
1 
 

Into the Noddyverse: A massive data store of 3D geological models for 1 

Machine Learning & inversion applications 2 

Mark Jessell1,5; Jiateng Guo2; Yunqiang Li2; Mark Lindsay1,5,6; Richard Scalzo3,5; Jérémie Giraud1,7; 3 

Guillaume Pirot1,5; Ed Cripps4,5; Vitaliy Ogarko1,5 4 

1 Mineral Exploration Cooperative Research Centre, Centre for Exploration Targeting, The University of Western Australia, 5 
Perth, Australia. 6 
2 College of Resources and Civil Engineering, Northeastern University, Shenyang, China. 7 
 8 
3 School of Mathematics and Statistics, University of Sydney, Sydney, Australia 9 
4 Department of Mathematics and Statistics, The University of Western Australia, Perth, Australia. 10 
5 ARC Centre for Data Analytics for Resources and Environments (DARE) 11 
6 Commonwealth Scientific and Industrial Research Organisation, Mineral Resources, Australian Resources Research Centre, 12 
Kensington, Australia 13 
7 Université de Lorraine, CNRS, GeoRessources, 54000 Nancy, France 14 
 15 
Correspondence to: Mark Jessell (mark.jessell@uwa.edu.au) 16 

17 

Formatted

Formatted: French (France)



2 
 

Abstract  18 
 19 

Unlike some other well-known challenges such as facial recognition, where Machine Learning and Inversion algorithms are 20 
widely developed, the geosciences suffer from a lack of large, labelled datasetdata sets that can be used to validate or train 21 
robust Machine Learning and inversion schemes. Publicly available 3D geological models are far too restricted in both number 22 
and the range of geological scenarios to serve these purposes. With reference to inverting geophysical data this problem is 23 
further exacerbated as in most cases real geophysical observations result from unknown 3D geology, and synthetic test 24 
datasetdata sets are often not particularly geological, nor geologically diverse. To overcome these limitations, we have used 25 
the Noddy modelling platform to generate one million models, which represent the first publicly accessible massive training 26 
set for 3D geology and resulting gravity and magnetic datasetdata sets. This model suite can be used to train Machine Learning 27 
systems, and to provide comprehensive test suites for geophysical inversion. We describe the methodology for producing the 28 
model suite, and discuss the opportunities such a model suit affords, as well as its limitations, and how we can grow and access 29 
this resource. 30 

31 
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1 Introduction 32 

Although it has become the focus of intense research activity in recent times, with more papers published in the five years 33 
prior to 2018 than all years before that combined, Machine Learning (ML) techniques applied to geoscience problems dates 34 
back to the middle of the last century (see Van der Baan and Jutten, 2000, and Dramsch, 2020, for reviews). ML methods are 35 
being appliedapplications relate to a whole range of geological and geophysical problems, but many of these studies face 36 
common challenges due to the nature of geoscientific datasetdata sets. Karpatne et al. (2017) summarise the principal 37 
challenges as follows: 38 

i. Objects with Amorphous Boundaries- the The form, structure and patterns of geoscience objects are much more 39 
complex than those found in discrete spaces that ML algorithms typically deal with, consisting of both changes in 40 
topology and dimensionality of geoscience objects with time.  41 

ii. Spatio-temporal Structure- Since almost every geoscience phenomenon occurs in the realm of space and time, we 42 
need to consider evolution of systems in order to understand the current state.  43 

iii. High Dimensionality- The Earth system is incredibly complex, with a huge number of potential variables, which 44 
may all impact each other, and thus many of which may have to be considered simultaneously. 45 

iv. Heterogeneity in Space and Time- Geoscience processes are extremely variable in space and time, resulting in 46 
heterogeneous datasetdata sets in terms of both sparse and clustered data. In addition, the primary evidence for a 47 
process may be erased by subsequent processes. 48 

v. Interest in Rare Phenomena- In a number of geoscience problems, we are interested in studying objects, processes, 49 
and events that occur infrequently in space and time, such as ore deposit formation and earthquakes. 50 

vi. Multi-resolution Data- Geoscience data sets are often available via different sources and at varying spatial and 51 
temporal resolutions. 52 

vii. Noise, Incompleteness, and Uncertainty in Data- Many geoscience data sets are plagued with noise and missing 53 
values. In addition, we often have to deal with observational biases during data collection and interpretation. 54 

viii. Small sample size- The number of samples in geoscience data sets is often limited in both space and time, which of 55 
course is accentuated by their high dimensionality, (iii) and our interest in rare phenomena (v). In the case 56 
examined in this study, the total number of there are few publicly available 3D geological models, s probably 57 
numbers less than 10,000000, and they are stored in a wide variety of formats, rendering comparison difficult. 58 

ix. Paucity of Ground Truth- Even though many geoscience applications involve large amounts of data, geoscience 59 
problems often lack labelled samples with ground truth. 60 

In this study we specifically focus on six of these challenges by providing a database of one million 3D geological models 61 
and resulting gravity and magnetic fields. We address the Spatio-temporal Structure of the system by using a kinematic 62 
modelling engine that converts a sequence of deformation events into a 3D geological model. We address High Dimensionality 63 
by generating a very large database of possible outcomes3D geological models. This represents a fundamental point of 64 
difference from many ML targets such as those studying consumer preference or movie rating or facial recognition. Although 65 
of course every human face is different, with few exceptions we share the same number of features (eyes, ears, noses), and 66 
these features’ size and relative positions only varies within small bounds. The number, geometry, composition and relative 67 
position of features in the subsurface has very wide bounds and this represents a major hurdle to the application of ML to 68 
characterising 3D geology. This challenge is shared by more traditional geophysical inversion approaches (Li and Oldenburg, 69 
1998).  70 
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We address issues related to Multi-resolution Data by providing a ‘controlled’ datasetdata set, at the same resolution, it offers 71 
possibilities to address multi-resolution issues, by subsampling or upscaling.  72 
We address Noise, Incompleteness, and Uncertainty in Data by providing synthetic data, we have noise and uncertainty free 73 
data, or at least under control, and complete spatial coverage over the simulation domain. The models we provide can easily 74 
have a structured or unstructured noise added to them and they can be subsampled to reproduce incomplete datasetdata sets. 75 
We address Small sample size by generating one million models, which is certainly not enough to thoroughly explore the high-76 
dimensional model space; however, it illustrates the feasibility of producing large suites of models in the near-future. Modern 77 
ML training sets for popular subjects such as the human face may contain tens of millions of examples (Kollias and Zafeiriou, 78 
2019). A search of the Kaggle database of training datasetdata sets (https://kaggle.com, which contains over 63,000 distinct 79 
datasetdata sets at the time of writing) only had 151 with geoscience in the keywords, and only seismic catalogues featured as 80 
geophysical data. Similarly, only 59 datasetdata sets contained 3D data, and none were related to the geosciences. 81 
Finally, we address the spatial and temporal Paucity of Ground Truth by publishing over one million models for which the 82 
full 3D lithological and petrophysical distribution is provided in a labelled form for comparison with resulting gravity and 83 
magnetic fields. This challenge is also faced by geophysical inversion methods. 3D geological models built using sufficient 84 
data to reduce uncertainty arguably exist, but leaving aside a strict definition of uncertainty, well-constrained 3D geological 85 
models are primarily restricted to restricted areas of significant economic interest, specifically sedimentary basins and mineral 86 
deposits, which only represent a sub-set of possible geological scenarios. A number of studies have built simple or complex 87 
synthetic models as a way to overcome these problems by providing fully defined test cases for testing processing, imaging 88 
and inversion algorithms (Versteeg, 1994; Lu et al., 2011; Salem et al., 2014; Shragge et al., 2019a and b). Whilst these 89 
provide valuable insights, the efforts required to build these test cases preclude the construction of large numbers of 90 
significantly different models. It is easy enough to vary petrophysical properties with fixed volumes, however varying the 91 
geometry, and, in particular, the topology is time consuming.  92 
Implicit geological modelling is based on the calculation of scalar fields that can be iso-surfaced to retrieve stratigraphy and 93 
structure, as opposed to earlier methods that were CAD-like or based on interpolation of datapoints. Recent advances in 94 
implicit modelling allow extensive geology model suites to be generated by perturbing the data inputs to the model (Caumon, 95 
2010; Cherpeau et al., 2010; Jessell et al., 2010, Wellmann et al., 2010a & b; Wellmann, and Regenauer-Lieb, 2012; Lindsay 96 
et al., 2012; Lindsay et al., 2013a and b; Lindsay et al., 2014; Wellmann et al., 2014; Wellmann et al., 2017, Pakyuz-Charrier 97 
et al., 2018 a &b, 2019) as part of studies that characterised 3D model uncertainty, however since they use a single model as 98 
the starting point for the stochastic simulations, these works do not provide a broad exploration of the range of geological 99 
geometries and relationships found in nature. Work on the automating of modelling workflows may allow us to explore the 100 
model uncertainty space more efficiently (Jessell et al., 2020). 101 
In this study, we have created a massive open-access resource consisting of one million three-dimensional geological models 102 
using the Noddy modelling package (Jessell, 1981; Jessell & Valenta, 1996). These are provided as the input file that defines 103 
the kinematics, together with the resulting voxel model and gravity and magnetic forward- modelled response. The models 104 
are classified by the sequence of their deformation histories, thus addressing a temporal Paucity of Ground Truth. This resource 105 
is provided to anyone who would like to train a ML algorithm to understand 3D geology and the resulting potential field 106 
response, or to anyone wishing to test the robustness of their geophysical inversion techniques. Guo et al. (2021) used the 107 
same modelling engine to produce more than three million models of a more restricted range of parameters to train a ML 108 
Convolutional Neural Network system to estimate 3D geometries from magnetic images. In this study we aim to provide a 109 
much broader range of possible geological scenarios as the starting point for a more general exploration of the geological 110 
model space. 111 

Field Code Changed

https://kaggle.com/
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The Noddy software has been used in the past for a range of studies due to its ease in producing ‘reasonable-looking’ 112 
geological models with a low design or computational cost. A precursor to this study used a hundred or so manually specified 113 
models as a way of training geologists in the interpretation of regional geophysical datasetdata sets by providing a range of 114 
3D geological models and their geophysical responses (Jessell, 2002). Similarly, Clark et al. (2004) developed a suite of ore 115 
deposit models and their potential-field responses. The automation of model generation using Noddy was first explored using 116 
a Genetic Algorithm approach to modifying parameters as a way of inverting for potential-field geophysical data, specifically 117 
gravity and magnetics (Farrell et al., 1996). Wellmann et al. (2016) developed a modern Python interface to Noddy to allow 118 
stochastic variations of the input parameters to be analysed in a Bayesian framework. Finally Thiele et al. (2016 a,b) used this 119 
ability to investigate the sensitivity of variations in spatial and temporal relationships as a function of variations in input 120 
parameters.  121 
 122 
In this study we draw upon the ease of generating stochastic model suites to build a publicly accessible database of one million 123 
3D geological models and their gravity and magnetic responses. 124 

2. Model construction  125 

The Noddy package (Jessell, 1981; Jessell & Valenta 1996) provides a simple framework for building generic 3D geological 126 
models and calculating the resulting gravity and magnetics responses for a given set of petrophysical properties. The 3D model 127 
is defined by superimposing user-defined kinematic events that represent idealised geological events, namely base stratigraphy 128 
(STRAT), folds (FOLD), faults (FAULT), unconformities (UNC), dykes (DYKE), plugs (PLUG), shear zones (SHEAR-129 
ZONE) and tilts (TILT), which, can be superimposed in any order, except for STRAT, which can only occur once and has to 130 
be the first event. 3D geological models are calculated by takingen the current x,y,z position of a point and unravelling the 131 
kinematics (using idealised displacement equations) until we get back to the time when the infinitesimal volume of rock was 132 
formed, whether defined by the initial stratigraphy, or the time of formation of a stratigraphy above an unconformity, or an 133 
intrusive event. In this study, we only use the resulting voxel representation of the 3D geological models, however it is possible 134 
to produce iso-surface representations of the pre-deformation location of points in an implicit scheme. We have used this tool 135 
as it is rapid, taking under 15s to generate 200x200x200 voxel models with both geological and geophysical representations 136 
combined using an Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz processor, and produces ‘geologically plausible’ models 137 
that may occur in nature. Given that the final 3D model depends on the user’s choice of a geological history, Noddy can be 138 
thought of as a kinematic, semantic, implicit modelling scheme. 139 
As opposed to Wellmann et al. ((2016),), Thiele et al. (2016) and Guo et al. (. (2021), who used a pPython wrapper to generate 140 
stochastic model suites, in this study we have modified the C code itself to simplify use by third parties, although the 141 
philosophy of model generation is an extension of, but very similar to, these earlier studies. The most significant difference is 142 
that we have added petrophysical variations by randomly selecting from a set of stratigraphic groups, see next section.  143 
Figure 1 shows one example model set for a STRAT-TILT-DYKE-UNC-FOLD history, consisting of a 3D visualisation 144 
looking from the NE of the voxel model, with some units rendered transparent for clarity, the top surface of the model an EW 145 
section at the northern face of the model looking from the south, a NS section on the western face of the model looking from 146 
the east, and the resulting gravity and magnetic fields. 147 
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3. Choice of Parameters 148 

In this section we describe the choices and range of values for the parameters that we have allowed to vary for our one million 149 
model suite. We recognise there are other unused modes of deformation that Noddy allows that have been ignored. The 150 
selection of these parameters is based on assessing the range of parameter values that will produce suites of models that we 151 
believe will help and not hinder addressing the challenges cited in the introduction to this work. For example, we limited the 152 
size of the plugs so that a single plug could not replace the geology of the entire volume of interest. In the discussion, we refer 153 
to additional event parameters that could be activated in future studies. We limited the study to five deformation events, 154 
starting with an initial horizontal stratigraphy which is always followed by tilting of the geology. The following three events 155 
are drawn randomly and independently from the event list comprised of folds, faults, unconformities, dykes, plugs, shear 156 
zones and tilts. The likelihood of folds, faults and shear-zones are double the other events as we found, based on a qualitative 157 
assessment, that they had a bigger impact of changing the overall 3D geology, and hence we wished to sample more of these 158 
events. This means we can have 73=343 distinct deformation histories, although the specific parameters for each event can 159 
also vary, so the actual dimensionality of the system is much higher. For clarification, the one million models are not the result 160 
of a combinatorial approach, but of one million independent draws using a Monte Carlo sampling of the model space. Whilst 161 
a combinatorial approach may in theory explore the parameter space more uniformly, the sequence of 5 deformation events is 162 
so non-linear that it was reasoned that a pure MC approach would serve our purposes. 163 
The initial stratigraphy as well as new, above-unconformity stratigraphies, are defined to randomly have between two and five 164 
units to keep the systems relatively simple, but this could of course be increased if desired. The lithology of each unit in a 165 
stratigraphy is chosen to be coherent with the specific event and other units in the same sequence, so that we do not, for 166 
example, mix high-grade metamorphic lithologies and un-metamorphosed mudstones in the same stratigraphic series (Table 167 
2) nor do we assign the petrophysical properties of a sandstone to an intrusive plug. Once a lithology is chosen, the density 168 
and magnetic susceptibility is randomly sampled from a table defining the Gaussian distribution of properties (linear for 169 
density, log-linear for magnetic susceptibility) for that rock type. In the case of densities this may result in occasional negative 170 
values, however since the gravity field is only sensitive to density contrasts this does not invalidate the calculation. Some rock 171 
types have bimodal petrophysical properties to reflect real-world empirical observations, so we draw from a Gaussian mixture 172 
in these cases. The petrophysical data is drawn from aggregated statistics (mean and standard deviation of one or two peaks) 173 
of the approximately 13,500 sample British Columbia petrophysical database (Geoscience BC, 2008).  174 
The parameters which can be varied for each type of event, together with the range of these parameters, is shown in Table 1. 175 
These parameters can be grouped in the shape, position, scale and orientation of the events, and for a five-stage deformation 176 
history require the random selection of a minimum of 23 parameters for a STRAT-TILT- TILT - TILT - TILT model up to 69 177 
parameters for a STRAT-TILT-UNC-UNC-UNC model where each stratigraphy has five units. Apart from the petrophysical 178 
parameters, all other parameters are randomly sampled from a uniform distribution. 179 
Any subset of the geology can be calculated for any sub-volume of an infinite Cartesian space using Noddy, but we limit 180 
ourselves to a 4x4x4 km volume of interest in this study. Similarly, although the geology within this volume can be calculated 181 
at an arbitrary resolution, we have chosen to sample it using equant 20 m voxels as this is well below the typical resolved 182 
measurement scale for these types of data when collected in the field.  183 
 184 
Geophysical forward models were calculated using a Fourier Domain formulation using reflective padding to minimise (but 185 
not remove) boundary effects. The forward gravity and magnetic field calculations assume a flat top surface with a 100 m 186 
sensor elevation above this surface, and the Earth’s magnetic field with vertical inclination, zero declination and an intensity 187 
of 50,000 nano-tesla. 188 
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4. Results 189 

The 73 possible event histories produce 343 possible sequences which averages toto 2915 models per sequence. Given the 190 
imposed bias towards folds, faults and shear zones, different event sequences were more or less likely to be found in the 1M 191 
model suite. and Tthe high-probability event sequences (e.g. FAULT-SHEAR ZONE-FOLD) produced 8245 models and 192 
while the low-probability event sequences (e.g. UNC-TILT-PLUG) produced only 905 models. The different combinations 193 
produced, with plateaux in the number of models calculated giving event sequence frequencies at around 1000, 2000, 4000 194 
and 8000 depending on the number (0,1,2,3 respectively) of events in the sequence. Together these form a “Noddyverse” of 195 
one million 3D geological models and their gravity and magnetic responses. Figure 2 shows an arbitrarily selected suite of 196 
100 models as a 10x10 grid showing the top surface and two sections of the model as in Fig 1, together with the resulting 197 
gravity and magnetic fields, to show the variability of the results. 198 

5. Applications 199 

The same logic of using millions of Noddy models was first applied by generating a massive 3D model training set and used 200 
to invert real-world magnetic data (Guo et al. 2021). That study used a model suite consisting of only FOLD, FAULT and 201 
TILT events, and only one of each to predict 3D geology using a Convolutional Neural Network. This approach corresponds 202 
to a use case where prior geological knowledge as to the local geological history has been used to limit the model search space, 203 
and formal expert elicitation could provide an important pre-cursor step to support the generation of sensible and tractable 204 
problems (citations). In addition to the CNN training demonstrated by Guo et al. (2021), we can envisage three broad 205 
categories of studies that could build upon the 3D model database we present here: 206 

1) Studies into the uniqueness of 3D models relative to geological event histories. The principal question here is 207 
whether any form of clustering classification of the patterns seen in of the geophysical fields, and perhaps the 208 
including map of the surface, can be used to recover the event sequence or event parameters. Feature extraction 209 
techniques are well-known for supporting image classification and clustering, so using the same principles, can we 210 
identify unique clusters of forward models from the Noddyverse, and do these clusters then correspond to distinct 211 
histories.? Likewise, can we train a classifier with extracted features from the forward models of the gravity and 212 
magnetic responses which can then successfully identify models with similar or the same histories. Three broad 213 
aspects need to be considered here: (1) the feature extraction method; (2) choice of pre-processing methods for 214 
dimensionality reduction (Self Organising Maps, Principal Component Analysis, Kernel-Principal Component 215 
Analysis, t-distributed Stochastic Neighbor Embedding etc.) and (3) the clustering (k-means, hierarchical methods, 216 
DBSCAN /OPTICS) or classification methods (random forests, support vector machines, linear classifiers).  217 

A study of geophysical image variability using a simple 2D correlation or maximal information coefficient between 218 
pairs of images of different histories would be illuminating. Do we have images which are the same (or at least very 219 
similar and within the noise tolerance of the geophysical fields) to each other, but belong to very different histories? 220 
If these exist, the ambiguity of the histories can be examined, and we then know where we would expect poor 221 
performance from ML techniques which rely on easily discriminated images. The systems of equations characterising 222 
geophysical inverse problems often? have a non-unique solution. In ML research, if we only use magnetic data or 223 
gravity data for inversion, we will be troubled by the non-uniqueness of the solution. However, because we have both 224 
gravity data and magnetic data, we can extract features from multi-source heterogeneous data at the same time, and 225 
then classify or regress after feature fusion. This could greatly reduce the influence of the non-unique solution. 226 
Having a large set of models will allow clustering of models accordingly to their geophysical response and identifying 227 
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subsets of geological models that are geophysically equivalent and cannot be distinguished using geophysical data. 228 
The analysis of diversity of such subsets of models will give an estimate of the severity of non-uniqueness and allow 229 
the derivation of posterior statistical indicators conditioned by geological plausibility.  230 

2) Comparison between and training schemes of ML systems. We see potential applications of deep learning 231 
techniques (e.g., Convolutional Neural Network and Generative Adversarial Networks) where the series of models 232 
we propose may also be complemented by other datasetdata sets. In this broad topic we would seek to understand 233 
which ML techniques are suitable and effective in mapping geophysical data back to the geology or geological 234 
parameters. We can see potential for investigating which techniques minimise the amount of data necessary to get a 235 
good constraint, i.e., the model structures that most successfully capture geological expert knowledge? This could 236 
be framed as an open challenge to allow different groups to use their preferred approach to the inversion problem.  237 

3) Validation of the robustness of geophysical inversion schemes.  As previously mentioned, one of the limitations 238 
to validating geophysical inversion schemes is the small number of test models available, with the resulting danger 239 
that the inversion parameters are tuned to the specifics of the test model, rather than being generally applicable. The 240 
Noddyverse model suite allows researchers to trial test their inversions against a wide range of scenarios. It will 241 
also allow the examination of the validity and generality of hypotheses at the foundation of several integration and 242 
joint inversion procedures. One well-known example is the underlying assumption that the underlying models vary 243 
spatially in some coherent fashion (Haber and Oldenburg, 1997; Gallardo and Meju, 2003; Giraud et al., 2021, 244 
Ogarko,et al., 2021). The analysis of geophysically equivalent models will also enable us to estimate how 245 
significantly joint inversion or interpretation can reduce the non-uniqueness of the solution, with the potential to 246 
identify families of geological scenarios more suited to joint inversion than others. It is obvious that some 3D 247 
geological models will be geologically more complex than others, and that some could be used for the benchmark 248 
of deterministic geophysical inversion of gravity and magnetic data, but also of other geophysical techniques 249 
relying on wave phenomena. The dataset presented here contains all required ingredients for the training of ML 250 
surrogate models for general applications similar in spirit to Athens and Caers (2021), who train a surrogate ML 251 
model on realizations already sampled by Monte Carlo simulation and show that it is very advantageous 252 
computationally. While the work they present is performed in 2D, it is safe to assume that this may hold in 3D, 253 
which enables another avenue for further use of the Noddyverse. 254 

6. Discussion 255 

In this study we have produced a ML training datasetdata set that attempts to address four recognised limitations of applying 256 
ML to geoscientific datasetdata sets, namely Spatio-temporal Structure, High Dimensionality, Small sample size, and Paucity 257 
of Ground Truth, Multi-resolution Data & Noise, Incompleteness, and Uncertainty in Data. Contrary to the current trendusual 258 
practice, the work for the generation of a comprehensive suite of geological models did not depend on the appropriate manual 259 
training labelling of a neural networkdata. We relied solely on geoscientific theory and principles while remaining 260 
computationally efficient. While realistic-looking suites of geological models have been generated using Generative 261 
Adversarial Networks (Zhang et al., 2019), these are generally represent a limited to a several thousands of samples, within a 262 
limited range of geological scenarios, and the lack of extensive training samples.  263 

6.1 Spatiotemporal Structure 264 

Noddy is by design a Spatio-temporal modelling engine that uses a geological history to generate a model. Simple variations 265 
in the ordering of three events following two fixed events (STRAT & TILT), even with fixed parameters quickly demonstrates 266 
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the important of relative time ordering to final model geometry (Fig. 3). While Noddy is limited to simple sequential events, 267 
nature presents geological processes to be coeval (such as syn-depositional faulting) or partially overlapping resulting in 268 
complex spatiotemporal relationships (Thiele et al., 2016a). Nonetheless, re-ordering only sequential events still produces a 269 
vast array of plausible geometries, and indicates the enormity of the model space, and the necessity of efficient methods to 270 
explore them.  271 

6.2 High Dimensionality 272 

We have limited ourselves to five deformation events in this study, and no more than five units in any one stratigraphy. These 273 
decisions were based on an idea to “keep it simple” whilst simultaneously allowing a great variety of models to be built. We 274 
recognise that these are somewhat arbitrary choices. We could have true randomly complex 3D histories, leading to models 275 
with, for example, nine phases of folding, however the utility of over-complicating the system is not clear, and would rarely 276 
or ever be discernible in natural systems. Similarly, we limited the parameter ranges of each deformation event, again on the 277 
basis that the ranges chosen made models that are more interesting. For example, there did not seem much interest in having 278 
folds with very large wavelengths or very low amplitudes, as they are equivalent to small translations of the geology and 279 
would translate in the geophysical measurements into a regional trend that is often approximated and removed from the 280 
measurements. 281 
Noddy is capable of predicting continuous variations in petrophysical properties, including variably deformed magnetic 282 
remanence vectors and anisotropy of susceptibility, or densities that vary away from structures to simulate alteration patterns, 283 
however we decided to limit this study to simple litho-controlled petrophysics, whilst recognising the interest of studying 284 
more complex discrete-continuous systems. The indexed models could also be reused with different, simpler petrophysical 285 
variations, such as keeping constant values for each rock type. Each model comes with the history file used to generate the 286 
model and this provides the full label for that model, so that if additional information, such as the number of units in a series 287 
is considered to be important, this can be easily extracted from the file. 288 

6.3 Small sample size 289 

The total number of models sounds impressive, however once we divide that number by the 343 different event sequences, 290 
we are left with between 905 and 8245 models per sequence, which whilst still large is by no means exhaustive. There is no 291 
fundamental problem with building 10 or 100 million models, and if this is found to be necessary to provide useful ML training 292 
datasetdata sets we can certainly do so at the expense of an increased compute time: these models were built in around a week 293 
on a computer using 20 processor cores. We can also follow try to apply a metric, such as model topology, to analyse how 294 
well sampled the model space is. Thiele et al. (2016b) analysed the topology of stochastically generated Noddy models and 295 
found that after 100 models for small perturbations around a starting model, the number of new topologies dropped off rapidly. 296 
In our case we are not making small perturbations, so we could expect to require more models before the rate of production 297 
of new topologies decays, and topology is only one possible metric for comparing models. 298 

6.4 Paucity of Ground Truth 299 

The primary goal of this study was to build a large datasetdata set to provide a wide range of possible models for use in training 300 
ML systems and to test more traditional geophysical inversion systems. The models here, whilst simpler than the large test 301 
models mentioned earlier, represent to our knowledge the largest suite of 3D geological models with resulting potential field 302 
data and tectonic history, which has its own utility. This usage applies equally well to classical geophysical inversion codes, 303 
which have traditionally been tested on only a handful of synthetic models prior to being applied to real-world data, for which 304 
there is no ground truth available. 305 
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6.5 Expert Elicitation 306 

To use this suite of models as the starting point for inversion of real-world datasetdata sets (as has been pioneered by Guo et 307 
al., 2021) we can envisage the introduction of expert elicitation methods to meaningfully constrain the model output space 308 
while acknowledging our inherent uncertainty regarding the model input space.  As a probabilistic encoder of expert 309 
knowledge, formal elicitation procedures (O’Hagan, 2006) have contributed greatly to physical domain sciences where 310 
complex models are essential to our understanding of the underlying processes.  From climatology/meteorology/oceanography 311 
(Kennedy, 2008), to geology and geostatistics (Walker, 2014, and Lark et al., 2015), to hydrodynamics and engineering 312 
(Astfalck et al., 2018, and Astfalck et al., 2019), the central role of expert elicitation is being increasingly recognised.  The 313 
complexity and parameterizations of geophysical models, and the expert knowledge that resides within the geophysical 314 
community, suggests this domain should be no different. It is worth noting that the choice of parameter bounds used to define 315 
the 1 million model suite in this article is itself an informal expression of expert elicitation. 316 
Once a targeted structure is reasonably well characterised, the approach taken by Guo et al. 2021 or thoroughly exploring a 317 
narrow search space becomes possible. Unfortunately, in many parts of the world there is no outcrop available, due to tens to 318 
hundreds of metres of cover. In this scenario, it makes sense to start with a broader search for possible 3D models that may 319 
match the observed gravity or magnetic response, given their inherent ambiguity. We can imagine a hierarchical approach 320 
where a subset of the 1M models is identified as possible causative structures, and then these are accepted or rejected based 321 
on the geologist’s prior knowledge, and the accepted models are then used as the basis for a focussed parameter exploration. 322 
In addition within the 1M model suite, it is currently possible to filter the models based on event ordering, and with minor 323 
modifications to the code, it would be possible to filter on any parameter, such as fold wavelength. 324 
 325 

6.6 Extending to the model suite 326 

In the future we may need a better representation of the “real world” 3D model space, specifically to: 327 
• Include more parameters from Noddy, especially for parameters such as fold profile variation, alteration near structures 328 

to allow petrophysical variation within units. This would help to address the Karpatne et al. (2017) challenge of Objects 329 
with Amorphous Boundaries. These are capabilities that exist within Noddy but are not used in this study. 330 

• Allow more events to increase the range of outcomes. We arbitrarily restricted ourselves to two started starting events 331 
(STRAT and TILT) followed by three randomly chosen events, and an extension to the model suite could consider any 332 
number of events in the sequence. 333 

• Include magnetic remanence and anisotropy effects. At present we only model scalar magnetic susceptibility but the 334 
Noddy modelling engine can calculate variable remanence and anisotropic magnetic susceptibility as well. 335 

• Allow linked deformation events. At the moment every event is independently defined, however we could allow 336 
parallel fault sets or dyke swarms, situations which commonly occur in nature. 337 

• Predict different types of geophysical fields. For example, the SimPEG package (Cockett et al., 2015) could easily be 338 
linked to this system to predict electrical fields (Cockett et al. 2015). 339 

• Model larger volumes as large, or deep features cannot currently be modelled due to the 4 km model dimensions. 340 

• Build more models. We in no way believe we have explored the range of possible models in the present model suite, 341 
and if we start in include more events, or more complex event definitions, we will certainly have to generate many more 342 
models, perhaps orders of magnitude more, in order to provide robust training suites and inversion scenarios. 343 
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• Add noise to the petrophysical models and/or the resulting geophysical responses. This would help to address the 344 
Karpatne et al. (2017) challenge of Noise, Incompleteness, and Uncertainty in Data. Incompleteness can be addressed 345 
by removing parts of the geophysical data and does not require new models to be built. Similarly, the challenge of 346 
Multi-resolution Data- Geoscience could be addressed by subsampling parts or all of existing geophysical outputs.  347 

• Include topographic effects. In this study, we have ignored the effect of topography on the models, although again this 348 
could be included in the future, as it is supported by Noddy. 349 

We also need to be clear that a model built in Noddy is not capable of predicting all geological settings, as all Noddy models 350 
are plausible geology, but not all plausible geology can be modelled by Noddy. To improve this situation, we would need to 351 
improve the modelling engine itself. Similarly, the logic of trying to predict geology from geophysical datasetdata sets in this 352 
study is only partially fulfilled: the geometry comes from geological events sequence, but identical geometries can be produced 353 
by different event sequences. 354 

7. Conclusions 355 

This study represents our first steps in producing geologically reasonable training sets for ML and geophysical inversion 356 
applications. We have used Noddy to generate a very large, open-access 1M model, set of 3D geology and resulting gravity 357 
and magnetic models as a ML training sets. These training sets can also be used as test cases for gravity and/or magnetic 358 
inversions. The work presented here may be a first step to overcoming some of the fundamental limitations of applying these 359 
techniques to natural geoscientific datasetdata sets. 360 
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9. Code and Data availability 371 

 372 
A doi (https://zenodo.org/record/4589883) provides access GitHub repository which contains the following elements 373 
(Jessell, 2021): 374 

1. The source code (C language) for the version of noddy adapted to producing random models. 375 

2. A readme.md file with a link to the windows version of the Noddy software, plus a link to 343 tar files, one for 376 
each event history ordering of the model suite. 377 
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3. A Jupyter Notebook (python code) for sampling from and unpacking the models.  378 

4. A link in the same readme.md file to the equivalent mybinder.org version of the notebook so that no code 379 
installation is required to sample from and view the model suite: 380 
https://mybinder.org/v2/gh/Loop3D/noddyverse/HEAD?filepath=noddyverse-remote-files-1M.ipynb  381 

All codes and data are released under the MIT licence. 382 

10. Author Contribution 383 

Mark Jessell wrote the original and modified noddy software, ran the experiments and wrote the python software for 384 
visualising the models. Jiateng Guo and Yunqiang Li were in volved in conceptualisation and manuscript preparation. Mark 385 
Lindsay, Jérémie Giraud and Guillaume Pirot were involved in the conceptualisation, as well as in co-writing the introduction 386 
and discussions sections of the paper. Vitaliy Ogarko, Richard Scalzo and Ed Cripps were involved in developing and co-387 
writing the introductions and discussion sections of the manuscript. 388 
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 503 

Figure 1. Example model set for a STRAT-TILT-DYKE-UNC-FOLD sequence showing a) 3D visualisation looking from the NE 504 
NW of the voxel model, b) the top surface of the model, c) an EW section at the northern face of the model looking from the south, 505 
d) a NS section on the western face of the model looking from the west, and the resulting e) gravity and f) magnetic fields. 506 
Geophysical images are all normalized to model max-min values. 507 

508 
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 509 
Figure 2. Example models for 100 randomly selected models drawn from the 1M model suite showing a) the top surface of the 510 
model, b) an EW section at the northern face of the model looking from the south, c) a NS section on the western face of the model 511 
looking from the west, and the resulting d) gravity and e) magnetic fields. Geophysical images are all normalized to model max-min 512 
values. 513 

 514 

515 
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 516 

 517 
Figure 3. Four possible 3D geological models with the same base stratigraphy (STRAT) followed by five events using four of the 518 
possible different event ordering sequences. 519 
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Event type Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Min/Max number 

of parameters 

Base Stratigraphy  Number of units.  
Range: 2-5 

unit n thickness:  
50-1000 m 

Density of each unit:  
depends on lithology of 
unit n 

Magnetic 
susceptibility of each 
unit: depends on 
lithology of unit n 

    5/12 

Fold Wavelength :  
1,000-11,000 m 

Amplitude :  
200 - 5,000 m 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Phase : 
 0-4000 m 

Along axis amplitude 
decay :  
500-9,500 m 

6/6 

Fault Position of 1 point on fault: 
x,y,z 2000-4000 m 

Displacement :  
0-2000 m 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Pitch of displacement : 
0-90 degrees 

  7/7 

Unconformity Position of 1 point on 
Unconformity:  
x=2000-3000m 
y=2000-4000m 
z=3000-4000 m 

Number of units above 
unconformity:  
2-5 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Density of each unit:  
depends on lithology of 
unit n 

Magnetic 
susceptibility of each 
unit: depends on 
lithology of unit n 

10/17 

Dyke Position of 1 point on fault: 
x=0-4000 m 
y=0-4000 m 
z=0-4000 m 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Width of Dyke :  
100-400 m 

Density :  
depends on lithology  

Magnetic 
susceptibility : 
depends on lithology  

8/8 

Plug Shape :  
Cyclindrical, Conic, 
Parabolic, Ellipsoidal 

Position of centre of 
plug:  
x=1000-4000m 
y=1000-4000m 
z=1000-4000m 

Size of plug:  
parameter varies with 
shape 

Density :  
depends on lithology  

Magnetic 
susceptibility : depends 
on lithology  

  7/9 

Tilt Position of 1 point on 
rotation axis:  
x=2000-3000m 
y=2000-4000m 
z=3000-4000 m 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Rotation :  
-90-90 degrees 

    6/6 

Shear zone Position of 1 point on fault: 
x,y,z 2000-4000 m 

Displacement :  
0-2000 m 

Azimuth :  
0-360 degrees 

Inclination :  
0-90 degrees 

Pitch of displacement : 
0-90 degrees  

Width of Shear 
Zone : 100-2000 m 

8/8 

 520 
Table 1. Free parameters with their allowable ranges for each event.521 
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 522 

Lithology Lithology 
Class 

Genetic Class Mean 
Density 
g.cm-3  

Standard 
Deviation 
Density 

Mean Log 
Susceptibility 

(cgs)  

Standard 
Deviation Log 
Susceptibility  

Susceptibility 
Bimodality 

Flag 

 Felsic_Dyke_Sill  Dyke  Intrusive 2.612593 0.090526329 -3.693262 1.50094258 1 

 Mafic_Dyke_Sill  Dyke  Intrusive 2.793914 0.015759637 -2.119223 0.85376583 0 

 Granite   Plug  Intrusive 2.691577 0.094589692 -2.455842 0.86575449 1 

 Peridotite  Plug  Intrusive 2.851076 0.154478049 -1.158807 0.4390425 0 

 Porphyry  Plug  Intrusive 2.840024 0.128971814 -2.613833 0.99194475 1 

 Pyxenite_Hbndite  Plug  Intrusive 3.194379 0.253322535 -1.946615 1.03641373 0 

 Gabbro  Plug  Intrusive 3.004335 0.159718751 -2.124022 0.82126305 1 

 Diorite   Plug  Intrusive 2.851608 0.134656746 -2.088111 0.81829275 1 

 Syenite  Plug  Intrusive 2.685824 0.115078068 -2.461453 0.91295395 1 

 Amphibolite   Met_strat  Metamorphic 2.875933 0.142164171 -2.69082 0.90733619 1 

 Gneiss  Met_strat  Metamorphic 2.701191 0.073583537 -3.18094 0.95259725 1 

 Marble  Met_strat  Metamorphic 2.871775 0.532997473 -3.671996 1.25374051 0 

 Meta_Carbonate  Met_strat  Metamorphic 2.738965 0.036720136 -3.117868 0.82945531 0 

 Meta_Felsic  Met_strat  Metamorphic 2.782584 0.301451931 -3.55755 0.65748564 1 

 Meta_Intermediate  Met_strat  Metamorphic 2.894892 0.265153614 -3.673276 0.26107008 0 

 Meta_Mafic   Met_strat  Metamorphic 2.814461 0.096381942 -3.250044 0.62513286 0 

 Meta_Sediment  Met_strat  Metamorphic 2.982992 0.49439556 -3.402807 0.89505466 1 

 Meta_Ultramafic  Met_strat  Metamorphic 2.843941 0.138208079 -2.166206 0.76543947 0 

 Schist  Met_strat  Metamorphic 2.81978 0.109752597 -3.18525 0.69584686 0 

 Andesite   Met_strat  Volcanic 2.721189 0.091639014 -2.15826 0.71678329 0 

 Basalt  Met_strat  Volcanic 2.79269 0.155153198 -2.155728 0.64718503 0 

 Dacite  Met_strat  Volcanic 2.62127 0.129131224 -2.562422 0.8166926 0 

 Ign_V_Breccia  Met_strat  Volcanic 2.910459 0.101746428 -2.706956 0.73116944 0 

 Rhyolite  Met_strat  Volcanic 2.630833 0.071233818 -3.046728 0.78711701 0 

 Tuff_Lapillistone  Met_strat  Volcanic 2.64447 0.110173772 -2.878701 0.86889142 0 

 V_Breccia  Met_strat  Volcanic 2.771579 0.167796457 -2.524945 0.90943985 0 

 V_Conglomerate  Met_strat  Volcanic 2.755267 0.10388303 -2.304483 1.00991116 0 

 V_Sandstone  Met_strat  Volcanic 2.779715 0.101133121 -2.903361 0.82701019 0 

 V_Siltstone  Met_strat  Volcanic 2.859347 0.102741619 -2.769054 0.87771183 0 

 Conglomerate  Strat  Sedimentary 2.618695 0.116158268 -3.31026 0.9740717 0 

 Limestone  Strat  Sedimentary 2.713912 0.147683486 -4.256256 0.87772406 0 

 Pelite   Strat  Sedimentary 2.698554 0.021464631 -3.369295 0.5295974 1 

 Phyllite  Strat  Sedimentary 2.739177 0.173374383 -3.696455 0.73955588 0 

 Sandstone  Strat  Sedimentary 2.622672 0.107003083 -3.452758 0.64521521 0 

 Greywacke  Strat  Sedimentary 2.861463 0.16024622 -3.841047 1.14724626 1 
 523 

Table 2. Simplified petrophysical values derived from British Columbia database (Geoscience BC, 2008).  Values are randomly 524 
sampled from Gaussian distributions defined by mean and standard deviation of density and log magnetic susceptibility. For 525 
lithologies with bimodal magnetic susceptibilities (flag=1), mixed sampling is based on offsetting the means by +/-0.75 orders of 526 
magnitude, which approximates the variations seen in nature. 527 
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