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Abstract. Land surface temperature (LST) is one of the most important and widely used parameter for studying land surface 

processes. Moderate Resolution Imaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can 

provide this information with high spatiotemporal resolution with global coverage. However, the broad applications of these data 

are hampered because of missing values caused by factors such as cloud contamination. In this study, we used a spatiotemporal 

gap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 15 

2003 to 2020 based on standard MODIS LST products. The method includes two steps, 1) data pre-processing and 2) 

spatiotemporal fitting. In the data pre-processing, we filtered pixels with low data quality and filled gaps using the observed LST 

at another three time points of the same day. In the spatiotemporal fitting, first, we fitted the long-term trend (overall mean) of 

observations in each pixel (ordered by day of year). Then we spatiotemporally interpolated residuals between observations and 

overall mean values for each day. Finally, we estimated missing values of LST by adding the overall mean and interpolated 20 

residuals. The results show that the missing values in the original MODIS LST were effectively and efficiently filled, and there is 

no obvious block effect caused by large areas of missing values, especially near the boundary of tiles, which might exist in other 

seamless LST datasets. The cross-validation with different missing rates at the global scale indicates that the gap-filled LST data 

have high accuracies with the average root mean squared error (RMSE) of 1.88℃ and 1.33℃, respectively for mid-daytime 

(1:30pm) and mid-nighttime (1:30am). The seamless global daily (mid-daytime and mid-nighttime) LST dataset at a 1 km spatial 25 

resolution is of great use in global studies of urban systems, climate research and modeling, and terrestrial ecosystems studies. The 

data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (Zhang et al., 2021a). 

1 Introduction 

Land surface temperature (LST) is an important variable for studies of energy balance, evapotranspiration, ecosystem processes in 

monitoring of Earth’s resources (Anderson et al., 2010; Long et al., 2020). It has been widely used in various studies such as urban 30 

heat island (Li et al., 2021; Liu et al., 2020b; Tang et al., 2017; Yue et al., 2019), hydrology (Bai et al., 2019; Zhang et al., 2017), 

meteorology (Anderson et al., 2010; Li et al., 2018b), ecology (Sims et al., 2008), and energy systems (Peng et al., 2012; Zhou et 

al., 2014b). LST varies significantly in both space and time due to the spatiotemporal variation of factors such as solar radiation, 

atmospheric conditions, land surface characteristics (Li et al., 2018a; Peng et al., 2014; Zhang et al., 2015). LST can be measured 

https://doi.org/10.5194/essd-2021-313

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 October 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

in situ, obtained from land surface modeling, and measured by remote sensing (Ford and Quiring, 2019; Sheffield et al., 2018). 35 

Remotely sensed LST is by far the most widely obtained/used due to its global spatial coverage, high spatiotemporal resolutions, 

and available long-term data records.  

LST products with a variety of spatial and temporal resolutions have been developed from different sensors/satellites such as: 

(1) high spatial resolution of about 100m and low temporal resolution of about every 16 days from Landsat  (Parastatidis et al., 

2017; Roy et al., 2014) and ASTER  (Hulley et al., 2015); (2) coarse spatial resolution of 3-5km but high temporal resolution sub-40 

daily to sub-hourly from geostationary satellites (Choi and Suh, 2013; Duguay-Tetzlaff et al., 2015; Jiang and Liu, 2014; Trigo et 

al., 2008; Yu et al., 2009); and (3) high spatial resolution about 1 km and high temporal resolution of daily from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Wan, 2013, 2014), Visible Infrared Imaging Radiometer Suite (VIIRS) 

(Guillevic et al., 2014), and Sea and Land Surface Temperature Radiometer (SLSTR) LST (Ghent et al., 2017). Among them, 

MODIS LST is the most widely used especially for regional and global studies due to its global coverage and long-term and well 45 

calibrated and documented data records (since 2000) (Aguilar-Lome et al., 2019; Li et al., 2017; Peng et al., 2012; Sandeep et al., 

2021; Zhao et al., 2020b; Zhou et al., 2019). However, MODIS LST has large number of missing values due to a variety of factors 

such as cloud contamination, non-overlapping satellite orbits, and instrumental malfunction (Crosson et al., 2012; Li et al., 2018a; 

Liu et al., 2020a; Shen et al., 2015; Wan, 2013).  

Filling the missing values of MODIS LST is an effective way to overcome this limitation in MODIS LST product. Several such 50 

seamless datasets have been developed in previous studies. Zhao et al. (2020a) reconstructed monthly MODIS LST data in China 

(2003 – 2017). Metz et al. (2017) published a global 3 arc-min (~5.6 km at the equator) monthly average, minimum and maximum 

LST data (2003 – 2016). Cheng (2021) published a daily (mid-daytime and mid-nighttime) 1 km seamless LST of China (2002 – 

2020). Zhang et al. (2021c) produced daily 1 km all-weather land surface temperature dataset for the Chinese land-surface and 

surrounding areas (2000 – 2020). Zhan et al. (2021) produced a global 1 km daily average LST dataset (2003 – 2019). Li et al. 55 

(2018a) produced a 1 km daily (mid-daytime and mid-nighttime) LST dataset for urban and surrounding rural areas of 

conterminous United States in 2010. However, there are still limitations in these products regarding spatial coverage or accuracy, 

especially in areas where LST has strong spatial and temporal variations such as cities. A global 1 km daily minimum and maximum 

LST dataset that can be used for a variety of studies and applications by scientists and practitioners such as city planners and water 

resources managers is still not available.  60 

A variety of gap-filling methods have been proposed to fill gaps in MODIS LST. These methods can be divided into four groups 

(Li et al., 2018a; Weiss et al., 2014; Zhang et al., 2020). The first group is based on data fusion methods, which combine LST data 

from different satellites or different overpasses times  (e.g., morning and afternoon) of the same satellite on the same day (Crosson 

et al., 2012; Duan et al., 2017; Long et al., 2020; Xu and Cheng, 2021; Zhang et al., 2020, 2021b). The second group is based on 

empirical relationship among different methods that were used to estimate the missing values by fitting empirical relationship 65 

between LST and auxiliary data (e.g., latitude, longitude, altitude, surface moisture, normalized difference vegetation index, and 

ground observed LST) (Fan et al., 2014; Ke et al., 2013; Zhao et al., 2020a). The third group is based on the internal spatiotemporal 

relationship that predicted the missing values with the available LST using algorithms such as temporal interpolation (Kilibarda et 

al., 2014; Xu and Shen, 2013), spatial interpolation (Ke et al., 2013; Yang, 2004), spatiotemporal interpolation (Sun et al., 2017; 

Weiss et al., 2014), and multi-dimensional smoothing (Garcia, 2010, 2011; Liu et al., 2020a; Pham et al., 2019). The fourth group 70 

is  hybrid method that combined several methods from previous groups mentioned above (Hong et al., 2021; Li et al., 2018a; Metz 

et al., 2017; Weiss et al., 2014). 

However, most of the current methods have some shortcomings in accuracy and efficiency for producing globally consistent 

and seamless MODIS-like LST. For example, the data fusion method has the problem of mismatch between LST from different 
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sources and usually cannot fully fill gaps (Crosson et al., 2012). The method based on empirical relationship is computationally 75 

intensive for global applications and may not fully capture the spatial and temporal variations of LST as the auxiliary data have 

low temporal resolution (Fan et al., 2014; Ke et al., 2013; Zhao et al., 2020a). The temporal interpolation and multi-dimensional 

smoothing methods are computationally efficient but may miss short-term temporal variations of LST (Kilibarda et al., 2014; Xu 

and Shen, 2013). The spatial interpolation methods may lead to physically unrealistic features in the interpolated LST when there 

are a lot of missing observations (Ke et al., 2013; Yang, 2004). The spatiotemporal interpolation methods can capture the short-80 

term changes of LST but are time-consuming due to the use of local moving windows for each pixel (Li et al., 2018a; Weiss et al., 

2014). The hybrid methods take the advantages of methods mentioned above and carry with it some of shortcomings of these 

methods, and may actually amplify them in the process of merging data imputed using different methods.  

We proposed a spatiotemporal gap-filling framework to gap-fill missing values in MODIS LST product with good accuracies 

and high efficiencies. This framework includes two key steps of preprocessing and spatiotemporal fitting. Based on this framework, 85 

we developed a global 1 km daily (mid-daytime and mid-nighttime) LST dataset from 2003 to 2020 using the 1 km daily MODIS 

LST product. The remainder of this paper describes the study area and data (Sect. 2), the proposed spatiotemporal gap-filling 

approach (Sect. 3), the results and discussion (Sect. 4), data availability (Sect. 5), and conclusions (Sect. 6). 

2 Study area and data 

The study area is nearly the entire global land surface, including 178 MODIS tiles (Fig. 1). The 1 km daily MODIS LST product 90 

Version 6 from 2003 to 2020 is the primary data used in this study. It was produced based on the National Aeronautics and Space 

Administration (NASA) Earth Observing System (EOS) satellites Terra and Aqua (MOD11A1 and MYD11A1) (Wan, 2013, 2014). 

There are four observations each day from the two satellites (i.e., 10:30 am and 10:30 pm for Terra (T1 and T3), 1:30 am and 1:30 

pm for Aqua (T2 and T4)). Another two auxiliary datasets used are the annual MODIS land cover product (MCD12Q1) (Sulla-

Menashe and Friedl, 2018) and  urban and their surrounding rural areas derived from nighttime light observations (Zhou et al., 95 

2014a, 2018). Water pixels from the MCD12Q1 product were excluded in our analysis.  

 

Figure 1: MODIS data tiles used in gap-filling and cross validation analysis. 

3 Method 
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We developed a spatiotemporal gap-filling framework to gap-fill missing values in MODIS daily LST to produce a seamless 1 km 100 

spatial resolution global dataset from 2003 to 2020 (Fig. 2). The framework includes two key steps, 1) data pre-processing (Sect. 

3.1) and 2) spatiotemporal fitting (Sect. 3.2). In the data pre-processing, we filtered pixels with low data quality and filled part of 

the gaps using the observed LST at another three time points of the same day to ensure high quality and good spatial coverage. In 

the spatiotemporal fitting, first, we fitted the long-term trend (overall mean) of observations in each pixel (ordered by day of year). 

Then we spatiotemporally interpolated residuals between observations and overall mean values for each day. Finally, we estimated 105 

missing values of LST by adding the overall mean and interpolated residuals. This gap-filling method was applied to MODIS LST 

at T2 (~1:30pm, Aqua Day in Fig. 2) and T4 (~1:30am, Aqua Night in Fig. 2), respectively, to build the 1 km daily LST (maximum 

(mid-daytime) and minimum (mid-nighttime)) data. In the sections below, we described each of these steps in detail. 

3.1 Data pre-processing 

Data pre-processing includes two parts: 1) data filtering and 2) daily merge. We first checked the quality of original MODIS data 110 

based on its quality assurance (QA) information and removed data points with error > 3K. We applied this threshold value because 

a stricter (or lower) value can exclude most of LST in urban areas (Crosson et al., 2012; Metz et al., 2017). Second, we conducted 

a daily merge using four observations from the two satellites (Terra and Aqua) in a given day using a modified algorithm from Li 

et al. (2018a). Taking a pixel with missing value of T2 as an example (Fig. 2), we calculated percent of valid data (PVD) in a year 

for all four observations, respectively. If PVD of T2  >= 5%, did not change the data and accepted it, otherwise we gap-filled 115 

missing values based on the following order: (1) estimated LST of T2 with LST of T1 using the regression method if PVD of 

T1 >= 5%; (2) estimated LST of T2 with LST of T4 using the shift method if PVD of T4 >= 5%;  and (3) estimated LST of T2 

with LST of T3 using the shift method if PVD of T3 >= 5%. Details of the regression and shift methods can be found in Li et al. 

(2018a). 

 120 
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Figure 2: An overview of the spatiotemporal gap-filling framework. 

3.2 Spatiotemporal fitting 

The spatiotemporal fitting algorithm includes three steps (Fig. 3). First, we fitted the overall mean of observations in each pixel 

(ordered by day of year) using a smoothing spline function (Green and Silverman, 1994) to capture the overall trend. The time 

series of daily LST in a year (e.g., LST of T2) can be divided into two components, the overall mean (trend) and daily residual 125 

with gaps (daily fluctuations). Second, we spatiotemporally interpolated residuals for each day using a correlation-based method 

(Details in Sect. S1), in which the missing residual of a target pixel was estimated based on the correlation between target pixel 

and its neighboring valid pixels (i.e., with good quality). We selected 1% of the uniformly distributed pixels (10 km intervals) as 

representative neighboring pixels to perform the interpolation of residuals with high efficiency without reducing the accuracy based 

on our experiments. Moreover, we divided the global land surface area into 9 overlapped zones to avoid possible boundary effects 130 

(Details in Sect. S2). Finally, the seamless two parts (i.e., overall mean and daily residuals) were added to obtain the gap-filled 

LST data. 

 

Figure 3: An example of the spatiotemporal fitting algorithm for gap-filling LST. 

3.3 Accuracy assessment 135 

We evaluated the accuracy of the gap-filled data using cross validation by randomly selecting 15 MODIS tiles in 2005, 2010, and 

2015 (Fig. 1). In each of these years, we selected 19 days with the largest coverage of high quality data (coverage > 95% quantile) 

in cross validation. For each of selected days, we manually introduced gaps under three scenarios (i.e., excluding 25%, 50%, and 

75% of valid pixels). Then we gap-filled these missing values and compared them with the originally values. We calculated root 

mean square error (RMSE) as the indicator of accuracy (Eq. 1). 140 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐿𝑆𝑇̂𝑖 − 𝐿𝑆𝑇𝑖)

2𝑛
𝑖=1                                                                   (1) 
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Where 𝐿𝑆𝑇𝑖  and 𝐿𝑆𝑇̂𝑖 are original MODIS LST and gap-filled LST values of the i-th pixel; n is the number of the gap-filled pixels. 

4 Results and discussion 

4.1 Accuracy of gap-filled LST 

The results of cross validation indicate the gap-filled LST has high accuracies (Fig. 4 and Table 1). The observed and gap-filled 145 

LSTs of representative pixels for different ratios of exclusion scattered along the 1:1 line with RMSE ranging from 2.05 to 2.31 ℃ 

and from 1.35 to 1.62 ℃, respectively for daytime and nighttime (Fig. 4). As shown in Table 1, the average RMSE at tile level 

(i.e., calculating based on all the excluded pixels of each tile) ranges from 1.20 to 2.13 ℃ with an average of 1.88℃ and 1.33℃, 

respectively for daytime and nighttime. The lowest RMSE occurs in 2010 with 25% excluding rate for nighttime, while the highest 

RMSE occurs in 2015 with 75% excluding rate for daytime. Compared with the accuracies at tile level, the accuracies for urban 150 

areas (i.e., calculating based on urban pixels in the excluded areas of each tile) are always higher with RMSE ranging from 1.14 

to 2.06 ℃ (Table 1).  

 

Figure 4: Scatter plots between gap-filled LST and original MODIS LSTs for daytime and nighttime in the excluded areas used for 

cross validation. Each point represents LST value of a pixel in the excluded area (25%, 50%, or 75%) of a tile (10 pixels per image) for 155 
cross validation analysis in years 2005, 2010, or 2015. The color of points represents the density of points, where the red points 

represent the highest density, and the blue points represent the lowest density. The red solid line represents the regression line, and the 

black line is the 1:1 line. The figures contain different number of pixels due to some of the selected pixels are water regions which are 

not suitable for accuracy assessment. 

Table 1. Average RMSEs of 15 tiles used in cross-validation analysis of efficacy of the gap-filling method (Unit: ℃) 160 

Time Year 
RMSE in excluded area (±standard deviation) 

25% 50% 75% 
  Tile level Urban area Tile level Urban area Tile level Urban area 

Daytime 2005 1.77 (±0.41) 1.68 (±0.46) 1.78 (±0.44) 1.74 (±0.55) 2.06 (±0.38) 2.01 (±0.52) 
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Note: ‘Urban’ means the urban and their surrounding rural areas. The tile level means the accuracy was calculated based on all the excluded 

pixels of each tile; urban area means the accuracy was calculated based on urban pixels in the excluded areas of each tile. Each RMSE value is 

the mean of RMSEs from all selected days in 15 selected MODIS tiles.  

    When the number of missing values in original LST increases, the gap-filled LST data tends to reduce in accuracy (Fig. 4, Table 

1). As shown in Fig. 4, when the excluding rate increases from 25% to 75%, the RMSE of LST for daytime and nighttime increases 165 

from 2.05 to 2.31℃ and 1.35 to 1.62℃ for daytime and nighttime, respectively. This is also true for all years at tile level and in 

urban area in Table 1. However, the RMSE values are still within reasonable ranges. When the excluding rate is 75%, the RMSEs 

2.31℃ and 1.62℃, respectively for daytime and nighttime (Fig. 4). Meanwhile, 88.9% of the RMSE in Table 1 is lower than 2 ℃. 

4.2 Spatial and temporal patterns of LST  

The examples of global LST data illustrate that the missing values in the original MODIS LST have been effectively gap-filled 170 

using the proposed gap-filling algorithm (Fig. 5). In the original MODIS LST, the continuously missing values mainly occur in 

Eastern Asia, South Asia, and Central Africa for both daytime and nighttime, in the example date (Fig. 5). In the gap-filled data, 

the missing values in these regions were fully gap-filled. 

 

Figure 5: Spatial pattern of original and gap-filled LSTs at global scale in day 200 of year 2020. 175 

    The comparisons of spatial patterns between gap-filled and original MODIS LST in representative cities around the world (Fig. 

6) illustrate that the missing values in the original MODIS LST have been effectively gap-filled at the city scale. As shown in Fig. 

6, there is no missing value in the entire land surface area of the gap-filled data (water pixels were masked as NA). The gap-filled 

data capture well urban heat island (UHI) phenomenon (i.e., high temperature in urban than that of the surrounding rural areas). 

The spatial pattern of the gap-filled LST is reasonable with transition from urban to rural areas and there are no obvious boundary 180 

effects (more details in Sect. S3 and Sect. S4). For example, there is no obvious boundary effect between two MODIS tiles in the 

gap-filled LST data in Huston area, which suggests the interpolation of residuals (Sect. S2) in the proposed method are reliable. 

2010 1.74 (±0.49) 1.67 (±0.71) 1.76 (±0.50) 1.69 (±0.74) 1.91 (±0.52) 1.87 (±0.69) 

2015 1.90 (±0.53) 1.82 (±0.72) 1.91 (±0.54) 1.95 (±0.64) 2.13 (±0.55) 2.06 (±0.61) 

Nighttime 2005 1.21 (±0.36) 1.15 (±0.35) 1.30 (±0.35) 1.23 (±0.35) 1.45 (±0.35) 1.42 (±0.44) 

2010 1.20 (±0.30) 1.14 (±0.32) 1.29 (±0.29) 1.29 (±0.39) 1.43 (±0.35) 1.38 (±0.44) 

2015 1.28 (±0.42) 1.19 (±0.33) 1.37 (±0.39) 1.25 (±0.36) 1.48 (±0.41) 1.47 (±0.44) 
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The gap-filled LST in the Pearl River Delta region shows a number of small speckles because this region is an agglomeration of 

sub-areas undergoing rapid urbanization.  

 185 

Figure 6: Spatial pattern of original and gap-filled LSTs in five representative cities. NA (gray color) in the gap-filled LST is water 

pixels. 

The comparison of temporal pattern between gap-filled and original MODIS LSTs in a mega-city (Fig. 7) illustrates that the 

missing data in the original MODIS LST can be effectively and completely gap-filled for the entire period. As shown in Fig. 7, 

there are several days with limited valid (high quality) observations in original MODIS LST in Beijing, China in daytime in 2010, 190 

and these missing values were fully gap-filled in our data for the entire period. When there are only a few missing values in original 

LST data (days 28 and 130 in Fig. 7), the gap-filled and original LSTs show similar spatial pattern with significant UHI 

phenomenon. When there are large number of missing values in original LST data (days 219 and 293 in Fig. 7), the gap-filled 

LSTs can also illustrate the UHI phenomenon but different LST magnitudes with that of the former cases. Therefore, we may get 

more accurate estimation of annual average LST based on the gap-filled LST than original LST data. 195 
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Figure 7: Temporal pattern of average daytime LST from original and gap-filled data in Beijing in year 2010. The black circles are 

example days showing maps of original and gap-filled LST data.  

4.3 Comparison with existing seamless LST data 

The accuracy of the resulting gap-filled LST from this study is comparable or better when compared with other reported seamless 200 

LST datasets. Our gap-filled LST data shows higher accuracies compared with the gap-filled LSTs based on the hybrid 

spatiotemporal gap-filling method proposed by Li et al. (2018a). These two datasets are most comparable because of the use of 

similar accuracy evaluation method (cross validation at the global scale) in both studies. In the hybrid method proposed by Li et 

al. (2018a), about 11% to 60% of the valid values (personal communication) were excluded for cross validation purpose in the 

urban areas at the global scale, and the average RMSE is 3.29℃ and 2.68℃, for daytime and nighttime, respectively. In this study, 205 

the average RMSE is 1.83℃ and 1.28℃ in the urban and surrounding areas for daytime and nighttime, respectively (Table 1). The 

accuracies of other seamless LST datasets were generally evaluated based on a limited number of in-situ LST observations (Zhang 

et al., 2019; Zhou et al., 2017), which are not exactly the same as satellite LSTs (Hong et al., 2021), and the evaluation in these 

studies are not directly comparable with our study.  

The gap-filled LST in this study does not have the issue of boundary effect that might exists in the previous methods. Li et al. 210 

(2018a) combined several techniques including data fusion (Crosson et al., 2012), spatiotemporal interpolation (Gerber et al., 2018; 

Weiss et al., 2014), and temporal interpolation methods (Xu and Shen, 2013) to reconstruct daily (mid-daytime and mid-nighttime) 

LST. The systematic differences between neighboring regions with the use of different gap-filling techniques in the hybrid method 

may lead to boundary effects (personal communication). The gap-filled LST data in this study using the novel framework consisting 

of two key steps (Sect. S2) can mitigate boundary effects between neighboring regions (Fig. S2), neighboring tiles (Fig. S3), and 215 

within a given tile (Figs. 6 and Sect. S3). 
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The gap-filled global 1km daytime and nighttime LST data have advantages regarding spatiotemporal resolutions (i.e., daily 

minimum and maximum) or coverage (i.e., global) and has significant potential for use in many disciplines of Earth system science 

and applications. In the existing seamless LST datasets, Zhan et al. (2021) produced a global daily average 1 km resolution LST 

dataset from 2003 to 2019, without resolving by daytime and nighttime. Zhao et al. (2020a) developed monthly average LST with 220 

5.6km spatial resolution for China from 2003 to 2017. Cheng (2021) published a daily (mid-daytime and mid-nighttime) 1 km 

seamless LST of China from 2002 to 2020. Zhang et al. (2021c) generated daily (daytime and nighttime) 1 km all-weather LST 

dataset for China and its surrounding areas for 2000 to 2020. Li et al. (2018a) produced a 1 km daily (mid-daytime and mid-

nighttime) LST dataset only in urban and surrounding rural areas of United States. The LST data in this study have a spatial 

resolution of 1 km and include daily LST at mid-daytime and mid-nighttime with a global coverage from 2003 to 2020, which has 225 

higher spatiotemporal resolutions or coverage than other existing seamless LST datasets. 

The gap-filling framework proposed in this study can be efficiently implemented and has advantages regarding computing time 

compared to other algorithms/methods. For example, the gap-filling method proposed by Zhao et al. (2020a) were used for monthly 

5.6km resolution LST data, and it may require significant computation time for high spatiotemporal resolution (daily, 1 km) LST 

data because it needs to calculate the distance between similar valid pixels and each target pixel (with missing or low quality value) 230 

based on a geographically weighted regression method. The gap-filling method proposed by Zhang et al. (2021b) is also complex 

and time consuming due to involvement of multi-source data and complex parameterization process on a pixel-by-pixel basis. The 

daily average LST data produced by Zhan et al. (2021) were calculated based on the nonlinear annual temperature cycle (ATC) 

and diurnal temperature cycle (DTC) modelling on a pixel-by-pixel basis, which is time-consuming for global scale applications 

(Hong et al., 2021). The hybrid gap-filling method proposed by Li et al. (2018a) is time consuming due to the use of spatiotemporal 235 

interpolation (Gerber et al., 2018; Weiss et al., 2014) algorithm, in which the missing value of a pixel at a specific time and location 

was interpolated by using a quantile regression in the corresponding local spatial and temporal window. In the proposed method 

in this study, the interpolation of the residual for a pixel at a specific time was also implemented by using the time series data of 

neighboring pixels in the corresponding local window. However, only 1% of pixels at fixed locations (10 km intervals) were used 

as neighboring pixels for interpolation of residual (Sect. S2), and the relevant parameters between target pixel and its neighboring 240 

pixels were calculated only one time for the entire period (365 days for a year). Our scheme can significantly improve the efficiency 

for global applications without reducing the accuracy according to our experiments.  

5 Data availability 

Data described in this manuscript can be accessed at Iowa State University's DataShare at 

https://doi.org/10.25380/iastate.c.5078492 (Zhang et al., 2021a). The dataset contains 36 sub datasets (one for each year in daytime 245 

and nighttime from 2003 to 2020). Each sub dataset contains LST data of a specific time (daytime or nighttime) and specific year 

(2003 – 2020) and is organized by day of year. The data are in GeoTIFF with the georeferenced information embedded. Each file 

keeps the MODIS Ellipse Sinusoidal projection with a spatial resolution of 1 km. The unit of LST in Geotiff is 0.1 

Celsius temperature (0.1 oC), and the naming rule can be found in the file of “README.pdf”. 

6 Conclusions 250 

We propose a framework for filling the gap in long-term Earth observations and geophysical data records that are used by many 

Earth system science disciplines and applications. We used the proposed method to generate a globally consistent and 1 km daily 

(mid-daytime and mid-nighttime) MODIS-like LST data from 2003 to 2020 using MODIS LST datasets (MOD11A1 and 
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MYD11A1). The resulting dataset filled all existing gaps those resulting from elimination of poor-quality data seamlessly with 

high accuracies based on a cross validation under different rates of missing values for both daytime and nighttime. The average 255 

RMSE of gap-filled LST for daytime and nighttime ranges from 1.80 to 2.03 oC and 1.23 to 1.45 oC, respectively, when different 

percentages of the data were excluded. The results show that the missing values in the original MODIS LST were effectively and 

efficiently filled, and there is no obvious block effect caused by large areas of missing values, especially near the boundary of tiles, 

which might exist in other seamless LST datasets. The gap-filled global 1 km daily LST dataset can provide better data source for 

multidisciplinary applications such as urban heat island, air temperature estimation, soil moisture estimation, evapotranspiration, 260 

and drought monitoring (Phan and Kappas, 2018). However, it is worth noting that the accuracy of the gap-filled LST can be 

influenced by the rate of missing values, indicating that uncertainties might increase with the increase of missing values in the 

original dataset. Moreover, future work can focus on diurnal changes of LST by increasing observations within a day. 
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