
Response to Referee #2 Comments 
 

We thank Referee #2 for the valuable and constructive comments on our manuscript. A 

point-by-point response to all comments is listed below. 

 

Point 1: My biggest concern is the statistic results may not be credible over southwest 

China. In southwest China, it rains in the most time of a year. The sunshine is rare that 

it is said “sunny weather seldom lasts for more than three days”. In other words, the 

percentage of missing MODIS LST data is over 60% due to the presence of clouds. To 

control the uncertainty introduced by LST gap-filling, a temporal window of 2 days in 

this study was used to fill the gaps. Please provide detailed availability of LST for 

cloudy-sky model using this simple gap-filling method.  

 

Response 1: Thank you for your comments. In this study, a simple multi-temporal 

method was used to fill the MODIS LST gaps. In order to balance the MODIS LST 

gap-filling rate with the large uncertainty caused by the large time threshold, we have 

conducted experiments with different time thresholds, and finally decided to set the 

time threshold of ± 2 days. The ratios of available values of four MODIS LSTs at all 

stations were 33.2 %, 37.6 %, 32.1 %, and 38.0 %, respectively, which increased to 

73.0 %, 77.7 %, 72.4 %, and 77.3 %, respectively, after gap-filling. 

 Moreover, we counted the validation statistics of 485 stations located in southwest 

China, and the overall R2 and RMSE were 0.978 and 1.428 K, respectively. The density 

scatter plot of the estimated Ta against the station observed Ta in southwest China under 

all weather conditions is shown in Fig. 1. The RMSE histogram of stations in southwest 

China is shown in Fig. 2, with a mean RMSE of 1.405 K. Of the 485 stations, 315 

stations had RMSE values of less than 1.5 K, while only 9 stations had RMSE values 

of more than 2 K. Therefore, stations in southwest China have generally shown 

satisfactory performance, we consider this gap-filling method feasible for this study. 



 
Figure 1. Density scatter plot of the estimated Ta against the station observed Ta in 

southwest China under all weather conditions. 

 

Figure 2. The RMSE histogram of stations in southwest China. 

 

 



Point 2: In section 3.2, GLDAS assimilated Ta was used in three models as input 

features. In the feature importance of those three models, assimilated Ta ranked first for 

two cloudy models and was second to Terra nighttime LST for clear-sky models. The 

second biggest concern for this study is that it seems like GLDAS assimilated Ta 

determines the RMSE and R2. From the fourth paragraph in introduction part, no author 

used assimilated Ta as the predictor. Instead, shen [1] only used the soil mositure 

content, albedo and soil evaporation from GLDAS as predictors. If the ground-based 

Ta ingested by GLDAS was introduced as the preditor, whether it is a circular reasoning 

that reach better results? I would suggest removing the assimilated Ta as the predictor 

for three models. 

 

Response 2: Thank the reviewer for making the valuable comments. Since the GLDAS 

assimilated Ta has well captured the spatial and temporal variation of the actual Ta, it is 

not surprising to see the great contributions of the GLDAS Ta. However, GLDAS Ta 

does not completely determine the RMSE and R2 of our models because many 

additional inputs have greatly improved the Ta prediction. As shown in Fig. 3, the 

RMSE values of the GLDAS Ta under three weather conditions are 2.705 K, 2.545 K, 

and 2.588 K, respectively, while our final models have much better results (RMSE 

values are 1.342 K, 1.440 K, and 1.396 K, respectively). 

 



 

 

Figure 3. Density scatter plots of the estimated Ta and GLDAS assimilated Ta against 

the station observed Ta. (a, c, e) are the RF Ta under three weather conditions, (b, d, f) 

are the GLDAS assimilated Ta under three weather conditions. 

 

Before conducting this study, we did read the paper of Shen et al. (2020) carefully 

and conducted some experiments. We believe, also based on our initial experiments, 

that use of GLDAS Ta as a predictor is a much better choice than GLDAS soil moisture 

(SM), albedo and evaporation because GLDAS assimilated a huge amount of Ta 

observations into the model to “control” the calculated Ta, while SM, albedo and 

evaporation are calculated outputs and have much larger uncertainties. The predictors 

need to be as accurate as possible. 

Incorporating GLDAS Ta as our model predictor is not a circular reasoning issue 

since GLDAS Ta can be considered to be a priori knowledge. Use of a priori knowledge 

has been the common practice in quantitative remote sensing (Liang, 2004; Liang and 

Wang, 2019). 

In fact, after removing GLDAS Ta as the predictor, the validation statistics of the 

three models are worsened as shown in Fig. 4, especially for cloudy-sky model Ⅱ, which 

does not include MODIS LST at all. RMSE values of the three models were 1.498 K, 



1.859 K, and 2.359 K, respectively, which increased by 0.156 K, 0.419 K, and 0.963 K 

compared with that before removing GLDAS Ta, respectively. It proved that GLDAS 

Ta was used as a priori knowledge in this study, rather than completely determining the 

prediction results. Therefore, we still keep GLDAS Ta as the predictor. 

 

Figure 4. Density scatter plots of the Ta estimated by the models with GLDAS Ta 

removed against the station observed Ta. 

 

Point 3: The smallest concern is the spatiotemporal model validation strategy in this 

study which just relys on random cross validation.  

However, ignoring spatial and time dependence in model cross-validation can create 

false confidence in model predictions and hide model overfitting, and this problem that 

has been well documented in recent works [2, 3]. Please give explanations why this 

study still used an overoptimistic approach (random cross validation) to assess the 

prediction error in both space and time. 

 

Response 3: Thank you for your nice comments. To test the models' performance in 

predicting conditions beyond the temporal and spatial location of the training data, we 

further used the two validation strategies of Leave-Time-Out (LTO) cross-validation 



(CV) and Leave-Location-Out (LLO) CV on the basis of random sample validation. 

These two strategies have been used in some studies to evaluate the performance of 

spatiotemporal models in unknown time or unknown space (Liu et al., 2020; Ploton et 

al., 2020; Xiao et al., 2018). 

First, for LTO CV, we divided the data pairs from 2003 to 2016 into 14 groups by 

calendar year. In each iteration, 13 groups of data were used as training set for model 

training, and the remaining one group of data was used for validation. The modeling 

and validation process were repeated 14 times until each year's data was validated. The 

results are shown in Fig. 5. The RMSE values of validation results for different groups 

of data range from 1.359 K to 1.665 K. The minor difference between the LTO CV 

results proves that these models have good extensibility in time. 

 

Figure 5. Density scatter plots of LTO CV results for three models. 

 

Then, for LLO CV, we divided 7 clusters in the Chinese region as shown in Fig. 6 

by using the similar separation strategy of Xiao et al. (2018). Stations used in this study 

were divided into different clusters according to their spatial locations, and all data pairs 

were divided into 7 groups according to the cluster of station. In each iteration, 6 groups 

of data were used as training set and the remaining one group of data was used for 



validation. The modeling and validation process were repeated 7 times until the data of 

each group was validated. The total validation results of the models under three weather 

conditions are shown in Fig. 7, with RMSE values ranging from 1.615 K to 1.957 K. 

As expected, the prediction error of LLO CV increased relative to random sample 

validation. This is because the relationship between Ta and other features varies with 

geographical location. The prediction error of the Northwest and Southwest clusters 

was larger than that of other clusters. RMSE values of these two clusters exceeded 2.5 

K under cloudy-sky conditions Ⅱ while RMSE values of the other clusters were about 

1.5 K. This is consistent with the analysis of the spatial distribution of model accuracy 

in section 4.4 of the manuscript. The meteorological stations in Northwest China and 

the Qinghai-Tibet are distributed discretely and far away from other stations in China, 

leading to a large difference between the training set and the test set, and ultimately 

resulting in the relatively poor performance in the LLO CV strategy in these two regions.  

Furthermore, the LLO CV results of the cloudy-sky model Ⅱ are worse than those of 

the clear-sky model and cloudy-sky model Ⅰ, indicating that LSTs help to reduce the 

spatial overfitting of the models. 

We have added the content on page 13-14, lines 275-284 and page 19-21, lines 370-

397 in the revised manuscript: 

 

 
Figure 6. Cluster separation in the research area. According to geographical 

distribution, mainland China is divided into 7 clusters, which are the North, the 

Northeast, the Northwest, the Southeast, the relatively cold north, the Qinghai-Tibet 

Plateau, and the Pearl River Delta, respectively 



 

Figure 7. Density scatter plots of LLO CV results for three models. 
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