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Abstract 

The shells of marine invertebrates can serve as high-resolution records of oceanographic and atmospheric change 

through time. In particular, oxygen and carbon isotope analyses of nearshore marine calcifiers that grow by 

accretion over their lifespans provide seasonal records of environmental and oceanographic conditions. 

Archaeological shell middens generated by Indigenous communities along the Northeast Pacific coast contain shells 15 
harvested over multiple seasons for millennia. These shell middens, as well as analyses of archival and modern 

shells, have the potential to provide multi-site, seasonal archives of nearshore conditions throughout the Holocene. 

A significant volume of oxygen and carbon isotope data from archaeological shells exists, yet is separately 

published in archaeological, geochemical, and paleoceanographic journals and has not been comprehensively 

analyzed to examine oceanographic change over time. Here, we compiled a database of previously published oxygen 20 
and carbon isotope data from archaeological, archival, and modern marine molluscs from the North American coast 

of the Northeast Pacific (32oN to 50oN). This database includes oxygen and carbon isotope data from over 550 

modern, archaeological, and sub-fossil shells from 8880 years before present (BP) to the present, from which there 

are 4,845 total δ13C and 5,071 total δ18O measurements. Shell dating and sampling strategies vary among studies (1-

118 samples per shell) and vary significantly by journal discipline. Data are from various bivalves and gastropod 25 
species, with Mytilus spp. being the most commonly analyzed taxon. This novel database can be used to investigate 

changes in nearshore sea surface conditions including warm-cool oscillations, heat waves, and upwelling intensity, 

and provides nearshore calcite δ13C and δ18O values that can be compared to the vast collections of offshore 

foraminifera calcite δ13C and δ18O data from marine sediment cores. By utilizing previously published geochemical 

data from midden and museum shells rather than sampling new specimens, future scientific research can reduce or 30 
omit the alteration or destruction of culturally valued specimens and sites. The data set is publicly available through 

PANGAEA at https://doi.org/10.1594/PANGAEA.932671 (Palmer et al., 2021). 
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1 Introduction 35 
1.1 Nearshore records of environmental change 

Analysis of past climatic and oceanographic change is critical for understanding scales of natural variability in 

marine systems and is thus essential to predict outcomes of modern climate change. Paleoceanographic studies 

largely focus on offshore marine sediment archives because they provide long-term, continuous archives of ocean 

and climate change over time (e.g. Hendy et al., 2002; Lisiecki and Raymo, 2005). Yet, we lack similar continuous 40 
records of nearshore environments, preventing quantification of past oceanographic changes in these systems. Shell 

material from nearshore marine molluscs are archives of the environment in which these organisms lived, and shifts 

in oxygen and carbon isotope ratios indicate changes in sea surface temperature, salinity, and upwelling (Andrus, 

2011). Additionally, such archives can provide insight into the role of nearshore marine molluscs in ecosystems and 

as resources for human communities. In the coastal Northeast Pacific, an abundance of sub-fossil marine mollusc 45 
shells are found in archaeological middens, which have been analyzed to provide environmental proxies and to 

understand historical food sources and trading routes (Rick et al., 2006a; Braje et al., 2012; Eerkens et al., 2013). 

Nearshore shell archives typically represent snapshots of paleoceanographic history due to the limited lifespan of 

these organisms and inconsistencies in the preservation of these archaeological and geologic records compared to 

long-term offshore marine records (Kennett and Kennett, 2000; Rick et al., 2006a; Robbins and Rick, 2006; Andrus, 50 
2011). Here we synthesize previously published records of oxygen and carbon isotopes in nearshore marine 

molluscs in order to provide an archive that allows researchers to ask questions across broader spatial and temporal 

scales. We address the following questions in this paper to provide context for our database: 

1) What are the spatial, temporal, and taxonomic distributions of previously collected geochemical data from 

nearshore marine molluscs from the Northeast Pacific? 55 
2) What metadata exists for these shell geochemistry records (taxa, age, latitude and longitude)?  

3) What strategies are used to sample individual shells? How do sampling strategies differ between studies 

that collected data for archaeological vs. oceanographic research? 

 

1.2 Oxygen and carbon isotopes as proxies for oceanographic reconstruction 60 
Oxygen and carbon isotopes from molluscan biocalcite are established proxies for past environmental and 

oceanographic change. In an oceanographic context, oxygen isotopes of shell carbonate are used as a proxy for 

changes in sea surface temperature, salinity, and ice volume. In archaeological research, oxygen isotopes analyses of 

the outermost growth edge of shells (the most recent growth before death) are often used to infer sea surface 

temperatures that reflect seasonal human foraging patterns (Butler et al., 2019). Shell carbon isotopes are a proxy for 65 
the isotopic signature of dissolved inorganic carbon, which is largely dependent on biological productivity and 

respiration (Butler et al., 2019). Vital effects, or offsets from expected isotopic equilibria due to biological processes 

of each individual species and organism, confound interpretations of oxygen and carbon isotopes as oceanographic 

proxies (Gröcke and Gillikin, 2008). Here, we do not attempt to adjust values for the vital effects of each species or 

to convert carbonate oxygen or carbon isotope values into environmental variables (e.g. sea surface temperature), 70 
rather we compile the raw values as reported in each study to maintain consistency within the database.   
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1.2 Archaeological shells as environmental archives 

Shell middens - the remnants of harvesting by Indigenous humans - are common along the west coast of North 

America. These middens are composed of diverse assemblages of intertidal and subtidal invertebrate taxa, including 75 
arthropods, bivalves, echinoderms, and gastropods. Along the western North American coast, evidence for human 

occupation and human-environment interactions in the nearshore environment extends back to the late Pleistocene 

(Rick et al., 2006a; Andrus, 2011; Becerra-Valdivia and Higham, 2020). Well preserved archaeological records from 

the California Channel Islands show evidence of human communities that relied heavily on marine hunting, fishing, 

and foraging throughout the Holocene (Rick et al., 2005). Marine molluscs were an important dietary and cultural 80 
resource for many Native peoples living along the North American coast through the Holocene (Jones and Richman 

1995, Braje et al., 2012, Vellanoweth et al., 2006, Jones and Richman 2012). Archaeological shells are ideal 

candidates for paleoceanographic analysis in this region because they are relatively abundant along the North 

American west coast and many shells have been isotopically analyzed for environmental reconstruction in past 

studies.  85 
 

Synthesizing previous work conducted by both archeologists and paleoceanographers in the context of 

environmental reconstruction will allow for the examination of a substantial amount of existing nearshore data while 

minimizing future destructive sampling. Shell middens remain important cultural sites for many Indigenous tribes 

today; as such, reducing or eliminating the use of additional destructive testing (including isotopic analysis) for 90 
scientific analysis maintains the cultural value of middens and respects cultural practices and traditions of tribes. 

Further, specimens maintained in museum collections are often not available for destructive analysis. Thus, by 

synthesizing previously published work and by increasing collaboration and conversations between archeologists, 

geochemists, and paleoceanographers, we can gain further insight across all fields without conducting additional 

destructive sampling. 95 
 

1.4 Shell Sampling Strategies  

Paleoceanographers and archaeologists target different questions, and thus utilize divergent sampling strategies 

when analyzing the geochemistry of nearshore mollusc shells. Small, often powdered, samples of calcium carbonate 

are extracted from the whole shell for analysis. Subsampling, here defined as taking more than one measurement 100 
from the same shell, can be achieved through drilling with a micromill or handheld drilling device (such as Dremel 

tool). The number of subsamples collected from a given shell and the location of the subsampling varies broadly 

across disciplines and individual researchers. Archeologists who seek to determine the seasonality of  shell 

collection to better understand human history often conduct isotopic analyses only of the outermost edge of a shell 

(Eerkens et al., 2013; Jazwa and Kennett, 2016). This may involve a single sample or multiple subsamples from an 105 
individual shell (Andrus, 2011). Alternatively, researchers seeking to use shells as an archive of oceanographic 

change through time or to understand the life history of the mollusc may use higher resolution sequential sampling 

in order to generate a record of isotopic changes over time (Takesue and van Geen, 2004; Ferguson et al., 2013; 
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Robbins et al., 2013). For this approach, a micromill or other drilling tool is typically used to sequentially sample a 

shell at multiple points along a growth (time) axis (Andrus, 2011). The new database presented here provides 110 
opportunities to examine the variation in shell sampling protocols used among researchers from different disciplines 

and explore how these methods may limit or enhance the usefulness of sampling at different resolutions for 

paleoceanographic interpretations.  

 

2 Methodology 115 
Here, we assembled a database of oxygen and carbon isotope values from nearshore marine molluscs extracted from 

peer-reviewed publications in archaeological, geochemical, and oceanographic journals. The database is structured 

with each entry (row) representing a unique geochemical measurement; multiple subsamples were often collected 

from individual shells; therefore a single shell may have multiple entries (rows) for each subsample drilled along the 

shell. Detailed metadata were recorded for each individual data point including, when available: paper of original 120 
publication, publication year, sample number (given by original authors), subsample number (given by original 

authors), age in years before present, species, source (midden or modern), latitude, longitude, calculated sea surface 

temperature (only if published by original authors), archaeological trinomial (when applicable). For every entry in 

the database, we added a unique shell identification number for each individual and a unique subsample 

identification number (when applicable). We also recorded the number of subsamples per shell, which is the number 125 
of calcium carbonate samples extracted from and analyzed for oxygen or carbon isotopes for each given shell.  

 

Additionally, we compiled the following metadata about the species represented in the database: tidal height 

(intertidal, subtidal), life mode (infaunal, epifaunal), and habitat (estuary, open coast). Life mode represents the 

faunal niche of the species, either infaunal or epifaunal (Table 1). Habitat indicates the marine environment as 130 
determined by geographic location, proximity to coast, species, and reported environment in the original publication 

(Table 1).  

 
Species Common Name Tidal Height Life 

Mode 
Citations 

Chione fluctifraga  intertidal infaunal (Keen, 1971) 

Chione cortezi  intertidal infaunal (Keen, 1971) 

Haliotis cracherodii Black abalone intertidal epifaunal (Tissot, 1988; Light et al., 2007) 

Haliotis rufescens Red abalone intertidal, subtidal epifaunal (Dı́az et al., 2000; Light et al., 2007) 

Macoma sp.  intertidal infaunal (Light et al., 2007) 

Crassostrea gigas Pacific oyster 
(Magallana gigas) 

intertidal epifaunal (Light et al., 2007) 

Mytilus californianus California mussel intertidal epifaunal (Suchanek, 1978, 1981; Light et al., 
2007)  

Mytilus edulis Blue mussel intertidal epifaunal (Suchanek, 1978, 1981; Light et al., 
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2007) 

Mytilus sp. Mussel intertidal epifaunal (Seed and Suchanek, 1992; Light et 
al., 2007)  

Mytilus trossulus Bay mussel intertidal epifaunal (Seed and Suchanek, 1992; Light et 
al., 2007) 

Olivella biplicata Purple olivella intertidal, subtidal infaunal (Light et al., 2007) 

Panopea abrupta Geoduck intertidal infaunal (Light et al., 2007) 

Protothaca staminea Littleneck clam intertidal infaunal (Fraser and Smith, 1928; Takesue and 
van Geen, 2004; Light et al., 2007) 

Table 1: Common name, tidal height, and life mode for all taxonomic groups included in the database.  

 135 
Age model type varied across publications. If the age of a shell was reported as an age range of a midden section, 

the age range is included in the database and the midpoint of the reported age range is included in the database as the 

age in years before present. For all archaeological shells, age in years before present designates 1950 as present, 

following the convention of radiocarbon dating and most archaeological studies. For modern samples, age in years 

before present represents age in years before 2020. Thus, for users of the database, a 70-year correction must be 140 
applied to align all ages to the same timescale. We adhere to this dual system to maintain the ages as they were 

presented in each publication and to prevent negative values for age in years before present. All oxygen and carbon 

isotope data published in the original papers are included. Oxygen and carbon isotope values are reported in per mil 

(‰) relative to Vienna Pee Dee Belemnite (VPDB). In one instance, we included data in the database that the author 

reports as unreliable (see Flores 2017 for full explanation of data quality).    145 
 

After compilation of the database, we quantified the geographic distribution of the data, temporal distribution of the 

data, number of taxa, relative abundance of taxa represented in the database, range of subsamples within an 

individual shell, and range of δ13C and δ18O values. Differences in δ18O and δ13C among species and in the 

subsamples per shell by journal disciplines were quantified using ANOVA and Tukey’s Test using R (R Core Team, 150 
2021). The database is publicly available through PANGEA at https://doi.org/10.1594/PANGAEA.932671 (Palmer 

et al., 2021). Data publication adheres to FAIR Principles.  

 

3 Results and discussion 

3.1 Data Sources 155 
We identified and included 24 previously published studies in the database. Out aim was to create a database that 

could be used for paleoenvironmental reconstruction at various temporal scales, as such, we included published 

datasets that reported isotopic data within the context of shell growth, i.e., the directionality and therefore 

seasonality of isotopic patterns in time could be determined. For this reason, isotopic analyses of fragments or 

broken shells, often for archaeological studies, are not included in the database. Studies included in the database 160 
were largely published in archaeological journals (13) rather than geochemical (4) or paleoclimate and 

paleoceanography journals (7). The database includes 554 shells including 4732 carbon isotope values and 5068 
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oxygen isotope values. Data was published from 1994-2017; the number of papers published increases towards the 

present. Data was largely sourced from midden specimens (487) and to a lesser extent from modern collected 

specimens (66).  165 
 

3.2 Spatial distribution of data 

The database includes analyses of shells collected from 30oN to 52oN along the western coast of North America. The 

spatial distribution of data is not continuous, due to the nature of human settlement and differences in the 

preservation and sampling of middens across space (Fig. 1). More data are available from California relative to 170 
Oregon, Washington, or British Columbia (Fig. 1). A significant portion of the available data are from midden shells 

collected on the northern Channel Islands, California due to exceptional preservation in a semi-arid climate (Fig. 1) 

(Rick et al., 2006b). Most studies (19) analyzed shells collected from open coast sites and a few studies (5) analyzed 

specimens from estuarine environments (Fig. 4E, F). 

 175 

 
Figure 1: Maps of location of collection (for modern) and midden sites (for midden) of all specimens included in 

database. All specimens included in map (A.), zoom in on northern California (B.) and southern California (C.).   

 

3.3 Temporal distribution of data 180 
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The age range of the shells in the database is 8800 - 0 BP (Fig. 2). The methodology for age control on individual 

shells varied among studies; some provide age ranges defined by radiocarbon dating of material that was co-

collected with shells from stratigraphic sections of the midden, some studies provide radiocarbon dates from 

individual shells, and some shells in the database were collected live. Nine papers reported age ranges: Eerkens et 

al., 2005, Eerkens et al., 2013, Eerkens et al., 2016, Glassow et al., 1994, Glassow et al., 2012, Jazwa and Kennett 185 
2016, Jones and Kennett 1999, Rick et al., 2006, and Robbins and Rick 2006.  In cases when age was reported as a 

range, the range is listed in the database (age_range column) and the midpoint of the range is recorded as the age of 

shell (age_ybp). The majority of entries in the database are from midden shells (3470) compared to modern shells 

(1621). The data are biased towards the present; more data are available from 0-3000 BP (3399 entries) relative to 

3000-9000 BP (1636 entries). 190 
 

 
Figure 2: Oxygen (purple) and carbon (yellow) isotope values (‰VPDB) through time in years before present. 

 

3.4 Taxonomic distribution of data 195 
Available data represent 13 taxa: Crassostrea gigas, Chione cortezi, Chione fluctifrage, Haliotis cracherodii, 

Haliotis rufescens, Macoma sp., Mytilus californianus, Mytilus edulis, Mytilus sp., Mytilus trossulus, Olivella 

biplicata, Panopea abrupta, and Protothaca staminea (Fig 3). The available data and thus the database is largely 

biased to Mytilus taxa (3739 entries for M. californianus, 138 for M. edulis, 53 for M. trossulus, 464 for Mytilus 

sp.,). This finding is in agreement with previous work showing that Mytilus spp. are highly abundant in coastal 200 
Western North American middens throughout the Holocene as Mytilus spp. are a common food choice of Indigenous 

peoples in this region (Jones and Richman, 1995; Braje et al., 2012; Thakar et al., 2017).  
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Oxygen and carbon isotope values vary significantly between taxa groups when analyzing all data across the entire 

age range of the data. Results of ANOVA indicate that there are significant differences between taxa in regards to 205 
oxygen isotope values (ANOVA, p<0.05). The Tukey post hoc test revealed five groupings of taxa that are 

statistically similar to one another (p<0.05): Group a: Haliotis rufescens, Haliotis cracherodii, and Panopea 

abrupta, Group b: Haliotis cracherodii, Panopea abrupta, Mytilus californianus, Olivella biplicata, Protothaca 

staminea, and Chione fluctifraga, Group c: Chione fluctifraga, Chione cortezi, and Mytilus edulis, Group d: 

Crassostrea gigas, Mytilus trossulus, Macoma sp., and Group e: Mytilus sp. (Fig. 3). Results of ANOVA indicate 210 
that there are significant differences between taxa in regards to carbon isotope values (ANOVA, p<0.05). The Tukey 

post hoc test revealed six groupings of taxa that are statistically similar to one another (P<0.05): Group a: Haliotis 

cracherodii, Haliotis rufescens, Olivella biplicata, and Panopea abrupta, Group b: Mytilus californianus, Chione 

fluctifraga, and Chione cortezi, Group c: Chione fluctifraga, Chione cortezi, Protothaca staminea, and Macoma sp., 

Group d: Mytilus sp., Group e: Mytilus edulis, Group f: Crassostrea gigas (Fig. 3).  215 

 
Figure 3:  Taxonomic distribution of data. Histogram of number of entries in the database by taxonomic group (A.) 

Carbon vs. oxygen isotope values (VPDB) colored by taxonomic group (B.). Box plot showing oxygen (C.) and 

carbon (D.) isotope values by taxonomic group. Letters in panels C and D indicate which taxa are statistically 

similar in terms of oxygen and carbon isotope values, respectively (Tukey, p>0.05). 220 
 

3.6 Ecological distribution of data 

The addition of several ecological traits expands the breadth of research topics that can be explored using the 

database. Nearly all the species are intertidal (549) and a few (4 individuals - 1 Olivella biplicata, 3 Haliotis 

rufescens) are known to be intertidal and subtidal (Fig. 4). Most specimens are from taxonomic groups with 225 
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epifaunal life modes (495), and few have infaunal life modes (58) (Fig. 4). Both tidal height and life mode impact 

organismal exposure to air, seawater, and porewater and thus can influence oxygen and carbon isotope values. As 

such, future researchers may consider isolating specimens with certain life modes or tidal heights to address specific 

questions in paleoclimate reconstruction.  

 230 
Figure 4:  Ecological distribution of data. Histogram and oxygen vs. carbon isotopes are respectively colored by 

category for life mode (A., B.), tidal height (C., D.), and habitat (E., F.).  

 

3.5 Variation in sampling strategy 

The sampling strategy for obtaining carbonate for isotopic analysis differed widely among studies and within studies 235 
with important implications for data analysis. In some studies, a single sample was obtained from the outermost 

growth edge of the shell (Fig. 5). We document a wide range of subsampling resolution, from 1 to 118 subsamples 
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from a single shell (Fig. 5). The number of subsamples reported per shell varies significantly among  journal types 

(ANOVA, p< 0.05); geochemical studies utilized the most subsamples (mean = 40.8 subsamples per shell), followed 

by paleoclimate and paleoceanography papers (mean = 19.3 subsamples per shell), and archaeology papers utilized 240 
the fewest subsamples (mean = 12.5 subsamples per shell) (Fig 5). The variation in approach and methodology in 

these studies impacts the resolution of data available in the database. Future research can explore how multiple 

approaches to subsampling impacts how informative the oxygen and carbon isotope values from each shell are for 

use in environmental reconstruction. Additionally, the diversity in sampling type motivates future interdisciplinary 

collaborations that can answer multiple research questions using the same archive. For example, single shells could 245 
be utilized to answer questions about both archaeological histories and past oceanographic conditions.   

 
Figure 5: Distribution of occurrence of number of subsamples from an individual shell (A.) Panel A inset is a 

schematic of sampling strategies showing multiple degrees of sampling resolution. Box and whisker plot of 

subsamples per shell by journal type (B.), difference between each group is significant (ANOVA, Tukey, p<0.05).  250 
 

 

4 Data Availability 

The database described here is available at https://doi.org/10.1594/PANGAEA.932671 (Palmer et al., 2021). The 

dataset is subject to a Creative Commons Attribution 4.0 International license agreement (CC-BY-4.0). In the 255 
published database, each row represents an individual geochemical analysis, and multiple rows of data are often 

Sampling strategies 

High-resolution sampling – black dots

Low resolution sampling – black dots
Single max growth point sample – gray dot
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from the same shell. Detailed metadata are recorded for each individual data point including, when available: shell 

identification number (generated here), subsample identification number (generated here), number of subsamples 

per shell, name of publication (author, year), name of sample from original publication, name of subsample from 

original publication, latitude, longitude, δ13C, δ18O, age in years BP, age range (if reported in paper), species, source 260 
(modern, archive, burial, midden), suggested δ18O correction published in the original publication, reconstructed sea 

surface temperature if reported in original paper, archaeological trinomial (if reported), tidal height of organism, life 

mode of organism, habitat type of organism, year of publication, and journal type (archaeology, geochemistry, 

paleoclimate and paleoceanography). 

 265 
5 Conclusions 

Marine mollusc geochemical data provides a record that is needed to understand changes in nearshore environments 

through time. In the Northeast Pacific, the abundance of previously published data on archaeological, archival, and 

modern specimens allows for exploration of oceanographic and climate change through the Holocene. Given the 

utility of archaeological records to provide long-term environmental archives, we encourage the use of these datasets 270 
in future paleoceanographic studies. Further, by synthesizing previously published data we provide an archive in 

which future work can be conducted without accessing culturally valued Indigenous artifacts or conducting 

destructive analysis on museum specimens. Future work on the data published here can explore changes in 

nearshore marine mollusc geochemistry across geographic, environmental, or biological gradients. 

 275 
6 Land and Data Acknowledgement 

Midden shells analyzed and synthesized for this paper were originally collected and gathered by Indigenous people 

from across the coastal Northeast Pacific. We do not attempt to name all tribes whose ancestral and present 

homelands make up this study area, but we acknowledge that the majority of the geographic area covered here 

represents unceded land of Indigenous tribes, and that data used here from previously published studies may have 280 
been acquired without consent from Indigenous peoples. We direct readers to the open-source resource: 

nativelands.ca to identify the homelands of the diverse Indigenous people of this region and encourage readers to 

use this resource as a starting place to learn about the land and marine stewardship of Indigenous peoples past and 

present. 

 285 
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