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Abstract. Long time-series of weather grids are fundamental to understanding how weather affects environmental or 

ecological patterns and processes such as plant distributions, plant and animal phenology, wildfires, and hydrology.  Ideally 

such weather grids should be openly available and be associated with uncertainties so that users can understand any data 10 

quality issues.  We present a History of Open Weather in New Zealand (HOWNZ) that uses climatological aided natural 

neighbour interpolation to provide monthly 1-km resolution grids of total rainfall, mean air temperature, mean daily 

maximum air temperature, and mean daily minimum air temperature across New Zealand from 1910 to 2019.  HOWNZ 

matches the best available temporal extent and spatial resolution of any open weather grids that include New Zealand, and is 

unique in providing associated spatial uncertainty in appropriate units of measurement.  The HOWNZ weather and 15 

uncertainty grids capture the dynamic spatial and temporal nature of the monthly weather variables and the uncertainty 

associated with the interpolation.  We also demonstrate how to quantify and visualise temporal trends across New Zealand 

that recognise the temporal and spatial variation of uncertainties in the HOWNZ data.  The HOWNZ data is openly available 

at  https://doi.org/10.7931/zmvz-xf30 (Etherington et al., 2021). 

 20 

1 Introduction 

Climatologies such as WorldClim2 (Fick and Hijmans, 2017) and Chelsa (Karger et al., 2017) provide spatial grids of 

climatic variables such as temperature and rainfall that have underpinned thousands of environmental and ecological studies.  

These climatologies represent long-term ≈ 30-year climate averages, but long time-series of weather grids are also highly 

desirable as they can be correlated with long-term environmental or ecological data to explore how weather influences such 25 

processes.  For example, monthly time-series data of weather conditions can be used to improve the understanding of plant 

distributions (Stewart et al., 2021), plant and animal phenology (Gordo and Sanz, 2005), wildfire histories (Girardin and 

Wotton, 2009), and hydrology (Remesan et al., 2014). 
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Meteorologists and climatologists are recognising the importance of implementing open access methodologies, as openly 30 

sharing data, source code, and knowledge provides exciting opportunities for scientific discovery (de Vos et al., 2020).  In 

New Zealand there are limited open access options for national-scale weather grids (Table 1), and none of these meet all the 

currently optimal criteria amongst these open access options of spatial (≤ 1 km2) and temporal (monthly) resolution over the 

last century.  Producing such historical weather data is challenging because weather station data are often sparse, especially 

in remote areas and for earlier time periods.  However, this challenge should not preclude the creation of historical weather 35 

data, if we accept that we cannot be consistently successful for all locations and dates and we prioritise providing weather 

data with associated uncertainty data. 

 

Much emphasis has been placed on quantifying (Foley, 2010) and visualising (Retchless and Brewer, 2016) the uncertainty 

of future climates.  Quantifying and visualising uncertainty is also critical for the judicious use of historic weather data, as 40 

even when following open science practices that involve sharing data and code it can still be difficult to ensure that an end-

user is aware of and understands the quality of the data (de Vos et al., 2020).  Historical climate and weather data are often 

used predictively, but these predictions must recognise the underlying uncertainties so that their reliability can be understood 

and communicated.  The uncertainty (or reliability) of weather and climate spatial data is often quantified with metrics such 

as the root-mean-square error (RMSE) or the mean absolute error (MAE) derived from cross-validation that iteratively 45 

excludes each weather station and then interpolates a value for the weather station using the remaining data (Willmott and 

Matsuura, 2006).  However, these are global metrics that describe uncertainty with a single spatially averaged value and 

provide no information about how the uncertainty will vary across space (Zhang and Goodchild, 2002).  When estimates of 

spatial uncertainty accompany climate and weather data, they typically simply indicate areas that are reliable (Abatzoglou et 

al., 2018;Harris et al., 2020b), which limits how uncertainty can be incorporated into analyses as estimates from individual 50 

cells are not matched with an uncertainty in the units of measurement. 

 

To facilitate understanding of how long-term weather patterns have been changing and potentially affecting environmental 

and ecological processes in New Zealand, we have produced a History of Open Weather in New Zealand (HOWNZ).  

HOWNZ is a new openly available history of temperature and rainfall weather in New Zealand that matches the best 55 

available spatial and temporal extent and resolution of any currently available open data and is unique in providing 

associated spatial uncertainty grids in appropriate units of measurement (Table 1). 

 

2. Weather and climatology data 

Monthly weather station data are freely available from New Zealand's National Climate Database (NIWA, 2020).  For New 60 

Zealand’s three main islands and their associated near-shore islands we compiled all reliable data with sub-kilometre spatial 
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precision from 1900 to 2019 for monthly statistics of: total rainfall, mean air temperature, mean daily maximum air 

temperature, and mean daily minimum air temperature.  The amount of data available in any given month varied through 

time, across space, and between weather variables, but there were some consistencies.  There was much more rainfall data 

than temperature data, there was generally more data in recent times (with a peak around 1980), and there was always less 65 

data in mountainous interiors of both islands and in the more remote southerly and westerly regions of New Zealand (Figure 

1).  Openly available New Zealand climatology grids for each weather variable giving the average weather in each month for 

the period 1950-1980 at 100 m grid cell resolution (McCarthy et al., 2021;Leathwick et al., 2002) were reprojected and 

aggregated to 1-km2 grid cell resolution. 

 70 

3. Interpolation with uncertainty 

Climatologies have formed part of successful previous weather interpolations in New Zealand (Tait et al., 2006).  Therefore, 

we used a climatologically aided interpolation approach by interpolating monthly weather as an anomaly from a climatic 

normal (Willmott and Robeson, 1995) as this technique has been successfully applied elsewhere (Abatzoglou et al., 

2018;Harris et al., 2020b;Hofstra et al., 2008).  The basic premise of climatologically aided interpolation is that rather than 75 

directly interpolating weather station data in each month, by using an underlying long-term climatology grid for that month, 

monthly anomalies can be calculated as the difference between the weather station value and the climatology grid value.  

These anomalies are then interpolated and added to the climatology grid to estimate how the weather in that month deviated 

from the climatological normal. 

 80 

We selected natural neighbour (or Sibson) interpolation (Sibson, 1981) to interpolate the anomalies.  This decision was 

based on evidence that natural neighbour interpolation performs well for interpolating weather data (Hofstra et al., 

2008;Keller et al., 2015;Lyra et al., 2018), but more specifically because natural neighbour interpolation is: (i) an exact 

interpolator, meaning it will retain the original data values in the interpolated grid and will only interpolate within the range 

of the original data and so cannot produce wildly unrealistic interpolations; (ii) a local method, which interpolates for a 85 

location only using data from that location’s immediate surrounds; (iii) spatially adaptive, so automatically adapting to 

localised data distribution and density; (iv) not based on fitting statistical trends and so does not require large sample sizes 

(Etherington, 2020).  These properties of natural neighbour interpolation are desirable given our interpolations will need to 

adapt to the increasingly sparse and irregular data that occurs further back in New Zealand history. 

 90 

We applied a discrete (or digital) form of natural neighbour interpolation (Park et al., 2006) that simultaneously calculates 

uncertainty as a cross-validation error-distance field (Etherington, 2020).  This interpolation method works by defining a grid 

of cells for which interpolated values will be calculated; data cells are given the mean value of any weather stations they 
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contain, and all other cells are given the value of the nearest data cell (Figure 2a).  The interpolated value for a grid cell is the 

mean of the grid cell values that are as close or closer to the interpolation cell than a data cell (Figure 2b), which, when 95 

repeated across all grid cells, results in a smooth interpolation grid (Figure 2c).  Uncertainty is calculated by using the same 

discrete natural neighbour interpolation process to interpolate the distances to the data cells to produce natural neighbour 

distances (Figure 2d) and to interpolate the cross-validated error rate, as the ratio of the cross-validated absolute error to 

natural neighbour distance, for each data cell (Figure 2e).  The product of the natural neighbour distances and cross-validated 

error rates produces a cross-validation error-distance field (Figure 2f) that yields a grid of interpolation uncertainties in the 100 

same units as the interpolation and is highest in areas that are more distant from data cells and are in areas that areas that are 

harder to interpolate accurately. 

 

The resulting weather grids appeared to capture the heterogeneous and dynamic nature of the monthly weather variables and 

the uncertainty associated with the interpolation.  For example, the May total rainfalls and uncertainties (Figure 3) illustrate 105 

the dynamic nature of both the monthly weather variables and the uncertainty.  There are clear differences in total rainfall in 

May over time and shifts in the location of the wettest regions.  Our emphasis on quantifying uncertainty is justified by the 

uncertainty grids being extremely dynamic, with the magnitude and location of uncertainty changing dramatically through 

time.  We interpret this dynamic uncertainty as being due to the data limitations of interpolation, as higher uncertainty occurs 

in locations more distant from weather data (Figure 1).  However, uncertainty can be high in regions with weather data 110 

available, which we interpret as arising from the spatial variability of individual monthly weather patterns, as when spatial 

variability of weather patterns increases over shorter distances, interpolation becomes increasingly difficult (Etherington, 

2020). 

 

4. Interpolation validation 115 

The MAE provides a reasonable estimate of the actual error rates for discrete natural neighbour interpolation (Etherington, 

2020).  Therefore, even though each monthly weather grid has a matching uncertainty grid, we also used cross-validation to 

calculate the MAE for each monthly interpolation to validate the method and facilitate comparisons with other weather 

interpolations (Willmott and Matsuura, 2006). 

 120 

While the number of data cells (which equates closely to the number of weather stations) used during interpolation varied 

over time, the MAEs associated with all the weather variables remained reasonably constant around 20 mm for total rainfall 

and 1 °C for all temperature variables (Figure 4).  This consistency suggests that the interpolation methodology was robust 

to reductions in available data.  As might be expected, the MAEs were lowest when interpolating data during 1950-1980 

which is the period the climatologies aiding the interpolation were created for.  There was also an increase in MAE moving 125 
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back in time from 1950 to 1900 that becomes far more pronounced pre-1910 as weather data availability becomes extremely 

limited.  Therefore, we conclude that the data are most reliable from 1910 to 2019, representing the four decades either side 

of the 1950-1980 climatologies used in the interpolations. 

 

The spatial variability in monthly uncertainty (Figure 3) explains the variable pattern of MAE over time (Figure 4); while the 130 

number and location of weather stations may vary from month to month, the weather patterns may change dramatically 

making some months easier to interpolate than others.  This variability of uncertainty further emphasises the need to provide 

spatially and temporally relevant estimates of uncertainty for all interpolations, and that globally aggregated uncertainty 

estimates may not provide users with a full picture of the data’s limitations. 

 135 

5. Using the uncertainty data 

When using interpolated weather data users need to be able to make decisions specific to their requirements (de Vos et al., 

2020).  Therefore, in HOWNZ we have endeavoured to match every interpolation with an individual measure of uncertainty 

in the relevant units.  However, we recognise that it is unusual for historical weather data to be presented alongside such 

detailed uncertainty estimates.  These uncertainty estimates provide a new analytical opportunity and challenge for potential 140 

data users, so to enable data users to leverage the uncertainty data we feel it is important to demonstrate how to incorporate 

the uncertainty data into an analytical workflow. 

 

A simple example of weather time-series analysis would be to use a Spearman’s rank (rs) correlation (Gregory, 

1978;Spearman, 1904) to detect the directionality of any trends in weather patterns over time (Girardin and Wotton, 2009).  145 

To incorporate uncertainty into this process, we adopt a Monte Carlo approach in which we produce many equally possible 

weather histories by randomly sampling each month’s weather as a random value from a uniform distribution with a range 

equal to the interpolation uncertainty (though limiting rainfall to a minimum of 0 mm).  Many trends can then be calculated, 

with their distribution used to infer the reliability of the analysis.  The importance of incorporating uncertainty is evident 

when comparing locations that have differing uncertainty levels.  For a location with high uncertainty the possible weather 150 

histories can vary widely around the single interpolated weather history resulting in a wide distribution of possible trends 

(Figure 5a).  In other instances, the trend may be stronger than the uncertainty meaning that while the strength of the trend 

varies its direction can be clearly established (Figure 5b).  At locations where there is little uncertainty and hence minimal 

variation in possible weather histories the trend can be established precisely (Figure 5c). 

 155 

If this trend analysis with uncertainty process is repeated for every location, spatial trends can be analysed.  The challenge 

then becomes how to best visualise the spatial pattern of uncertainty.  Based on guidance relating to the cartographic 
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visualisation of uncertainty (Kaye et al., 2012;Retchless and Brewer, 2016), we selected a diverging colour scheme to show 

trends as the median rs of the possible weather histories, and a value-by-alpha approach (Roth et al., 2010) to mask locations 

of increasing uncertainty measured as the 5th to 95th percentile range of the rs of the possible weather histories.  The resulting 160 

map indicates that in some regions there are clear trends in weather patterns over time, but in other regions the uncertainty is 

too large to reliably make inferences from them (Figure 6). 

 

These results clearly demonstrate that it is possible to produce a long-term history of interpolated weather and emphasise the 

importance of quantifying the uncertainty of all interpolations.  It is obviously impossible for us to give guidance on how to 165 

incorporate uncertainty into all possible applications, but the Monte Carlo approach we present could be adapted to many 

situations.  For example, the trend analysis shown here could be extended for those users interested in comparing long-term 

environmental data to weather data to identify associations between an environmental process and weather (Girardin and 

Wotton, 2009). 

 170 

6. Limitations and future recommendations 

Some aspects of the temporal and spatial scales of HOWNZ could be improved in subsequent refinements of this dataset.  

One limitation is that the monthly temporal resolution does not capture extreme but short duration weather events.  For 

example, in July of 1996 there was an extreme cold snap that had significant effects on vegetation in southern New Zealand 

(Bannister, 2003) but is not evident in our data that averages minimum temperatures over the whole month.  We only had 175 

access to monthly climatologies on which to base our interpolations, but if openly available weekly, or even daily, 

climatologies were created then it would be possible to interpolate historical weather at a finer temporal resolution to better 

capture extreme weather events of short durations. 

 

While improving temporal resolution would require the creation of new climatologies, the spatial resolution could be 180 

improved up to 100 m with the climatologies used here.  This improvement could be beneficial in the mountainous areas of 

New Zealand where temperatures can vary considerably within the 1-km resolution of our grids.  Future improvements in 

temporal and spatial resolution would benefit from a more efficient computational workflow.  Our computational workflow 

limited our processing to a 1-km resolution, but future versions could either leverage high performance computing, or to 

maintain a high degree of openness could continue to use desktop computing but with discrete natural neighbour 185 

interpolation leveraging the power of graphics processing units that are well suited to this method (Park et al., 2006). 

 

We do not feel there is much point in trying to extend the temporal extent of the data set. The growth of MAE associated 

with the reduction of weather data pre-1910 (Figure 4) indicates the available weather station data available is insufficient to 
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reliably estimate historical weather using our approach before the 20th century, and that palaeo-environmental techniques 190 

may provide a better option for longer-term weather, or perhaps more realistically, climate information (Cook et al., 

2006;Duncan et al., 2010).  There was a subtle increase in MAE towards the present that may be a function of a reduction in 

weather station data, particularly rainfall data, and perhaps a growing temporal mismatch between the 1950-1980 

climatologies used to aid the interpolation (Figure 4).  This indicates that continuing to use interpolation methods may 

become less feasible in the future.  More recent climatologies could be produced to provide more temporally relevant climate 195 

data, but satellite data may provide a more useful data source for more recent weather history (Funk et al., 2015).  We 

believe our interpolation approach is most valid for the pre-satellite era, and that by producing data that span part of the 

satellite era we provide a useful overlap for comparative purposes that could allow for a transition between historical weather 

data sources. 

 200 

7. Data availability 

The resulting HOWNZ data (Etherington et al., 2021) are openly available in non-proprietary file formats under a Creative 

Commons by Attribution 4.0 Licence and are archived at the Manaaki Whenua – Landcare Research DataStore  

https://doi.org/10.7931/zmvz-xf30. 

 205 

8. Code availability 

All HOWNZ analyses were conducted using an open-source software Python computational framework (Pérez et al., 2011) 

in conjunction with the gdal (GDAL/OGR contributors, 2021), pyproj (Snow et al., 2020), NumPy (Harris et al., 2020a), 

SciPy (Virtanen et al., 2020), numba (Lam et al., 2015), and Matplotlib (Hunter, 2007) packages.  All the resulting code used 

to process data and plot figures presented here (Etherington, 2021) is openly available under an MIT Licence from the 210 

Manaaki Whenua – Landcare Research DataStore https://doi.org/10.7931/yk7g-vz81. 

 

9. Conclusions 

We view HOWNZ as a, rather than the, history of New Zealand weather; it would be possible to repeat the process using 

equally defensible quantitative methods and obtain different results.  Likewise, changes in the spatial or temporal resolution 215 

will result in different patterns, but there is no single best resolution as this will vary depending on the desired application.  

Nevertheless, as HOWNZ matches the best available spatial and temporal extent and resolution of any currently available 
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open weather grids (Table 1), we believe that in creating HOWNZ we have significantly improved the ability for 

environmental and ecological scientists in New Zealand to understand how changing weather patterns have affected various 

environmental and ecological processes.  Even with the spatially and temporally complex patterns of uncertainty, that are 220 

sometimes large, it is still possible to find consistent trends in weather (Figure 6).  We also hope our efforts to produce 

interpolation estimates with associated uncertainty, and examples of how to build that uncertainty into any analyses, will 

encourage the quantification and visualisation of uncertainty in other weather and climate data sets. 
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Table 1: Open access datasets providing a time-series of spatial grids that estimate precipitation and temperature that include New 

Zealand. 

Dataset Temporal extent Temporal 

resolution 

Spatial extent Spatial 

resolution 

Uncertainty 

grid 

Worldclim 2 (Fick and Hijmans, 2017) 1960-2018 Monthly Global ≈ 4 km No 

Chelsa (Karger et al., 2017) 1979-2013 Monthly Global ≈ 1 km No 

TerraClimate (Abatzoglou et al., 2018) 1958-2015 Monthly Global ≈ 4 km No 1 

ERA5-Land (Muñoz Sabater, 2019) 1981-2021 Monthly Global ≈ 9 km No 1 

CRU TS version 4 (Harris et al., 2020b) 1901-2018 Monthly Global ≈ 50 km No 1 

HOWNZ 1910-2019 Monthly New Zealand 1 km Yes 

1 An uncertainty grid is provided to aid a user to make a personal uncertainty assessment but it is not in the units of 340 

measurement. 
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Figure 1: A time-series of the total number of monthly weather records for each year within 25 × 25 km grid cells for mean air 345 
temperature (that are similar to mean daily maximum air temperature and mean daily minimum air temperature) and total 

rainfall.  Cells with ≥ 12 records will usually mean at least one weather station is present will records for all 12 months of the year, 

but in some instances many weather stations may be present resulting in tens or hundreds of records per grid cell. 
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Figure 2: An example of discrete natural neighbour interpolation with a cross-validation error-distance field.  Having defined a 350 
grid of cells (a) each cell is given the value of the nearest data cell d, (b) for any interpolation cell i the interpolated value is the 

mean of cell values that are as close or closer to the interpolation cell than a data cell, that (c) when repeated for all grid cells 

produces a natural neighbour interpolation.  Natural neighbour interpolation is also used to interpolate (d) the distances to the 

data cells, and (e) the cross-validated error rate of each data cell.  The interpolation uncertainty is then (f) the cross-validation 

error distance field that is the product of the natural neighbour distances and error rates. 355 
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Figure 3: Example time-series of climatologically aided discrete natural neighbour interpolation of May total rainfall with 

associated uncertainty. 

 360 
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Figure 4: Monthly time-series of the number n of data cells (that relates closely to the number of weather stations) contributing to, 

and the cross-validated mean absolute error (MAE) of, climatologically aided natural neighbour interpolation across New Zealand 

for (a) total rainfall (mm), (b) mean air temperature (°C), (c) mean daily minimum air temperature (°C), and (d) mean daily 365 

maximum air temperature (°C).  The grey areas show the period (1950-1980) over which the climatologies used to aid 

interpolation apply, and the dashed lines indicate the temporal limit of reliable data. 
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Figure 5: Examples of mean of summer months (December, January, and February) maximum temperature trend analysis that 

incorporates interpolation uncertainty for three locations in New Zealand with (a) high uncertainty and no reliable trend, (b) some 370 
uncertainty but a consistent positive trend, and (c) little uncertainty and a confident negative trend.  For each location, the weather 

history for the interpolated values is shown along with the first 10 of 100 possible weather histories that are within the range of 

uncertainty for the interpolated value for each month.  The distribution of trends for the 100 possible weather histories are shown 

as Spearman’s Rank (rs) correlations between temperature and time. 
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 375 

Figure 6: Spatial uncertainty analysis for the summer months (December, January, and February) trends in (a) mean maximum 

temperature, and (b) total rainfall.  Trends were calculated as a Spearman’s Rank (rs) between the weather and time from 1910 to 

2019 for 100 possible weather histories that were within the range of uncertainty for the interpolated values for each month.  The 

median rs value is visualised along with 5th to 95th percentile range of rs values as a measure of uncertainty. 

 380 
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