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Abstract  15 
 16 

Unlike some other well-known challenges such as facial recognition, where Machine Learning and Inversion algorithms are 17 
widely developed, the geosciences suffer from a lack of large, labelled datasets that can be used to validate or train robust 18 
Machine Learning and inversion schemes. Publicly available 3D geological models are far too restricted in both number and 19 
the range of geological scenarios to serve these purposes. With reference to inverting geophysical data this problem is further 20 
exacerbated as in most cases real geophysical observations result from unknown 3D geology, and synthetic test datasets are 21 
often not particularly geological, nor geologically diverse. To overcome these limitations, we have used the Noddy modelling 22 
platform to generate one million models, which represent the first publicly accessible massive training set for 3D geology and 23 
resulting gravity and magnetic datasets. This model suite can be used to train Machine Learning systems, and to provide 24 
comprehensive test suites for geophysical inversion. We describe the methodology for producing the model suite, and discuss 25 
the opportunities such a model suit affords, as well as its limitations, and how we can grow and access this resource. 26 

27 
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1 Introduction 28 

Although it has become the focus of intense research activity in recent times, with more papers published in the five years 29 
prior to 2018 than all years before that combined, Machine Learning (ML) techniques applied to geoscience problems dates 30 
back to the middle of the last century (see Van der Baan and Jutten, 2000, and Dramsch, 2020, for reviews). ML methods are 31 
being applied to a whole range of geological and geophysical problems, but many of these studies face common challenges 32 
due to the nature of geoscientific datasets. Karpatne et al. (2017) summarise the principal challenges as follows: 33 

i. Objects with Amorphous Boundaries- the form, structure and patterns of geoscience objects are much more 34 
complex than those found in discrete spaces that ML algorithms typically deal with, consisting of both changes in 35 
topology and dimensionality of geoscience objects with time.  36 

ii. Spatio-temporal Structure- Since almost every geoscience phenomenon occurs in the realm of space and time, we 37 
need to consider evolution of systems in order to understand the current state.  38 

iii. High Dimensionality- The Earth system is incredibly complex, with a huge number of potential variables, which 39 
may all impact each other, and thus many of which may have to be considered simultaneously. 40 

iv. Heterogeneity in Space and Time- Geoscience processes are extremely variable in space and time, resulting in 41 
heterogeneous datasets in terms of both sparse and clustered data. In addition, the primary evidence for a process 42 
may be erased by subsequent processes. 43 

v. Interest in Rare Phenomena- In a number of geoscience problems, we are interested in studying objects, processes, 44 
and events that occur infrequently in space and time, such as ore deposit formation and earthquakes. 45 

vi. Multi-resolution Data- Geoscience data sets are often available via different sources and at varying spatial and 46 
temporal resolutions. 47 

vii. Noise, Incompleteness, and Uncertainty in Data- Many geoscience data sets are plagued with noise and missing 48 
values. In addition, we often have to deal with observational biases during data collection and interpretation. 49 

viii. Small sample size- The number of samples in geoscience data sets is often limited in both space and time, which of 50 
course is accentuated by their high dimensionality, (iii) and our interest in rare phenomena (v). In the case 51 
examined in this study, the total number of publicly available 3D geological models probably numbers less than 52 
10,000000, and they are stored in a wide variety of formats rendering comparison difficult. 53 

ix. Paucity of Ground Truth- Even though many geoscience applications involve large amounts of data, geoscience 54 
problems often lack labelled samples with ground truth. 55 

In this study we specifically focus on six of these challenges by providing a database of one million 3D geological models 56 
and resulting gravity and magnetic fields. We address the Spatio-temporal Structure of the system by using a kinematic 57 
modelling engine that converts a sequence of deformation events into a 3D geological model. We address High Dimensionality 58 
by generating a very large database of possible outcomes. This represents a fundamental point of difference from many ML 59 
targets such as those studying consumer preference or movie rating or facial recognition. Although of course every human 60 
face is different, with few exceptions we share the same number of features (eyes, ears, noses), and these features’ size and 61 
relative positions only varies within small bounds. The number, geometry, composition and relative position of features in the 62 
subsurface has very wide bounds and this represents a major hurdle to the application of ML to characterising 3D geology. 63 
This challenge is shared by more traditional geophysical inversion approaches (Li and Oldenburg, 1998).  64 
We address issues related to Multi-resolution Data by providing a ‘controlled’ dataset, at the same resolution, it offers 65 
possibilities to address multi-resolution issues, by subsampling or upscaling.  66 
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We address Noise, Incompleteness, and Uncertainty in Data by providing synthetic data, we have noise and uncertainty free 67 
data, or at least under control, and complete spatial coverage over the simulation domain. The models we provide can easily 68 
have a structured or unstructured noise added to them and they can be subsampled to reproduce incomplete datasets. 69 
We address Small sample size by generating one million models, which is certainly not enough to thoroughly explore the high-70 
dimensional model space; however, it illustrates the feasibility of producing large suites of models in the near-future. Modern 71 
ML training sets for popular subjects such as the human face may contain tens of millions of examples (Kollias and Zafeiriou, 72 
2019). A search of the Kaggle database of training datasets (https://kaggle.com, which contains over 63,000 distinct datasets 73 
at the time of writing) only had 151 with geoscience in the keywords, and only seismic catalogues featured as geophysical 74 
data. Similarly, only 59 datasets contained 3D data, and none were related to the geosciences. 75 
Finally, we address the spatial and temporal Paucity of Ground Truth by publishing over one million models for which the 76 
full 3D lithological and petrophysical distribution is provided in a labelled form for comparison with resulting gravity and 77 
magnetic fields. This challenge is also faced by geophysical inversion methods. 3D geological models built using sufficient 78 
data to reduce uncertainty arguably exist, but leaving aside a strict definition of uncertainty, well-constrained 3D geological 79 
models are primarily restricted to restricted areas of significant economic interest, specifically sedimentary basins and mineral 80 
deposits, which only represent a sub-set of possible geological scenarios. A number of studies have built simple or complex 81 
synthetic models as a way to overcome these problems by providing fully defined test cases for testing processing, imaging 82 
and inversion algorithms (Versteeg, 1994; Lu et al., 2011; Salem et al., 2014; Shragge et al., 2019a and b). Whilst these 83 
provide valuable insights, the efforts required to build these test cases preclude the construction of large numbers of 84 
significantly different models. It is easy enough to vary petrophysical properties with fixed volumes, however varying the 85 
geometry, and, in particular, the topology is time consuming.  86 
Recent advances in implicit modelling allow extensive geology model suites to be generated by perturbing the data inputs to 87 
the model (Caumon, 2010; Cherpeau et al., 2010; Jessell et al., 2010, Wellmann et al., 2010a & b; Wellmann, and Regenauer-88 
Lieb, 2012; Lindsay et al., 2012; Lindsay et al., 2013a and b; Lindsay et al., 2014; Wellmann et al., 2014; Wellmann et al., 89 
2017, Pakyuz-Charrier et al., 2018 a &b, 2019) as part of studies that characterised 3D model uncertainty, however since they 90 
use a single model as the starting point for the stochastic simulations, these works do not provide a broad exploration of the 91 
range of geological geometries and relationships found in nature. Work on the automating of modelling workflows may allow 92 
us to explore the model uncertainty space more efficiently (Jessell et al., 2020). 93 
In this study, we have created a massive open-access resource consisting of one million three-dimensional geological models 94 
using the Noddy modelling package (Jessell, 1981; Jessell & Valenta, 1996). These are provided as the input file that defines 95 
the kinematics, together with the resulting voxel model and gravity and magnetic forward- modelled response. The models 96 
are classified by the sequence of their deformation histories, thus addressing a temporal Paucity of Ground Truth. This resource 97 
is provided to anyone who would like to train a ML algorithm to understand 3D geology and the resulting potential field 98 
response, or to anyone wishing to test the robustness of their geophysical inversion techniques. Guo et al. (2021) used the 99 
same modelling engine to produce more than three million models of a more restricted range of parameters to train a ML 100 
Convolutional Neural Network system to estimate 3D geometries from magnetic images. In this study we aim to provide a 101 
much broader range of possible geological scenarios as the starting point for a more general exploration of the geological 102 
model space. 103 
The Noddy software has been used in the past for a range of studies due to its ease in producing ‘reasonable-looking’ 104 
geological models with a low design or computational cost. A precursor to this study used a hundred or so manually specified 105 
models as a way of training geologists in the interpretation of regional geophysical datasets by providing a range of 3D 106 
geological models and their geophysical responses (Jessell, 2002). Similarly, Clark et al. (2004) developed a suite of ore 107 
deposit models and their potential-field responses. The automation of model generation using Noddy was first explored using 108 
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a Genetic Algorithm approach to modifying parameters as a way of inverting for potential-field geophysical data, specifically 109 
gravity and magnetics (Farrell et al., 1996). Wellmann et al. (2016) developed a modern Python interface to Noddy to allow 110 
stochastic variations of the input parameters to be analysed in a Bayesian framework. Finally Thiele et al. (2016 a,b) used this 111 
ability to investigate the sensitivity of variations in spatial and temporal relationships as a function of variations in input 112 
parameters.  113 
 114 
In this study we draw upon the ease of generating stochastic model suites to build a publicly accessible database of one million 115 
3D geological models and their gravity and magnetic responses. 116 

2. Model construction  117 

The Noddy package (Jessell, 1981; Jessell & Valenta 1996) provides a simple framework for building generic 3D geological 118 
models and calculating the resulting gravity and magnetics responses for a given set of petrophysical properties. The 3D model 119 
is defined by superimposing user-defined kinematic events that represent idealised geological events, namely base stratigraphy 120 
(STRAT), folds (FOLD), faults (FAULT), unconformities (UNC), dykes (DYKE), plugs (PLUG), shear zones (SHEAR-121 
ZONE) and tilts (TILT), which, can be superimposed in any order, except for STRAT, which can only occur once and has to 122 
be the first event. 3D geological models are calculated by taken the current x,y,z position of a point and unravelling the 123 
kinematics (using idealised displacement equations) until we get back to the time when the infinitesimal volume of rock was 124 
formed, whether defined by the initial stratigraphy, or the time of formation of a stratigraphy above an unconformity, or an 125 
intrusive event. In this study, we only use the resulting voxel representation of the 3D geological models, however it is possible 126 
to produce iso-surface representations of the pre-deformation location of points in an implicit scheme. We have used this tool 127 
as it is rapid, taking under 15s to generate 200x200x200 voxel models with both geological and geophysical representations 128 
combined using an Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz processor, and produces ‘geologically plausible’ models 129 
that may occur in nature. Given that the final 3D model depends on the user’s choice of a geological history, Noddy can be 130 
thought of as a kinematic, semantic, implicit modelling scheme. 131 
As opposed to Wellmann et al. ((2016),), Thiele et al. (2016) and Guo et al. (. (2021), who used a python wrapper to generate 132 
stochastic model suites, in this study we have modified the C code itself to simplify use by third parties, although the 133 
philosophy of model generation is an extension of, but very similar to, these earlier studies. 134 
Figure 1 shows one example model set for a STRAT-TILT-DYKE-UNC-FOLD history, consisting of a 3D visualisation 135 
looking from the NE of the voxel model, with some units rendered transparent for clarity, the top surface of the model an EW 136 
section at the northern face of the model looking from the south, a NS section on the western face of the model looking from 137 
the east, and the resulting gravity and magnetic fields. 138 

3. Choice of Parameters 139 

In this section we describe the choices and range of values for the parameters that we have allowed to vary for our one million 140 
model suite. We recognise there are other unused modes of deformation that Noddy allows that have been ignored. The 141 
selection of these parameters is based on assessing the range of parameter values that will produce suites of models that we 142 
believe will help and not hinder addressing the challenges cited in the introduction to this work. For example, we limited the 143 
size of the plugs so that a single plug could not replace the geology of the entire volume of interest. In the discussion, we refer 144 
to additional event parameters that could be activated in future studies. We limited the study to five deformation events, 145 
starting with an initial horizontal stratigraphy which is always followed by tilting of the geology. The following three events 146 
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are drawn randomly and independently from the event list comprised of folds, faults, unconformities, dykes, plugs, shear 147 
zones and tilts. The likelihood of folds, faults and shear-zones are double the other events as we found that they had a bigger 148 
impact of changing the overall 3D geology, and hence we wished to sample more of these events. This means we can have 149 
73=343 distinct deformation histories, although the specific parameters for each event can also vary, so the actual 150 
dimensionality of the system is much higher. For clarification, the one million models are not the result of a combinatorial 151 
approach, but of one million independent draws using a Monte Carlo sampling of the model space. 152 
The initial stratigraphy as well as new, above-unconformity stratigraphies, are defined to randomly have between two and five 153 
units to keep the systems relatively simple, but this could of course be increased if desired. The lithology of each unit in a 154 
stratigraphy is chosen to be coherent with the specific event and other units in the same sequence, so that we do not, for 155 
example, mix high-grade metamorphic lithologies and un-metamorphosed mudstones in the same stratigraphic series (Table 156 
2) nor do we assign the petrophysical properties of a sandstone to an intrusive plug. Once a lithology is chosen, the density 157 
and magnetic susceptibility is randomly sampled from a table defining the Gaussian distribution of properties (linear for 158 
density, log-linear for magnetic susceptibility) for that rock type. In the case of densities this may result in occasional negative 159 
values, however since the gravity field is only sensitive to density contrasts this does not invalidate the calculation. Some rock 160 
types have bimodal petrophysical properties to reflect real-world empirical observations, so we draw from a Gaussian mixture 161 
in these cases. The petrophysical data is drawn from aggregated statistics (mean and standard deviation of one or two peaks) 162 
of the approximately 13,500 sample British Columbia petrophysical database (Geoscience BC, 2008).  163 
The parameters which can be varied for each type of event, together with the range of these parameters, is shown in Table 1. 164 
These parameters can be grouped in the shape, position, scale and orientation of the events, and for a five-stage deformation 165 
history require the random selection of a minimum of 23 parameters for a STRAT-TILT- TILT - TILT - TILT model up to 69 166 
parameters for a STRAT-TILT-UNC-UNC-UNC model where each stratigraphy has five units. Apart from the petrophysical 167 
parameters, all other parameters are randomly sampled from a uniform distribution. 168 
Any subset of the geology can be calculated for any sub-volume of an infinite Cartesian space using Noddy, but we limit 169 
ourselves to a 4x4x4 km volume of interest in this study. Similarly, although the geology within this volume can be calculated 170 
at an arbitrary resolution, we have chosen to sample it using equant 20 m voxels as this is well below the typical resolved 171 
measurement scale for these types of data when collected in the field.  172 
 173 
Geophysical forward models were calculated using a Fourier Domain formulation using reflective padding to minimise (but 174 
not remove) boundary effects. The forward gravity and magnetic field calculations assume a flat top surface with a 100 m 175 
sensor elevation above this surface, and the Earth’s magnetic field with vertical inclination, zero declination and an intensity 176 
of 50,000 nano-tesla. 177 

4. Results 178 

The 73 possible event histories produce 343 possible sequences which averages toto 2915 models per sequence. Given the 179 
imposed bias towards folds, faults and shear zones, and the high-probability event sequence (FAULT-SHEAR ZONE-FOLD) 180 
produced 8245 models and the low-probability event sequence (UNC-TILT-PLUG) produced only 905 models, with plateaux 181 
in the number of models calculated giving event sequence frequencies at around 1000, 2000, 4000 and 8000 depending on the 182 
number (0,1,2,3 respectively) of events in the sequence. Together these form a “Noddyverse” of one million 3D geological 183 
models and their gravity and magnetic responses. Figure 2 shows an arbitrarily selected suite of 100 models as a 10x10 grid 184 
showing the top surface and two sections of the model as in Fig 1, together with the resulting gravity and magnetic fields, to 185 
show the variability of the results. 186 
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5. Applications 187 

The same logic of using millions of Noddy models was first applied by generating a massive 3D model training set and used 188 
to invert real-world magnetic data (Guo et al. 2021). That study used a model suite consisting of only FOLD, FAULT and 189 
TILT events, and only one of each to predict 3D geology using a Convolutional Neural Network. This approach corresponds 190 
to a use case where prior geological knowledge as to the local geological history has been used to limit the model search space, 191 
and formal expert elicitation could provide an important pre-cursor step to support the generation of sensible and tractable 192 
problems (citations). In addition to the CNN training demonstrated by Guo et al. (2021), we can envisage three broad 193 
categories of studies that could build upon the 3D model database we present here: 194 

1) Studies into the uniqueness of 3D models relative to geological event histories. The principal question here is 195 
whether any form of clustering of the geophysical fields, and perhaps the map of the surface, can recover the event 196 
sequence or event parameters. Feature extraction techniques are well-known for supporting image classification 197 
and clustering, so using the same principles, can we identify unique clusters of forward models from the 198 
Noddyverse, and do these clusters then correspond to distinct histories? Likewise, can we train a classifier with 199 
extracted features from the forward models of the gravity and magnetic responses which can then successfully 200 
identify models with similar or the same histories. Three broad aspects need to be considered here: (1) the feature 201 
extraction method; (2) choice of pre-processing methods for dimensionality reduction (Self Organising Maps, 202 
Principal Component Analysis, Kernel-Principal Component Analysis, t-distributed Stochastic Neighbor 203 
Embedding etc.) and (3) the clustering (k-means, hierarchical methods, DBSCAN /OPTICS) or classification 204 
methods (random forests, support vector machines, linear classifiers).  205 

A study of geophysical image variability using a simple 2D correlation or maximal information coefficient between 206 
pairs of images of different histories would be illuminating. Do we have images which are the same (or at least very 207 
similar and within the noise tolerance of the geophysical fields) to each other, but belong to very different histories? 208 
If these exist, the ambiguity of the histories can be examined, and we then know where we would expect poor 209 
performance from ML techniques which rely on easily discriminated images. The systems of equations characterising 210 
geophysical inverse problems often? have a non-unique solution. In ML research, if we only use magnetic data or 211 
gravity data for inversion, we will be troubled by the non-uniqueness of the solution. However, because we have both 212 
gravity data and magnetic data, we can extract features from multi-source heterogeneous data at the same time, and 213 
then classify or regress after feature fusion. This could greatly reduce the influence of the non-unique solution. 214 
Having a large set of models will allow clustering of models accordingly to their geophysical response and identifying 215 
subsets of geological models that are geophysically equivalent and cannot be distinguished using geophysical data. 216 
The analysis of diversity of such subsets of models will give an estimate of the severity of non-uniqueness and allow 217 
the derivation of posterior statistical indicators conditioned by geological plausibility.  218 

2) Comparison between and training of ML systems. We see potential applications of deep learning techniques 219 
(e.g., Convolutional Neural Network and Generative Adversarial Networks) where the series of models we propose 220 
may also be complemented by other datasets. In this broad topic we would seek to understand which ML 221 
techniques are suitable and effective in mapping geophysical data back to the geology or geological parameters. 222 
We can see potential for investigating which techniques minimise the amount of data necessary to get a good 223 
constraint, i.e., the model structures that most successfully capture geological expert knowledge? This could be 224 
framed as an open challenge to allow different groups to use their preferred approach to the inversion problem.  225 

3) Validation of the robustness of geophysical inversion schemes.  As previously mentioned, one of the limitations 226 
to validating geophysical inversion schemes is the small number of test models available, with the resulting danger 227 
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that the inversion parameters are tuned to the specifics of the test model, rather than being generally applicable. The 228 
Noddyverse model suite allows researchers to trial their inversions against a wide range of scenarios. It will also 229 
allow the examination of the validity and generality of hypotheses at the foundation of several integration and joint 230 
inversion procedures. One well-known example is the underlying assumption that the underlying models vary 231 
spatially in some coherent fashion (Haber and Oldenburg, 1997; Gallardo and Meju, 2003; Giraud et al., 2021). 232 
The analysis of geophysically equivalent models will also enable us to estimate how significantly joint inversion or 233 
interpretation can reduce the non-uniqueness of the solution, with the potential to identify families of geological 234 
scenarios more suited to joint inversion than others. It is obvious that some 3D geological models will be 235 
geologically more complex than others, and that some could be used for the benchmark of deterministic 236 
geophysical inversion of gravity and magnetic data, but also of other geophysical techniques relying on wave 237 
phenomena. 238 

6. Discussion 239 

In this study we have produced a ML training dataset that attempts to address four recognised limitations of applying ML to 240 
geoscientific datasets, namely Spatio-temporal Structure, High Dimensionality, Small sample size and Paucity of Ground 241 
Truth. Contrary to the current trend, the work for the generation of a comprehensive suite of geological models did not depend 242 
on the appropriate training of a neural network. We relied solely on geoscientific theory and principles while remaining 243 
computationally efficient. While realistic-looking suites of geological models have been generated using Generative 244 
Adversarial Networks (Zhang et al., 2019), these are generally limited to a several thousands of samples, within a limited 245 
range of geological scenarios.  246 

6.1 Spatiotemporal Structure 247 

Noddy is by design a Spatio-temporal modelling engine that uses a geological history to generate a model. Simple variations 248 
in the ordering of three events following two fixed events (STRAT & TILT), even with fixed parameters quickly demonstrates 249 
the important of relative time ordering to final model geometry (Fig. 3). While Noddy is limited to simple sequential events, 250 
nature presents geological processes to be coeval (such as syn-depositional faulting) or partially overlapping resulting in 251 
complex spatiotemporal relationships (Thiele et al., 2016a). Nonetheless, re-ordering only sequential events still produces a 252 
vast array of plausible geometries, and indicates the enormity of the model space, and the necessity of efficient methods to 253 
explore them.  254 

6.2 High Dimensionality 255 

We have limited ourselves to five deformation events in this study, and no more than five units in any one stratigraphy. These 256 
decisions were based on an idea to “keep it simple” whilst simultaneously allowing a great variety of models to be built. We 257 
recognise that these are somewhat arbitrary choices. We could have true randomly complex 3D histories, leading to models 258 
with, for example, nine phases of folding, however the utility of over-complicating the system is not clear, and would rarely 259 
or ever be discernible in natural systems. Similarly, we limited the parameter ranges of each deformation event, again on the 260 
basis that the ranges chosen made models that are more interesting. For example, there did not seem much interest in having 261 
folds with very large wavelengths or very low amplitudes, as they are equivalent to small translations of the geology and 262 
would translate in the geophysical measurements into a regional trend that is often approximated and removed from the 263 
measurements. 264 
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Noddy is capable of predicting continuous variations in petrophysical properties, including variably deformed magnetic 265 
remanence vectors and anisotropy of susceptibility, or densities that vary away from structures to simulate alteration patterns, 266 
however we decided to limit this study to simple litho-controlled petrophysics, whilst recognising the interest of studying 267 
more complex discrete-continuous systems. The indexed models could also be reused with different, simpler petrophysical 268 
variations, such as keeping constant values for each rock type. Each model comes with the history file used to generate the 269 
model and this provides the full label for that model, so that if additional information, such as the number of units in a series 270 
is considered to be important, this can be easily extracted from the file. 271 

6.3 Small sample size 272 

The total number of models sounds impressive, however once we divide that number by the 343 different event sequences, 273 
we are left with between 905 and 8245 models per sequence, which whilst still large is by no means exhaustive. There is no 274 
fundamental problem with building 10 or 100 million models, and if this is found to be necessary to provide useful ML training 275 
datasets we can certainly do so at the expense of an increased compute time: these models were built in around a week on a 276 
computer using 20 processor cores. We can also follow try to apply a metric, such as model topology, to analyse how well 277 
sampled the model space is. Thiele et al. (2016b) analysed the topology of stochastically generated Noddy models and found 278 
that after 100 models for small perturbations around a starting model, the number of new topologies dropped off rapidly. In 279 
our case we are not making small perturbations, so we could expect to require more models before the rate of production of 280 
new topologies decays, and topology is only one possible metric for comparing models. 281 

6.4 Paucity of Ground Truth 282 

The primary goal of this study was to build a large dataset to provide a wide range of possible models for use in training ML 283 
systems and to test more traditional geophysical inversion systems. The models here, whilst simpler than the large test models 284 
mentioned earlier, represent to our knowledge the largest suite of 3D geological models with resulting potential field data and 285 
tectonic history, which has its own utility. This usage applies equally well to classical geophysical inversion codes, which 286 
have traditionally been tested on only a handful of synthetic models prior to being applied to real-world data, for which there 287 
is no ground truth available. 288 

6.5 Expert Elicitation 289 

To use this suite of models as the starting point for inversion of real-world datasets (as has been pioneered by Guo et al., 2021) 290 
we can envisage the introduction of expert elicitation methods to meaningfully constrain the model output space while 291 
acknowledging our inherent uncertainty regarding the model input space.  As a probabilistic encoder of expert knowledge, 292 
formal elicitation procedures (O’Hagan, 2006) have contributed greatly to physical domain sciences where complex models 293 
are essential to our understanding of the underlying processes.  From climatology/meteorology/oceanography (Kennedy, 294 
2008), to geology and geostatistics (Walker, 2014, and Lark et al., 2015), to hydrodynamics and engineering (Astfalck et al., 295 
2018, and Astfalck et al., 2019), the central role of expert elicitation is being increasingly recognised.  The complexity and 296 
parameterizations of geophysical models, and the expert knowledge that resides within the geophysical community, suggests 297 
this domain should be no different. It is worth noting that the choice of parameter bounds used to define the 1 million model 298 
suite in this article is itself an informal expression of expert elicitation. 299 
 300 

6.6 Extending to the model suite 301 

In the future we may need a better representation of the “real world” 3D model space, specifically to: 302 
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• Include more parameters from Noddy, especially for parameters such as fold profile variation, alteration near structures 303 
to allow petrophysical variation within units. This would help to address the Karpatne et al. (2017) challenge of Objects 304 
with Amorphous Boundaries. These are capabilities that exist within Noddy but are not used in this study. 305 

• Allow more events to increase the range of outcomes. We arbitrarily restricted ourselves to two started events (STRAT 306 
and TILT) followed by three randomly chosen events, and an extension to the model suite could consider any number 307 
of events in the sequence. 308 

• Include magnetic remanence and anisotropy effects. At present we only model scalar magnetic susceptibility but the 309 
Noddy modelling engine can calculate variable remanence and anisotropic magnetic susceptibility as well. 310 

• Allow linked deformation events. At the moment every event is independently defined, however we could allow 311 
parallel fault sets or dyke swarms, situations which commonly occur in nature. 312 

• Predict different types of geophysical fields. For example, the SimPEG package (Cockett et al., 2015) could easily be 313 
linked to this system to predict electrical fields (Cockett et al. 2015). 314 

• Model larger volumes as large, or deep features cannot currently be modelled due to the 4 km model dimensions. 315 

• Build more models. We in no way believe we have explored the range of possible models in the present model suite, 316 
and if we start in include more events, or more complex event definitions, we will certainly have to generate many more 317 
models, perhaps orders of magnitude more, in order to provide robust training suites and inversion scenarios. 318 

• Add noise to the petrophysical models and/or the resulting geophysical responses. This would help to address the 319 
Karpatne et al. (2017) challenge of Noise, Incompleteness, and Uncertainty in Data. Incompleteness can be addressed 320 
by removing parts of the geophysical data and does not require new models to be built. Similarly, the challenge of 321 
Multi-resolution Data- Geoscience could be addressed by subsampling parts or all of existing geophysical outputs.  322 

• Include topographic effects. In this study, we have ignored the effect of topography on the models, although again this 323 
could be included in the future, as it is supported by Noddy. 324 

We also need to be clear that a model built in Noddy is not capable of predicting all geological settings, as all Noddy models 325 
are plausible geology, but not all plausible geology can be modelled by Noddy. To improve this situation, we would need to 326 
improve the modelling engine itself. Similarly, the logic of trying to predict geology from geophysical datasets in this study 327 
is only partially fulfilled: the geometry comes from geological events sequence, but identical geometries can be produced by 328 
different event sequences. 329 

7. Conclusions 330 

This study represents our first steps in producing geologically reasonable training sets for ML and geophysical inversion 331 
applications. We have used Noddy to generate a very large, open-access 1M model, set of 3D geology and resulting gravity 332 
and magnetic models as a ML training sets. These training sets can also be used as test cases for gravity and/or magnetic 333 
inversions. The work presented here may be a first step to overcoming some of the fundamental limitations of applying these 334 
techniques to natural geoscientific datasets. 335 
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9. Code and Data availability 344 

 345 
A doi (https://zenodo.org/record/4589883) provides access GitHub repository which contains the following elements 346 
(Jessell, 2021): 347 

1. The source code (C language) for the version of noddy adapted to producing random models. 348 

2. A readme.md file with a link to the windows version of the Noddy software, plus a link to 343 tar files, one for 349 
each event history ordering of the model suite. 350 

3. A Jupyter Notebook (python code) for sampling from and unpacking the models.  351 

4. A link in the same readme.md file to the equivalent mybinder.org version of the notebook so that no code 352 
installation is required to sample from and view the model suite: 353 
https://mybinder.org/v2/gh/Loop3D/noddyverse/HEAD?filepath=noddyverse-remote-files-1M.ipynb  354 

All codes and data are released under the MIT licence. 355 
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 470 

Figure 1. Example model set for a STRAT-TILT-DYKE-UNC-FOLD sequence showing a) 3D visualisation looking from the NE of 471 
the voxel model, b) the top surface of the model, c) an EW section at the northern face of the model looking from the south, d) a NS 472 
section on the western face of the model looking from the west, and the resulting e) gravity and f) magnetic fields. Geophysical 473 
images are all normalized to model max-min values. 474 

475 
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 476 
Figure 2. Example models for 100 randomly selected models drawn from the 1M model suite showing a) the top surface of the 477 
model, b) an EW section at the northern face of the model looking from the south, c) a NS section on the western face of the model 478 
looking from the west, and the resulting d) gravity and e) magnetic fields. Geophysical images are all normalized to model max-min 479 
values. 480 

 481 

482 
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 483 

 484 
Figure 3. Four possible 3D geological models with the same base stratigraphy (STRAT) followed by five events using four of the 485 
possible different event ordering sequences. 486 

https://doi.org/10.5194/essd-2021-304

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 September 2021
c© Author(s) 2021. CC BY 4.0 License.



18 
 

Event type 
Param

eter 1 
Param

eter 2 
Param

eter 3 
Param

eter 4 
Param

eter 5 
Param

eter 6 
M

in/M
ax num

ber 

of param
eters 

B
ase Stratigraphy  N

um
ber of units.  

Range: 2-5 
unit n thickness:  
50-1000 m

 
D

ensity of each unit:  
depends on lithology of 
unit n 

M
agnetic 

susceptibility of each 
unit: 

depends 
on 

lithology of unit n 

  
  

5/12 

Fold 
W

avelength :  
1,000-11,000 m

 
A

m
plitude :  

200 - 5,000 m
 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Phase : 
 0-4000 m

 
A

long axis am
plitude 

decay :  
500-9,500 m

 

6/6 

Fault 
Position of 1 point on fault: 
x,y,z 2000-4000 m

 
D

isplacem
ent :  

0-2000 m
 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Pitch of displacem
ent : 

0-90 degrees 
  

7/7 

U
nconform

ity 
Position 

of 
1 

point 
on 

U
nconform

ity:  
x=2000-3000m

 
y=2000-4000m

 
z=3000-4000 m

 

N
um

ber of units above 
unconform

ity:  
2-5 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

D
ensity of each unit:  

depends on lithology of 
unit n 

M
agnetic 

susceptibility of each 
unit: 

depends 
on 

lithology of unit n 

10/17 

D
yke 

Position of 1 point on fault: 
x=0-4000 m

 
y=0-4000 m

 
z=0-4000 m

 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

W
idth of D

yke :  
100-400 m

 
D

ensity :  
depends on lithology  

M
agnetic 

susceptibility : 
depends on lithology  

8/8 

Plug 
Shape :  
C

yclindrical, 
Conic, 

Parabolic, Ellipsoidal  

Position of centre of 
plug:  
x=1000-4000m

 
y=1000-4000m

 
z=1000-4000m

 

Size of plug:  
param

eter varies w
ith 

shape 

D
ensity :  

depends on lithology  
M

agnetic 
susceptibility : depends 
on lithology  

  
7/9 

Tilt 
Position 

of 
1 

point 
on 

rotation axis:  
x=2000-3000m

 
y=2000-4000m

 
z=3000-4000 m

 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Rotation :  
-90-90 degrees 

  
  

6/6 

Shear zone 
Position of 1 point on fault: 
x,y,z 2000-4000 m

 
D

isplacem
ent :  

0-2000 m
 

A
zim

uth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Pitch of displacem
ent : 

0-90 degrees  
W

idth 
of 

Shear 
Zone : 100-2000 m

 
8/8 

 
487 

Table 1. Free param
eters w

ith their allow
able ranges for each event.

488 
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 489 

Lithology Lithology 
Class 

Genetic Class Mean 
Density 
g.cm-3  

Standard 
Deviation 
Density 

Mean Log 
Susceptibility 

(cgs)  

Standard 
Deviation Log 
Susceptibility  

Susceptibility 
Bimodality 

Flag 

 Felsic_Dyke_Sill  Dyke  Intrusive 2.612593 0.090526329 -3.693262 1.50094258 1 

 Mafic_Dyke_Sill  Dyke  Intrusive 2.793914 0.015759637 -2.119223 0.85376583 0 

 Granite   Plug  Intrusive 2.691577 0.094589692 -2.455842 0.86575449 1 

 Peridotite  Plug  Intrusive 2.851076 0.154478049 -1.158807 0.4390425 0 

 Porphyry  Plug  Intrusive 2.840024 0.128971814 -2.613833 0.99194475 1 

 Pyxenite_Hbndite  Plug  Intrusive 3.194379 0.253322535 -1.946615 1.03641373 0 

 Gabbro  Plug  Intrusive 3.004335 0.159718751 -2.124022 0.82126305 1 

 Diorite   Plug  Intrusive 2.851608 0.134656746 -2.088111 0.81829275 1 

 Syenite  Plug  Intrusive 2.685824 0.115078068 -2.461453 0.91295395 1 

 Amphibolite   Met_strat  Metamorphic 2.875933 0.142164171 -2.69082 0.90733619 1 

 Gneiss  Met_strat  Metamorphic 2.701191 0.073583537 -3.18094 0.95259725 1 

 Marble  Met_strat  Metamorphic 2.871775 0.532997473 -3.671996 1.25374051 0 

 Meta_Carbonate  Met_strat  Metamorphic 2.738965 0.036720136 -3.117868 0.82945531 0 

 Meta_Felsic  Met_strat  Metamorphic 2.782584 0.301451931 -3.55755 0.65748564 1 

 Meta_Intermediate  Met_strat  Metamorphic 2.894892 0.265153614 -3.673276 0.26107008 0 

 Meta_Mafic   Met_strat  Metamorphic 2.814461 0.096381942 -3.250044 0.62513286 0 

 Meta_Sediment  Met_strat  Metamorphic 2.982992 0.49439556 -3.402807 0.89505466 1 

 Meta_Ultramafic  Met_strat  Metamorphic 2.843941 0.138208079 -2.166206 0.76543947 0 

 Schist  Met_strat  Metamorphic 2.81978 0.109752597 -3.18525 0.69584686 0 

 Andesite   Met_strat  Volcanic 2.721189 0.091639014 -2.15826 0.71678329 0 

 Basalt  Met_strat  Volcanic 2.79269 0.155153198 -2.155728 0.64718503 0 

 Dacite  Met_strat  Volcanic 2.62127 0.129131224 -2.562422 0.8166926 0 

 Ign_V_Breccia  Met_strat  Volcanic 2.910459 0.101746428 -2.706956 0.73116944 0 

 Rhyolite  Met_strat  Volcanic 2.630833 0.071233818 -3.046728 0.78711701 0 

 Tuff_Lapillistone  Met_strat  Volcanic 2.64447 0.110173772 -2.878701 0.86889142 0 

 V_Breccia  Met_strat  Volcanic 2.771579 0.167796457 -2.524945 0.90943985 0 

 V_Conglomerate  Met_strat  Volcanic 2.755267 0.10388303 -2.304483 1.00991116 0 

 V_Sandstone  Met_strat  Volcanic 2.779715 0.101133121 -2.903361 0.82701019 0 

 V_Siltstone  Met_strat  Volcanic 2.859347 0.102741619 -2.769054 0.87771183 0 

 Conglomerate  Strat  Sedimentary 2.618695 0.116158268 -3.31026 0.9740717 0 

 Limestone  Strat  Sedimentary 2.713912 0.147683486 -4.256256 0.87772406 0 

 Pelite   Strat  Sedimentary 2.698554 0.021464631 -3.369295 0.5295974 1 

 Phyllite  Strat  Sedimentary 2.739177 0.173374383 -3.696455 0.73955588 0 

 Sandstone  Strat  Sedimentary 2.622672 0.107003083 -3.452758 0.64521521 0 

 Greywacke  Strat  Sedimentary 2.861463 0.16024622 -3.841047 1.14724626 1 
 490 

Table 2. Simplified petrophysical values derived from British Columbia database (Geoscience BC, 2008).  Values are randomly 491 
sampled from Gaussian distributions defined by mean and standard deviation of density and log magnetic susceptibility. For 492 
lithologies with bimodal magnetic susceptibilities (flag=1), mixed sampling is based on offsetting the means by +/-0.75 orders of 493 
magnitude, which approximates the variations seen in nature. 494 
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