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Response to Referee #1 Comments 
 

We thank Referee #1 for the valuable and constructive comments on our manuscript. A 

point-by-point response to all comments is listed below. 

 

Point 1: I'm wondering whether the data from 2003-2016 or 2003-2019 is used and 

produced. There seems to be inconsistency in the paper regarding the temporal period 

of the study. 

 

Response 1: Thank you for your comments. We used data from 2003 to 2016 for model 

training and validation, and generated datasets from 2003 to 2019 using the trained 

models. Specifically, the data pairs from 2003 to 2016 were randomly divided into 

training, validation, and test sets (ratio: 3:1:1). Among them, training set was used for 

model training, validation set was used to determine the best model parameters, and 

test set was used to evaluate the final model performance. After model training, we used 

the models to develop the all-sky Ta dataset from 2003 to 2019. We have added the 

details on page 7, lines 151-162 in the revised manuscript: 

 
 

Point 2: For vadiation of the study, how is the performance of the dataset/model if 

validation is carried out using a time period different from training period? For example, 

training is done using data from 2003 to 2016 and validation is done using data from 

2017-2019? This is to see whether the training coeffients or RF models can be used 

after Terra/Aqua fail in the future. 

 

Response 2: Thank you for your comments. We trained the models with the training 

set from 2003 to 2016, and further evaluated the models with data pairs from 2017 to 

2019, which was not used for model training at all. Density scatter plot of the estimated 

Ta and in situ Ta from 2017 to 2019 is shown in Fig. 1. The overall R2, MAE, RMSE, 

and bias of the validation set were 0.982, 1.233 K, 1.611 K, and -0.340 K, respectively. 

The RMSE was slightly higher for the validation results using data from 2017 to 2019 



compared to the validation results using the test set from 2003 to 2016 (1.611 K vs. 

1.409 K). However, we found that there were certain differences in the Ta distribution 

between the two time periods as shown in Fig. 2. And the difference in the data 

distribution between the training set and the validation set may result in a slight 

decrease in the performance of the machine learning models on the validation set. 

Considering the data distribution range of Ta, we consider a difference of about 0.2 K 

to be acceptable. In general, the RF models have good generalization ability and can 

predict Ta of other years that have not been learned at all with satisfactory accuracy. 

 

Figure 1. Density scatter plot of the estimated Ta and in situ Ta of independent validation 

results. 

 

Figure 2. The Ta data distribution for 2003–2016 (a) and 2017–2019 (b). 

 

 

 

 

 



Point 3: I suggest to redo Figure 1 showing the number of data pairs and land types at 

these stations. You could use the color or the size of the symbol to provide such 

information. 

 

Response 3: Thank you for your comments. We redid Figure 1 in the manuscript to 

show the spatial distribution and land cover types of the stations, as shown in Fig. 3 

below. Each dot represents a station, and different colors correspond to different land 

cover types as shown in this figure legend. The land cover data used in the study is 

Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) 

version2 (2015_v1), which is a 30 m resolution global land cover maps (Gong et al., 

2013). We have changed Figure 1 on page 6, lines 133-135 in the revised manuscript: 

 

Figure 3. Study area and the location of meteorological stations used in this study. Each 

dot represents a station, and different colors correspond to different land cover types as 

shown in this figure legend. 



 

 
 



We also calculated the number of data pairs from 2003 to 2016 for each station. 

Figure 4 below shows the number of data pairs of meteorological stations. Because 

station measurement data or satellite data or assimilation data were missing at some 

stations on some days, not all stations have data pairs equal to the total number of days. 

All 2384 meteorological stations used in this study have data pairs ranging from 1091 

to 5113 over a 14-year period from 2003 to 2016. There were 2290 stations with data 

pairs greater than 5000, and only 6 stations with data pairs less than 3000. Overall, there 

is little difference in the number of data pairs at the station. Further combined with the 

analysis of the spatial distribution of model accuracy in Section 4 of the manuscript, it 

is concluded that the number of data pairs has no significant effect on the accuracy of 

Ta estimation. 

 
Figure 4. The spatial distribution of the number of data pairs from 2003 to 2016 of 

meteorological stations. 

 

Point 4: Could you show the accuracy of the results as a joint function of surface types 

and surface temperature? 

 

Response 4: Thank you for your comments. The relationship between land surface 

temperature (LST) and error under 8 surface types is represented by different colors as 

shown in the legend in Fig. 3. The abscissa is the average of the four daily LSTs for a 

data pair, and the ordinate is the error, which is the difference between the estimated Ta 

and the station measured Ta. 

As can be seen from Fig. 5, for different surface types, the number of data pairs 

and the range of LST are different. The error range is also different. For each surface 

type, the errors showed no significant difference at different LST, and all present a 



normal distribution centered on 0 K. Therefore, the model performance varies with the 

surface types to some extent, but the estimation accuracy has no significant joint 

correlation with surface types and LST. 

 

Figure 5. The relationship between LST and error under different surface types. 

 

Point 5: If the FI factors are small for surface radiation measurements, why not remove 

them from your model? 

 

Response 5: Thank you for your comments. The radiation features help to reflect the 

heat exchange process between the surface and the atmosphere. In our experiment, we 

found that the FI factors of radiation features were small for the Ta estimation models. 

Table 1 lists the validation results for models with and without radiation features. It can 

be seen that, after removing DSR and ALB features, the overall RMSE values of the 

validation set for the three models increased by 0.02-0.06 K. Therefore, the radiation 

features have little influence on the overall accuracy of the models. 

However, in the analysis of the results of some stations, it is found that the accuracy 

of the models including radiation features was higher than that of the models excluding 

radiation features at some stations. For example, Fig. 6 below shows the Ta annual 

curves of four stations in 2010. In the figure, the orange lines are the station measured 

Ta, while the green and blue lines are the Ta predicted by the models with and without 

radiation features, respectively. RMSE1 and RMSE2 are RMSE values for models with 

and without radiation features, respectively. The results showed that on some days, 

adding radiation features to the models helped improve the Ta estimation accuracy at 



some stations. Although there may be other collinear features in the models that make 

the information provided by them redundant, the radiation features can play a 

supplementary role in the case of some other features that do not perform well. 

Therefore, we finally decided to retain the radiation features in the Ta estimation models.  

 

Table 1. Validation results for models with and without radiation features. 

Model Include radiation features Not include radiation features 

R2 RMSE (K) R2 RMSE (K) 

Clear-sky 

model 

0.986 1.342 0.985 1.365 

Cloudy-sky 

model Ⅰ 

0.984 1.440 0.984 1.468 

Cloudy-sky 

model Ⅱ 

0.984 1.396 0.983 1.451 

All 0.985 1.409 0.984 1.448 

 

 





 
Figure 6. Ta annual curves of station 51334, station 54273, station 54279, and station 

56434 in 2010. The orange lines are the station measured Ta, while the green and blue 

lines are the Ta predicted by the models with and without radiation features, respectively. 

RMSE1 and RMSE2 are RMSE values for models with and without radiation features, 

respectively. 

 

We have added the reason for retaining the radiation features on page 24, lines 452-

455 in the revised manuscript: 

 

 

Point 6: There are places in the paper using "temporary gap filling model", but it should 

be "temporal" instead of "temporary". 

 

Response 6: Thank you for your comments. We have modified the words on page 4, 

line 117, and page 8, line 174 and page 28, lines 504-505, and page 35, line 574 in the 

revised manuscript: 



 
 

 
 

 

 

 

 

Point 7: are the station Ta measurements used in the prediction of Ta? 

 

Response 7: Thank you for your comments. In this study, the station Ta measurements 

were not used in the prediction of Ta, but were used in model training. The data pairs 

used for model training and validation consist of input features and station measured Ta 

at the stations. The input features of the models are LSTs, DSR, ALB, LAI, elevation, 

GLDAS Ta, day of year, latitude, and longitude. And the output variable is daily mean 

Ta.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Referee #2 Comments 
 

We thank Referee #2 for the valuable and constructive comments on our manuscript. A 

point-by-point response to all comments is listed below. 

 

Point 1: My biggest concern is the statistic results may not be credible over southwest 

China. In southwest China, it rains in the most time of a year. The sunshine is rare that 

it is said “sunny weather seldom lasts for more than three days”. In other words, the 

percentage of missing MODIS LST data is over 60% due to the presence of clouds. To 

control the uncertainty introduced by LST gap-filling, a temporal window of 2 days in 

this study was used to fill the gaps. Please provide detailed availability of LST for 

cloudy-sky model using this simple gap-filling method.  

 

Response 1: Thank you for your comments. In this study, a simple multi-temporal 

method was used to fill the MODIS LST gaps. In order to balance the MODIS LST 

gap-filling rate with the large uncertainty caused by the large time threshold, we have 

conducted experiments with different time thresholds, and finally decided to set the 

time threshold of ± 2 days. The ratios of available values of four MODIS LSTs at all 

stations were 33.2 %, 37.6 %, 32.1 %, and 38.0 %, respectively, which increased to 

73.0 %, 77.7 %, 72.4 %, and 77.3 %, respectively, after gap-filling. 

 Moreover, we counted the validation statistics of 485 stations located in southwest 

China, and the overall R2 and RMSE were 0.978 and 1.428 K, respectively. The density 

scatter plot of the estimated Ta against the station observed Ta in southwest China under 

all weather conditions is shown in Fig. 7. The RMSE histogram of stations in southwest 

China is shown in Fig. 8, with a mean RMSE of 1.405 K. Of the 485 stations, 315 

stations had RMSE values of less than 1.5 K, while only 9 stations had RMSE values 

of more than 2 K. Therefore, stations in southwest China have generally shown 

satisfactory performance, we consider this gap-filling method feasible for this study. 



 
Figure 7. Density scatter plot of the estimated Ta against the station observed Ta in 

southwest China under all weather conditions. 

 

Figure 8. The RMSE histogram of stations in southwest China. 

 

 



Point 2: In section 3.2, GLDAS assimilated Ta was used in three models as input 

features. In the feature importance of those three models, assimilated Ta ranked first for 

two cloudy models and was second to Terra nighttime LST for clear-sky models. The 

second biggest concern for this study is that it seems like GLDAS assimilated Ta 

determines the RMSE and R2. From the fourth paragraph in introduction part, no author 

used assimilated Ta as the predictor. Instead, shen [1] only used the soil mositure 

content, albedo and soil evaporation from GLDAS as predictors. If the ground-based 

Ta ingested by GLDAS was introduced as the preditor, whether it is a circular reasoning 

that reach better results? I would suggest removing the assimilated Ta as the predictor 

for three models. 

 

Response 2: Thank the reviewer for making the valuable comments. Since the GLDAS 

assimilated Ta has well captured the spatial and temporal variation of the actual Ta, it is 

not surprising to see the great contributions of the GLDAS Ta. However, GLDAS Ta 

does not completely determine the RMSE and R2 of our models because many 

additional inputs have greatly improved the Ta prediction. As shown in Fig. 9, the 

RMSE values of the GLDAS Ta under three weather conditions are 2.705 K, 2.545 K, 

and 2.588 K, respectively, while our final models have much better results (RMSE 

values are 1.342 K, 1.440 K, and 1.396 K, respectively). 

 



 

 

Figure 9. Density scatter plots of the estimated Ta and GLDAS assimilated Ta against 

the station observed Ta. (a, c, e) are the RF Ta under three weather conditions, (b, d, f) 

are the GLDAS assimilated Ta under three weather conditions. 

 

Before conducting this study, we did read the paper of Shen et al. (2020) carefully 

and conducted some experiments. We believe, also based on our initial experiments, 

that use of GLDAS Ta as a predictor is a much better choice than GLDAS soil moisture 

(SM), albedo and evaporation because GLDAS assimilated a huge amount of Ta 

observations into the model to “control” the calculated Ta, while SM, albedo and 

evaporation are calculated outputs and have much larger uncertainties. The predictors 

need to be as accurate as possible. 

Incorporating GLDAS Ta as our model predictor is not a circular reasoning issue 

since GLDAS Ta can be considered to be a priori knowledge. Use of a priori knowledge 

has been the common practice in quantitative remote sensing (Liang, 2004; Liang and 

Wang, 2019). 

In fact, after removing GLDAS Ta as the predictor, the validation statistics of the 

three models are worsened as shown in Fig. 10, especially for cloudy-sky model Ⅱ, 

which does not include MODIS LST at all. RMSE values of the three models were 



1.498 K, 1.859 K, and 2.359 K, respectively, which increased by 0.156 K, 0.419 K, and 

0.963 K compared with that before removing GLDAS Ta, respectively. It proved that 

GLDAS Ta was used as a priori knowledge in this study, rather than completely 

determining the prediction results. Therefore, we still keep GLDAS Ta as the predictor. 

 

Figure 10. Density scatter plots of the Ta estimated by the models with GLDAS Ta 

removed against the station observed Ta. 

 

Point 3: The smallest concern is the spatiotemporal model validation strategy in this 

study which just relys on random cross validation.  

However, ignoring spatial and time dependence in model cross-validation can create 

false confidence in model predictions and hide model overfitting, and this problem that 

has been well documented in recent works [2, 3]. Please give explanations why this 

study still used an overoptimistic approach (random cross validation) to assess the 

prediction error in both space and time. 

 

Response 3: Thank you for your nice comments. To test the models' performance in 

predicting conditions beyond the temporal and spatial location of the training data, we 

further used the two validation strategies of Leave-Time-Out (LTO) cross-validation 



(CV) and Leave-Location-Out (LLO) CV on the basis of random sample validation. 

These two strategies have been used in some studies to evaluate the performance of 

spatiotemporal models in unknown time or unknown space (Liu et al., 2020; Ploton et 

al., 2020; Xiao et al., 2018). 

First, for LTO CV, we divided the data pairs from 2003 to 2016 into 14 groups by 

calendar year. In each iteration, 13 groups of data were used as training set for model 

training, and the remaining one group of data was used for validation. The modeling 

and validation process were repeated 14 times until each year's data was validated. The 

results are shown in Fig. 11. The RMSE values of validation results for different groups 

of data range from 1.359 K to 1.665 K. The minor difference between the LTO CV 

results proves that these models have good extensibility in time. 

 

Figure 11. Density scatter plots of LTO CV results for three models. 

 

Then, for LLO CV, we divided 7 clusters in the Chinese region as shown in Fig. 12 

by using the similar separation strategy of Xiao et al. (2018). Stations used in this study 

were divided into different clusters according to their spatial locations, and all data pairs 

were divided into 7 groups according to the cluster of station. In each iteration, 6 groups 

of data were used as training set and the remaining one group of data was used for 



validation. The modeling and validation process were repeated 7 times until the data of 

each group was validated. The total validation results of the models under three weather 

conditions are shown in Fig. 13, with RMSE values ranging from 1.615 K to 1.957 K. 

As expected, the prediction error of LLO CV increased relative to random sample 

validation. This is because the relationship between Ta and other features varies with 

geographical location. The prediction error of the Northwest and Southwest clusters 

was larger than that of other clusters. RMSE values of these two clusters exceeded 2.5 

K under cloudy-sky conditions Ⅱ while RMSE values of the other clusters were about 

1.5 K. This is consistent with the analysis of the spatial distribution of model accuracy 

in section 4.4 of the manuscript. The meteorological stations in Northwest China and 

the Qinghai-Tibet are distributed discretely and far away from other stations in China, 

leading to a large difference between the training set and the test set, and ultimately 

resulting in the relatively poor performance in the LLO CV strategy in these two regions.  

Furthermore, the LLO CV results of the cloudy-sky model Ⅱ are worse than those of 

the clear-sky model and cloudy-sky model Ⅰ, indicating that LSTs help to reduce the 

spatial overfitting of the models. 

We have added the content on page 13-14, lines 275-284 and page 19-21, lines 370-

397 in the revised manuscript: 

 

 
Figure 12. Cluster separation in the research area. According to geographical 

distribution, mainland China is divided into 7 clusters, which are the North, the 

Northeast, the Northwest, the Southeast, the relatively cold north, the Qinghai-Tibet 

Plateau, and the Pearl River Delta, respectively 



 

Figure 13. Density scatter plots of LLO CV results for three models. 
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