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Abstract: Near-surface air temperature (Ta) is an important physical parameter that reflects 

climate change. Many methods are used to obtain the daily maximum (Tmax), minimum (Tmin), 25 

and average (Tavg) temperature but are affected by multiple factors. To obtain daily Ta data (Tmax, 

Tmin, and Tavg) with high spatio-temporal resolution in China, we fully analyzed the advantages 

and disadvantages of various existing data. Different Ta reconstruction models were constructed 

for different weather conditions, and the data accuracy was improved by building correction 

equations for different regions. Finally, a dataset of daily temperature (Tmax, Tmin, and Tavg) in 30 

China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. For Tmax, validation using 

in situ data shows that the root mean square error (RMSE) ranges from 0.86 to 1.78 ℃, the mean 

absolute error (MAE) varies from 0.63 to 1.40 ℃, and the Pearson coefficient (R2) ranges from 

0.96 to 0.99. For Tmin, the RMSE ranges from 0.78 to 2.09 ℃, the MAE varies from 0.58 to 
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1.61 ℃, and the R2 ranges from 0.95 to 0.99. For Tavg, the RMSE ranges from 0.35 to 1.00 ℃, 35 

the MAE varies from 0.27 to 0.68 ℃, and the R2 ranges from 0.99 to 1.00. Furthermore, various 

evaluation indicators were used to analyze the temporal and spatial variation trends of Ta, and the 

Tavg increase was more than 0.03 °C/a, which is consistent with the general global warming trend. 

In summary, this dataset has high spatial resolution and high accuracy, which compensates for the 

temperature values (Tmax, Tmin, and Tavg) previously missing at high spatial resolution and provides 40 

key parameters for the study of climate change, especially high-temperature drought and low-

temperature chilling damage. The dataset is publicly available at 

https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021a). 

1. Introduction 
Near-surface air temperature (Ta) is an important variable that reflects global climate change and 45 

significantly affects the cyclical conversion of energy and matter in all spheres of the earth (Gao 

et al., 2012, 2014). Obtaining accurate grid Ta is helpful for research on urban heat island effects, 

ecological environment changes, vegetation phenology development, crop yield fluctuation, and 

energy dynamic balance (Lin et al., 2012; Bolstad et al., 1998). In this study, Ta refers to the daily 

maximum (Tmax), minimum (Tmin), and average temperatures (Tavg) of daily near-surface air 50 

temperature, which are important input parameters for hydrological, environmental, and crop 

models (Han et al., 2020; He et al., 2020; Mostovoy et al., 2006; Schaer et al., 2004). These 

parameterscan accurately reflect the frequency and extent of the occurrence and development of 

extreme climate events (Zhang et al., 2017; Miao et al., 2016). With the intensification of global 

warming, the temperature gradually rises, the number of extremely cold days and cold nights 55 

gradually decreases, and the frequency of extreme weather events also increases (Ding et al., 2006; 

Liao et al., 2020; Ryoo et al., 2010). . China is a country where extreme weather events frequently 

occur, causing substantial economic losses (Kharin et al., 2007; Kong et al., 2020). Therefore, 

obtaining spatio-temporal changes in Ta is necessary to study extreme weather events and 

meteorological disasters leading to decreased agricultural yield. 60 

Ta is affected by many factors of the earth’s system, resulting in frequent, complicated diurnal 

temperature fluctuations (Schwingshackl et al., 2018; Chen et al., 2014). At present, Ta is obtained 

mainly through three methods: Ta observed via meteorological stations, Ta estimated from land 
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surface temperature (Ts)retrieved from remote sensing, and Ta obtained from the assimilation 

model.  Temperatures with high temporal resolution can be obtained via measurements from 65 

meteorological stations. This detection method can avoid the influence of clouds and rain, 

preserving relatively good data integrity, continuity, and accuracy. However, the number of 

meteorological stations is limited and unevenly distributed, especially for mountainous regions 

(Mao et al., 2008; Gao et al., 2018; Zhao et al., 2020). Most meteorological stations are in sparsely 

populated areas far from cities and cannot accurately monitor changes in urban temperature 70 

caused by the urban heat island effect (He and Wang, 2020). Moreover, due to the aging of 

meteorological station equipment, the observation data may be incomplete. Although many 

interpolation methods, such as Kriging, cubic spline, and inverse distance weight interpolations 

are available, the difference in density among stations affects the interpolation accuracy (Tang et 

al., 2020; Tomasz et al., 2016; Tencer et al., 2011). 75 

Satellite sensors provide global coverage and high spatial resolution data used to estimate Ta. 

The most commonly used estimation methods are the statistical regression method (Wen et al., 

2020; Zhu et al., 2013; Zhang et al., 2015), the temperature vegetation index method (Xing et al., 

2020), the energy balance method (Benali et al., 2012), the atmospheric temperature profile 

extrapolation method (Wen et al., 2020), and the machine learning method (Mao et al., 2008; Wen 80 

et al., 2020). Sensors are susceptible to weather phenomena, such as clouds and rain, leading to 

missing data or reduced quality. In addition, these methods are mostly suitable for clear sky 

conditions, which need to be further expanded to establish an estimation model of Ts to Ta under 

different weather conditions. 

Reanalysis data generated by the global assimilation model has provided many datasets of 85 

geophysical parameters, including near-surface temperature, which overcome most of the 

aforementioned problems caused by abnormal weather. The NCEP/NCAR reanalysis dataset was 

developed by the National Center for Environmental Prediction and the National Center for 

Atmospheric Research (1948.1–2021.9), with a temporal resolution of 6 h and a spatial resolution 

of 2.5° (Kalney et al., 1996). The ERA5 dataset was released by the European Center for Medium-90 

Range Weather Forecast (ECMWF; 1950.1–2021.9), with a temporal resolution of 1 h, and a 

spatial resolution of 0.3° (Hersbach et al., 2020; Dee et al., 2011; Taszarek et al., 2021; Lei et al., 
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2020). The land surface modeling forcing dataset was developed by Princeton University 

(1948.1–2006.12), with a temporal resolution of 3 h and a spatial resolution of 1.0° (Deng et al., 

2010). To improve the accuracy of regional data, some researchers have developed meteorological 95 

forcing datasets for China. The representative dataset is the China Meteorological Forcing Dataset 

(CMFD) released by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences 

(1979.1–2018.12), with a temporal resolution of 3 h and a spatial resolution of 0.1° (He et al., 

2010; Yang et al., 2010; Yang and He, 2019). However, the dataset does not provide daily 

maximum and minimum temperatures. The grid dataset of daily surface temperature in China 100 

(V2.0) was released by the China Meteorological Administration (CMA; 1961.1–2021.9), with a 

spatial resolution of 0.5°. This dataset comprises the daily maximum, minimum, and average 

temperatures; its spatial resolution is low; and the accuracy of local areas needs improvement. 

Although reanalysis datasets can obtain global near-surface air temperature data, the number of 

Tmax, Tmin, and Tavg datasets with high spatial resolution and high precision is insufficient. 105 

  In this study, we aimed to obtain a long-term Ta (Tmax, Tmin, and Tavg) dataset with high spatial 

resolution in China. We first analyzed the advantages and disadvantages of various data (e.g., 

reanalysis, remote sensing, in situ data). Next, we constructed daily Ta models for clear and non-

clear sky conditions. This method compensates for the deficiency that studies have estimated Ta 

mostly under clear sky conditions rather than under all-sky conditions. We further improve data 110 

accuracy by building correction equations for different regions. Finally, a dataset of daily Ta (Tmax, 

Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°, and we 

cross-validated this dataset with existing datasets. 

2. Study area 
China’s vast territory has significant undulations on the earth’s surface, and a wide range of 115 

climate changes. To explore the temporal and spatial characteristics of Ta, we divided China into 

six subregions (Figure 1) according to climatic conditions, such as temperature and rainfall, and 

topographical conditions, such as elevation. (I) The Northeastern Region mainly includes 

northeast China, located to the east of the Greater Khingan Range. This region is located in the 

temperate monsoon climate zone, the annual precipitation is 400–1000 mm, and cumulative 120 

temperature is between 2500 and 4000 °C (Mao et al., 2000). (Ⅱ) The North China region is 
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located north of the Qinling-Huaihe River and south of the Inner Mongolia Plateau. This region 

is mostly located in the temperate monsoon climate zone, and the annual accumulated temperature 

is between 3000 and 4500 °C (Xu et al., 2017), with hot, rainy summers and cold, dry winters. 

(Ⅲ) The Central Southern region is located south of the Qinling-Huaihe River and north of the 125 

tropical monsoon climate type. This region is located in the subtropical monsoon climate zone, 

the annual accumulated temperature is between 4500 and 8000 °C, and the precipitation is mostly 

between 800 and 1600 mm. (Ⅳ) The Southern region is south of the Tropic of Cancer. This region 

is located in the tropical monsoon climate zone, the annual accumulated temperature is greater 

than 8000 °C, the annual minimum temperature is not less than 0 °C, and there is no frost year-130 

round. Annual precipitation mostly ranges from 1500 to 2000 mm. (V) The Northwest region is 

mainly distributed in the inland areas above 40 °N latitude in China, located northwest of the 

Greater Khingan Range-Yin Shan-Ho–lan Mountains-Qilian Mountains line. This region is far 

from the coast, water vapor transport is limited, annual precipitation is between 300 and 500 mm, 

and the annual accumulated temperature is between 2000 and 3500 °C. The daily and annual 135 

temperature differences are large, including those in the temperate desert, temperate grassy, and 

sub-frigid coniferous climates. (Ⅵ) The Qinghai-Tibet Plateau region includes the Qinghai-Tibet 

Plateau, the Andes Mountains, Mount Everest, and other areas. This region is located in the 

plateau and mountainous climate zone, the annual accumulated temperature is lower than 2000 ℃, 

the daily temperature range is large, and the annual temperature range is small. This region has 140 

strong solar radiation, sufficient sunshine, and little precipitation. 
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Figure 1. Scope map of the total study area and the six subregions. Blackdots indicate distribution locations of 

meteorological stations; blue frame lines indicate the sub-study area range, represented by Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, and Ⅵ. 

3. Data 145 

3.1 Reanalysis data 

The reanalysis dataset contains drivers of surface elements in a large area, which can provide 

highly complementary information and avoid data gaps and low-quality pixels caused by 

abnormal weather conditions. This study primarily used the CMFD and ERA5 data as reanalysis 

data sources. 150 

The CMFD are a set of meteorological forcing datasets developed by the Institute of Tibetan 

Plateau Research, Chinese Academy of Sciences (He et al., 2020; Yang et al., 2010; Yang and He, 

2019). They are mainly based on the Global Land Data Assimilation System (GLDAS) as a 

background dataset, using empirical knowledge algorithms and combining GLDAS with 

measured data to obtain temperature data with a spatial resolution of 0.1°. The CMFD contains 155 

seven variables: 2 m air temperature, surface pressure, specific humidity, 10 m wind speed, 

downward shortwave radiation, downward longwave radiation, and precipitation rate. The CMFD 

covers from January 1979 to December 2018 and provides four types of temporal resolution (3 h, 

daily, monthly, and yearly). The CMFD are comprehensive and have the longest time series and 

the highest spatial resolution in China. Studies have used the temperature data as input parameters 160 

to construct a surface air temperature model, which shows that the correlation coefficient between 

the CMFD temperature and the measured data is greater than 0.99 and has high consistency, and 

that grid data can reflect the temporal and spatial changes in regional air temperature (Zhang et 

al., 2019; Wang et al., 2017). The CMFD as an input element to build a surface temperature model 

can also significantly reduce model deviation and improve model accuracy (Chen et al., 2011). 165 

Therefore, we used the 3 h temperature of the CMFD to build the Ta Model and verified the new 

product with the daily temperature from the CMFD. The CMFD is available from the China 

National Qinghai-Tibet Plateau Science Data Center (http://data.tpdc.ac.cn/zh-

hans/data/8028b944-daaa-4511-8769-965612652c49/, last access: 1 November 2020). 

ERA5 is the fifth-generation product of the atmospheric reanalysis global climate data launched 170 

by the ECMWF, replacing the ERA-Interim reanalysis data, which was discontinued on August 
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31, 2019. ERA5 data are generated based on the Cy41r2 model of the integrated forecasting 

system which has benefited from the development of data assimilation, model simulation, and 

model physics and is generated by assimilating many ground monitoring, aircraft weather 

observation, and radio detection data. ERA5 data are significantly better than ERA-Interim data, 175 

for example, the former has a higher spatio-temporal resolution, more vertical mode levels, and 

more parameter products than the latter. ERA5 provides timely, updated quality checks on the 

data, which is convenient for providing stable, real-time, and long-term climate information. 

ERA5 provides many meteorological elements, including 2 m air temperature, 2 m relative 

humidity, sea level pressure, sea surface temperature, and precipitation. Since the release of the 180 

ERA5 reanalysis data, many researchers have tested their applicability and accuracy. The results 

show that the accuracy of the ERA5 is better than that of the ERA-Interim data, and the higher 

spatio-temporal resolutions are conducive to the precise description of regional atmospheres. The 

details of these improvements are convenient for studying changes in small-scale atmospheric 

environments (Meng et al., 2018; Mo et al., 2021; Hillebrand et al., 2021). These data can be 185 

obtained from https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=ERA5 (last 

access: 1 December 2020). 

3.2 In situ data 

The in situ data from 1979 to 2018 used in this study were employed to build a Ta model and 

evaluate existing datasets and new products. The measured data of meteorological stations were 190 

from the China National Meteorological Information Center (http://www.nmic.cn/site/index.html, 

last access: 1 November 2020), including hourly air temperature, hourly land surface temperature, 

maximum daily temperature (Tmax), minimum daily temperature (Tmin), daily average temperature 

(Tavg), and weather condition records. Due to the inconsistency of recorded data of meteorological 

conditions at many stations, some data are missing, and there are no meteorological stations in 195 

most areas; thus, the data are used as auxiliary data. 

The ground observations we obtained from the China Meteorological Administration 

underwent uniform data processing and homogeneity testing. To further ensure the quality of the 

data, we checked the in situ data. First, we set a fixed threshold to eliminate the overflow value. 

Second, we tested the time series of station data and eliminated abnormal and missing data due to 200 

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&text=ERA
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instrument damage or bad weather (Zhao et al., 2020). Finally, we checked the spatio-temporal 

consistency of the in situ data, deleted the meteorological stations with location migration during 

the study period, and maintained the temperature data of meteorological stations with a long 

monitoring time and stable temperature values. 

3.3 Supplementary data 205 

China’s daily near-surface temperature grid dataset was released by the CMA, with a spatial 

resolution of 0.5°. This grid dataset contains the daily maximum, minimum, and average 

temperatures in China (http://www.nmic.cn/site/index.html, last access: 11 April 2021). The CMA 

dataset was obtained by combining the daily temperature data monitored by meteorological 

stations and the digital elevation model (DEM) data generated by re-sampling with three-210 

dimensional geospatial information via a thin-plate spline interpolation algorithm. The spatial 

resolution of the CMA data was 0.5°, which we used for cross-validation. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an important sensor in the 

Earth Observation System program and is mounted on the Terra and Aqua satellites. Terra is a 

morning orbiting satellite that passes through the equator at approximately 10:30 local time from 215 

north to south. Aqua is an afternoon orbiting satellite that passes through the equator at 

approximately 1:30 local time from south to north. The Terra satellite has been in service since 

1999, and the Aqua satellite since 2002. Since 2002, the surface temperature data can be obtained 

four times per day from MODIS data through inversion calculation. In this study, we used the 

MOD11A1 and MYD11A1 products: they provide daily surface temperature data on a global 220 

scale with a spatial resolution of 1 km. MODIS LST has a quality control (QC) field that indicates 

data quality and is encoded in a binary form.  MODIS data can be downloaded from the LAADS 

DAAC website (https://ladsweb.modaps.eosdis.nasa.gov/search/order, last access: 1 December 

2020). 

In addition to the aforementioned data, DEM data were used. The Shuttle Radar Topography 225 

Mission (SRTM) DEM used in this study was a radar topographic mapping project jointly 

implemented by NASA and the National Imagery and Mapping Agency, which was implemented 

by the Space Shuttle Endeavour. Temperature data were regulated via the topographical correction 

of the SRTM DEM with 90 m resolution to eliminate the influence of topographical fluctuations 
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on air temperature. SRTM DEM data can be obtained from the Geospatial Data Cloud 230 

(http://www.gscloud.cn/search, last access: 10 February 2021). 

4. Methodology 
The Tmax, Tmin, and Tavg data were provided by meteorological stations. Other non-station 

locations or grid values were estimated by interpolation or indirect methods such as remote 

sensing. Because of the limited number of meteorological stations and their uneven distribution, 235 

it is difficult to guarantee the accuracy of Tmax, Tmin, and Tavg obtained through interpolation in 

some areas. Under rainfall and cloud cover weather conditions, estimating the air temperature 

from remotely sensed surface temperature data is impossible. Even in clear sky conditions, the 

formula for estimating near-surface air temperature is not universally applicable, which hinders 

the development of a high-precision Ta dataset to a certain extent. Therefore, to obtain a Ta dataset 240 

with a high spatio-temporal resolution and long time series, it is necessary to build a reliable and  

robust Ta model to estimate Tmax and Tmin, and further improve the accuracy of Tavg. Consequently, 

the product could be widely used for climate change and research on extreme weather events.  

Daily temperature changes are affected by many factors and are extremely sensitive to fluctuations 

under different weather conditions. This study used multiple methods to calculate Ta. First, the 245 

daily weather conditions were divided into clear sky and non-clear sky conditions. Second, based 

on the physical process of daily temperature changes and combined with existing reanalysis data, 

in situ data, and remote sensing data, we estimated Tmax and Tmin under different weather 

conditions. To further improve the accuracy of the dataset, we constructed a modified model for 

each region. Details are provided in the following sections. The overall process of this study is 250 

illustrated in Figure 2. The construction of the dataset was mainly divided into three steps: (1) the 

process of daily weather condition determination, (2) the process of establishing Ta models under 

different weather conditions, and (3) data correction. 
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 255 
Figure 2. Summary flowchart of Ta dataset establishment. 

4.1 Strategies for division of weather conditions and Ta estimation 

4.1.1 Scheme for dividing weather conditions 

Different weather conditions have different rules of temperature changes. To improve the 

estimation accuracy of the maximum and minimum temperature, we conducted specific 260 

calculations by distinguishing daily weather conditions.  The quality of observation data is 

affected by weather, and some remote sensing products such as MODIS LST products have 

quality control fields. Therefore, the quality control field of MODIS can be used to distinguish 

between clear sky and non-clear sky conditions. However, we could only obtain MODIS 

observation data four times per day since 2002, which cannot cover the time range involved in 265 

this study. Therefore, we divided the time series of this study into two periods: 1979–2001 and 

2002–2018, and different methods are used for the two-time series to distinguish the daily weather 

condition. For the study period from 2002 to 2018, we distinguished each pixel mainly based on 

the MODIS quality control field. When the MODIS quality control of all four Ts corresponding 

to a pixel is in the clear sky condition, the pixel was judged to be in the clear sky condition; 270 

otherwise, it was judged to be in the non-clear sky condition. 
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For the study period from 1979 to 2002, we used the in situ, CMFD, and ERA5 data to 

determine the daily weather condition. First, we filtered each pixel and divided it into two types: 

meteorological stations corresponding to pixels with and without weather condition records. For 

pixels with weather condition records, we used many statistical discrimination methods to analyze 275 

the impact of non-clear sky weather phenomena on temperature fluctuations, which can facilitate 

the subsequent determination of pixels without weather condition records. Statistical analysis 

shows a significant difference in daily temperature fluctuations between clear sky and non-clear 

sky conditions, and non-clear sky weather conditions may cause abnormal temperature 

fluctuations. Therefore, we converted the judgment of the weather state into the abnormal 280 

judgment of the time and frequency of the occurrence of Tmax and Tmin (occurrence time of Tmax 

and Tmin is hereinafter cited as Hmax and Hmin, respectively). Specifically, when Hmax and Hmin 

occur abnormally or the temperature change is wavy, a non-clear sky condition is used (Zhao and 

Duan, 2014; Ren et al., 2011). In other cases, they are regarded as clear sky conditions, and the 

position of each pixel is marked. Therefore, we had to further fill the daily time series of each 285 

pixel to determine the weather condition. In this study, we used two strategies to perfect the 

temperature series for distinguishing weather conditions. The specific implementation steps for 

determining weather conditions are shown in Figure 3. 

 

Figure 3. Summary flowchart for classification of weather conditions. 290 

In the first strategy, when the pixel location had a corresponding meteorological station or when 
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the Euclidean distance between adjacent stations was less than 0.3°, we filled in the gaps to 

improve the integrity and continuity of the time series. The time series filling process was as 

follows: (1) when the temperature data at the observation sites was missing and not consecutively 

missing, in the case of the same spatial range, we used the average temperature of two adjacent 295 

time points before and after the missing value at the same site to fill in the missing value, and (2) 

when the observation data of a station was continuously missing, in the same time range, we filled 

it with the observation data of the stations within 0.3°. This method was mainly based on the 

principle that the closer the distance between stations, the stronger the spatial consistency and 

correlation of temperature changes. (3) When the station data were continuously missing and the 300 

adjacent station data could not be filled, other relevant data were used for repair within the same 

time and space. In this study, we estimated the weather state from the Ts monitored by the same 

station. This method theoretically originates from the approximate consistency between the daily 

variation ranges of Ts and Ta and is suitable for situations where there are many missing values 

and incomplete time series at meteorological stations and adjacent meteorological stations. Many 305 

studies have analyzed the correlation between the daily trend of Ta and Ts and found strong 

consistency. The Ts retrieved by remote sensing satellites is also widely used to estimate Ta, which 

proves the reliability of determining the pixel weather state through the Ts time series (He et al., 

2020; Yoo et al., 2018; Johnson and Fitzpatrick, 1977; Caesar et al., 2006; Mostovoy et al., 2006). 

(4) When there is no meteorological station at the pixel location and the distance from the 310 

meteorological station is less than 0.3°, we use the inverse distance weighting method to perform 

spatial interpolation on adjacent pixels. Notably, before interpolation, we need to consider the 

impact of elevation differences. To improve the interpolation accuracy, we first correct the data 

of the observation station to a uniform sea level, and then perform further calculations according 

to the elevation of the interpolation point to obtain the corresponding temperature. 315 

The second strategy was to target areas where the distribution of stations was sparse, and the 

Euclidean distance between two adjacent stations was greater than 0.3°. To compensate for the 

insufficient coverage and uneven distribution of stations in these areas, we uesd hourly data from 

ERA5 to determine the approximate time of occurrence of Tmax and Tmin. Because of a certain 

difference between the spatial resolution of ERA5 and this dataset, it was difficult to fulfill our 320 



13 

 

demand for higher spatial resolution. Consequently, we developed an effective downscaling 

process based on the spatial correlation between the ERA5 data and CMFD temperature data. 

ERA5 data (with a spatial resolution of 0.3°) were spatially downscaled with the aid of the CMFD 

data (with a spatial resolution of 0.1°). The downscaling process is illustrated in Figure 4. First, 

quality control of the ERA5 data and CMFD was performed to eliminate temperature outliers. 325 

Second, the ERA5 data and CMFD were matched according to time series and central latitude 

and longitude to construct pixel pairs. Subsequently, we weighted the high-resolution data to the 

low-resolution ERA5 data pixel by pixel. Finally, the weight was used to downscale the ERA5 

data to the same spatial resolution of the CMFD. The ERA5 downscaling was computed using 

Eqs.1 and 2. 330 

TE�xo,yo�=
TC�xo,yo�

∑ ∑ TC �xi,yj�
n
j=1

m
i=1

*TE�xm,yn�  (1) 

TE�xo,yo�=
TM�xo,yo�

∑ ∑ TM �xi,yj�
n
j=1

m
i=1

*TE�xm,yn�  (2) 

where TE, TC, and TM  represent the ERA5 data, CMFD, and MODIS data, 

respectively.TE�xo,yo� is the temperature data after downscaling; TE�xm,yn� is the temperature 

data before downscaling; and i, j are pixel coordinates. m, n are the pixel coordinates before 

downscaling. 

 335 

 
Figure 4. Flowchart for spatial downscaling, where nv represents the number of valid values. 
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4.1.2 Tmax and Tmin estimation under clear sky conditions 

In addition to the severe temperature fluctuations caused by abnormal weather phenomena, the 

daily temperature changes under clear sky conditions have a certain regularity, periodicity, and 340 

asymmetry (Leuning et al., 1995; Johnson and Fitzpatrick, 1977). According to the similarity 

between the surface temperature and the diurnal variation trend of air temperature, a method of 

estimating Ta is established by the daily air temperature variation model. Verified by in situ data, 

this method is feasible (Du et al., 2020; Zhu et al., 2013; Perkins et al., 2007; Cesaraccio et al., 

2001; Serrano-Notivoli et al., 2019). However, using the surface temperature retrieved by remote 345 

sensing methods to estimate the changing trend of air temperature is complicated, additional 

parameters need to be input, and the relationship between Ts and Ta is not fixed. Therefore, it is 

difficult to unify the types and quantities of parameters and ensure accuracy. Thus, we established 

a piecewise local sine function of temperature under clear sky conditions for each pixel, which 

can simulate the change in Ta and calculate Tmax and Tmin (Mao et al., 2016; Jiang et al., 2010). 350 

First, according to the approximate periodicity of daily temperature changes and the asymmetry 

of Hmax and Hmin, we derived the Ta piecewise sine function of the adjacent regions of Hmax and 

Hmin, respectively (Eqs. 3 and 4). Second, using a method similar to that in Sect 4.1.1, we obtained 

Hmax and Hmin for each pixel. These Hmax and Hmin values are entered as parameters into the 

piecewise sine function. The CMFD (3 h data) are used as Ta data, each pixel Hmax and Hmin are 355 

used as time, and the values of At and Bt are obtained by the least squares method. Finally, Hmax 

and Hmin values were substituted into the derivation formula to obtain Tmax and Tmin as preliminary 

results for subsequent correction and analysis. We constructed a temperature model pixel by pixel 

to fulfill the temporal and spatial heterogeneity of each region. 

Tmax = At * sin[ 
 (Ho–Hmax)π
Hmax– Hmin

 – 
π
2

] + Bt (3) 

Tmin = At * sin[
 (Ho – Hmax)π

24 – Hmax+ Hmin
– 

π
2

] + Bt (4) 

where Hmax is the occurrence time of the daily maximum temperature. Hmin is the occurrence time 360 

of the daily minimum temperature. Ho is the input time, and At and Bt are unknown parameters. 

4.1.3 Tmax and Tmin estimation under non-clear sky conditions 

The daily temperature fluctuations in non-clear sky conditions are relatively large, and there may 
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be large-scale cooling or sudden temperature changes within a short period. Based on the spatial 

location information of each pixel, the most reliable and representative data source is the in situ 365 

data. Therefore, if there are in situ data for the pixel location, the temperature data at the same 

time will be directly obtained from the station to replace the pixel values Tmax and Tmin. For the 

pixels corresponding to non-meteorological stations, similar to the method of spatial downscaling 

for the pixel positions of non-meteorological stations in the weather condition judgment, we used 

ERA5 data to perform spatial downscaling with the assistance of the CMFD. By adding high 370 

spatial resolution MODIS data, the downscaling method was further expanded to improve the 

accuracy of each pixel. We mainly wanted to fully use the advantages of various data, especially 

with the help of high-resolution MODIS data. According to the QC field of MODIS data, we used 

MODIS data with high spatio-temporal resolution to improve local accuracy while ensuring high-

quality MODIS data. The corresponding time of the effective pixel was matched with the ERA5 375 

data according to the nearby time, to obtain the data weight for spatial downscaling. The 

downscaling process and the validity determination of MODIS data are shown in Figure 4, and 

the downscaling formulas are shown in Eqs. 1 and 2. 

4.1.4 Tavg estimation 

Usually, the aim of calculating average temperature is to use the temperature value observed every 380 

day to obtain an arithmetic average. If each pixel has hourly temperature data, the calculated daily 

average temperature is the most representative. Because the observational conditions have been 

limited, hourly temperature data is difficult to obtain; thus, often, the temperature values of four 

observation times (e.g., 02:00, 08:00, 14:00, and 20:00) are used to obtain the daily average 

temperature, or the daily maximum and minimum temperatures are directly averaged to obtain 385 

the daily average temperature. To improve the accuracy of the average temperature as much as 

possible, we used the 3 h temperature data provided by the CMFD and the maximum and 

minimum values we have calculated to conduct an arithmetic average to obtain the daily average 

temperature. Finally, to improve the accuracy, we performed multiple linear regression correction 

on the Tavg output value according to the in situ data (the linear correction method was the same 390 

as that described in Sect. 4.2) and obtained the daily Tavg dataset. 
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4.2 Ta data calibration scheme 

Surface temperature is sensitive to changes in altitude and easily affected by the surrounding 

environment. For non-meteorological station pixels, we use interpolation to fill in the pixel values 

based on the principle of regional consistency. To improve the accuracy of the pixel temperature 395 

at non-meteorological stations, we fully considered the influence of altitude on temperature. First, 

the in situ Ta was unified to sea level according to the vertical rate of temperature drop. Next, the 

non-station pixels were interpolated according to the station data, and finally, the interpolated 

pixel values were restored to the corresponding elevation. This method can reduce the influence 

of altitude on temperature to a certain extent and improve the accuracy of the dataset. In this study, 400 

we used a uniform vertical temperature drop rate (γ), that is, for every 100 m increase in altitude, 

the atmospheric temperature decreases vertically by 0.65 °C, and vice versa. The height correction 

formula is provided by Eq. 5 (He and Wang, 2020; Schicker et al., 2015; Wang et al., 2013). 

TSL =  Ta - γ * � HSL - Ha� (5) 

where TSL is the sea level temperature, Ta is the temperature of the meteorological station, and 

HSL is the sea level height, where the value of γ is approximately 0.0065 °C/m. 405 

We used the jackknife method: 699 in situ stations across China were divided into 140 

verification points and 559 calibration points according to the ratio of 20% and 80% to establish 

a multiple linear regression equation (Benali et al., 2012; Xu et al., 2017). The preliminary 

accuracy results (Sect. 5.1) show that although the overall accuracy was high, there remains the 

problem of abnormal temperature values of the model output data caused by the violent 410 

fluctuations in daily temperature changes. Further correction is required to reduce the deviation 

and improve the accuracy of the dataset. The data correction process is illustrated in Figure 5. For 

the abnormal temperature value, we replaced the Ta at the pixel location with the observation Ta 

from the meteorological station and performed the adjacent pixel temperature correction for the 

pixel without the meteorological station at the pixel location. The multiple linear regression 415 

method was used to process the original temperature, and the stepwise regression relationship 

between the measured value of the station and the fitted value of the corresponding pixel was 

established. Next, we calculated the predicted value of the regression temperature according to 

the regression equation and obtained the temperature residual value by calculating the observed 
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value and the predicted value to obtain the final corrected temperature.  (Cristobal et al., 2006). 420 

The modified expression is shown in Eq. 6. 

V(x, y) = m�(x, y) + ε�(x, y)  (6) 

where x and y are the numbers of rows and columns of pixels, respectively, V(x, y)  is the 

correction value of the regression equation; m�(x, y)  is the regression prediction value of air 

temperature; and ε�(x, y) is the residual value. 

 425 

 

Figure 5. Flowchart for calibration of Ta model data. 

4.3 Evaluation metrics 

We mainly selected areas with a single surface type and flat terrain under clear skies as the 

comparative study area to verify the original dataset and reconstructed dataset. A scatter diagram 430 

can represent the overall distribution and aggregation of the data and intuitively convey accurate 

information from the data; thus, we used a scatter chart to display the accuracy range of this 

product.  In addition, before establishing the model, we retained a part of the reanalyzed data 

excluded from the calculation and used it for cross-validation. We used three indicators as metrics 

to measure the accuracy of variables: R2, MAE, and RMSE. 435 

We compared Tmax and Tmin with the ERA5 data and CMA data. Notably, the ERA5 reanalysis 

dataset is an hourly temperature grid dataset; thus, we obtained the highest and lowest temperature 
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values of ERA5 by constructing a local sine function similar to that in the prior section and further 

calculated the average daily temperature. The accuracy of Tavg products in this study was verified 

with the ERA5 data, CMA data, and CMFD daily temperature data. Because the spatial resolution 440 

of CMA is 0.5°, to facilitate comparison, we resampled the spatial resolution of all datasets to 

0.5°. 

4.4 Analysis of the Ta series trend 

We not only compared the output Ta data with the in situ data, but also assessed the climate change 

trends of Tmax, Tmin, and Tavg in various regions of China, and further tested the effectiveness and 445 

regional applicability of the dataset through various climate variables. The World Meteorological 

Organization defined a series of extreme climate indexes, including 27 core indexes. We used four 

of them (TXx, TNn, TX90p, and TN10p) to analyze the trend of extreme temperature changes in 

Tmax and Tmin (Karl et al., 1999; Peterson et al., 2001).  Specifically, the TXx (TNn) anomaly 

refers to the difference between the sum of monthly Tmax (Tmin) and the multi-year average of 450 

monthly Tmax (Tmin) in each year. The multi-year period of this study is 40 years. In addition, linear 

regression was performed on the TXx (TNn) anomaly to analyze the interannual variation trend. 

The TX90p (TN10p) means that the daily Tmax (Tmin) of each month during the study period is 

arranged in ascending order, and the 90% (10%) corresponding value in the time series is used as 

the threshold for judging warm days (cold nights) (Zhang et al., 2005).  455 

To study the spatio-temporal variation trend of Tavg, we used linear regression analysis (K), 

correlation coefficient analysis (R), and the T-test (Du et al., 2020; Yan et al., 2020; Cao et al., 

2021). The interannual change rate and correlation of Tavg were calculated by K and R, and the 

formula is provided by Eqs. 7 and 8, respectively. We performed a two-tailed significance test on 

the T-test to measure the significance of the temperature and time series changes (Eq. 9). 460 

K =  
n∑ (iTi)  −  ∑ i∑ Tin

i=1
n
i=1

n
i=1
n∑ i2 n

i=1 −  (∑ in
i=1 )2   (7) 

R = 
n∑ (iTi) – ∑ in

i=1 ∑ Ti
n
i=1

n
i=1

�n∑ i2 – (∑ in
i=1 )2n

i=1 *�n∑ Ti
2 – (∑ Ti

n
i=1 )2n

i=1

  (8) 

T_test(R)= 
R√n–2

�1–R2
  (9) 

where n represents the total number of years of the time series length, i represents the year, and 
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Ti represents Tavg in the i-th year. K > 0 indicates that the temperature increases within the time 

series, and K < 0 indicates that the temperature decreases within the time series. 

5. Results 

5.1 Evaluation of the original product 465 

According to the six subregions divided in Figure 1, comparative analyses of this product (Tmax, 

Tmin and Tavg) based on in situ data were made respectively conducted. Figure 6 shows the 

accuracy scatter plot between the original data of Tmax and the in situ data. The R2 fluctuated from 

0.91 to 0.99, the MAE ranged from 1.69 to 2.71 °C, and the RMSE ranged from 2.15 to 3.20 °C. 

Figure 7 shows the accuracy scatter plot of Tmin. The R2 fluctuated from 0.93 to 0.97, the MAE 470 

ranged from 1.34 to 2.17 °C, and the RMSE fluctuated from 1.68 to 2.79 °C. Figure 8 shows the 

accuracy scatter plot of Tavg. The R2 fluctuated between 0.97 and 0.99, the MAE ranged from 0.58 

to 0.96 °C, and the RMSE fluctuated from 0.86 to 1.60 °C. As shown in Figures 6, 7, and 8, the 

R2 of Tmax, Tmin, and Tavg and the temperature measured at the meteorological station were all 

greater than 0.90. In general, our method performed well in estimating the daily temperature 475 

values. However, due to the impact of complex changes in weather, the distribution of temperature 

values on certain days is discrete, especially in study areas V and VI. Further corrections are 

necessary to reduce errors and improve the accuracy of the dataset. 

 

Figure 6. Scatter diagrams of the Tmax output from the Ta model against ground station data; statistical accuracy 480 
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measures (R2, MAE, and RMSE) are also indicated. 

 
Figure 7. Scatter diagrams of the Tmin output from the Ta model against ground station data; statistical accuracy 

measures (R2, MAE, and RMSE) are also indicated. 

 485 

Figure 8. Scatter diagrams of the Tavg output from the Ta model against ground station data; statistical accuracy 

measures (R2, MAE, and RMSE) are also indicated. 

5.2 Evaluation of the new product 

The temperature was further corrected using the linear correction method. The data verification 

results of Ta after correction are shown in Figures 9, 10, and 11. The results show that the corrected 490 

data had a higher consistency with the in situ data. The fitted and observed temperatures were 
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linearly distributed and gradually approached the regression line, and the outliers were significant 

reduced. Figure 9 shows the corrected scatter plot of Tmax for each study area. The R2 fluctuated 

from 0.96 to 0.99, the MAE ranged from 0.63 to 1.40 °C, and the RMSE fluctuated from 0.86 to 

1.78 °C. Figure 10 shows the corrected scatter plot of Tmin for each study area. The R2 fluctuated 495 

between 0.95 and 0.99, the MAE ranged from 0.58 to 1.61 °C, and the RMSE fluctuated from 

0.78 to 2.09 °C. Figure 11 depicts the corrected scatter plot of Tavg in each study area, where R2 

fluctuated between 0.99 and 1.00, the MAE ranged from 0.27 to 0.68 °C, and the RMSE fluctuated 

from 0.35 to 1.00 °C. The results show that the distribution of numerical points in each area after 

the correction was denser mostly concentrated near the 1:1 line, and the degree of clustering with 500 

the measured data was higher than before calibration. Our detailed analysis of the daily 

temperature in the six study areas demonstrated that the accuracy measurement values differed 

significantly between the east and west. For example, the accuracy error of study area IV is small, 

and the accuracy error of study area VI and V is large, which may be affected by the regional 

topography and the distribution of meteorological stations. Studyarea IV is in the tropical 505 

monsoon climate zone, affected by latitude and topography, and the temperature is relatively high 

throughout the year. Moreover, the area is in eastern China and has densely distributed 

meteorological stations and relatively flat terrain. Linear correction can significantly improve the 

agreement between the estimated value and the observed value. Study areas VI and V have the 

highest RMSE. They are in the Qinghai-Tibet Plateau in southwest China and Xinjiang in the 510 

northwest. Such areas have similar characteristics, such as high altitude, large spatial 

heterogeneity, and few meteorological stations. This result shows that the temperature has strong 

spatial heterogeneity. In general, the corrected dataset has higher accuracy than the original dataset, 

satisfies the spatial heterogeneity of different regions, and better estimates the temperature under 

different weather conditions. 515 
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Figure 9. Scatter diagrams of the original Tmax and reconstructed results versus their corresponding ground station 

data in six natural subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original 

Tmax data; orange points represent the values in the after-calibrated Tmax dataset; the statistical accuracy measures 

(R2, MAE, and RMSE) are also indicated. 520 

 
Figure 10. Scatter diagrams of the original Tmin and reconstructed results versus their corresponding ground station 

data in six natural subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original 

Tmin data; blue points represent the values in the after-calibrated Tmin dataset; the statistical accuracy measures (R2, 

MAE, and RMSE) are also indicated. 525 
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Figure 11. Scatter diagrams of the original Tavg and reconstructed results versus their corresponding ground station 

data in six natural subregions (I, II, III, IV, V, and VI). Gray points indicate low-quality pixel values in the original 

Tavg data; green points represent the values in the after-calibrated Tavg dataset; the statistical accuracy measures 

(R2, MAE, and RMSE) are also indicated. 530 

To further verify the robustness and accuracy of this product, Table 1 shows the cross-validation 

results of this product and other datasets, the mean average precision (MAP) of each region, and 

that this product has a high regional consistency with other datasets. Study area IV in the tropical 

monsoon climate zone has the highest accuracy, and study area VI located in the Qinghai-Tibet 

Plateau region of China has the lowest data accuracy. This result may be because the reanalysis 535 

dataset is also affected by the number and distribution of meteorological stations, and the spatial 

heterogeneity. The accuracy and robustness of the product were confirmed from another 

perspective. The accuracy comparison of each area shows that this product has higher accuracy 

and spatial representation than other datasets. R2 is closer to 1, and MAE and RMSE remain low. 

Through the accuracy evaluation and data comparison between this product and the existing 540 

dataset, we found that our product has a better temperature estimation of each area, and the overall 

accuracy and accuracy of the dataset are higher. 

Table 1. Cross-validation results of this product and other datasets. 

Temp. Type Index Data Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ MAP 

MAX R2 ERA5 0.99 0.97 0.94 0.94 0.97 0.94 0.96 
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CMA 1.00 0.95 0.95 0.98 0.99 0.90 0.96 

DATASET 0.99 0.99 0.97 0.98 0.99 0.96 0.98 

MAE 

ERA5 1.05 1.25 1.47 0.99 1.53 1.99 1.38 

CMA 0.67 1.28 1.28 0.63 0.81 1.58 1.04 

DATASET 0.73 0.94 1.07 0.62 1.02 1.40 0.96 

RMSE 

ERA5 1.69 1.52 2.14 1.68 1.91 2.30 1.87 

CMA 0.99 1.80 1.76 0.83 1.22 2.79 1.57 

DATASET 1.03 1.14 1.37 0.81 1.57 1.78 1.28 

MIN 

R2 

ERA5 0.96 0.95 0.96 0.95 0.97 0.90 0.95 

CMA 0.99 0.97 0.96 0.98 0.99 0.90 0.97 

DATASET 0.99 0.98 0.97 0.97 0.98 0.95 0.97 

MAE 

ERA5 1.68 1.28 1.48 1.00 1.48 2.09 1.50 

CMA 0.85 1.24 1.18 0.46 0.98 2.23 1.16 

DATASET 1.13 1.14 1.04 0.57 1.34 1.41 1.10 

RMSE 

ERA5 1.95 1.98 1.73 1.32 2.21 2.34 1.92 

CMA 1.19 1.99 1.72 0.63 1.47 2.80 1.63 

DATASET 1.31 1.60 1.49 0.74 1.61 2.05 1.47 

AVG 

R2 

CMFD 0.99 0.99 0.98 0.99 0.97 0.98 0.98 

ERA5 0.98 0.97 0.97 0.99 0.97 0.97 0.98 

CMA 1.00 0.97 0.96 0.99 0.99 0.91 0.97 

DATASET 0.99 0.99 0.98 0.99 0.98 0.98 0.99 

MAE 

CMFD 0.46 0.49 0.44 0.30 0.53 0.89 0.52 

ERA5 0.50 0.52 0.48 0.45 0.70 0.73 0.56 

CMA 0.59 1.07 1.09 0.41 0.79 1.34 0.88 

DATASET 0.51 0.56 0.53 0.27 0.65 0.67 0.53 

RMSE 

CMFD 0.60 1.19 0.75 0.41 1.26 1.17 0.90 

ERA5 0.57 1.17 0.71 0.52 1.24 1.15 0.89 

CMA 0.88 1.30 1.30 0.54 1.23 1.64 1.15 

DATASET 0.65 0.79 0.70 0.35 1.20 1.06 0.79 

5.3 Application of the product for trend analysis 

We analyzed temperature changes in various regions of China through extreme climate indexes 545 

and change trend values to further test the validity and regional applicability of the dataset. As 

shown in Figures 12 and 13, the TXx anomalies and TNn anomalies are consistent in the regional 

change trend. Although the annual anomalies fluctuated during the study period, they gradually 

changed from negative to positive. This phenomenon confirmed that the temperature fluctuated 

and increased, and the Tmax and Tmin gradually increased, which is consistent with the global 550 

warming trend. The average temperature rise of TXx anomalies in each study area was 0.42 °C/a, 
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and the average temperature rise of TXx anomalies was 0.47 °C/a. The histograms in Figures 12 

and 13 show that the number of warm days and cold nights fluctuates in an increasing and 

decreasing trend, respectively. In addition, similarities are in the change trends between warm 

days and cold nights. For example, in 1980, under the continual influence of strong cold air in the 555 

north, low-temperature weather occurred continuously in most areas of China, and many areas 

experienced low-temperature disasters, which led to a decrease in the number of warm days and 

an increase in the number of cold nights. In 2015, 2016, and 2017, the temperature continued to 

rise, with high temperatures that occurred once in decades. This finding is closely related to the 

severe El Niño events that occurred in 2015 and 2016, the impact of the subtropical high in 2017, 560 

and the overall global warming trend. From 1979 to 2018, there has also been an increase in the 

number of warm days and a decrease in the number of cold nights. Meteorological events can 

indirectly verify the accuracy of this product, indicating that the corrected data can be used to 

analyze long-term temporal and spatial changes in temperature. 

To further analyze the change rate and regional differences of Tavg during the study period, we 565 

analyzed the temperature change rate (K), correlation coefficient (R), and significance test of the 

correlation coefficient (T-test(R)). As shown in Figure 14 (a) and (a’), the Tavg in most regions of 

China shows a weak positive warming trend, accounting for 92.13% of the total, and the average 

temperature of Tavg in each region increased by 0.03 °C/a. The analysis of the R in Figure 14 (b) 

and (b’) shows that they show a strong correlation of approximately 48.77% and a correlation in 570 

the area of 84.06%, which shows that there is a high correlation between temperature changes and 

time. Figure 14 (c) and (c’) show that after performing a significance test on the R between 

temperature and time, 83.17% of the area passed the 95% significance test, and 75.23% of the 

area passed the 99% significance test, which shows that the correlation between temperature and 

time development is significant. 575 
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Figure 12. Multi-axis diagram of TXx anomaly, TX90p, and Tmax linear trend graphs. The broken black line 

represents TXx anomaly, the red line represents the linear regression of the TXx anomaly, and the orange 

histogram represents the TX90p change trend. 

 580 
Figure 13. Multi-axis diagram of TNn anomaly, TN10p, and Tmin linear trend graphs. The broken black line 

represents TNn anomaly, the red line represents the linear regression of the TNn anomaly, and the blue histogram 

represents the TN10p change trend. 
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 585 

Figure 14. Multi-year climate change trends in Tavg. (a) K, calculated by Eq. 7; (b) R between temperature change 

and time series development, calculated by Eq. 8; (c) T-test (R), respectively calculated by Eq. 9. (a’), (b’), and 

(c’) represent the distribution of pixel values in the corresponding (a), (b), and (c) spatial images. 

6. Data availability 
The daily Ta products at 0.1° resolution from 1979 to 2018 are freely available to the public in the 590 

tif format at https://doi.org/10.5281/zenodo.5502275 (Fang et al., 2021a), which are distributed 

under a Creative Commons Attribution 4.0 License. 

7. Code availability 
The technical code of the Ta dataset based on the reconstruction model and verification can be 

downloaded at https://doi.org/10.5281/zenodo.5513811 (Fang et al., 2021b). We have been 595 

finishing and improving the code and plan to upload it as a supplementary version. 
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8. Conclusions 
Ta is an indispensable variable for global climate change research. Therefore, how to obtain high 

precision and high temporal resolution air temperature data products is  important. Many 

researchers have endeavored to produce datasets by using different data sources for the global or 600 

local region. However, because of the need for the refinement of research, further improvements 

the accuracy and spatio-temporal resolution are necessary. Based on the full analysis of the 

advantages and disadvantages of various datasets and data sources, this study integrated various 

data sources, such as in situ data, remote sensing data, and reanalysis data, and proposed a 

reconstruction model of Ta under clear sky and non-clear sky weather conditions, respectively. A 605 

multiple linear regression model was used to further improve the accuracy of the data, and we 

obtained a new set of grid high-resolution daily temperature datasets in China from 1979 to 2018. 

For Tmax, validation using in situ data shows that the RMSE ranges from 0.86 to 1.78 ℃, the MAE 

varies from 0.63 to 1.40 ℃, and the R2 ranges from 0.96 to 0.99. For Tmin, the RMSE ranges from 

0.78 to 2.09 ℃, the MAE varies from 0.58 to 1.61 ℃, and the R2 ranges from 0.95 to 0.99. For 610 

Tavg, the RMSE ranges from 0.35 to 1.00 ℃, the MAE varies from 0.27 to 0.68 ℃, and the R2 

ranges from 0.99 to 1.00. Furthermore, we verified the Ta dataset with the existing reanalysis 

dataset and found that the proposed dataset has credibility and accuracy. Moreover, based on the 

particularity of geographic climate change in different regions, we used four extreme climate 

indicators (TXx and TNn anomalies, TX90p, and TN10p) and three climate change indices (K, R, 615 

and T-test) to analyze the trend changes of Tmax, Tmin, and Tavg. In summary, the temperature in 

most regions of China has been gradually increasing. The number of cold nights and warm days 

gradually decreased and increased, respectively, and the Tmax and Tmin gradually increased, which 

is consistent with the general trend of global warming. 

However, due to various factors, the weather may occasionally change drastically, such as to 620 

hail. Historical data cannot provide weather information at a greater specificity than was possible 

at that time; especially in areas without meteorological stations, refining past data is difficult. 

However, further research should consider more meteorological satellite data, especially 

geostationary meteorological satellites data, to improve the accuracy of surface temperature 

datasets used to monitor climate change. 625 
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