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Abstract: Ta (Near-surface air temperature) is an important physical parameter that reflects 

climate change. Although there are currently many methods to obtain the daily maximum (Tmax), 25 

minimum (Tmin), and average (Tavg) temperature (meteorological stations, remote sensing, and 

reanalysis data), these methods are affected by multiple factors. In order to obtain daily Ta data 

(Tmax, Tmin, and Tavg) with high spatial and temporal resolution in China, we fully analyzed the 

advantages and disadvantages of various existing data (reanalysis, remote sensing, and in situ 

data). Different Ta reconstruction models are constructed for different weather conditions, and we 30 

further improve data accuracy through building correction equations for different regions. Finally, 

a dataset of daily temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with 

a spatial resolution of 0.1°. For Tmax, validation using in situ data shows that the root mean square 

error (RMSE) ranges from 0.86 ℃ to 1.78 ℃, the mean absolute error (MAE) varies from 0.63 ℃ 
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to 1.40 ℃, and the Pearson coefficient (R2) ranges from 0.96 to 0.99. For Tmin, RMSE ranges from 35 

0.78 ℃ to 2.09 ℃, the MAE varies from 0.58 ℃ to 1.61 ℃, and the R2 ranges from 0.95 to 0.99. 

For Tavg, RMSE ranges from 0.35 ℃ to 1.00 ℃, the MAE varies from 0.27 ℃ to 0.68 ℃, and the 

R2 ranges from 0.99 to 1.00. Furthermore, a variety of evaluation indicators were used to analyze 

the temporal and spatial variation trends of Ta, and the Tavg increase was more than 0.03 °C/a, 

which are consistent with the general global warming trend. In conclusion, this dataset had a high 40 

spatial resolution and reliable accuracy, which makes up for the previous missing temperature 

value (Tmax, Tmin, and Tavg) at high spatial resolution. This dataset also provides key parameters 

for the study of climate change, especially high-temperature drought and low-temperature chilling 

damage, which is publicly available with the following DOI: 

https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021). 45 

1. Introduction 

Ta (Near-surface air temperature) is an important variable that reflects global climate change, and 

it significantly affects the cyclical conversion of energy and matter in all spheres of the earth (Gao 

et al., 2012, 2014). Obtaining accurate grid air temperature is helpful for research on urban heat 

island effects, the ecological environment changes, vegetation phenology development, crop yield 50 

fluctuation, and energy dynamic balance (Lin et al., 2012; Bolstad et al., 1998). In this study, Ta 

refers to the daily maximum (Tmax), minimum (Tmin), and average temperatures (Tavg) of daily 

near-surface air temperature, which are important input parameters for hydrological, 

environmental, and crop models (Han et al., 2020; He et al., 2020; Mostovoy et al., 2006; Schaer 

et al., 2004). They can accurately reflect the frequency and extent of the occurrence and 55 

development of extreme climate events (Zhang et al., 2017; Miao et al., 2016). With the increase 

in global warming, the temperature gradually increases and the extremely cold days and nights 

gradually shorten (Ding et al., 2006; Liao et al., 2020). However, the intensity and duration of 

extreme weather events are also increasing, and continuous bad weather in some years leads to 

frequent meteorological disasters (Ryoo et al., 2010). China is a country where extreme weather 60 

events frequently occur, which causes huge economic losses (Kharin et al., 2007; Kong et al., 

2020). Therefore, it is essential to obtain the spatio-temporal changes of Ta for studying extreme 

weather events, meteorological disasters leading to agricultural production reduction. 
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Ta is affected by many factors of the earth’s system, resulting in frequent and complicated daily 

temperature fluctuations (Schwingshackl et al., 2018; Chen et al., 2014). At present, Ta is obtained 65 

mainly through three methods: monitoring Ta via meteorological stations, estimating Ta from Ts 

(land surface temperature) retrieved from remote sensing, and obtaining Ta through the 

assimilation model. The temperature with high time resolution can be obtained through the 

measurement of the meteorological station, which can avoid the influence of clouds and rain, 

preserving good data integrity, continuity, and accuracy. However, the number of meteorological 70 

stations is limited and unevenly distributed, especially for mountainous regions (Mao et al., 2008; 

Gao et al., 2018; Zhao et al., 2020). Most meteorological stations are located in sparsely populated 

areas far away from cities and cannot accurately monitor changes in urban temperature caused by 

the urban heat island effect (He and Wang, 2020). Moreover, owing to the aging of meteorological 

station equipment, the observation data may be incomplete. Although many interpolation methods, 75 

such as Kriging, Cubic Spline, and Inverse Distance Weight interpolations are available, the 

difference in density between stations has some impact on the interpolation accuracy (Tang et al., 

2020; Tomasz et al., 2016; Tencer et al., 2011). 

Satellite sensors can provide global coverage and high spatial resolution data, which can be 

used to estimate Ta. The estimation methods are mainly divided into five categories. The first 80 

method is the statistical regression method, which simulates the fluctuation of daily temperature 

by establishing a regression model between temperature and other parameters (Wen et al., 2020). 

The model parameters mainly include altitude, latitude and longitude, solar phase angle, and day 

length (Zhu et al., 2013; Zhang et al., 2015). The second method is the temperature vegetation 

index (TVX) method, which is a method for air temperature estimation based on the negative 85 

correlation between surface temperature and vegetation index (Xing et al., 2020). The third 

method is the energy balance method. It is generally considered that the sum of the net radiation 

and anthropogenic heat flux in the surface energy is equal to the sum of the surface sensible heat 

flux and latent heat flux to calculate the surface air temperature (Benali et al., 2012). The fourth 

method is the atmospheric temperature profile extrapolation method, which uses the vertical 90 

attenuation rate obtained from the atmospheric temperature profile to calculate the Ta (Wen et al., 

2020). The fifth method is a machine learning method that uses polynomial regression or neural 
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network algorithms to improve Ta estimation errors (Mao et al, 2008; Wen et al., 2020). Sensors 

are susceptible to weather phenomena, such as clouds and rain, leading to missing data or reduced 

quality. In addition, these methods of inferring Ta are mostly suitable for clear sky conditions, 95 

which still need to be further expanded to establish an estimation model of Ts to Ta under different 

weather conditions. 

In recent years, the reanalysis data generated by the global assimilation model has provided 

many datasets of geophysical parameters, including near-surface temperature, which overcome 

most of the above-mentioned problems caused by abnormal weather. The NCEP/NCAR 100 

reanalysis dataset was developed by the National Center for Environmental Prediction and the 

National Center for Atmospheric Research (1948.1–2021.9), with a time resolution of 6 h and a 

spatial resolution of 2.5° (Kobayashi et al., 2015). The ERA5 dataset was released by the 

European Center for Medium-Range Weather Forecast (ECMWF; 1950.1–2021.9), with a time 

resolution of 1 h, and a spatial resolution of 0.3° (Hersbach et al., 2020; Dee et al., 2011; Taszarek 105 

et al., 2021; Lei et al., 2020). The Princeton Forcing surface model dataset was developed by 

Princeton University (1948.1–2006.12), with a time resolution of 3 h and a spatial resolution of 

1.0° (Deng et al., 2010). To improve the accuracy of regional data, some researchers have 

developed different types of forcing datasets for the Chinese region. The representative dataset is 

the China Meteorological Forcing Dataset (CMFD) released by the Institute of Tibetan Plateau 110 

Research, Chinese Academy of Sciences (1979.1–2018.12), with a time resolution of 3 h and a 

spatial resolution of 0.1° (He et al., 2010; Yang et al., 2010; Yang and He, 2019). However, the 

dataset does not provide daily maximum and minimum temperatures. The grid dataset of daily 

surface temperature in China (V2.0, CMA) was released by the China Meteorological 

Administration (1961.1–2021.9), with a spatial resolution of 0.5°. This dataset only includes the 115 

daily maximum, minimum, and average temperatures, and its spatial resolution is low and the 

accuracy of local areas needs to be further improved. Although reanalysis datasets can obtain 

global near surface air temperature data, there is a lack of Tmax, Tmin and Tavg dataset with high 

spatial resolution and high precision. 

   In order to obtain a long-term Ta (Tmax, Tmin, and Tavg) dataset with high spatial resolution in 120 

China based on the current reanalysis, remote sensing, and in situ data. We first analyze the 
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advantages and disadvantages of various existing data (reanalysis, remote sensing, in situ data, 

etc.). Then, different daily Ta reconstruction models are constructed for different weather 

conditions. It makes up for the previous methods which are most suitable for clear sky conditions 

and the insufficient estimation of all-weather conditions. We further improve data accuracy by 125 

building correction equations for different regions. Finally, a dataset of daily Ta (Tmax, Tmin, and 

Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. The comparison 

with in situ data and the existing reanalysis dataset is made. 

2. Study area 

China has a vast territory, with great undulations on the earth’s surface, and a wide range of 130 

climate changes. In order to improve the accuracy of Ta estimation, we divide China into six 

subregions shown in Figure 1 based on geographic location, altitude, rainfall, vegetation types 

and other natural environmental conditions. (I) The Northeastern Region is mainly including 

northeast China, which is located to the east of the Greater Khingan Range. This region is located 

in the temperate monsoon climate zone, the annual precipitation is 400–1000 mm and cumulative 135 

temperature is between 2500°C and 4000°C. (Ⅱ) The North China region is located in the area 

north of the Qinling-Huaihe River and south of the Inner Mongolia Plateau. This region is mostly 

located in the temperate monsoon climate zone, the annual accumulated temperature is between 

3000°C and 4500°C, with hot and rainy summers and cold and dry winters. (Ⅲ) The Central 

Southern region is located south of the Qinling-Huaihe River and north of the tropical monsoon 140 

climate type. This region is located in the subtropical monsoon climate zone, the annual 

accumulated temperature is between 4500°C and 8000°C and the precipitation is mostly between 

800 mm and 1600 mm. (Ⅳ) The Southern region is south of the Tropic of Cancer. This region is 

located in the tropical monsoon climate zone, the annual accumulated temperature is greater than 

800°C, the annual minimum temperature is not less than 0°C, and there is no frost throughout the 145 

year. The annual precipitation mostly ranges from 1500 mm to 2000 mm. (V) The Northwest 

region is mainly distributed in the inland areas above 40° N latitude of China, located in the 

northwest of the Greater Khingan Range-Yin Shan-Ho–lan Mountains-Qilian Mountains line. It 

is far from the coast, water vapor transport is limited, and the annual precipitation is between 300 

mm and 500 mm. Both the daily and the annual temperature differences are large, including 150 
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temperate desert, temperate grassy, and sub-frigid coniferous climates. (Ⅵ) The Qinghai–Tibet 

Plateau region mainly includes the Qinghai-Tibet Plateau, the Andes Mountains, Mount Everest, 

and other areas. This region is located in the plateau and mountainous climate zone, the annual 

accumulated temperature is lower than 2000℃, the daily temperature range is large, and the 

annual temperature range is small. This region has strong solar radiation, sufficient sunshine, and 155 

little precipitation. 

 

Figure 1. Scope map of the total study area and the six subregions. The black dots indicate the distribution 

locations of meteorological stations; blue frame lines indicate the sub-study area range, represented by Ⅰ, Ⅱ, Ⅲ, 

Ⅳ, Ⅴ, and Ⅵ. 160 

3. Data 

3.1 Reanalysis data 

The reanalysis dataset contains driving factors of surface elements in a large area, which can 

provide highly complementary information and avoid data gaps and low pixel quality caused by 

abnormal weather conditions. This study primarily used the CMFD and ERA5 datasets as the 165 

reanalysis data sources. 

CMFD data are a set of meteorological forcing datasets developed by the Institute of Tibetan 

Plateau Research, Chinese Academy of Sciences (He et al., 2020; Yang et al., 2010; Yang and He, 

2019). They are mainly based on the Global Land Data Assimilation System (GLDAS) as a 

background dataset, using empirical knowledge algorithms and combining GLDAS with 170 

measured data to obtain temperature data with a spatial resolution of 0.1°. The CMFD dataset 

contains seven variables: 2-m air temperature, surface pressure, specific humidity, 10-m wind 
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speed, downward shortwave, and downward longwave radiation, and precipitation rate. The 

CMFD dataset covers the period from January 1979 to December 2018. In total, four types of 

time resolution products are provided every 3 h, daily, monthly and annual averages. At present, 175 

CMFD data are a comprehensive dataset with the longest regional time series and the highest 

spatial resolution in China. Many studies and analyses show that the dataset’s accuracy is high 

enough to meet the application requirements (Zhang et al., 2019; Wang et al., 2017). Therefore, 

we use the 3-h temperature and daily temperature data of the CMFD to construct the Ta model 

and make evaluation with this product, respectively. CMFD dataset is available through the China 180 

National Qinghai-Tibet Plateau Science Data Center (http://data.tpdc.ac.cn/zh-

hans/data/8028b944-daaa-4511-8769-965612652c49/, last access: 1 November 2020). 

ERA5 data is the fifth-generation product of atmospheric reanalysis global climate data 

launched by the ECMWF, replacing the ERA-Interim reanalysis data that was discontinued on 

August 31, 2019 (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=ERA5, 185 

last access: 1 December 2020). ERA5 data is generated based on the Cy41r2 model of the 

integrated forecasting system which has benefited from the development of data assimilation, 

model simulation, and model physics in recent years, and is generated by absorbing more ground 

monitoring, aircraft weather observation, and radio detection data. Compared with ERA-Interim 

data, ERA5 was significantly improved, such as higher temporal and spatial resolution, more 190 

vertical mode levels, and added other parameter products. ERA5 provides timely and updated 

quality checks on the data, which is convenient for providing stable, real-time, and long-term 

climate information. ERA5 includes many meteorological elements, including 2-m air 

temperature, 2-m relative humidity, sea level pressure, sea surface temperature, and precipitation. 

Since the release of ERA5 reanalysis data, many researchers have tested its applicability and 195 

accuracy. The results show that the accuracy of the ERA5 is better than the ERA-Interim data, 

and the higher temporal and spatial resolutions are conducive to the precise description of regional 

atmospheres. The details of these improvements are convenient for studying changes in small-

scale atmospheric environments (Meng et al., 2018; Mo et al., 2021; Hillebrand et al., 2021). 

Therefore, the temperature data in the ERA5 data is selected to reconstruct the Ta dataset. 200 
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3.2 Meteorological station data 

The meteorological station data from 1979-2018 were used in this study were employed to build 

a Ta model and make evaluations for existing datasets and new products. The measured data of 

meteorological stations are obtained from China National Meteorological Information Center 

(http://www.nmic.cn/site/index.html, last access: 1 November 2020), including the daily 205 

temperature data of China’s surface climate (Tmax, Tmin, and Tavg), hourly air temperature, and land 

surface temperature data. In order to further improve the data quality, unified quality control was 

carried out on the in situ data. First set a fixed threshold to eliminate the overflow value. Secondly, 

we tested the time series of site data and eliminated abnormal and missing data due to instrument 

damage or bad weather. Finally, we checked the temporal and spatial consistency of the 210 

measurement data, delete the meteorological stations with location migration during the study 

period, and keep the temperature data of meteorological stations with long monitoring time and 

stable temperature values. 

3.3 Supplementary data 

China’s daily near-surface temperature grid dataset was released by the CMA, with a spatial 215 

resolution of 0.5°. It is a grid dataset made for the daily maximum, minimum, and average 

temperatures in China (http://www.nmic.cn/site/index.html, last access: 11 April 2021). The CMA 

dataset was obtained by combining the daily temperature data monitored by meteorological 

stations and the digital elevation model (DEM) data generated by re-sampling with three-

dimensional geospatial information through a thin-plate spline interpolation algorithm. The 220 

spatial resolution of the CMA data was 0.5°, which is used to make cross-validation. 

Moderate Resolution Imaging Spectroradiometer (MODIS) is an important sensor in the Earth 

Observation System program, which is a medium-resolution imaging spectrometer mounted on 

the Terra and Aqua satellites. Terra is a morning orbiting satellite that passes through the equator 

at approximately 10:30 local time from north to south, and Aqua is an afternoon orbiting satellite 225 

that passes through the equator at approximately 1:30 local time from south to north. The Terra 

satellite has been in service since 1999, and the Aqua satellite has been in service since 2002. 

Since 2002, the surface temperature data can be obtained 4 times a day from MODIS data through 
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inversion calculation. In this study, we selected the MOD11A1 and MYD11A1 products, which 

can provide daily surface temperature data on a global scale with a spatial resolution of 1 km. To 230 

determine the locations of low-quality and missing values in pixels that are affected by cloud 

pollution and aerosols, MODIS provides quality control fields for each of its products, and quality 

control documents are mostly encoded in the binary form. MODIS data can be downloaded from 

the LAADS DAAC website (https://ladsweb.modaps.eosdis.nasa.gov/search/order, last access: 1 

December 2020). 235 

In addition to the above data, DEM data were used in this study. The Shuttle Radar Topography 

Mission (SRTM) DEM used in this study was a radar topographic mapping project jointly 

implemented by NASA and the National Imagery and Mapping Agency, which was implemented 

by the Space Shuttle Endeavour. The temperature data were regulated via topographical correction 

of SRTM DEM of 90-m resolution to eliminate the influence of topographical fluctuations on air 240 

temperature. SRTM DEM data can be obtained through the USGS network 

(http://www.gscloud.cn/search, last access: 10 February 2021). 

4. Methodology 

In currently, the Tmax, Tmin, and Tavg data can be provided by meteorological stations, other non-

station locations or grid values were estimated by interpolation or indirect methods such as remote 245 

sensing. Owing to the limited number of meteorological stations and uneven distribution, it is 

difficult to guarantee the accuracy of Tmax, Tmin, and Tavg obtained through interpolation in some 

areas. Under rainfall and cloud cover weather conditions, it is impossible to estimate the air 

temperature from remotely sensed surface temperature data. Even in clear sky conditions, the 

formula for estimating near-surface air temperature is not universally applicable, which hinders 250 

the accurate development of the Ta dataset to a certain extent. Therefore, to obtain a Ta dataset 

with a high temporal and spatial resolution and long time series, it is necessary to build a reliable 

and robust Ta model to estimate Tmax and Tmin, and further improve the accuracy of Tavg. 

Consequently, the product can be more widely used for climate change and research on extreme 

weather events. Daily temperature changes are affected by many factors and are extremely 255 

sensitive to fluctuations in various weather phenomena. This study calculates Tmax and Tmin by 

distinguishing different weather conditions. First, the daily weather conditions were divided into 
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the clear sky and non-clear sky conditions. Second, based on the physical process of daily 

temperature changes and combined with existing reanalysis data, in situ data, and remote sensing 

data, we construct Tmax and Tmin models under clear sky conditions. In non-clear sky weather 260 

conditions, a variety of methods are used to determine Tmax and Tmin. In order to further improve 

the accuracy of the data, a modified model is constructed according to the regional situation. More 

details are given in the following sections. The overall process of this study is illustrated in Fig. 

2. The construction of the dataset was mainly divided into three steps: (1) The process of daily 

weather status determination, (2) the process of establishing Ta models under different weather 265 

conditions, and (3) data correction. 

 

Figure 2. Summary flowchart of Ta dataset establishment. 

4.1 Strategies for division of weather conditions and Ta estimation 

4.1.1 Scheme for dividing weather conditions 270 

Different weather conditions have different rules of temperature changes. In order to improve the 

estimation accuracy of the maximum and minimum temperature, we conduct specific calculations 
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by distinguishing daily weather conditions. Clouds and water vapor have a great influence on 

visible light and thermal infrared remote sensing. Many remote sensing data such as MODIS 

products generate quality control files for each pixel. Therefore, the quality control field of 275 

MODIS can be used to distinguish between clear sky and non-clear sky weather conditions. 

However, we can only obtain MODIS observation data four times a day since 2002, which cannot 

cover the time range involved in this study. Therefore, we divided the time series of this study 

into two periods: 1979–2001 and 2002–2018, and different methods are used for the two-time 

series to distinguish the daily weather status. For the study period from 2002 to 2018, we 280 

distinguished each pixel based on the MODIS quality control field. When the MODIS quality 

control of all four Ts corresponding to a pixel is in the clear sky condition, the pixel is judged to 

be in the clear sky condition, otherwise, it is judged to be in the non-clear sky condition. 

For the study period from 1979 to 2002, we used the in situ, CMFD, and ERA5 data to 

determine the daily weather status. First, we filtered each pixel and divided it into two types: 285 

meteorological stations corresponding to pixels with and without weather status records. For 

pixels with weather status records, we used a large number of statistical discrimination methods 

to analyze the impact of abnormal weather phenomena on temperature fluctuations, which can 

facilitate the subsequent determination of pixels without weather status records. Statistical 

analysis shows that there is a significant difference in daily temperature fluctuations between clear 290 

sky and non-clear sky conditions, and non-clear weather conditions may cause abnormal 

temperature fluctuations. Therefore, we converted the judgment of the weather state into the 

abnormal judgment of the time and frequency of the occurrence Tmax and Tmin (The occurrence 

time of Tmax and Tmin is hereinafter cited as Hmax, Hmin). Specifically, when Hmax and Hmin occur 

abnormally or the temperature change is wavy, it is regarded as non-clear sky condition (Zhao 295 

and Duan, 2014; Ren et al., 2011). In other cases, they are regarded as clear sky states, and the 

position of each pixel is marked. Therefore, we needed to further fill the daily time series of each 

pixel to determine the weather state. In this study, we utilized two strategies to perfect the 

temperature series obtain the time and frequency of Tmax and Tmin for distinguishing the weather 

conditions. The specific implementation steps for determining weather conditions are shown in 300 

Figure 3. 
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Figure 3. Summary flowchart for the classification of the weather conditions. 

In the first strategy, when the pixel location had a corresponding meteorological station or when 

the Euclidean distance between adjacent stations was less than 0.3°, we fill in the gaps to improve 305 

the integrity and continuity of the time series. The time series filling process was as follows: (1) 

When there were missing values in the measured data at the site, there were no continuous missing 

values. In the case of the same spatial range, we use the average of the two times temperatures 

before and after the same site to fill in the missing values. (2) When the observation data of a site 

were missing continuously, in the case of the same time range, we filled it according to the time 310 

and frequency of the Tmax and Tmin occurrence of adjacent sites. This method is mainly based on 

the principle that the closer the distance between stations, the stronger the spatial consistency and 

correlation of temperature changes. (3) When the station data were continuously missing and the 

adjacent station data could not be filled, other relevant data were used for repair within the same 

time and space. In this study, we estimated the weather state based on the time and frequency of 315 

the Tmax and Tmin from the Ts monitored by the same station. This method theoretically originates 

from the approximate consistency between the daily variation ranges of Ts and Ta, and is suitable 

for situations where there are a large number of missing values and incomplete time series at 

meteorological stations and adjacent meteorological stations. Many studies have analyzed the 
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correlation between the daily trend of Ta and Ts and found that they have strong consistency. The 320 

Ts retrieved by remote sensing satellites is also widely used to estimate Ta, which proves the 

reliability of determining the pixel weather state through the Ts time series (He et al., 2020; Yoo 

et al., 2018; Johnson and Fitzpatrick, 1977; Caesar et al., 2006; Mostovoy et al., 2006). (4) When 

there is no meteorological station at the pixel location and the distance from the meteorological 

station is less than 0.3°, we use the inverse distance weighting method to perform spatial 325 

interpolation on adjacent pixels. Determine the weather state by obtaining the time and frequency 

of each pixel’s daily appearance of Tmax and Tmin. 

The second strategy was to target areas where the distribution of sites was sparse and the 

Euclidean distance between two adjacent sites was greater than 0.3°. In order to make up for the 

insufficient coverage and uneven distribution of stations in these areas, this study uses hourly data 330 

from ERA5 to refine the time series of each pixel and distinguish the weather status. As there was 

a certain difference between the spatial resolution of ERA5 and this dataset, it was difficult to 

meet our demand for higher spatial resolution. Consequently, we developed an effective 

downscaling process based on the spatial correlation between ERA5 data and CMFD 3-h 

temperature data. The ERA5 data (with a spatial resolution of 0.3°) were spatially downscaled 335 

with the aid of CMFD data (with a spatial resolution of 0.1°). The downscaling process is 

illustrated in Fig. 4. First, quality control of the ERA5 and CMFD datasets was performed to 

eliminate temperature outliers. Second, ERA5 and CMFD data were matched according to time 

series and central latitude and longitude to construct pixel pairs. Subsequently, we weighted the 

high-resolution data to the low-resolution ERA5 data pixel by pixel. Finally, the weight was used 340 

to downscale the ERA5 data to the same spatial resolution of the CMFD. The ERA5 downscaling 

was computed using Eqs.1 and 2. 

TE(xo,y
o
)=

TC(xo,y
o
)

∑ ∑ TC (xi,yj
)n

j=0
m
i=0

*TE(xm,y
n
)  (1) 

TE(xo,y
o
)=

TM(xo,y
o
)

∑ ∑ TM (xi,yj
)n

j=0
m
i=0

*TE(xm,y
n
)  (2) 

where TE, TC, TM  represents ERA5, CMFD, MODIS data, respectively. TE(xo,y
o
)  is the 

temperature data after downscaling. TE(xm,y
n
) is the temperature data before downscaling. i, j 

are pixel coordinates. m, n are the pixel coordinates before downscaling. 345 
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Figure 4. Flowchart for spatial downscaling, where nv represents the number of valid values. 

4.1.2 Tmax and Tmin estimation under clear sky conditions 

In addition to the temperature severe fluctuations caused by abnormal weather phenomena, the 

daily temperature changes under clear sky conditions have a certain regularity, periodicity, and 350 

asymmetry (Leuning et al., 1995; Johnson and Fitzpatrick, 1977). According to the similarity 

between the surface temperature and the diurnal variation trend of air temperature, a method of 

estimating Ta is established by the daily air temperature variation model. Verified by 

meteorological station data, this method is feasible (Du et al., 2020; Zhu et al., 2013; Perkins et 

al., 2007; Cesaraccio et al., 2001; Serrano-Notivoli et al., 2019). However, it is very complicated 355 

to use the surface temperature retrieved by remote sensing methods to estimate the changing trend 

of air temperature, and more parameters need to be input, and the relationship between Ts and Ta 

is not fixed. Therefore, it is difficult to unify the types and quantities of parameters, and it is 

difficult to ensure accuracy. As a result, we established a piecewise local sine function of 

temperature under clear sky conditions, which can simulate the change in Ta and calculate Tmax 360 

and Tmin (Mao et al., 2016; Jiang et al., 2010). First, according to the approximate periodicity of 

daily temperature changes and the asymmetry of Hmax and Hmin, we derive the Ta piecewise sine 

function of the adjacent regions of Hmax and Hmin, as shown in Eqs. 3 and 4. Among them, Eq. 3 

is the Tmax function and Eq. 4 is the Tmin function. Secondly, it is similar to the method of filling 

the temperature time series when judging the weather state. By combining in-situ data and 365 

reanalysis data, the temperature sequence is improved and the Hmax and Hmin of each pixel are 
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obtained. These Hmax and Hmin values are entered as parameters into the piecewise sine function. 

The CMFD 3-h data is used as Ta data, and each pixel Hmax and Hmin are used as time, and input 

into the piecewise sine function by the least square method for parameterization. We can obtain 

the values of At and Bt used to construct the piecewise sine function. The least squares method is 370 

a mathematical optimization technique, which uses the least square sum of residuals as the 

estimation standard for the best matching function. It is usually used in statistical models and is 

by far the most applicable and widely used parameter estimation method (Qiu and Jiang, 2021; 

Ge, 2015; Floyd and Braddock, 1984). Finally, Hmax and Hmin values were substituted into the 

derivation formula to obtain Tmax and Tmin as preliminary results for subsequent correction and 375 

analysis. By constructing a temperature model pixel by pixel to meet the temporal and spatial 

heterogeneity of each region. 

Tmax = At * sin[ 
 (Ho–Hmax)π

Hmax– Hmin

 – 
π

2
] + Bt (3) 

Tmin = At * sin[
 (Ho – Hmax)π

24 – Hmax+ Hmin

– 
π

2
] + Bt (4) 

where Hmax is the occurrence time of the daily maximum temperature. Hmin is the occurrence time 

of the daily minimum temperature. Ho is the input time, and At and Bt are unknown parameters. 

4.1.3 Tmax and Tmin estimation under cloudy-sky conditions 380 

The daily temperature fluctuations in non-clear-sky conditions are relatively large, and there may 

be large-scale cooling or sudden temperature changes in a short period of time. Based on the 

spatial location information of each pixel, in situ data are the most reliable and representative data 

source. Therefore, if there are in situ data at the pixel location, the temperature data at the same 

time will be directly obtained from the site to replace the pixel values Tmax and Tmin. For the pixels 385 

corresponding to non-meteorological stations, similar to the method of spatial downscaling for 

the pixel positions of non-meteorological stations in the weather status judgment, we use ERA5 

data to perform spatial downscaling with the assistance of CMFD data. By adding high spatial 

resolution MODIS data, the downscaling method is further expanded to improve the accuracy of 

each pixel. However, for the method of using remote sensing data to assist downscaling, we 390 

needed to consider the degree of influence of cloudy-sky weather phenomena. First, we performed 

effective value statistics on the MODIS data. When not all pixels of the MODIS data were valid, 
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the pixels with poor-quality or missing data were identified and removed. The corresponding time 

of the effective pixel was matched with the ERA5 data according to the nearby time to obtain the 

data weight for spatial downscaling. When the pixels in MODIS were invalid in 1 day, we used 395 

CMFD data for downscaling and finally obtained Tmax and Tmin. The downscaling process and the 

validity determination of MODIS data are shown in  Figure 4, and the downscaling formulas are 

shown in Eqs. 1 and 2. 

4.1.4 Tavg estimation 

Usually, the calculation of average temperature is to use the temperature value observed every 400 

day to do an arithmetic average. If each pixel has hourly temperature data, the calculated daily 

average temperature is the most representative. Because it is difficult to obtain hourly data, people 

often use 4-hours temperature or directly use the maximum and minimum average values as the 

daily average temperature. In order to improve the accuracy of the average temperature as much 

as possible, we use the three-hour temperature data provided by CMFD and the maximum and 405 

minimum values calculated above to do an arithmetic average to get the daily average temperature. 

Finally, multiple linear regression correction was performed on the Tavg output value according to 

the in situ data to improve the accuracy (the linear correction method was the same as that 

described in Sect. 0), and the daily Tavg dataset was obtained. 

4.2 Ta data calibration scheme 410 

Surface temperature is sensitive to changes in altitude and is easily affected by the surrounding 

environment. For non-meteorological station pixels, we use interpolation to fill in the pixel values 

based on the principle of regional consistency. In order to improve the accuracy of pixel 

temperature at non-meteorological sites, we fully consider the influence of altitude on temperature. 

First, the in-situ Ta is unified to sea level according to the vertical rate of temperature drop. Then, 415 

the non-site pixels are interpolated according to the station data, and finally, the interpolated pixel 

values are restored to the corresponding elevation. This method can reduce the influence of 

altitude on temperature to a certain extent and improve the accuracy of the dataset. In this study, 

we used a uniform vertical temperature drop rate (γ), that is, for every 100 m increase in altitude, 

the atmospheric temperature drops vertically by 0.65°C, and vice versa. The height correction 420 
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formula is given by Eq. 5 (He and Wang, 2020; Schicker et al., 2015; Wang et al., 2013). 

TSL =  Ta - γ * ( HSL - H
a
) (5) 

where TSL is the sea level temperature, Ta is the temperature of the meteorological station, and 

HSL is the sea level height, where the value of γ is approximately 0.0065°C/m. 

Based on the jackknife method, 699 in situ stations across the country were divided into 140 

verification points and 559 calibration points according to the ratio of in 20% and 80% to establish 425 

a multiple linear regression equation (Benali et al., 2012; Xu et al., 2017). From the preliminary 

accuracy results of the temperature change model in Sect. 0, it can be seen that although the overall 

accuracy was high, there is still the problem of abnormal temperature values of the model output 

data caused by the violent fluctuations in daily temperature changes. Further correction is required 

to reduce the deviation and improve the accuracy of the dataset. The data correction process is 430 

illustrated in Figure 5. For the abnormal temperature value, we replace the Ta at the pixel location 

with the observation Ta from the meteorological station, and performed the adjacent pixel 

temperature correction for the pixel without the meteorological station at the pixel location. The 

multiple linear regression method is used to perform multiple linear regression on the original 

temperature, and the stepwise regression relationship between the measured value of the station 435 

and the fitted value of the corresponding pixel is established. Then calculate the predicted value 

of the regression temperature according to the regression equation, and obtain the temperature 

residual value by calculating the observed value and the predicted value. The residual value and 

the predicted value are spatially added to obtain the final corrected temperature (Cristobal et al., 

2006). The modified expression is shown in Eq. 6. 440 

V(x, y) = m̂(x, y) + ε̂(x, y)  (6) 

where x and y are the numbers of rows and columns of pixels, respectively, V(x, y)  is the 

correction value of the regression equation, m̂(x, y)  is the regression prediction value of air 

temperature, and ε̂(x, y) is the residual value. 
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Figure 5. Flowchart for calibration of Ta model data. 445 

4.3 Evaluation metrics 

To verify the accuracy of this dataset, we first verified the accuracy of the original temperature 

dataset and the corrected dataset in this study with the in situ data. A scatter diagram was used to 

compare the results before and after validation. The scatter diagram represents the overall 

distribution and aggregation of the data and can intuitively convey accurate information of the 450 

data. Further, to better evaluate the accuracy of this dataset, we selected areas with uniform surface 

types and flat terrain under clear skies as the comparative study area and compared this product 

with the existing datasets. We selected three indicators as metrics to measure the accuracy of 

variables: R2, MAE, RMSE. 

We compared Tmax and Tmin with ERA5 data and CMA data. It is worth noting that the ERA5 455 

reanalysis dataset is an hourly temperature grid dataset, so we obtain the highest and lowest 

temperature values of ERA5 by constructing a local sine function similar to the previous section, 

and further calculate the average daily temperature. The accuracy of Tavg products in this study is 

verified with ERA5 data, CMA data, and CMFD daily temperature data. Since the spatial 

resolution of CMA is 0.5°, in order to facilitate comparison, we resample the spatial resolution of 460 

all datasets to 0.5°. 
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4.4 Analysis of the Ta series trend 

We not only compared the output Ta data with the in situ data, but also assessed the climate change 

trends of Tmax, Tmin, and Tavg in various regions of China, and further tested the effectiveness and 

regional applicability of the dataset through various climate variables. This study used four 465 

temperature indexes (TXx, TNn, TX90p, and TN10p) to analyze the trends of Tmax and Tmin 

extreme temperature changes each year. Specifically, TXx (TNn) abnormality refers to the 

difference between the sum of monthly Tmax (Tmin) and the multi-year average of monthly Tmax 

(Tmin) in each year. The multi-year period of this study is 40 years. In addition, linear regression 

was performed on the TXx (TNn) anomaly to analyze the inter-annual variation trend. The TX90p 470 

(TN10p) arranged the daily Tmax (Tmin) of each month during the study period in ascending order 

of temperature, and we selected the portions with more than 90% (less than 10%) correlation with 

the number of days in each year. 

To study the spatiotemporal variation trend of Tavg, we used linear regression analysis (K), 

correlation coefficient analysis (R), and T-test (Du et al., 2020; Yan et al., 2020; Cao et al., 2021). 475 

The interannual change rate and correlation of Tavg were calculated by K and R, and the formula 

is given by Eqs. 7 and 8, respectively. We performed a two-tailed significance test on the T-test to 

quantify the significance of the temperature and time-series changes (Eq. 9). 

K =  
n ∑ (iTi)  −  ∑ i ∑ Ti

n
i=1

n
i=1

n
i=1

n ∑ i2 n
i=1 − (∑ in

i=1 )2   (7) 

R = 
n ∑ (iTi) – ∑ in

i=1 ∑ Ti
n
i=1

n
i=1

√n ∑ i
2
 – (∑ in

i=1 )2n
i=1 *√n ∑ Ti

2 – (∑ Ti
n
i=1 )2n

i=1

 
 (8) 

T_test(R)= 
R√n–2

√1–R2
  (9) 

where n represents the total number of years of the time series length, i represents the year, and 

Ti represents Tavg in the i-th year. K > 0 indicates that the temperature is increases within the time 480 

series, and K < 0 indicates that the temperature is decreases within the time series. 

5. Results 

5.1 Accuracy verification before calibration 

According to the six subregions divided in Fig. 1, comparative analysis of this product (Tmax, Tmin 
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and Tavg) based on in-situ data are made respectively. Fig. 6 shows the accuracy scatter plot 485 

between the original data of Tmax and the in situ data. The R2 fluctuated from 0.91 to 0.99, the 

MAE ranged from 1.69 °C to 2.71 °C, and the RMSE ranged from 2.15 °C to 3.20 °C. Fig. 7 

shows the accuracy scatter plot of Tmin. The R2 fluctuated from 0.93 to 0.97, the MAE ranged 

from 1.34 °C to 2.17 °C, and the RMSE fluctuated from 1.68 °C to 2.79 °C. Fig. 8 shows the 

accuracy scatter plot of Tavg. The R2 fluctuated between 0.97 and 0.99, the MAE ranged from 490 

0.58 °C to 0.96 °C, and the RMSE fluctuated from 0.86 °C to 1.60 °C. It can be seen from Figs. 

6, 7, and 8 that the R2 of Tmax, Tmin, and Tavg and the temperature measured at the meteorological 

station were all greater than 0.90. In general, our method performed well in estimating the daily 

temperature values. However, due to the impact of complex changes in weather, the distribution 

of temperature values on certain days is more discrete, especially in the study areas V and VI. 495 

Further corrections are needed to reduce errors and improve the accuracy of the dataset. 

 

Figure 6. Scatter diagrams of the Tmax output from the Ta model against ground station data; the statistical accuracy 

measures (R2, MAE, and RMSE) are also indicated. 
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 500 

Figure 7. Scatter diagrams of the Tmin output from the Ta model against ground station data; the statistical accuracy 

measures (R2, MAE, and RMSE) are also indicated. 

 

Figure 8. Scatter diagrams of the Tavg output from the Ta model against ground station data; the statistical accuracy 

measures (R2, MAE, and RMSE) are also indicated. 505 

5.2 Accuracy verification after calibration 

The temperature was further corrected using the linear correction method. The data verification 

results of Ta after correction are shown in Figs. 9, 10, and 11. The results showed that the corrected 

data had a higher consistency with the in situ data. The fitted and observed temperatures were 

linearly distributed and gradually approached the regression line, and the outliers were greatly 510 
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reduced. Fig. 9 shows the corrected scatter plot of Tmax for each study area. The R2 fluctuated 

from 0.96 to 0.99, and the MAE ranged from 0.63 °C to 1.40 °C, the RMSE fluctuated from 

0.86 °C to 1.78 °C. Fig. 10 shows the corrected scatter plot of Tmin for each study area. The R2 

fluctuated between 0.95 and 0.99, and the MAE ranged from 0.58 °C to 1.61 °C, the RMSE 

fluctuated from 0.78 °C to 2.09 °C. Fig. 11 depicts the corrected scatter plot of Tavg in each study 515 

area, where R2 fluctuated between 0.99 and 1.00, the MAE ranged from 0.27 °C to 0.68 °C, the 

RMSE fluctuated from 0.35 °C to 1.00 °C. The results showed that the distribution of numerical 

points in each area after the correction was denser, mostly concentrated near the 1:1 line, and the 

degree of clustering with the measured data was higher than before calibration. When we 

performed a detailed analysis of the daily temperature in the six study areas, we found that the 520 

accuracy measurement values differed greatly between the east and west. For example, the 

accuracy error of study area IV is small, and the accuracy error of study area VI and V is large, 

which may be affected by the regional topography and the distribution of meteorological stations. 

The IV study area is located in the tropical monsoon climate zone, affected by latitude and 

topography, the temperature is relatively high throughout the year. Moreover, the area is located 525 

in the eastern part of China with densely distributed meteorological stations and relatively flat 

terrain. Linear correction can significantly improve the agreement between the estimated value 

and the observed value. The study areas VI and V have higher RMSE. They are located in the 

Qinghai-Tibet Plateau in southwest China and Xinjiang in the northwest. Such areas have similar 

characteristics, such as high altitude, large spatial heterogeneity, and few meteorological stations. 530 

It shows that the temperature has strong spatial heterogeneity. In general, the corrected dataset 

has higher accuracy, satisfies the spatial heterogeneity of different regions, and better estimates 

the temperature under different weather conditions. 
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Figure 9. Scatter diagrams of the original Tmax and reconstructed results versus their corresponding ground station 535 

data in six natural subregions (I, II, III, IV, V, and VI). The gray points indicate low-quality pixel values in the 

original Tmax data, and the orange points represent the values in the after-calibrated Tmax dataset, and the statistical 

accuracy measures (R2, MAE, and RMSE) are also indicated. 

 

Figure 10. Scatter diagrams of the original Tmin and reconstructed results versus their corresponding ground station 540 

data in six natural subregions (I, II, III, IV, V, and VI). The gray points indicate low-quality pixel values in the 

original Tmin data, and the blue points represent the values in the after-calibrated Tmin dataset, and the statistical 

accuracy measures (R2, MAE, and RMSE) are also indicated. 
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Figure 11. Scatter diagrams of the original Tavg and reconstructed results versus their corresponding ground station 545 

data in six natural subregions (I, II, III, IV, V, and VI). The gray points indicate low-quality pixel values in the 

original Tavg data, and the green points represent the values in the after-calibrated Tavg dataset, and the statistical 

accuracy measures (R2, MAE, and RMSE) are also indicated. 

To further verify the robustness and accuracy of this product, Table 1 shows the cross-validation 

results of this product and other datasets, and the mean average precision (MAP) of each region. 550 

It can be seen from the table that this product has a high regional consistency with other datasets. 

Study area IV located in the tropical monsoon climate zone has higher accuracy, while study area 

VI located in the Qinghai-Tibet Plateau region of China has lower data accuracy. This may be 

because the reanalysis dataset is also affected by the number and distribution of meteorological 

stations, and the spatial heterogeneity. The accuracy and robustness of the product has been 555 

confirmed from another angle. The accuracy comparison of each area shows that this product has 

higher accuracy and spatial representation than other datasets. R2 is closer to 1, and both MAE 

and RMSE remain low. Through the accuracy evaluation and data comparison between this 

product and the existing dataset, it is found that our product has a better temperature estimation 

of each area, and the overall accuracy and accuracy of the dataset is higher. 560 

Table 1. Cross-validation results of this product and other datasets. 

Temp. Type Index Data Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ MAP 

ERA5 0.99 0.97 0.94 0.94 0.97 0.94 0.96 
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MAX 

R2 
CMA 1.00 0.95 0.95 0.98 0.99 0.90 0.96 

DATASET 0.99 0.99 0.97 0.98 0.99 0.96 0.98 

MAE 

ERA5 1.05 1.25 1.47 0.99 1.53 1.99 1.38 

CMA 0.67 1.28 1.28 0.63 0.81 1.58 1.04 

DATASET 0.73 0.94 1.07 0.62 1.02 1.40 0.96 

RMSE 

ERA5 1.69 1.52 2.14 1.68 1.91 2.30 1.87 

CMA 0.99 1.80 1.76 0.83 1.22 2.79 1.57 

DATASET 1.03 1.14 1.37 0.81 1.57 1.78 1.28 

MIN 

R2 

ERA5 0.96 0.95 0.96 0.95 0.97 0.90 0.95 

CMA 0.99 0.97 0.96 0.98 0.99 0.90 0.97 

DATASET 0.99 0.98 0.97 0.97 0.98 0.95 0.97 

MAE 

ERA5 1.68 1.28 1.48 1.00 1.48 2.09 1.50 

CMA 0.85 1.24 1.18 0.46 0.98 2.23 1.16 

DATASET 1.13 1.14 1.04 0.57 1.34 1.41 1.10 

RMSE 

ERA5 1.95 1.98 1.73 1.32 2.21 2.34 1.92 

CMA 1.19 1.99 1.72 0.63 1.47 2.80 1.63 

DATASET 1.31 1.60 1.49 0.74 1.61 2.05 1.47 

AVG 

R2 

CMFD 0.99 0.99 0.98 0.99 0.97 0.98 0.98 

ERA5 0.98 0.97 0.97 0.99 0.97 0.97 0.98 

CMA 1.00 0.97 0.96 0.99 0.99 0.91 0.97 

DATASET 0.99 0.99 0.98 0.99 0.98 0.98 0.99 

MAE 

CMFD 0.46 0.49 0.44 0.30 0.53 0.89 0.52 

ERA5 0.50 0.52 0.48 0.45 0.70 0.73 0.56 

CMA 0.59 1.07 1.09 0.41 0.79 1.34 0.88 

DATASET 0.51 0.56 0.53 0.27 0.65 0.67 0.53 

RMSE 

CMFD 0.60 1.19 0.75 0.41 1.26 1.17 0.90 

ERA5 0.57 1.17 0.71 0.52 1.24 1.15 0.89 

CMA 0.88 1.30 1.30 0.54 1.23 1.64 1.15 

DATASET 0.65 0.79 0.70 0.35 1.20 1.06 0.79 

5.3 Application of the product for trend analysis 

We analyze temperature changes in various regions of China through extreme climate indexes and 

change trend values to further test the validity and regional applicability of the dataset, as shown 

in Figs. 12 and 13, which show that the TXx anomalies and TNn anomalies are consistent in the 565 

regional change trend. Although the annual anomalies fluctuated during the study period, they 

gradually changed from negative to positive. This confirmed that the temperature fluctuated and 

increased, and the Tmax and Tmin gradually increased, which is consistent with the global warming 

trend. The average temperature rise of TXx anomalies in each study area was 0.42°C/a, and the 
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average temperature rise of TXx anomalies was 0.47°C/a. The histograms in Figs. 12 and 13 show 570 

that the number of warm days and cold nights fluctuates increasing and decreasing trend, 

respectively. In addition, there are similarities in the change trends between warm days and cold 

nights. For example, in 1980, under the continuous influence of strong cold air in the north, low-

temperature weather occurred continuously in most areas of China, and many areas experienced 

low-temperature disasters, which leads to a decrease in the number of warm days and an increase 575 

in the number of cold nights. In 2015, 2016, and 2017, the temperature continued to rise, with 

high temperatures that occur once in decades. This is closely related to the severe El Niño events 

that occurred in 2015 and 2016, the impact of the subtropical high in 2017, and the overall global 

warming trend. At the same time, there has been an increase in the number of warm days and a 

decrease in the number of cold nights. Meteorological events can indirectly verify the accuracy 580 

of this product, indicating that the corrected data can be used to analyze long-term temporal and 

spatial changes in temperature. 

In order to further analyze the change rate and regional differences of Tavg during the study 

period, we conducted an analysis of the temperature change rate (K), correlation coefficient (R), 

and significance test of the correlation coefficient (T-test(R)). As shown in Figure 14 (a) and (a’), 585 

Tavg in most regions of China showed a weak positive warming trend, accounting for 92.13% of 

the total, and the average temperature of Tavg in each region was rising by 0.03°C/a. Through the 

analysis of the R in Figure 14 (b) and (b’), it is observed that they show a strong correlation in the 

area of 48.77% and a correlation in the area of 84.06%, which shows that there is a high correlation 

between temperature changes and time. Figure 14 (c) and (c’) show that after performing a 590 

significance test on the R between temperature and time, 83.17% of the area passed the 95% 

significance test, and 75.23% of the area passed the 99% significance test, which shows that the 

correlation between temperature and time development is significant. 
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Figure 12. Multi-axis diagram of TXx anomaly, TX90p, and Tmax linear trend graphs. The broken black line 595 

represents TXx anomaly, the red line represents the linear regression of the TXx anomaly, and the orange 

histogram represents the TX90p change trend. 

 

Figure 13. Multi-axis diagram of TNn anomaly, TN10p, and Tmin linear trend graphs. The broken black line 

represents TNn anomaly, the red line represents the linear regression of the TNn anomaly, and the blue histogram 600 

represents the TN10p change trend. 
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Figure 14. Multi-year climate change trends in Tavg. (a) K, calculated by Eq. 7; (b) R between temperature change 

and time series development, calculated by Eq. 8; (c) T-test (R), calculated by Eq. 9. (a’), (b’) and (c’) respectively 

represent the distribution of pixel values in the corresponding (a), (b) and (c) spatial images. 605 

6. Data availability 

The daily Ta products at 0.1° resolution from 1979 to 2018 are freely available to the public in the 

tif format at https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021), which are distributed 

under a Creative Commons Attribution 4.0 License. 

7. Code availability 610 

We are finishing and improving the code. If the paper is accepted, the code will be made public 

soon. 

8. Conclusions 

Ta is an indispensable variable for global climate change research. Therefore, it is very important 

for how to obtain high-precision and high-temporal resolution air temperature data products. 615 
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Many researchers have made a lot of efforts, and have produced some datasets through different 

data sources for the global or local region. But with the need for refinement of research, we need 

to further improve the accuracy and spatio-temporal resolution. Based on the full analysis of the 

advantages and disadvantages of various datasets and data sources, this study integrates various 

data sources, such as in-situ data, remote sensing data, and reanalysis data, and proposes a 620 

reconstruction model of Ta under a clear sky and non-clear sky weather conditions, respectively. 

A multiple linear regression model was used to further improve the accuracy of the data, and we 

obtained a new set of grid high-resolution daily temperature datasets in China from 1979 to 2018. 

For Tmax, validation using in situ data shows that the RMSE ranges from 0.86 ℃ to 1.78 ℃, the 

MAE varies from 0.63 ℃ to 1.40 ℃ and the R2 ranges from 0.96 to 0.99. For Tmin, RMSE ranges 625 

from 0.78 ℃ to 2.09 ℃, the MAE varies from 0.58 ℃ to 1.61 ℃ and the R2 ranges from 0.95 to 

0.99. For Tavg, RMSE ranges from 0.35 ℃ to 1.00 ℃, the MAE varies from 0.27 ℃ to 0.68 ℃ 

and the R2 ranges from 0.99 to 1.00. Furthermore, we verified the Ta dataset with the existing 

reanalysis dataset and found that the proposed dataset has credibility and accuracy. Moreover, 

based on the particularity of geographic climate change in different regions, we used four extreme 630 

climate indicators (TXx and TNn anomalies, TX90p, and TN10p) and three climate change 

indices (K, R, and T-test) to analyze the trend changes of Tmax, Tmin, and Tavg, respectively. In 

summary, the temperature in most regions of China had been gradually increasing. The number 

of cold nights and warm days gradually decreased and increased, respectively, and the Tmax and 

Tmin gradually increased, which is consistent with the general trend of global warming. 635 

However, due to various factors, the weather may occasionally change drastically, such as hail. 

Historical data cannot provide more specific weather information, especially in areas where there 

are no meteorological stations, it is difficult to refine past data. However, in future research, we 

need to consider more meteorological satellite data, especially geostationary meteorological 

satellites, which will help improve the accuracy of surface temperature datasets. 640 
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