::::::::::::::::::
Grange and Carslaw (2019) this

::::::::::
relationship

::
of
:
SO2 ::::

with

::::::::::
temperature

:::::
could

::
be

:::::::::
associated

::::
with

:::::::
shipping

:::::::::
emissions.

:::::
This

:
is
::::

also
:::::::::
consistent

::::
with

:::
the

::::
fact

:::
that

:::::
there

::
is

:::
also

::
a
::::
high

::::::
partial
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:::::::::
dependence

::::
with

:::::
wind

::::::::
directions

::::
from

::
0
::
to

:::
100◦

::::
(Figs.

:::
S3

:::
and

::::
S11

::
of

:::
the

::::::::::::
Supplementary

:::::::::
Material),

:::::
which

::
is

:::
the

::::
range

:::
of

:::::
winds

:::
that

:::::
bring

::
air

::::::
masses

:::::
from

::
La

:::::
Plata

:::::
River.

:

3.2 Quantifying and analyzing the changes in concentrations during the lockdown periods365

In this discussion we compare the concentrations that were measured
::
We

:::::::
discuss

::::
here

:::
the

::::::
relative

:::::::
changes

:::
of:

:::
(1)

::::::::
measured

::::::::::::
concentrations during the LD and the PLD phases with

:::::
periods

:::
in

::::::::::
comparison

::::
with

:::
RF

::::::
outputs

:::
for

:::
the

:::::
same

::::::
period,

::::
and

:::
(2)

:::::::::
normalized

::::::::
measured

::::::::::::
concentrations

::::::
during

:::
the

:::
LD

:::
and

:
the corresponding BAU concentrations estimated by the RF model and

/or the observations during MAM2019
::::
PLD

::::
with

:::::::::
normalized

::::::::::::
concentrations

::::::
during

:::
the

::::
same

:::::::
periods,

:::
but

:::
for

::::
2019

:::::::
(March

::::
20th

::
to

::::
April

:::::
12th,

:::
and

:::::
April

::::
13th

::
to
:::::

May
:::::
25th). The corresponding percent relative changes (RCRF or RC

:::
and

:::
RCobs2019

::
RFN) were370

estimated on the basis of
:::::
using

:::
the

:::::::::
expressions

:::::::::
presented

::
in Eqs. 3 and ??, respectively.

RCRF[%] =
Periodobs2020 −PeriodRF

PeriodRF
× 100

RCobs2019[%] =
Periodobs2020 −MAM2019obs

MAM2019obs
× 100

::
4.

:::
We

:::::
make

:::
use

::
of

:::::
RCRF::

to
::::::::

quantify
:::
the

::::::
amount

:::
of

::::::
change

::::
with

::::::
respect

::
to
::

a
:::::
BAU

:::::::
scenario

:::
for

:::
the

::::::::
particular

:::::::::::::
meteorological375

::::::::
conditions

::::
that

::::::::
happened

::::::
during

:::
the

::::
two

::::::::
lockdown

:::::::
periods,

:::
and

::::::
RCRFN:::

to
:::::::
quantify

:::
the

::::::
effects

::
of

:::
the

:::::::
changes

::
in

::::::::
emissions

:::
of

::::
these

::::::::
pollutants

:::::::
sources,

::::::
rather

::::
than

::::::::::::
meteorological

::
or

::::::::::::
environmental

::::::
effects

::
of

::::::::
particular

:::::::::::
atmospheric

:::::::::
conditions.

where Periodobs2020

RCRF[%] =
ObsLD,PLD −RFLD,PLD

RFLD,PLD

× 100

::::::::::::::::::::::::::::::::::::

(3)

RCRFN[%] =
RFNLD,PLD −RFNsame periods 2019

RFNsame periods 2019
× 100

:::::::::::::::::::::::::::::::::::::::::::

(4)380

:::::
where

::::::::::
ObsLD,PLD:

corresponds to the air quality observations
:::::
hourly

:::::
mean

::::::::::::
concentrations

::::::::
observed

:
during the LD or the

PLD, the MAM2019obs represents the air quality observations from March to May 2019 and PeriodRF are the RF estimates

:::::::::
RFLD,PLD::

is
:::
the

::::::::::::
corresponding

::::::::
predictive

:::
RF

:::
for

:::
the

::::
same

:::::::
periods,

:::::::::::
RFNLD,PLD:::::

refers
::
to

:::
the

::::
data for the LD or the PLD .

:::
and

::
the

:::::
PLD

::::
with

:::
the

::::::::::::
normalization

::
of

:::
the

:::::::::::::
meteorological

::::::::
variables,

::::::
which

:::
was

:::::::::
compared

::::
with

:::
the

::::::::::::::
meteorologically

::::::::::
normalized

:::
data

::
of
:::
the

:::::
same

::::::
periods

::
in
:::::
2019.

:
385

Being both monitoring sites highly influenced by vehicular emissions, the
::::
traffic

:
reduction of ∼ 80% in traffic that was

registered during the LD period led to a significant air quality improvement of primary pollutants (Figures ?? and ??). At

CNEA, located in the suburbs, RCRF were -60%, -47% and -9% for , and
:::
Fig.

:::
5).

::
In

::::::
almost

::
all

::::::
cases,

:::::
except

:::
for

:::
CO

::
in
:::
PC

::::
and

::
for

:
SO2respectively (Table 5). ,

:::
the

::::::::::::
meteorological

:::::::::
conditions

::::::::
amplified

:::
the

:::::::
change,

::
as

:::::
shown

:::
by

:::
the

:::
fact

::::
that

::::::
RCRFN :

is
:::::::
smaller

:::
than

::::::
RCRF.

::::
This

::
is

::::::::
consistent

::::
with

:::
the

::::::
results

:::::::
obtained

:::
by

::::::::::::::
Shi et al. (2021).390
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Table 5. Summary of the
:::::
average

:
concentrations

::
for

::
the

:::::
BLD,

:::
the

::
LD

:
and

::
the

::::
PLD

:::
and

:::
the relative changes for the LD and the PLD for PC

and CNEA sites compared with Random Forest (
:::::::
estimated

::
by

:
RF ) and March-April-May 2019 (MAM2019) Observations

::::
RFN. In every

case, the RC were calculated considering the mean value for each period.

BLD MAM2019 LD PLD

Concentrations Concentrations Conc. RC [%] Concentrations RC [%]

Bias
:::
obs NMBd %

::
RF obs

::::
RFN obs RF

:::
RFN RF MAM2019

:::
RFN

:
obs RF

::::
RFN RF MAM2019

:::
RFN

PC

CO (ppm) 0.02
:::
0.43 4.0

::::
0.46 0.54

:::
0.46 0.39 0.50

:::
0.49 -22

:::
0.44 -28

::
-20

::
-20

:
0.45 0.57

:::
0.56 -21

:::
0.51 -17

::
-19

:
() 1.123.341.715.035.9-58-64 30.747.4-35-26

:
-7

NO (ppb) 1.09
:::
11.6 8.6

:::
10.9 22.9

:::
15.6 5.2 17.8

:::
15.6 -71

:::
14.6 -77

::
-67

:::
-35 15.2 27.3

:::
24.3 -44

:::
19.0 -34

::
-37

::
-15

NO2 (ppb) 0.04
:::
16.8 -0.4

::::
16.0 18.8

:::
15.3 9.8 18.1

:::
17.3 -46

:::
13.5

:
-48

::
-43

: :::
-28 15.5 20.1

::::
20.0 -23

:::
16.4 -18

::
-20

::
-13

PM10 (µgm−3) -0.33
::::
20.5 -1.2

::::
19.6 22.0

:::
20.1 13.6 21.3

:::
20.2

:
-36

:::
17.9 -38

::
-33

: :::
-20 18.4 22.8

:::
21.4 -19

:::
20.6 -16

::
-14

: ::
-7

CNEA

CO (ppm) 0.03
:::
0.26 10.0

:::
0.28 0.35

:::
0.3 0.17 0.32

:::
0.31

:
-47

:::
0.26 -51

::
-45

: :::
-26 0.25 0.35

:::
0.34 -28

:::
0.31 -28

::
-26

:
()0.461.2 38.814.937.6-60 -6229.045.1-36 -25

:::
-11

NO (ppb) -0.15
:::
11.4

:
-1.3

:::
11.4 21.4

:::
14.1 4.3 17.7

:::
17.4

:::
10.3 -75 -80

:::
-47 14.6 24.2

:::
23.1 -40

:::
15.0 -32

::
-37

: ::
-21

NO2 (ppb) 0.61
:::
18.3 3.4

:::
19.1 17.4

:::
15.6 10.6 19.9

:::
19.5 -47

:::
10.7 -39

::
-46

: :::
-36 14.4 20.9

:::
20.7 -31

:::
14.0 -17

::
-30

: ::
-15

SO2 (ppb) 0.10
:::
2.4 3.8

::
2.5

:
2.8

::::
2.64 2.3 2.5

::
2.6 -9

::
2.4 -19

::
-12

: :::
-20 2.4 2.6 -7

::
2.5 -16

::
-8

::
-15

O3 (ppb) 0.38
:
5 7.1

::
5.5

:
6.8

:
9
:

9.6 5.1
::
8.1

:
87

:::
10.7 40

::
80

:
27 8.0 4.9

::
5.1 65

::
8.8 17

::
57 5

On the other hand, observed O3 levels were 87% and 65
::::
80%

:::
and

::
57% higher in comparison with the

::
RF

:
estimations for the

LD and
:::
the PLD respectively. At PC, located in a residential-commercial area where activities during the LD period were more

intense than in the suburbs, RCRF were -58% (), -22% () and -36% (). Table 5 also shows an increment of primary pollutants

for the PLD period compared to the LD, reflected in smaller relative differences. This is consistent with the increment in traffic

flow.
::::::::
However,

:::
the

:::
fact

::::
that

:::
this

:::::::::
increment

:::
was

:::::::::::
considerably

:::::::
smaller

::::
when

:::
the

:::::::::::
meteorology

::::
was

:::::::::
normalized

::::::::
indicates

:::
that

::::
this395

::::::
change

:::
was

:::::::
strongly

::::::::
enhanced

:::
by

:::
the

::::::::::::
meteorological

:::::::::
conditions

::::
that

:::::::
occurred

::::::
during

:::
that

::::::
period.

:

Figures ?? and ?? allow visualizing
::::::
Figure

:
4
:::::::
displays

:
the differences in daily concentrations between observations and RF

estimates for the three considered periods (BLD, LD and PLD). For CNEA, CO and NOx observations and predictions for the

BLD period showed NMB <10%. Noticeably, most of the changes were observed right from the day after lockdown. Pollutant

levels were almost fully recovered by the last week of the PLD period.400

In what follows, the results are presented by species, highlighting the most relevant relative changes in concentrationsand

their relationship with wind direction and speed, using bivariate polar plots (Figures 7 and 8).
::::
The

:::::
results

::
of

:::
the

:::::::::::::
meteorological

:::::::::::
normalization

:::
are

:::::
used

::
to

:::::::
evaluate

:::
the

::::::
effects

:::
of

:::
the

:::::::
changes

::
in

:::::::::
emissions

::
of

::::::::
particular

:::::::::
pollutants,

:::
as

:
a
:::::::::::

consequence
:::
of

:::
the

:::::::::
restrictions

:::::::::
previously

:::::::::
discussed. Bivariate polar plots can also be helpful

::::
were

::::
used

:
to distinguish potential sources that

impact the monitoring sites
:::::::
(Figures

:
7
::::
and

::
8).405

3.2.1 Carbon monoxide
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Figure 5. Mean diurnal cycle for the different pollutants for the LD (from 20 March 2020 to 13 April 2020) and the PLD (13 April 2020 to

25 May 2020) for CNEA site
:::
both

::::
sites.

:::
The

:::
line

:::::::
represents

:::
the

::::::
average

::::::
diurnal

::::
cycle

:::
and

:::
the

:::::
shaded

:::
area

::::::::
represents

:::
the

::::::
standard

::::::::
deviation.

The combination of results of RCobs2019 and RCRF and the NMB detected in the model for (Table 5 ), that is 10% for CNEA

and 4% for PC, reveals the importance to assess the decrease in concentrations during COVID-19 restrictions using the RF

model in order to consider the meteorological differences between 2019
::
As

::::::
shown

::
in

::::
table

::
5
:
and 2020. For PC, during the

LD phase, RCobs2019 was -28% while RCRF was -22%. Considering that the model overestimates concentrations (NMB of 4%),410

RCRF would be as small as -19%. Therefore, according to the RF model, the reductions (
::::::::
discussed

:::::
below,

:::::
there

:::
was

::
a
::::::::
reduction

::
in

:::
CO

:::::
levels

:::::
when

:::
the

:::::::
highest

:::::::::
restrictions

:::::
were

::
in

:::::
place

:::::
(LD).

:::::::::
However, the opposite of RCRF) during the LD period may

have been of only 19% while the simple comparison between observations indicated that a larger reduction (28%) would have

occurred. Nevertheless in the PLD, estimates of relative changes were similar: 21% (RCRF)and 17% (RCobs2019). For CNEA,

during the LD phase, RCobs2019 was -47% while RCRF was -51%. Taking the bias into account, differences might be as small415

as -42% . Instead, during
:::::::
behavior

:::
of

:::
this

::::::::
pollutant

::::
when

:::
the

::::::::::
restrictions

::::
were

:::::::
partially

:::::
lifted

::::::
(PLD)

::::::
differed

:::::::::
depending

:::
on

:::
the

::::::::
measuring

::::
site.

:
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Figure 6. Mean diurnal cycle for the different pollutants for lockdown (20-03-20 to 13-04-20)
::
the

::::
LD,

:::
PLD

:
and partial lockdown (13-04-20

to 25-05-20)
:::::::::
MAM2019

::::::
periods,

:::
with

::::::::::::
meteorological

:::::::::::
normalization, for the site PC

::::
both

:::
sites.

::
In

:::
PC,

:::
the

::::::::
recovery

::
of

::::::
traffic

::::::
during

:::
the

::::
PLD

::::::::::::::::
(RCPLD

RF =−19%)
::::
did

:::
not

:::::
result

::
in

::
a

::::::
smaller

:::::::
relative

::::::
change

::::
with

:::::::
respect

::
to

:
a
::::::::
scenario

::::
with

::::::
higher

:::::::::
restrictions

::::::::::::::::
(RCLD

RF =−20%).
:::::::::::
Nevertheless,

:::
as

::::::
shown

::
by

::::::::
RCRFN ,

::::::::::
decoupling

:::
the

::::::
effects

:::
of

:::
the

::::::::::
meteorology,

:::
the

:::::::
relative

::::::
change

::::
was

:::::
-20%

::
in

:::
the

::::
LD,

:::
but

::::
only

::::
-7%

::
in the PLD, although raw numbers were the same (28%)420

for both relative changes, the positive bias in RF estimations makes that RCRF might have been as small as 21%.

As expected
:::
with

:::::::
respect

::
to

:::
the

::::::::::
normalized

:::::
values

:::
for

:::
the

:::::
same

:::::::
periods

::
in

:::::
2019.

:::::
These

::::::
results

:::::
show

:::
the

::::::::
influence

::::
that

:::
the

::::::::
particular

::::::::::::
meteorological

:::::::::
conditions

::::
had

:::
on

:::
CO

::::::::::::
concentrations

::
in
::::

PC.
:::
On

:::
the

:::::
other

:::::
hand, in CNEA, the partial recovery of

traffic
:::
lift

::
of

:::::::::
restrictions

:
during the PLD was reflected

::::::
resulted

:
in a smaller reduction in the concentrations : 47% (LD) versus

28% (PLD). However, a similar reduction was not observed in PC: 22% (LD) versus 21% (PLD). We do not have a plausible425

explanation for this relatively sustained level during the LD and the PLD.
::::::
relative

::::::
change

::
in

:::
CO

::::::::::::
concentrations

::::
that

:
is
:::::
clear

::::
both

::
for

:::
the

:::::::::
particular

::::::::::::
meteorological

:::::::::
conditions

::
of

:::
the

::::
two

::::::
periods

::::::
(-45%

::
for

::::::
RCLD

RF:::
vs

::::
-26%

:::
for

::::::::
RCPLD

RF )
:::
and

:::
for

:::
the

::::::::::
normalized

:::::
model

::::::
(-26%

:::
for

:::::::
RCLD

RFN:::
vs

:::::
-11%

::
for

:::::::::
RCPLD

RFN ).
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Figure 7. Bivariate polar plot for CNEA of hourly means for observations during MAM2019 and lockdown periods versus the BAU scenario

estimated with RF model. The radial axis represents wind speed, the angular axis represents wind direction, and the color scale represents

pollutant concentrations.

Figure 8. Bivariate polar plot for PC of hourly means for observations during MAM2019 and lockdown periods versus the BAU scenario

estimated with the RF model. The radial axis represents wind speed, the angular axis represents wind direction, and the color scale represents

pollutant concentrations.

Observed
::::
The

:::::::
observed

:
CO had lower concentration values and flatter diurnal patterns than our simulations of a BAU

scenario (Figs. ?? and ??). Relative changes appeared to be significantly lower for PC than CNEA (-47% vs. -22%), but the430
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difference in absolute terms is only 0.04 (0.11 and 0.15 for PC and CNEA respectively). This is linked to a general decrease in

mobile emissions, reflected in the fact that monitored hourly concentrations in CNEA were between 22% and 62% lower than

the RF estimates. The highest differences corresponded to the morning rush hour, when RF estimates peaked while observed

concentrations were largely undifferentiated from the general flat pattern. In PC, these relative decreases were in the order 36%

(morning rush hour) > 22% (afternoon) > 0.4% (night). This decrease in the concentrations is indicative of a decrease in traffic435

flow of gasoline vehicles, which are known to emit relatively higher levels of than diesel vehicles. This
:::
Fig.

:::
5).

::::
This reduction

far surpasses any bias detected in RF simulations, particularly during rush hours, where RF showed close to no bias (Figs. ??

and ??
:::
Fig.

:::
3).

::::
This

::
is

::::::::::
particularly

::::
true

::
in

::::::
CNEA,

::::::
where

:::
the

::::::
general

::::::::
reduction

:::
of

:::
CO

::::
was

:::::
larger.

:::
For

::::
this

::::::::
pollutant,

:::::
there

:::
are

::
no

:::
big

:::::::::
differences

:::::::
between

:::
the

:::::::
changes

::
in

:::
the

::::::::::
normalized

::::::
diurnal

:::::
cycle

:::
and

:::::
those

:::::::
obtained

:::::::::
comparing

:::
the

:::
RF

::::::::
predictive

::::::
model

::::
with

::
the

:::::::::::
observations

:::::
(Figs.

::
5

:::
and

::
6).440

As shown in Figure 7, for the CNEA site during MAM2019, concentrations were similar for all wind directions and speeds

(up to 8 m/s). The largest relative changes between the 2020 observations and the RF simulations were when winds were

coming from the E and SE (both for the LD and the PLD). These were probably due to a reduction in traffic on the highway

(see Section 2.4.1), which according to Diaz Resquin et al. (2018), is one of the principal sources of fuel combustion emissions.

An equivalent analysis for PC (Figure 8) yielded similar results during MAM2019, although concentrations seemed to be445

largest when winds were from the W. However, relative changes during the LD and the PLD did not seem to have a clear

dominant wind direction. During the PLD, sources from the W reappeared.

3.2.2 Nitrogen oxides

The drastic reduction of vehicular emissions impacted positively in the levels. Both sites presented relative changes of around

-60% for the LD NO and an absolute difference of around -20 for the concentrations, when comparing RF estimations with450

MAM2020obs. Considering that the biases are positive, a similar analysis to that discussed for the relative changes could also be

done. However, NO2 :::::
levels.

::
As

::::::
shown

::
in

:::::
Table

::
5,

::::::
during

:::
the

:::
LD

::::::
period,

:::
NO

::::::
levels

::::
were

:::
one

:::::
third

:::
and

:::
one

::::::
fourth

::
of

:
the NMB

of this pollutant is in the range between 1.2% and 3% and, for this reason, both relative changes remain similar. Discrepancies

of ∼ 10% in the relative changes were found in the PLD period. Concentrations were consistently smaller during the day (see

Figs. ?? and ??)
:::::::
estimated

:::::
value

:::
for

:
a
:::::
BAU

:::::::
scenario

::
in

:::
PC

:::
and

::::::
CNEA

:::::::::::
respectively.

:::
The

:::::::
relative

::::::
change

:::
for NO2 :::

was
:::::::
∼-45%.455

::::::
During

:::
the

:::::
PLD,

:::
the

::::::
relative

:::::::
change

::::
was

:::::::
smaller:

:::::
-37%

:::
for

::::
both

::::
sites

:::
for

::::
NO,

:::::
-20%

::::
and

:::::
-30%

:::
for

:
NO2 ::

in
:::
PC

::::
and

::::::
CNEA

::::::::::
respectively.

In both sites, the relative change of was larger than that
::::::
changes

::
of

:::::::
nitrogen

::::::
oxides

::::
were

::::::
larger

:::
than

:::::
those

:
of CO. Arguably,

this indicates that the power plants did not contribute in any major way to the observed differences. This is probably due to

a reduced circulation of diesel vehicles, which are the major
:::::::
nitrogen

::::::
oxides emitters (D’Angiola et al., 2010; Ghaffarpasand460

et al., 2020).

:::::::
RCRFN :::::

shows
::::
that

::::
these

:::::::
changes

:::::
were

::::::::::
consistently

::::::::
enhanced

:::
by

:::
the

::::::::::::
meteorological

:::::::::
conditions

::::::
during

::::
that

::::::
period,

::
so

::::
that

::
the

:::::::
changes

::::
with

::
a
::::::::::::
meteorological

::::::::::::
normalization

:::
are

:::::::
between

::::
two

:::::
thirds

:::
and

::::
half

::
as

::::
large

::
as

:::::
those

:::::::
without.

:
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:::
We

:::
also

:::
see

::
a
::::::::
flattening

::
of

:::
the

::::::
diurnal

::::::
cycles

::
of

:::
NO

::::::
during

:::
the

:::
LD,

::::
both

:::
in

::
the

:::
RF

:::::::::
predictive

:::::
model

::::
and

::
in

:::
the

:::::::
analysis

::::
with

:::::::::
normalized

:::::::::::
meteorology

:::::::
(Figures

:
5
:::
and

:::
6).

:::
The

:::::::
bimodal

:::::
curve

::
is

:::::::
partially

::::::::
recovered

::::::
during

:::
the

::::
PLD.

::::
This

::::::::
indicates,

::::
once

::::::
again,465

::
the

::::::
strong

:::
role

:::
of

:::::
traffic

::::::::
emissions

::
in

:::
NO

:::::::::::::
concentrations.

:
NO2:

,
::::::::
however,

::::::::
preserves

::::
most

::
of

::
its

:::::::
bimodal

::::::
nature,

:::::
albeit

:::::::::
somewhat

:::::::::
diminished.

:::::::::
Although

:
a
:::::
clear

::::::::::
explanation

:::
for

:::
this

::::
fact

::
is

::::
hard

::
to

::::
find,

::::::
while

:::
NO

::
is

::::::::::::
predominantly

::
a
:::::::
primary

::::::::
pollutant,

:
NO2

:
is
::::::::
partially

::::::::
secondary

::
in
::::::

origin,
::::
and

::
is

::::::
largely

:::::::::
influenced

::
by

::::
NO,

:
O3 :::

and
:
HOx ::::::::::::

concentrations,
:::
as

::::
well

::
as

::::::::
radiation

:::
and

:::::
other

::::::::::::
meteorological

:::::::::
parameters

:::::::::::::::::::::::::::::::::::::
(Han et al., 2011; Brasseur and Jacob, 2017).

:::
NO

::
is

::::::::::::::
photochemically

::::::::
converted

::
to NO2 ::

by
:::::::
reacting

::::
with O3 :::::

during
:::
the

::::::::
morning,

:::
but

::
is
:::::::::
converted

::::
back

::
to

::::
NO

:::
due

::
to

:::::::::
photolysis

::::::
during

:::
the

:::::::
daytime,

:::::::::
generating

:::
an

:
O

:::::
radical

::::
that470

:::::::::
regenerates O3.

:::
At

:::::
night, O3 :::

and NO2 ::::
react

::::
with

::::
each

:::::
other,

::
in

:
a
:::::
chain

::
of

:::::::
reactions

::::
that

:::
end

::
up

:::::::::
generating

:
HNO3::

in
:::
the

:::::::
aqueous

:::::
phase

::
of

::::::::
aerosols.

:::
The

:::::::
diurnal

::::
cycle

:::
of

:::
this

:::::::::::::
photochemical

::::::::
processes

::::::
should

::
be

:::::::
largely

::::::::
regulated

::
by

:::
the

:::::
solar

::::::::
radiation,

::::
and

:::::::
therefore

:::::::::
unaffected

:::
by

:::
the

::::::::::
restrictions.

::::
This

:::::::
remains

::::
true

::::
even

::
if

:::
NO

:::::::::
emissions

:::
are

:::::::
flattened

::::
and

:::
the

::::
total

::::::::::::
concentrations

:::
of

NO2:::
are

::::
also

::::::
clearly

:::::
lower,

::::::::::
particularly

:::::
during

::::::::
daytime.

Fig. 7 shows the bivariate polar plots of the NOx concentrations at the CNEA site. The bivariate polar plot in MAM2019475

provides evidence for two main contributing sources. One source was due to air masses from E-SE directions at low wind

speeds and the second source was associated with higher wind speeds from N-NW direction. The source to the E-SE could

be dominated by ground-level road traffic emissions that are closer to the site because high concentrations under low wind

speeds are indicative of surface emissions released with little or no buoyancy (Uria-Tellaetxe and Carslaw, 2014). Also, the

wind direction where this source was dominant corresponds to the highway previously described in Section Observational Data480

- CNEA
::::
2.4.1. The source to the N-NW was associated with high concentrations at high wind speeds, which is indicative of

emissions at a greater distance. It is plausible to attribute these NOx levels to the main access avenue that connects the city

with the suburbs and is located in this direction, due to the presence of heavy-duty diesel vehicles and buses and the number of

flowing traffic stops. During the LD and the PLD, the highest RCRF were present when winds were coming from the highway.

This serves as further evidence that the observed effects were mainly due to changes in traffic, and not to the changes in485

residential emission patterns due to lifestyle changes during the lockdown.

In the case of PC, as shown in Figure 8, during MAM2019, the main sources seemed to be located to the W and SW of the

station. These two directions entailed the largest changes due to restrictions during the LD period. During the PLD period, in

a similar manner than CO, the sources to the W were partially restored (although concentrations from the SW remained low).

3.2.3 Ozone490

By contrast to the other pollutants considered, the O3 increased
:::
was

::::::
higher when compared to a no-restrictions scenario. Its

relative changes estimated using RF were 87% and 65
:::
the

::
RF

:::::::::
predictive

:::::
model

:::::
were

::::
80%

:::
and

:::
57% during the LD and the PLD

periods respectivelywhile the ones estimated through direct comparison with MAM2019obs were 40% and 17%. Moreover, if

the positive bias is considered, the differences between RCRF and RCobs2019 could be even larger. .
:

Recent studies of the lockdown effects on atmospheric composition have also reported large O3 increases at urban sites495

and indicated the need of analyzing changes in precursor emissions and meteorological parameters in light of their role in

the nonlinear response in the O3 concentrations (Ordóñez et al., 2020; Tobías et al., 2020; Nakada Kondo and Urban, 2020;
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Shi and Brasseur, 2020). Hence, consideration of the joint effects of the changes on precursors and meteorology are of great

value to understand the differences between the relative changes estimated using RF concentrationsand MAM2019obs. Based

on Figures ?? and ??
:
4
:::
and

::
5, we provide plausible explanations for these discrepancies.500

It is well-known that decreasing
:::
well

::::::
known

::::
that

:::::::::
decreasing

:::::::
nitrogen

:::::
oxides

:
levels in a VOC-limited regime tend to increase

O3. It is most likely that the lower concentrations of freshly emitted NO registered during LD and
::
the

:::
LD

::::
and

:::
the

:
PLD in

CNEA provoked a decline in the local scavenging of O3, leading to higher O3 concentrations, particularly in the morning

(Tobías et al., 2020; Nakada and Urban, 2020). Even though NO is the pollutant that had the highest relative decrease during

the LD and the PLD, its reduction is not enough to explain the overall relative increase in O3, and therefore NO2 might have505

played a role as well. Lower NO2 levels could have also resulted in more OH to initiate O3 production because the inhibition

of termination reaction favors faster O3 accumulation (Seguel et al., 2012).

With respect to the role of aerosols
::
in O3 ::::::::

formation, it is worth noting that a significant decrease in PM10 was registered

in PC. This likely implied consequent reduction not only in the mass concentrations of PM2.5 and PM1,
:
but especially in the

number concentration of fine and ultrafine particles (Arkouli et al., 2010; Gelman Constantin et al., 2021). A similar situation510

most likely occurred in CNEA. This could have led to greater photolysis due to the decrease in emissions of fine particles

as a consequence of the vehicular restrictions imposed during the lockdowns, which in turn could have led to higher O3

concentrations (Wang et al., 2019).

Lastly
::
In

:::
this

::::
case, meteorological factors might be relevant

::::
were

::::::
clearly

:::::
highly

::::::::
relevant,

::
as

:::
can

:::
be

::::
seen

:::
by

:::
the

:::
fact

::::
that

:::
the

::::::
relative

::::::
change

::::::::
estimated

::::
with

:::
the

:::::
RFN

:::::
model

::
is
:::
far

::::::
smaller

:::::
(27%

:::
for

:::::::
RCLD

RFN::::
and

::::
only

:::
5%

:::
for

::::::::
RCPLD

RFN ). The effects of me-515

teorology can be rather complex since the O3 precursor concentrations and reaction rates are affected in multiple ways (Wang

et al., 2017). Therefore, they are not easy to analyze individually. In our simulations, although only winds and the variable

daynight were included directly, temperature and relative humidity do affect precursors
::::::::
Although

:::::::::::::
meteorological

::::::::
variables

::::
such

::
as

:::
the

::::::::::
temperature

::::
and

:::::::
relative

::::::::
humidity

:::
are

::::::
highly

:::::::
relevant

:::
for

:::::
ozone

::::::::::
production

:::
and

:::::::::
chemistry,

::::
they

:::::
were

:::::
tested

:::
as

:::::::::
explanatory

::::::::
variables

::::
and,

::
in

:::
this

:::::
case,

:::
led

::
to

:::::
model

::::::::::
degradation.

::::::::
However,

:::
we

::::::
submit

::::
that

::::
their

:::::
effects

:::
are

::::::::
indirectly

:::::
taken

::::
into520

::::::
account

:::
by

:::
the

:::::::
chemical

::::::
species

::::
that

::::
were

::::::::
employed

::
(CO,

:
NO, NO2 :::

and SO2). Solar radiation, which is highly relevant for O3

chemistry, is also linked to the variable daynight. In this particular case, during the LD, elevated O3 concentrations occurred on

days with high temperatures and low winds, which favor the photochemical production of O3 and the accumulation of ozone

and its precursors.

:::::
When

:::
the

:::::::::::
meteorology

::
is
:::::::::::

normalized,
:::
the

::::::
valleys

:::
at

::::
7:00

::::
and

:::::
20:00

:::
are

:::::::
clearly

::::
less

::::::
marked

:::::::
during

::::
2020

:::::
than

::::::
during525

:::::
2019,

:::
and

::::::
almost

::::::::::
disappeared

::::::
during

:::
the

:::
LD

:::::::::
compared

::::
with

:::
the

::::::::::
normalized

:::::
values

:::
for

:::
the

:::::
same

::::::
period

::
of

:::
the

::::::::
previous

::::
year

::::
(Fig.

:::
6).

::::
This

::
is

::::::::
probably

:::
due

::
to
::::

the
:::::
lower

::::::::::::
concentrations

::
of

::::::::
nitrogen

::::::
oxides,

::::
that

::::::::
therefore

:::
are

:::
less

::::::::
efficient

::
at

:::::::
titrating O3

::::::::::::::::::::::
(Brasseur and Jacob, 2017).

:

As expected, the bivariate polar plots (Figure 7) show that O3 behaved opposite to NOx, having the largest increases when

winds came from the E and SE during the LD and also when they came from the E and NW during the PLD.530

From these results, we can also derive that the area where the CNEA site is located behaves as a region with a VOC-limited

chemical regime, because the reduction in NOx emissions caused an increase in ozone concentrations (Blanchard and Fairley,
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2001; Heuss et al., 2003; Yarwood et al., 2003; Blanchard and Tanenbaum, 2006). We identified a similar behavior of increasing

O3 concentrations under decreasing NOx levels when analyzing the 2019 data for weekends .
::::
(Fig.

:::
S5

::
of

:::
the

:::::::::::::
Supplementary

::::::::
Material). This is related to the denominated weekend effect in a VOC-limited regime (Koo et al., 2012).535

3.2.4 Sulphur dioxide

During the LD, the SO2 seemed to be slightly lower (about 9%) than
::::::::::::
concentrations

::::
were

:::::::
slightly

:::::
lower

::::
than

:::::
those

:::
of

::
the

:::::::::
simulated

:::::
BAU

:::::::
scenario

::::::
(RCRF:::

of
::::::
-12%).

::::::::
Although

:::
this

:::::::
change

::
is

:::
not

::
as

:::::
large

::
as

::
in

:::
the

:::::
other

::::::
species

:::
for

:::
the

:::::::::
particular

::::::::::::
meteorological

:::::::::
conditions

::::
that

:::::::
occurred

::::::
during

:::
the

:::::::
period,

::
if

:::
we

:::::::
consider

::
a
:::::::::
normalized

::::::::::::
meteorology,

:::
we

:::::::
observe

:
a
:::::::
relative

::::::
change

::
of

::::::
-20%,

:::::
which

::
is
::::::

about
::
as

:::::
large

::
as

:::
the

:::::::
change

::::::::
observed

:::
in,

:::
for

::::::::
example,

::::
CO.

:::::
There

::::
was

:::::::
smaller

::::::
relative

:::::::
change540

:::::
during

:
the RF simulations and major differences between model and observations during the lockdown periods were during

the afternoon and night (Figure ??). However, it should be noted that during the BLD the model overestimated during the

afternoon by about 10%. These values are quite different to direct comparison with MAM2019obs, which exhibited 19% lower

concentrations during the same period. During the PLD, the concentrations were 7% and 16% lower than RF and MAM2019obs

respectively
::::
which

::::
was

::::::
similar

:::
for

:::
RF

:::
and

:::::
RFN.545

A potential reason for observing smaller differences between BAU estimates and observations would be that the main source

of this pollutant are the
:::::
While

::
all

:::::
other

:::::::
species

::
in

:::
this

:::::
study

::::
are

::::::
mostly

:::::::::
controlled,

:::::::
directly

::
or

:::::::::
indirectly,

::
by

:::
on

::::
road

::::::
traffic

::::::::
emissions,

:::::::::
according

::
to

:::
our

:::::::
findings

:
SO2 ::::::::::::

concentrations
:::
are

::::::
largely

:::::::::
influenced

::
by

::::::::
shipping

::::::::
emissions

::::
(see

::::::
section

:::::
3.1).

::::
This

:::::
might

::
be

:::
the

::::::
reason

::::
why SO2 ::

is
::
the

::::::
specie

::::
with

:
a
::::::
larger

::::::
change

::::
after

::::::::::
normalizing

:::
the

:::::::::::
meteorology.

:::::::
Another

:::::::
possible

:::::
reason

:::
for

::::::
having

::
a
::::::
smaller

:::::::
relative

::::::
change

::
in

:
SO2 :::::::::::

concentrations
::
is
::::
that

:::
the vehicle emissions of heavy-550

duty diesel trucks , that are
:::
are

::::::
another

:::::::
relevant

::::::
source

:::
in

::::::
Buenos

::::::
Aires.

:::::
These

:::
are

:
mainly associated with essential activ-

ities, which were the least affected by lockdown restrictions. Therefore, further research would be needed before drawing

conclusions about this pollutant
:::
and

:::::
might

:::::
have

:::
not

::::
been

:::::::
affected

::
as

:::::
much

::
by

:::
the

::::::::::
restrictions.

::::::::
However,

:::
the

::::::
partial

::::::::
flattening

::
of

::
the

::::::::::
normalized

::::::
diurnal

:::::
cycle

::::
(Fig.

:::
6)

::
is

:::
still

::::::::
probably

::::::
related

::
to

:::::::
changes

::
in

:::
this

::::::::
particular

::::
sort

::
of

:::::
traffic.

3.2.5 Particulate matter 10 µm555

During the LDphase, the RC of ,
:
PM10 levels were similar: -36% (RF) and -38% (obs2019). Also, in this case, the negative

bias, -1.2%, would make this difference even smaller
:::
had

:
a
:::::::
relative

::::::
change

::
of

:::::
-33%

:::::::::
compared

::
to

::::
what

::::::
would

::
be

::::::::
expected

:::
for

:::
that

:::::::
specific

:::::
period

:::::
under

::::::::
previous

:::::::::
emissions.

::::
This

:::::
effect

:::
was

:::::
once

::::
again

::::::::
enhanced

:::
by

:::
the

::::::::::::
meteorological

:::::::
factors,

::::::::::
considering

:::
that

:::::::
RCRFN::::

was
::::
only

:::::
-20%. During the PLD, RCRF was -19% and RCobs2019, -16% . BLD levels were recovered about eight

weeks after LD’s inception.
:::::::
similarly

::
to
:::::

what
::::::::
happened

::::
with

:::::
other

:::::::::
pollutants,

:::
the

:::::::::::::
concentrations

:::
had

::
a

::::::
relative

:::::::
change

::::
only560

::::
about

::::
half

::
as

:::::
large

:::::
(-14%

:::
for

:::
the

:::
RF

::::::::
predictive

::::::
model,

::::
and

::::
-7%

::
for

:::
the

::::::
RFN).

When winds are taken into account (Figure 8), we observe a general reduction from all directions during the LD. Two

sources account for this: (i) the anthropogenic PM10 emissions close to the monitoring site that were mostly from vehicle

diesel combustion and soot resuspension and (ii) natural sources, such as dust emissions, from the nearest large open area. In

a similar fashion to CO and NOx, sources from the W were reestablished during the PLD.565
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3.3 Vehicle emission reduction strategies and air pollution in the MABA

::::::::
Although,

::
as

:::::::::
expected,

::::
most

:::::::::
pollutants

:::::
were

:::::::::
noticeably

:::::::
reduced

::::::
during

:::
the

:::
LD

::::
due

::
to

:::
the

::::::::::
restrictions

::::::::
imposed, O3 :::

was

::
an

:::::::::
exception. Strategies for controlling pollution from vehicular emissions in the MABA must take into account the relative

reductions of NOx and VOCs to avoid an unintended increment in O3 concentrations. The atmosphere in the MABA is usually

cleaned up during the night, due to a flat topography and the city’s wind dynamics. Therefore, criteria pollutants rarely surpass570

air quality norms. Even though no specific policies to reduce them have been implemented, greenhouse emission policies

that are in place and affect traffic
::::::
recently

::::::::::
announced

:::::::::
greenhouse

::::
gas

:::::::
emission

:::::::::
mitigation

:::::::
policies

::::::::
affecting

:::::::
on-road

::::::
mobile

::::::::
emissions

:
may have a major impact. These include (i) technological advances in diesel buses, that should reduce NOx and

PM10, without a major impact in VOCs and (ii) an increase of the fraction of electric cars, which should reduce NOx and

VOC concentrations. Thus, if NOx emissions decrease like they did during the COVID lockdown, this will likely result in575

an important increment in tropospheric O3 in the MABA if no additional measures regarding VOCs emissions are included
:
,

:::::
which

:::::
could

::
be

::
of

:::::::::
particular

:::::::::
importance

:::
for

:::::
some

::::::
weather

:::::::::
conditions. In fact, under the VOC-limited regime identified for the

MABA, control of VOCs emission would be more efficient to reduce local peaks in O3.

This highlights the importance of having comprehensive air quality policies rather than focusing on reductions in individual

pollutants.580

4 Code and data availability

Hourly concentrations of CO, NO, NO2, SO2 and O3 in CNEA, are available in .csv format at https://data.mendeley.

com/datasets/h9y4hb8sf8/1 (Diaz Resquin et al., 2021). We also provide an introductory R notebook with some baseline

simulations for the predictive model. For PC regulatory averages are publicly available and can be accessed through their

website (https://data.buenosaires.gob.ar/dataset/calidad-aire). Nevertheless hourly data is not regularly reported, but can be585

requested to the Environmental Protection Agency of Buenos Aires City. To enable a machine learning quick start to reproduce

the baseline experiments, we also added to the dataset the meteorological data used to run the simulations. It is publicly

available at the website of the National Weather Service (https://www.smn.gob.ar/descarga-de-datos).

5 Summary and conclusions

The RF model was trained with a set of 1-year air pollutant concentrations determined in two monitoring sites of the590

metropolitan
:
In
::::

this
:::::
study,

:::
we

:::::::
present

:::::
novel

::
air

:::::::
quality

:::
data

:::
for

::
a
:::::::::
residential

:::
site

:::::::
located

::
in

:::
the

:::::::::::
Metropolitan

:
area of Buenos

Aires .
:::
that

:::::::
includes

:::::::::::::
concentrations

::
of

:
CO,

:
NO,

:
NO2:

,
::::
and,

::
of

::::::::
particular

::::::::::
importance

:::
for

:::
the

::::
city,

:
SO2 :::

and O3.
::::
One

::::
year

:::
of

::::
these

::::
data,

:::::::
together

::::
with

::::
data

:::::
from

:
a
::::::
public

:::::::::
monitoring

::::::
station,

:::::
were

::::
used

::
to

::::
train

:::::::
Random

::::::
Forest

::::::
models.

:
The performance of

the model used in a predictive mode
:::::
models

:
was tested on the basis of observations registered

::::
both

::::
with

:
a
:::::::
separate

::::::
testing

:::
set

:::::
during

:::
the

:::::::
training

::::::
period

:::
and

::::
with

::::
data

:
before the outbreak of the COVID-19 pandemic. Observations in the two first phases595

of the lockdown measures imposed were compared against observations in 2019 and the
::::
with business-as-usual RF simulated
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concentrations . In addition, this study provided information on and concentrations that is still scarce and fragmentary for the

large urban conglomerate.
::::::::::::
concentrations

::
to

::::::
assess

:::
the

::::::
change

::::
with

::::::
respect

::
to

:::
the

:::
air

:::::::
pollutant

::::::::::::
concentrations

::::
that

:::::
would

:::::
have

:::::::
occurred

:::::::
without

:::
the

::::::::
lockdown.

::::::::::::::
Simultaneously,

:
a
:::::::::::::
meteorological

:::::::::::
normalization

:::::
using

::::::::
Random

:::::
Forest

::::
was

::::::::
performed

:::::::
(RFN),

:::
and

:::
the

::::::::::
normalized

::::::::::::
concentrations

::::::
during

::::
these

:::::::::
lockdown

::::::
phases

::::
were

:::::::::
compared

::::
with

:::
the

:::::::::
normalized

:::::::::::::
concentrations

:::
for

:::
the600

::::
same

::::::
periods

::::::
during

:::::
2019.

:
The main conclusions are listed below:

(i) The resulting set of explanatory variables for the different pollutants in each site provides evidence of the need for careful

::::::
variable

:
identification during the training period. Although ideally the best explanatory variables could be identified by

trial and error by non-experienced users of RF models
::::::
random

:::::
forest

:::::::
models

::::
with

:::
the

:::::::
support

::
of

:::::::
variable

::::::::::
importance

::::
plots, it is advisable to count with expert judgment for a meaningful and relatively fast selection;605

(ii) The RF model was able to reproduce air quality observations at two monitoring stations in the MABA when it was tested

::::::::
evaluated for a 15-day period previous to the outbreak of the COVID-19 pandemic. This approach allowed predicting

pollutant daily
:::::
hourly mean values with a mean bias of less than 11

::
10% by using data of air quality, emissions and

meteorology and analyzing the effect of wind direction and speed in pollutant concentration, which is useful when

characterizing pollution sources;610

(iii) The atmospheric concentrations of , and decreased and increased in comparison with the same period of the previous

year and the RF estimations
::::::
During

:::
the

:::::::::
lockdown,

:::
all

:::::::
primary

::::::::
pollutants

::::
had

:::::
lower

:::::::::::::
concentrations

::::
than

::::
what

::::
the

:::
RF

:::::::::
framework

:::::
would

::::::
predict

:::
for

::
a
::::::::::::::
business-as-usual

::::::::
scenario.

::::
The

::::::
relative

:::::::
change

::::::
ranged

::::
from

:::::
-12%

:
(SO2:

)
::
to

:::::
-75%

::::
(NO

::
in

:::
the

:::::::::
monitoring

::::
site

::
of

:::::::
CNEA). In the case of , and , the difference between the two methodologies was less than

11%, but considering the model bias of each pollutant, these differences could be larger in all cases except for during615

the LD. However,
::
all

::::::::
pollutants

:::
but

:
SO2,

:::
the

:::::::
relative

:::::::
changes

::::
were

::::::::
enhanced

:::
by

:::
the

:::::::::::
meteorology,

::
as

::::::
shown

::
by

:::
the

::::
fact

:::
that,

:
in

:::::::
absolute

:::::
terms,

::::::
RCRF :::

was
::::::::
generally

:::::
larger

::::
than

::::::::
RCRFN .

::::
This

::::::::
difference

::::
was

::::::::::
particularly

::::
large

:::
for O3,

::::::::
probably

:::
due

::
to

:::
its

::::::::
secondary

::::::
nature

:::
and

:::
its

:::::::
complex

::::::::
chemical

:::
and

:::::::::::::
photochemical

:::::::::
production

::::
and

:::::::::
destruction

:::::::::::
mechanisms.

::::
The

::::::::
exception

:::::::
observed

::
in

:
the case of , which has a complex chemistry and nonlinear dependence with its precursors and with

meteorology, it was larger than 40%SO2 :
is

:::::
likely

:::
due

::
to
:::
the

::::::::::
importance

::
of

:::
the

::::
wind

::::::::
direction,

::::
due

::
to

:::
the

::::::::
relevance

::
of

:::
the620

:::::::
shipping

::::::::
emissions. The relative changes in pollutant concentrations attributable to lockdown are closely linked to

::::
both

::
the

::::::
traffic

:::
and

:
the reduction in traffic . On one hand, this could be noted in the changes in the observed and simulated

diurnal patterns. On the other hand, the effect of the circulation of vehicles could also be observed when analyzing

the
::::::::
particular

:::::::::::::
meteorological

:::::::::
conditions.

::::
The

:::
use

:::
of bivariate polar plots made possible by the use of the modelling

technique. This allowed us to locate likely emission sources, mostly from high traffic directions.
:
is
::::
also

:::::::
helpful

:::
for625

:::::::::
identifying

:::::::
potential

:::::::
sources,

:::::
while

:::::::::
remaining

::::::::
relatively

::::
easy

::
to

::::::::::
implement;

(iv) The main advantage of using RF estimations instead of comparing with the same period of the previous year lies in

taking into account changes in the meteorology that might influence pollutant concentrations, with only a marginal

increase in the workload and computational cost. This feature of the model can
:::
RF

::::::::::
estimations

:::
can

:::
be

:::::::::::
implemented
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:
at
::

a
::::
low

::::::::::::
computational

::::
cost,

::::
and

:::
can

::
be

:::::
used

::
to

:::::
assess

::::
the

:::::::
changes

:::
that

::::::::
occurred

::
in

::
a

::::::
specific

::::::
period

::
if

::
an

::::::::::
anomalous630

:::::::
situation

:::::::::
happened.

:
It
::::
can

:::
also

:
be used to evaluate the effects of air pollution control policies and measures while taking

into account changes in meteorology. For a successful application,
::::::
forecast

:::
air

::::::
quality

:::::::::
conditions

:::
in

:::
the

::::
short

:::::
term

::
at

:
a
:::::
lower

::::
cost

::::
than

::::::
CTMs,

::::::
which

:::::
could

::
be

::
of

::::
use

:::
for

::::
local

::::::::::
authorities,

:::::::::
considering

::::
that

:::
the

:::::::
MABA

:::
has

::::
thus

:::
far

::::
only

:::
six

::::::::
long-term

:::
air

::::::
quality

::::::::::
monitoring

:::::::
stations.

::::::
When,

::
as

::
in
::::

this
:::::
case,

:::::::
detailed

::::::::
temporal

::::::::::
information

::
on

::::::::
different

::::::::
emission

::::::
sources

::
is

::::::
lacking

::::
(for

:::::::
example,

::::::
traffic

::::::::::
information

::::
from

:::::::
on-road

:::::::
sensors),

:
it is essential to use a set of data in which

:::
the635

emissions are similar to those that are expected to be simulated. Taking into account that the MABA has thus far only

six long-term air quality monitoring stations, we believe that this methodology could be used by local authorities, both

for forecasting and evaluating regulatory measures. Relations
::::
The

:::::
model

::::
also

::::::
allows

::
to

:::::::
analyze

:::
the

:::::::
relations

:
between

different pollutantscan also be readily included, which is of particular interest for those that have very complex chemistry,

such as O3. The observational input data needed for future RF simulations can be readily updated. Most available RF640

models are
:::
The

::::::::
modeling

:::::::::
framework

:::::::::
developed

::
in

:::
this

:::::
study

::
is user friendly, rather straightforward to implement and do

not require large computational capacity. The methodology is amenable to be adapted to different time periods and sites

and implemented by the technical staff of regulatory agencies. Expert advice may be needed during the selection of the

predictive variables and model optimization;

(v)
:::
For

::::::::
assessing

:::
the

:::::::::::
effectiveness

:::
of

:
a
:::::::::

particular
:::::::
measure

::
in
::::

AQ
::::::::::::
independently

::
of

:::::::::
particular

:::::::::::::
meteorological

:::::::::
conditions645

::
of

::::::
specific

::::::::
periods,

:
a
:::::::::::::
meteorological

::::::::::::
normalization

::::::::
technique

::::::
based

::
on

:::::::
random

:::::
forest

::::
can

::
be

:::::
used.

:::::
This

::::::::
approach

::
is

:::::::
relatively

::::::
simple

::
to
:::::::::
implement

::::
with

:::::::
already

:::::::
existing

:
R
:::::::::
packages;

(vi)
::::::::
Although

:::::::
previous

::::::
studies

:::::::::
employed

::::
both

:::::::::
techniques

::::
with

::::::
similar

:::::
aims,

:::
we

::::::::
postulate

::::
that

:::
the

:::
use

::
of

:::
the

:::
RF

:::::::::
predictive

:::::
model

::::
and

:::
the

::::::::::::
meteorological

::::::::::::
normalization

:::::
serve

:::::::
different

:::::::::
purposes,

:::
and

::::::
should

:::
be

::::
used

::::::::::
accordingly.

::::
The

:::::::::
predictive

:::::
model

::::
can

::
be

:::::
used

::
to

:::::::
analyze

:::
the

:::::::
changes

:::
in

:::
for

::::::::
particular

:::::::
weather

:::::::::
conditions

:::
or,

:::::::::
combined

::::
with

::
a
:::::::::::::
meteorological650

:::::::
forecast,

::
to

:::::::
forecast

::::::::
pollutant

:::::::::::::
concentrations.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::::::::::::
meteorological

::::::::::::
normalization

::::::
makes

:
it
::::::::

possible

::
to

:::::::
evaluate

:::
the

:::::::
general

::::::
impact

:::
in

::::::::::::
concentrations

::::
due

::
to
::::::::

changes
::
in

:::::::::
emissions,

::::::::::
decoupling

::::
the

::::::
effects

::
of

:::::::::
particular

::::::::::::
meteorological

:::::::::
conditions

::::
from

:::
the

:::::::::
short-term

::::::::
emission

:::::::
changes

::::
from

:::
the

:::
AQ

::::::::
datasets;

(vii) In this work we provide the first year-long in situ observational dataset on tropospheric O3 and SO2, outside of an

industrial area for the MABA in the last decade. We also provide co-located concentrations of CO, NO and NO2;655

(vi)

(viii) According to our measurements, the MABA seems to be in a VOC-limited regime. If VOC emissions are not carefully

regulated, a NOx reduction would imply an increase in the tropospheric O3. Knowing how the concentrations of O3 in

the troposphere respond to reducing the emissions of its precursors is relevant when planning appropriate strategies to

reduce CO, NMVOCs and NOx emissions. Even though this classification is limited due to the fact that we only have660

single point measurements, this could be a useful starting point for a more thorough characterization of the ozone regime

in this urban area.
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