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Abstract 19 

City-level CO2 emissions inventories are foundational for supporting the EU’s decarbonization goals. 20 
Inventories are essential for priority setting and for estimating impacts from the decarbonization 21 
transition. Here we present a new CO2 emissions inventory for 116,572 municipal and local 22 
government units in Europe. The inventory spatially disaggregates the national reported emissions, 23 
using 9 spatialization methods to distribute the 167 line items detailed in the UN’s Common Reporting 24 
Framework. The novel contribution of this model is that results are provided per administrative 25 
jurisdiction at multiple administrative levels using a new spatialization approach. All data from this 26 
study is available along with an interactive map of results at https://openghgmap.net 27 

  28 

1. Background 29 

While climate goals are set at the national and international level it is often local governments and 30 
citizens who are most intimately involved in the accomplishment of these goals, and who must adapt 31 
to the implied changes. The European Commission has been clear that cities will play a central role in 32 
reaching European climate goals. As with nation-states, a greenhouse gas (GHG) inventory is the first 33 
step to preparing a local climate action plan (CAP). Cities often use one of the various protocols 34 
available or develop their own methodology to create an emissions inventory. And for good reason - 35 
an inventory informs all levels of municipal decision making, from long-term planning strategies to 36 
infrastructure investments and day-to-day management of building permits. Nevertheless, many local 37 
governments in Europe still do not have a good estimate of their own GHG emissions. Establishing an 38 
emissions inventory is laborious and can be costly for jurisdictions that do not have in-house expertise. 39 
Hence, as the spotlight turns to cities to effect and manage a successful transition to carbon neutrality, 40 
many see the preparation and maintenance of a local emissions inventory as a considerable challenge. 41 

Cities can develop their own inventories using a protocol such Global Protocol for Community-Scale 42 
Greenhouse Gas Emissions Inventories (Fong et al., 2016) a joint initiative of WRI, the C40 Global 43 
Covenant of Mayors, and ICLEI (Kona et al., 2021). An inventory informs all levels of municipal decision 44 
making, from long-term planning strategies to infrastructure investments and day-to-day 45 
management of building permits. 46 
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A number of GHG monitoring, reporting, and verification (MRV) solutions have been put forward. 47 
These include sensor networks (both ground and space-based), and a range of accounting and model-48 
based approaches. No one of these approaches is ideal: they differ in terms of accuracy, precision, 49 
cost, and scalability. In response it has therefore been suggested that MRV efforts should aim at 50 
triangulating true CO2 emissions using a mix of empirical, modeling, and statistical methods (Lauvaux 51 
et al., 2020; Mallia et al., 2020). The model presented here should be seen as one estimate, to be 52 
combined with other estimation approaches and local knowledge, to triangulate towards an 53 
actionable emissions inventory. 54 

One approach for cities to monitor emissions is by using atmospheric measurement of GHG 55 
concentrations and “inverting” that for an emission quantity. These efforts require atmospheric 56 
transport models to translate the atmospheric mixing ratios into surface fluxes of GHGs (Davis et al., 57 
2017; Ghosh et al., 2021). Concentration measurements can include dense, low-cost sensors (Kim et 58 
al., 2018), high-precision tower-mounted instruments (Turnbull et al., 2019; Whetstone, 2018), 59 
aircraft and satellite-based measurements (Nasa, 2021; Jaxa, 2021; Wu et al., 2020) and/or 60 
combinations of all of the above. By combining these approaches with high-resolution emission data 61 
products built using bottom-up approaches, attribution to emitting source by sector or fuel is possible 62 
and has shown good convergence (Basu et al., 2020; Lauvaux et al., 2020; Mueller et al., 2021) 63 

Many estimates of emissions using techniques independent of atmospheric monitoring have also been 64 
accomplished. These inventory approaches are often described as being either “top-down” or 65 
“bottom-up” (though in fact models may use a combination of these approaches). Top-down models 66 
begin from national statistics, such as national energy use or fuel import statistics, while bottom-up 67 
approaches estimate emissions at the point of combustion or emission release based on deterministic 68 
information (e.g. fuel combustion characteristics, leak rates) and then aggregate these to an implied 69 
national total. The top-down approach uses spatial proxies such as gridded population, nighttime 70 
lights, GDP estimates, and other available spatial proxy variables to allocate national total emissions 71 
across grid cells in each country. Bottom-up techniques often use a mixture of data such as direct flux 72 
monitoring (e.g. powerplant stack monitors), local fuel or utility data, and traffic monitoring. 73 

Several global and country-scale spatially explicit GHG inventories have been developed based on 74 
either bottom-up or top-down approaches. The JRC EDGAR (Crippa et al., 2020), ODIAC (Oda and 75 
Maksyutov, 2011; Oda et al., 2018) are well-established examples of global top-down emission data 76 
products but others have been developed (Andres et al., 1996; Andres et al., 2016; Asefi-Najafabady 77 
et al., 2014; Nassar et al., 2013; Rayner et al., 2010; Wang et al., 2013), including some at the 78 
national/regional scale (Bun et al., 2019; Zheng et al., 2021; Jones et al., 2020; Kurokawa et al., 2013; 79 
Meng et al., 2014). A number of these models use nighttime lights data as one input signal (or gridded 80 
population datasets which in turn may be based on nighttime lights), though at least one study has 81 
found this is only moderately predictive (Gaughan et al., 2019). 82 

Spatially-explicit bottom-up GHG inventories have been accomplished at the regional, national and 83 
urban scale. For example, the US 1 km2/hourly Vulcan CO2 emissions data product (Gurney et al., 84 
2020a; Gurney et al., 2009; Gurney et al., 2020b) and the Northeast US 1km2 ACES (Gately and Hutyra, 85 
2018) data product. Similarly, work in Poland has achieved similar success (Bun et al., 2010; Bun et al., 86 
2019) Building/street scale bottom-up efforts have also been accomplished with the Hestia Project 87 
which has estimated hourly urban CO2 data products in the four US cities (Gurney et al., 2019; Gurney 88 
et al., 2012; Patarasuk et al., 2016; Roest et al., 2020).  89 

Finally, urban emissions have been estimated at the whole-city scale using both top-down and 90 
bottom-up techniques as individual city studies or as collections of urban areas (Ramaswami and 91 
Chavez, 2013; Chen et al., 2019; Harris et al., 2020; Jones et al., 2020; Meng et al., 2014; Shan et al., 92 
2018; Shan et al., 2017; Zheng et al., 2021; Long et al., 2021) 93 

 94 
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 95 

as well as results focused on city results in England (Baiocchi et al., 2015), China (Liu et al., 2020; Wang 96 
et al., 2017), and Europe (Baur et al., 2015). Many of these studies extend analysis to include Scope 3 97 
or consumption emissions. 98 

Here we provide a new pan-European emissions inventory at the municipality level (Moran, 2021). 99 
This is intended to be useful for cities which have not conducted their own inventory. The inventory 100 
disaggregates the totals from the official national CO2 inventory, summarizing the 167 line items of 101 
the IPCCC’s 2006 Common Reporting Framework  (hereafter, CRF) (Ipcc, 2006) into 9 emissions 102 
categories. The model identifies up to 5 levels of administrative hierarchy (totaling 116,210 103 
administrations) across 34 European nations including the UK. 104 

This paper proceeds by first situating this contribution with respect to similar work. We then present 105 
the methodology and results, including a pixel and city-level comparison with existing models and a 106 
first validation against 43 existing urban emissions inventories assembled by individual cities. We 107 
conclude with a discussion in which we reflect on use cases and next steps. 108 

The JRC EDGAR database, ODIAC, and GCP-GridFED databases are obvious points of comparison to the 109 
model we present in this study. Section 3 presents a conceptual and numerical comparison of these 110 
models. The main innovations presented by this model over EDGAR and ODIAC are (a) results are 111 
provided for administrative jurisdictions rather than on a raster grid and (b) the use of OpenStreetMap 112 
is novel. Additionally, our model is targeted to be useful to citizens and policymakers in city and local 113 
governments by illuminating where CO2 emissions in their city arise from. This influences some of our 114 
modeling approaches, such as attributing emissions from ships and planes to ports and airports rather 115 
than along their physical voyage tracks. But it is the provision of ready-to-use results at the city, 116 
county, and state level across Europe which we believe is the core contribution of this database. 117 

The method described here is intended for creating an inventory of direct emissions. It is worthwhile 118 
to recall the distinction between scope 1, 2, and scope 3 emissions inventories as defined in the WRI’s 119 
Greenhouse Gas Protocol nomenclature (WRI et al., 2014). An inventory of direct emissions is called a 120 
scope 1 inventory, a territorial emissions account, or a production-based emissions account (PBA). A 121 
scope 2 inventory will be largely identical to a scope 1 inventory but reallocate the emissions from 122 
electricity production to the location where that electricity is directly used. A scope 3 inventory, also 123 
called a footprint or a consumption-based account (CBA), will further expand the scope and attribute 124 
to consumers all emissions associated with imported goods and services produced domestically or 125 
abroad, and emissions associated with waste exported outside the jurisdictional bounds. For urban 126 
areas with little production and much consumption, scope 3 emissions can be substantial: studies 127 
estimate that for many urban cores their scope 1 emissions are 30-50% of their total scope 3 footprint. 128 
Scope 3 inventories are estimated using trade and supply chain databases and rely on robust (i.e. well-129 
modeled or empirically validated) scope 1 inventories as a starting point.  There is an active community 130 
working to prepare Scope 3 assessments at the city level (Chen et al., 2019b, a; Guan et al., 2020; 131 
Heinonen et al., 2020; Minx et al., 2013; Moran et al., 2018; Pichler et al., 2017; Ramaswami et al., 132 
2021; Wiedmann et al., 2021; Zheng et al., 2021b).  133 

 134 

2. Methods 135 

The approach presented here spatializes the national emissions inventory using activity data from 136 
Open Street Map (OSM), the EU’s Emissions Trading System registry of point source emitters, and 137 
traffic data for airports. This method sums to a national total equal to the national inventory, 138 
generates results as both a gridded dataset and per administrative unit and preserves detail on the 139 
sources of emissions. The intention is to best locate emissions to where they physically or legally occur. 140 
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As the spatial resolution of the inventory increases an interesting consideration emerges, namely that 141 
there is some discretion in where emissions should be spatially located. The emissions for a passenger 142 
ferry for example could be spatially located over water where they physically occur, at the office of 143 
the ferry company which is legally responsible, at an industrial harbor where the boat takes on fuel, 144 
or at the passenger terminals where it traffics. At larger grid cell sizes these four locations are more 145 
likely to share the same grid cell, but with highly resolved models this becomes a modeling choice. 146 
Our choices on such decisions are documented in the relevant section of methods which describes 147 
each emissions category, but as a general principle we opt to locate emissions where it makes most 148 
sense for communication and outreach by those using the results, where policy tools are easiest to 149 
apply, or where they physically occur, in that order. 150 

Scope of coverage: The model is currently built for the year 2018. This is the most recent year for 151 
which official national inventories were available from EUROSTAT when the model was assembled. 152 
The list of countries covered is provided in the Results section of this paper. The UK is included in the 153 
model. Regarding the impact of the UK’s exit from the EU, we anticipate this will not substantially 154 
reduce the ability to use this model for the UK, since the UK has established its own UK ETS and, we 155 
presume, will continue to publish an emissions inventory in CRF (the IPCC’s Common Reporting 156 
Format) format. This study focuses only on CO2 emissions; other greenhouse gasses are not included. 157 
In each relevant section of the Methods a discussion is included about how the model could be 158 
extended to handle other GHGs. One rationale for this choice is that the second largest GHG, CH4, is 159 
heavily driven by agricultural activities and rogue emissions and these are some of the hardest to 160 
accurately spatialize. Furthermore, the intention in this study is to focus on fossil fuel use and not 161 
short-cycle carbon such as emissions related to land use and agriculture. Therefore, the model does 162 
not include emissions from land use, land-use change, and forestry (LULUCF). The choice to exclude 163 
these from the model was based on considerations including (a) estimates of total LULUCF emissions 164 
are often poorly constrained, (b) they are difficult to spatialize accurately, (c) local government policy 165 
have fewer immediate policy options for managing these emissions, (d) national climate targets often 166 
exclude LULUCF emissions, (e) there are diverse approaches to accounting for LULUCF and carbon 167 
sinks, leading to significant variability. 168 

The model assembly procedure can be summarized as follows. Further detail and discussion on each 169 
aspect is provided in the following subsections. First, emissions which can be attributed to point 170 
source facilities reporting under the ETS are separated from the national inventory.  ETS-registered 171 
emissions are geolocated at the street address registered for that permitholder. In the cases where 172 
the location of emissions differs from the registered address (e.g. offshore oil activities, or some 173 
company activities) this approach can still be rationalized since (a) physically locating all facilities which 174 
are not at their mailing address will be difficult, and (b) legally, the control of the emissions is likely at 175 
the registered address, so there is sense in calling attention to emissions which are controlled from 176 
there. Emissions from vehicles are apportioned equally to fuel stations as located in OSM. The model 177 
amortizes total national vehicle fuel use evenly across all fuel stations, though this will not correctly 178 
capture subtleties such as fleet and trucking-only fuel depots, nor differentiate between small (1-2 179 
pump) stations and large filling stations with multiple pumps. Emissions which are associated with 180 
buildings (heating and cooling, construction, and light commercial activity), plus the residual industrial 181 
emissions which cannot be attributed to ETS sources, are apportioned equally onto all buildings 182 
registered in OSM. (OSM does allow buildings to be tagged with extended attributes such as floor size, 183 
stories, and use, but in our investigations <1% of buildings use these attributes so for now we have 184 
not attempted to utilize those fields.) Emissions from marine bunker fuels are apportioned equally to 185 
harbors as located in OSM (note that diesel fuel for small vessels will be treated as vehicle fuel). 186 
Emissions from aviation bunker fuel are spatialized onto airports proportional to the volume of 187 
passenger traffic handled at each airport, as reported by Eurostat. Fugitive emissions and emissions 188 
from petroleum byproducts are spatialized equally across national refineries and associated oil 189 
storage facilities. CO2 emissions from farming and forestry are apportioned to farmed areas as located 190 
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in OSM (these are based on the EU CORINE land use map). Emissions from trains are mapped to 191 
passenger train stations.  192 

Figure 1 displays the total emissions covered in the model, excluding of LULUCF and carbon sinks, 193 
grouped according to the methods used to spatialize those emissions, and color coded according to 194 
the approximate level of difficulty, or degree of uncertainty, of that spatialization, with greyer colors 195 
representing more easily spatialized emissions and brighter colors indicating emissions categories 196 
which, in the authors’ experience, are more difficult to confidently spatialize. 197 

 198 

 199 

Figure 1: Composition of emissions across the 34 European countries covered. ETS shows the volume of emissions associated 200 
with ETS-registered point source emitters; fuel stations show emissions from vehicles; the ‘buildings’ category comprises 201 
emissions from building heating, cooling, construction, and light commercial activity. Non-ETS point source emissions is a 202 
residual category representing the difference between industrial emissions as reported in the national inventory and the sum 203 
of emissions reported by facilities participating in the ETS. Nearly half (42%) of these occurs in Turkey, which as of publication 204 
does not participate in the ETS, but this discrepancy is also observed in large emitters like Germany, France, the UK, and 205 
Poland. These residual emissions are spatialized using OSM records instead of ETS addresses. 206 

 207 

a. Mapping point source emissions regulated by the EU Emissions Trading System 208 

The EU’s Emission Trading System (ETS) requires large point-source emitters to report emissions and 209 
report an address for every permitholder. A geolocation API was used to translate these addresses 210 
into latitude-longitude coordinates. While for many facilities the address where the emissions are 211 
legally controlled is the same as the facility’s physical address, or in a nearby town, in some cases the 212 
two locations can differ more substantially (emissions from Norwegian offshore activities are largely 213 
legally controlled in the city of Stavanger, for example).  The emissions associated with ETS permitted 214 
facilities are then subtracted from the CRF inventory thus leaving fewer total emissions remaining to 215 
be spatialized. The allocation of CRF emissions to ETS facilities is done as follows. For a number of CRF 216 
sectors (for example, “Fuel combustion in manufacture of iron and steel” (1.A.2.A)), some or all of the 217 
sector’s emissions are attributable to ETS facilities. We constructed a priority-ranked concordance 218 
table to determine which CRF emissions are already covered by ETS-registered permits. Normally the 219 
ETS-reported emissions for a given activity are less than or equal to the CRF-reported emissions for 220 
that category and there is only a small residual between the CRF-reported value and sum across 221 
pertinent ETS permits, however in some cases this residual is substantial. 222 

The mapping between ETS categories and CRF categories is not always one-to-one. For example, the 223 
ETS uses the code “24: Production of pig iron or steel”. These facilities may correspond to the CRF 224 
activities, Fuel combustion in manufacture of iron and steel (1.A.2.A), Iron and steel production (2.C.1), 225 
or Ferroalloys construction (2.C.2). In our ranked concordance matrix approach, a rank of 1 is given to 226 
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the first CRF activity, a rank of 2 is given to the second CRF activity, and a rank of 3 is given to the third 227 
CRF activity. The emissions from those ETS facilities from code 24 are first attributed to the rank 1 CRF 228 
activity until it is sated, then excess ETS emissions are assumed to come from the rank 2 activity until 229 
that volume is sated, the same for rank 3, and so on. Using the above example that could mean that 230 
all emissions under the first two CRF categories would be fully attributed to ETS iron and steel facilities, 231 
and a portion of the emissions under rank 3, Ferroalloys construction (2.C.2), which cannot be 232 
attributed to ETS facilities, would remain to be spatialized. 233 

In some cases it is unclear what the ranking of CRF activities should be. For example after allocating 234 
ETS emissions from “production of lime, or calcination of dolomite/magnesite” (ETS category 30) first 235 
to  lime production (2.A.2) and secondarily to glass production (2.A.3), should excess ETS facility 236 
emissions from code 30 best be attributed to Cement production (2.A.1), Fuel combustion in 237 
manufacture of non-metallic mineral products (1.A.2.F), or Fuel combustion in other manufacturing 238 
industries and construction (1.A.2.G)? In this case the last three sectors are sated in smallest-to-largest 239 
order until no ETS emissions remain to be allocated. The rationale for the ascending sort order is that 240 
larger CRF categories will be easier to spatialize using other methods. In the earlier example of 241 
aluminum production, any surplus reported in ETS which exceeds the CRF reported aluminum 242 
production emissions is then assigned to the rank 2 CRF category of “Fuel combustion in other 243 
manufacturing industries and construction”, decreasing the amount of emissions in that CRF category 244 
which remain to be spatialized. We also note that not all facilities use the expected ETS activity code. 245 
For example we have observed some fertilizer plants reporting emissions under ETS activity code 42 246 
“Other Bulk Chemicals” instead of activity 41, “Ammonia production”. Such misattributions can 247 
introduce distortions in the model results. To characterize the impact of these distortions the 248 
allocation of ETS emissions through the ranked priority allocation system into CRF would need to be 249 
followed manually in detail. 250 

After linking ETS-reported emissions to the national inventory, the remaining CRF-reported emissions 251 
are spatialized using the methods described as follows. 252 

 253 

b. Vehicles 254 

These are emissions from the following five CRF categories 255 

1.A.3.B.i   Fuel combustion in cars 256 
1.A.3.B.ii  Fuel combustion in light duty trucks 257 
1.A.3.B.iii Fuel combustion in heavy duty trucks and buses 258 
1.A.3.B.iv  Fuel combustion in motorcycles 259 
1.A.5.B Mobile fuel combustion sectors n.e.c. 260 

These emissions are specialized according to the location of vehicle fueling stations as documented in 261 
OpenStreetMap. We make the assumption that the number of vehicle fuel stations in an area is 262 
proportional to the volume of traffic served. This is a simplifying assumption and it is clearly 263 
communicated in the model presentation. In future development of the model, localizing vehicle 264 
emissions will be a top priority. This approach assumes that every fuel station supplies a similar level 265 
of vehicle traffic. It could be the case that some stations are small single pump gas stations while 266 
others are large facilities, for example such as located along a major highway rest stop. To address this 267 
one future solution could be introduce better road traffic estimates. While traffic load estimates are 268 
available for some roads, these estimates tend to be for only a few dozen specific highways. Fu and 269 
colleagues (Fu et al., 2017) proposed a method using neural networks to estimate vehicle flow on 270 
every road using OSM data and gridded population models. (Osses et al., 2021) recently prepared a 271 
high-resolution map of emissions from vehicles in Chile. Better modeling vehicle traffic, not only fuel 272 
station availability, would make the model more accurate in spatially estimating vehicle fuel 273 
emissions. Another potential solution would be to identify data on fuel station volume, e.g. sales 274 
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estimates or number of pumps installed, but this may be challenging in practice. A second assumption 275 
is that every station serves a homogeneous mix of vehicles. It may be the case that some stations 276 
serve a specific fleet, for example a city bus fleet, and better identifying the mix of vehicles served by 277 
each fuel station would allow the above five emissions categories to be more precisely spatialized. 278 
Insofar as electric car adoption drives some fuel stations to close the model will reflect lower vehicular 279 
emissions in areas with more electric vehicles. An interesting note is that in some urban centers light 280 
truck traffic is suspected to be a larger emission source than passenger vehicles. Better distinguishing 281 
types of traffic and vehicles would be useful for helping guide decarbonization plans that are most 282 
appropriate for various areas. 283 

 284 

c. Trains 285 

Trains are a relatively minor source. Emissions for Fuel combustion in railways (1.A.3.C) were 286 
spatialized using passenger train stations as reported in OSM. Every train station was allocated an 287 
equal share of the total emissions. A limitation of this approach is that it may be that not all train 288 
traffic is equally fuel-intensive: some individual trains or sections of the rail network could be fully 289 
electrified and other areas not. Another limitation is that the method allocates total train emissions 290 
(both passenger and cargo) equally across passenger stations, yet passenger stations are not all 291 
equally used, and cargo train activity would be more appropriately localized at freight yards. Reporting 292 
train emissions at passenger terminals does service a communicative value as it reminds viewers that 293 
train traffic is not entirely emissions-free.  294 

 295 

d. Buildings 296 

In the following categories, only a portion of the emissions can be spatialized to ETS locations, but 297 
there remain emissions which must be spatialized onto buildings: 298 

1.A.2.G Fuel combustion in other manufacturing industries and construction 299 
1.A.4.A Fuel combustion in commercial and institutional sector 300 
1.A.4.B Fuel combustion by households 301 
1.D.3 Biomass - CO2 emissions (memo item) 302 
2.D.3 Other non-energy product use  303 

The largest shares of these remaining emissions are driven by building heating and cooling and fuel 304 
combustion by light industry and construction.  305 

Correctly spatializing these emissions associated with buildings is a substantial challenge. OSM is 306 
sometimes known as Open Buildings Map since the database actually contains more buildings than 307 
streets. The OSM dataset reports an extensive number of buildings, but little data is available to 308 
characterize each building. OSM does not record all buildings. In many areas, including small towns, 309 
only a street address is marked but there is no point or polygon data indicating what is built at that 310 
address. While it might be possible to obtain maps of all buildings from national cadaster agencies, 311 
part of our intention in the model is to develop methods which are replicable across other countries 312 
and not rely on single-country datasets. Of the buildings recorded in OSM, only a small percentage (1-313 
5%, depending on country) contain any information characterizing the building such as number of 314 
floors, main usage activity, building material type, or building age. Some recent offerings which 315 
provide building footprints (e.g. products from Maxar or Predicio Building Footprint Data, free 316 
offerings from Bing / Microsoft, and academic initiatives such as coordinated through spacenet.ai) 317 
could be used to identify at least building footprint size, and potentially height or construction 318 
material. 319 

The approach used in the model is to apportion all of the emissions associated with buildings equally 320 
among all buildings and registered street addresses in each country. It is important to recall that for 321 
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buildings heated by electricity, CO2 emissions associated with electricity production will be located at 322 
ETS-registered power plants. As noted above, there is a paucity of information available by which we 323 
could further characterize building size or use. 324 

 325 

e. Aviation 326 

Total emissions associated with kerosene used for aviation fuel (the sum of CRF emissions categories 327 
“Fuel combustion in domestic aviation (1.A.3.A)” and “International aviation (1.D.1.A)”) are attributed 328 
to airports proportionally to total passenger kilometers (pkm).  329 

Total pkm are derived from the combination of EUROSTAT statistics of route traffic and passenger 330 
traffic per airport. This procedure is preferred over an attribution based solely on total passenger or 331 
flight numbers, since we here implicitly incorporate information on both the flight length and aircraft 332 
size. These parameters are two major drivers for fuel consumption and emissions (Yanto and Liem, 333 
2018).  334 

 335 

f. Farming Activity 336 

The CRF uses the following three categories for farming-associated activities: 337 

1.A.4.C Fuel combustion in agriculture, forestry and fishing 338 
3.G Liming 339 
3.H Urea application 340 

The largest of these, category 1.A.4.C, is challenging to spatialize for two reasons: First, the inclusion 341 
of fishing activity means emissions in this category overlap with emissions in marine traffic. To handle 342 
this, emissions from fishing would have to be estimated, removed from this amount, and spatialized 343 
separately. Even then, the remaining emissions from fuel combustion in agriculture and forestry would 344 
still be difficult to spatialize. Second, we have not been able to identify a suitable dataset to use to 345 
divide and appropriately spatialize forestry as distinct from farming. 346 

Our approach is to map these collected emissions onto locations of farmland as identified by the EU’s 347 
CORINE land-use dataset, which is already incorporated into OSM. The above emissions were evenly 348 
allocated to the centroid points of all polygons tagged as farmland from CORINE. This approach will 349 
not correctly spatialize emissions associated with forestry. Also, this approach allocates the emissions 350 
evenly across every polygon tagged as farmland, regardless of the size of each patch. A future 351 
improvement could be to weight this allocation by patch size and thus assume every hectare of 352 
farmland is equally emissions-intensive to manage, or to introduce activity-level data for agriculture, 353 
such as integrating maps of dairy cattle operations (Neumann et al., 2009) or similar. 354 

As discussed in the introduction, and in section 10 below on short-cycle carbon, currently the model 355 
intentionally excludes emissions from land use, land use change, and biotic processes such as cattle 356 
digestion and manure handling.  357 

The following categories in the CRF report also relate to farming: 358 

3 Agriculture 359 
3.1 Livestock 360 
3.A Enteric fermentation 361 
3.B Manure management 362 
3.C Rice cultivation 363 
3.D Managed agricultural soils 364 
3.E Prescribed burning of savannas 365 
3.F Field burning of agricultural residues 366 
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 367 

g. Marine 368 

Emissions in this sector are comprised of the following CRF emissions categories: 369 

1.A.3.D 4 Fuel combustion in domestic navigation 370 
1.D.1.B 4 International navigation 371 

This covers tank-to-wake emissions that stem from fuel combustion. Total fuel consumption is 372 
calculated by a top-down assessment based on annual sales of bunker fuel in each country, comprising 373 
marine gas oil (MGO) and heavy fuel oils and distillates (HFO), and geospatially distributed across the 374 
888 ports.  375 

Port-allocation of bunkered fuels is based on the total transport work for berth-to-berth ship voyages, 376 
as obtained from IHS Markit, totaling 773 000 port calls. Ship voyages are combined with their ship's 377 
respective average fuel consumption as reported by shipowners to the European Union's emissions 378 
monitoring scheme (the EU MRV, Monitoring, Reporting and Verification), given as kilograms of fuel 379 
per nautical mile. This covers all vessels operating in EU ports above 5000 GT, totalling approximately 380 
11 000 vessels. The distance covered with each voyage is calculated by applying the Dijkstra's 381 
algorithm (Dijkstra, 1959) to find the shortest path between two ports, followed by a curve smoothing 382 
process by the Ramer–Douglas–Peucker algorithm (Douglas and Peucker, 1973; Ramer, 1972). The 383 
average fuel consumption and distance sailed is used to estimate total bunker demand at the port 384 
level, by weighing the national reported bunker sales. 385 

This assessment does not include leisure crafts, considered negligible in comparison to cargo vessels, 386 
neither does include warships, naval auxiliaries, fish-catching or fish-processing ships that are exempt 387 
of reporting their activity to MRV. 388 

 389 

 390 

h. Other 391 

There are some emissions which are difficult to spatialize. These are: 392 

1.C Transport and storage of CO2 (memo item) 393 
2.A.4 Other process uses of carbonates 394 
2.D.1 Lubricant use 395 
2.D.2 Paraffin wax use 396 

In the model these emissions are included in and spatialized using the same strategy as emission from 397 
buildings as described above.  398 

 399 

i. Refineries 400 

The following CRF emissions categories are associated with oil refineries and fossil fuel infrastructure: 401 

1.B 2 Fuels - fugitive emissions 402 
1.B.1 Solid fuels - fugitive emissions 403 
1.B.2 Oil, natural gas and other energy production - fugitive emissions 404 
2.B.8 Petrochemical and carbon black production 405 

Carbon black, item 2.B.8, used to produce black ink, is a byproduct from fracking at refineries. Fugitive 406 
emissions (1.B.2) are by their nature difficult to spatialize (Plant et al., 2019). A number of studies in 407 
California have tried to characterize fugitive emissions from the ageing oil wells and modern fracking 408 
equipment in the region (Hsu et al., 2010; Rafiq et al., 2020; Townsend-Small et al., 2012; Wennberg 409 
et al., 2012). In our model all fugitive emissions are attributed evenly across refineries and associated 410 
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storage tanks as located in OSM. The fugitive emissions are apportioned equally among the buildings 411 
tagged [industrial=refinery] or [industrial=oil] in OSM. This approach has the disadvantage of not 412 
correctly spatializing fugitive emissions at the various wellheads, pumping and storage locations 413 
where such emissions physically occur, but has the advantage of attributing fugitive emissions to 414 
refineries so that policy planning can recognize that fossil fuel creates emissions both when it is 415 
combusted but also during its production. This approach follows the guiding philosophy of locating 416 
emissions where they best connect to the relevant policy discussion. 417 

 418 

j. Short-cycle carbon (Land Use, Forestry, and Stock Change) 419 

Our model is focused on reporting CO2 emissions from fossil fuel combustion and industrial processes. 420 
Carbon put into sinks (under CRF section 5 - Waste), either natural (terrestrial, aquatic, or marine) or 421 
manmade (e.g. timber construction or paper or biomass put into landfill) sinks is not spatialized or 422 
included in the results. Negative emissions from carbon capture and storage facilities are presently 423 
excluded from the model.  424 

CO2 emissions from CRF category 4, encompassing land use, land use change, and forestry, are also 425 
not included. Our intention is to spatialize fossil fuel combustion associated with agriculture and 426 
forestry but not emissions associate with landscape-scale soil and biotic processes. We reason that 427 
such landscape-scale emissions are both large, and very challenging to address using locally available 428 
policy tools. Including them in a city-oriented plan, particularly in rural municipalities, could lead to a 429 
situation where the results are heavily dominated by an emissions category with few viable solutions. 430 

In future iterations of the model it may be preferable to allow users to easily include or exclude the 431 
emissions in the model results. Currently our model does not include direct CH4 emissions from cattle 432 
digestion and manure fermentation. This is a substantial emissions category with some remediation 433 
options so it may be useful to include this in a future iteration of the model. 434 

Another detail in this category is sewage treatment and landfills. These act as both sources and sinks 435 
of carbon. It is unclear whether net emissions from sewage plants and landfills are included inside the 436 
CRF category “Long-term storage of carbon in waste disposal sites” (5.F.1) or included in another 437 
category. As category 5.F.1 is not included in the model, if net emissions from sewage are included in 438 
this category those emissions will not be included in the model. Quantifying emissions associated with 439 
sewage treatment and local landfills would be an improvement to the model. 440 

 441 

3. Benchmarking 442 

We do not intend here to provide an exhaustive survey of available spatial emissions models. Here we 443 
only compare the ESCI model with some widely used global-level models. A full comparison of spatial 444 
emissions models, including several strong single-country models, would be a valuable contribution 445 
to the field, but is not within the scope of the present paper. For one such comparison we refer to 446 
(Hutchins et al., 2017). 447 

Table 1 provides an overview and comparison of ESCI with ODIAC (Oda and Maksyutov, 2011), JRC’s 448 
EDGAR (Crippa et al., 2019),  and the Global Carbon Project’s GCP-GridFED (Jones et al., 2020) spatial 449 
emissions models.  450 
 451 

 Resolution Itemization Temporal Results by 
jurisdiction 

Scope Method synopsis 

ODIAC 1km Total emissions Monthly Country Global Spatialize national 
emissions using 
nighttime lights and 
power plant 
locations 
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EDGAR 
v6.0 

0.1 (11km at 
the equator) 

31 IPCC CRF 
categories 

Up to hourly Country Global Collected activity-
level data sources 
(e.g steel industry, 
FAO for farming 
activity, ship and 
flight tracks) 

GCP-
GridFED 

0.1 (11km at 
the equator) 

Total emissions, 
per 5 fossil fuels 

Monthly Country Global National totals from 
GCP, spatialized 
using EDGAR 

ESCI (our 
model) 

Point-source, 
1km grid, or 
per 
municipality 
 

 9 categories Annual Country, State, 
County, 
Municipality, 
facility 

Europe Spatialize national 
emissions using 
activity data from 
OpenStreetMap 

Table 1: Comparative overview of several spatial emissions datasets. 452 

Comparison to EDGAR, and GCP-GridFED which uses EDGAR’s spatialization layer: At the time of 453 
writing, the report with the methodology used for the EDGARv6.0 has not been published. Based on 454 
the data sources mentioned at the EDGAR website it appears that activity-level data has been 455 
obtained for various industrial activities (e.g. farming, fertilizer production, steel refineries, electricity 456 
generation), and plane and ship emissions are mapped to voyage tracks, but it is not published how 457 
emissions from buildings, light commercial activity, and vehicles are spatialized, except the GHS-POP 458 
gridded population dataset is mentioned. Since ESCI uses ETS facility-level data to map industrial 459 
emissions (an advantage afforded by its Europe-only focus) it may be that the two models will come 460 
to similar results for mapping industrial emissions since presumably the activity-level datasets for 461 
industry used by EDGAR will be largely identical to the facility-level data from ETS. If EDGAR uses 462 
population density as a proxy to map vehicle and building emissions, this is a slightly different 463 
approach than ESCI’s use of fuel stations and building locations from OSM. 464 

Compared to ODIAC: The original ODIAC was a ground-breaking project and introduced the approach 465 
of using power plant locations and nighttime lights as a proxy for emission activities. Since that project, 466 
more recent projects have introduced more proxy variables and activity inventories. In our results 467 
comparison (below) the ODIAC results still agree, but ODIAC does not present results with 468 
sector/activity detail which is important for further insight and to guide action. 469 

In addition to this conceptual comparison of methods we also compare the numerical results. To 470 
compare the results of the ESCI model to ODIAC and EDGAR v6.0the ESCI model was rasterized to a 471 
30″ (arcsecond) raster (approximately 650 m2 cells at 45° latitude) to permit a direct cell-level 472 
comparison across emissions models and the GHS-POP gridded population model. The EDGAR dataset 473 
version is v6.0, data year 2018, with a native resolution of 0.1° (360″) before re-gridding. For ODIAC 474 
the model version is 2020, with data for 2018, with a native resolution of 1km2 cells. The three models 475 
report slightly different totals for total European emissions. This is due (a) to differences in emissions 476 
categories covered, (b) for ODIAC, the monthly allocation, and (c), for EDGAR, the fact that in EDGAR 477 
aviation and marine emissions are spatialized over ship and flight traffic routes rather than allocated 478 
to grid cells in the country. For this initial cross-model comparison, the three datasets were normalized 479 
to include only grid cells covered by all three models and then by normalizing the total emissions 480 
across the three models so that we compare solely the spatial allocation. This is a simplified method 481 
for cross-model comparison and leaves considerable scope for future work on cross-model 482 
comparison. Our main aim here is to document this new model and conduct a preliminary validation, 483 
not conduct a robust cross-model comparison. 484 

The cross-model cell-level comparison (Figure 2) shows the degree of  convergence between the ESCI 485 
and the EDGAR model. The ESCI reports more cells with low (<100 t CO2) and very high (>1000t) 486 
emissions. The ESCI model also reports higher cell-level variability than does ODIAC: the ODIAC model 487 
reports most cells have emissions in the range of 102-104, whereas the ESCI model reports cells with a 488 
range of 101-105 t CO2/yr. This could potentially be an artefact due to aggregation of ODIAC. The ODIAC 489 
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model is natively provided at 1km2 resolution, corresponding to a cell size of 0.07-0.04″ depending on 490 
latitude, and it could be that the aggregation to 30″ cells for the purpose of comparison has masked 491 
higher variability within the 30″ grid. Another hypothesis is that this homogeneity is due to ODIAC’s 492 
use of nighttime lights data, and that while illumination is relatively homogenous across urban and 493 
peri-urban areas, the emissions within similarly lit areas can be starkly different. Another noteworthy 494 
feature is that ESCI reports many more areas with low (<100t) emissions compared to both EDGAR 495 
and ODIAC. One hypothesis is that this is related to the method of spatializing emissions from vehicle 496 
fuels to fuel stations. Since fuel stations often are spaced >650m apart, especially in rural areas, this 497 
could result in many pixels in rural areas being assigned zero fuel emissions. As discussed elsewhere, 498 
the decision to localize vehicle emissions at fuel stations was a deliberate design choice in this model. 499 
Other models may choose to localize these emissions on roads, or pro-rate them across a gridded 500 
population map on a per-capita basis. 501 

 502 

   

Figure 2: Emissions per standardized grid cell, cross-model comparisons, and frequency analysis. Compared to the ODIAC 503 
model (panel a, c), ESCI reports higher cell-level variability, with ODIAC reporting most cells to have emissions in of 102-104 t 504 
CO2/yr and ESCI reporting cells ranging from 101 to 105 t. Compared to the JRC EDGAR v6.0 model (panel b, c), the ESCI model 505 
reports more cells with small (<102 t CO2) emissions and fewer cells with high (>104 t CO2) emissions. The ESCI model reveals 506 
a higher variability in emissions per cell than do other models. 507 

 508 

Next, we converted the administrative region definitions from ESCI to a raster map compatible with 509 
the EDGAR and ODIAC gridded datasets. Then we compared the results aggregated by administrative 510 
level (ie. by city) across the models. We compared results both at the city level, i.e. at the highest level 511 
of regional detail per country, and at the county level, i.e. the administrative level one step above that. 512 
These results are presented in Figure 3.  513 

 514 

(a) 

 

(b) 

 

(c) (d) 
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 515 

Figure 3: Cross-model comparison of CO2 emissions per city (using the finest level of regional detail) 516 
and per county (using the next-finest level of regional detail per country). 517 

 518 

Currently no methodology has been developed to quantify uncertainty in the model. In addition to 519 
being technically challenging, it is difficult to quantify uncertainty in any single portion of the model, 520 
much less the whole. Even if the national inventory or ETS inventory are taken to be 100% reliable, 521 
errors and biases introduced during the various steps of spatializing these emissions are difficult to 522 
quantify. Developing a strategy for parameterizing reliability of model results would be a valuable next 523 
step in the research. Previous studies which have investigated techniques for parameterizing 524 
uncertainty in gridded spatial proxy models could be useful (Andres et al., 2016; Bun et al., 2010; 525 
Hogue et al., 2016; Hutchins et al., 2017; Woodard et al., 2014). 526 

 527 

Validation against city inventories 528 

The main objective of the ESCI database is to provide easily accessible estimates for GHG emission 529 
inventories at the municipal level to assist local governments in developing more detailed inventories 530 
or in developing their own climate action plans (CAP). We compare our ESCI estimates for external 531 
validation with existing municipal GHG inventories compiled from a variety of sources in the 343 Cities 532 
dataset (Nangini et al., 2019). These emissions inventories are largely self-reported, of varying quality, 533 
and follow different protocols, but still provide the most concrete point of comparison for our Scope 534 
1 emissions estimates at the municipal level. In total, Scope 1 emission values for 44 European cities 535 
can be found in the database, which are compared to the ESCI estimates in Figure 4.   536 

 537 
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 538 

The figure shows very high agreement (Pearson correlation coefficient 0.937), despite the different 539 
methods and timing of the city inventories (emission years between 1994 and 2016 with a median of 540 
2013). Only Ravenna, Italy, differs by several orders of magnitude, but the value in the 343-city 541 
database is not realistic (11ktCO2 for a population of 150000).  542 

 543 

4. Main Findings 544 

 545 

a. Results overview 546 

An overview of the results for Europe is shown in Figure 5. The results are presented both in absolute 547 
and per capita terms. Some noteworthy features are the high emissions in coastal Netherlands, 548 
associated with marine activity, and the high emissions from Gotland island in the Baltic sea, driven 549 
by one large cement facility there. Emissions in France are remarkably concentrated into a few, 550 
primarily coastal, cities. 551 

One limitation which must be kept in mind when looking at the results at the municipal level is that 552 
municipalities vary in size between countries. In continental Europe municipalities are quite small 553 
while in the Scandinavian countries the most local administrative units are relatively large and thus 554 
aggregate more emissions and are more visually prominent. For some analyses, gridded maps, where 555 
the spatial unit of analysis is consistent, are preferable to political maps.  556 

Figure 4: Comparison between ESCI results and the community level emissions inventories of 44 European cities. The color 
coding indicates whether cities report CO2 values, or include other greenhouse gases in their inventories.  
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Population per administrative area was estimated by overlaying the administrative boundary on the 557 
GHS-POP gridded population map. Gray areas indicate areas where no model results are available. In 558 
some cases (as seen for example in Ukraine and Romania) the administrative regions at that level are 559 
not exhaustive.   560 

  

 561 

Figure 5: Emissions per municipality in absolute terms (left panel) and per capita terms (right panel). 562 

 563 

In many countries, emissions are remarkably concentrated in a few regions. As seen in Figure 6, in 21 564 
of the 34 countries assessed, >30% of national emissions arise from ten municipalities. This implies 565 
that focused changes in a few political regions could contribute substantially to achieving national 566 
reduction targets. 567 

 568 

Figure 6: share of national emissions arising from the top 10 emitting municipalities (or smallest finest 569 
administrative distinct) in each country. (Liechtenstein is not shown because the country only has 11 570 
municipalities.) 571 

 572 

The important role of high-emitting municipalities is seen at the European level as well. Figure 7 573 
presents a Lorenz curve showing the contribution of municipality to the total European emissions. A 574 
striking degree of concentration is visible, with 10 municipal regions across Europe driving 7.5% of 575 
emissions, 100 driving 20%, and the top 10 cities in each country collectively driving 33.4% of total 576 
European emissions.  These highest-emitting regions are not necessarily the most populous, since in 577 
many cases outlying industrial facilities are major drivers of emissions. 578 
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 579 

 580 

Figure 7: Lorenz curve showing cumulative contribution to total emissions from each municipality. 581 

 582 

 583 

b. Case study of Norway 584 

To demonstrate the results provided by the model we investigate Norway as a case study. In Norway 585 
there are just two levels of administrative hierarchy: counties (fylke) and municipalities (kommune), 586 
corresponding to the NUTS-2 and NUTS-3 levels respectively. This is a relatively simple configuration; 587 
for many European countries the System of administrative hierarchy is complex and deeply historical. 588 
For example in Germany some cities are peers with states and the administrative configuration is 589 
slightly different between states (in some states there is a level 7 administrative subdividision while 590 
in other states there is not); In Switzerland not all cantons use subdivisions; and in some places statistic 591 
agglomerations of areas, such as capital cities with their suburbs, maybe more relevant than the 592 
judicial regions. Our model provides results at all administrative levels in a country as defined in OSM. 593 
There are up to 10 levels available (we do not include level 11, which is for neighborhoods and 594 
parishes) and most countries use between 2 and 5 levels. 595 

The results for Norway at the NUTS-2 (fylke) level, (596 

597 
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 598 
Figure 8) level show concentration and highlight the importance of industrial sources in Norway.  599 

Rogaland fylke is the highest emitting. This is because in Stavanger, a city in Rogaland known as ‘the 600 
oil capital of Norway’, in addition to reported emissions from petroleum facilities physically around 601 
the city, many of the ETS-registered point source emissions from offshore facilities are legally 602 
registered to company offices in Stavanger.  603 

 604 
Figure 8: Emissions per NUTS-2 region (fylke) in Norway. The very high emissions in Stavanger (Rogaland) are driven largely 605 
by ETS-registered point sources. Stavanger is known as the oil capital of Norway. Note that Oslo fylke itself is small (ranked 606 
11th), coextensive with only the heart of the city, and that Viken (ranked 4th) is the region which encompasses the greater Oslo 607 
region. 608 

Viken, the region of greater Oslo, has 5.8Mt of CO2 emissions. The model results show that 32% of 609 
these emissions come from vehicles and 36% from buildings. Fossil fuel heating has been phased out 610 
of most buildings in Norway so these emissions are from light commercial activity, such as small 611 
burners, boilers, and generators not reporting to the ETS. A full 20% of emissions in Viken (1.1Mt) are 612 
associated with Norway’s largest airport, the Oslo airport at Gardermoen. As described in the 613 
Methods, total emissions from aviation bunker fuel use in the country are allocated across airports in 614 
the country pro-rated by 2018 passenger volume. This approach could be biased and emissions from 615 
cargo flights, long-haul flights, and military aviation, should be located at airports different from those 616 
handling the most passenger traffic. This is a limitation of the current model. 617 

Table 2 presents results at the municipality (kommune, or LAU-1) level for the top 20 municipalities. 618 
The relatively low emissions from the cities of Oslo (ranked 11th), Bergen (ranked 10th) and 619 
Trondheim (ranked 19th) is surprising given these are the three largest cities in Norway. Industrial 620 
emissions from ETS sources are the primary emissions drivers for the top four cities. The city-level 621 
results do also reveal some challenges with the model. The “refineries” category is defined as the 622 
residual between the national total emissions associated with industrial facilities and the total 623 
reported by the ETS facilities, and this residual is allocated evenly across facilities tagged as “refineries” 624 
in OSM. Overall this residual is small, but since there are few refineries, for individual cities it is 625 
substantial. Also noteworthy are the major emissions from harbors in the residential island 626 
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archipelago of Øygarden. Currently emissions from marine bunker fuel are allocated evenly across all 627 
facilities tagged as “harbor” in OSM. In Øygarden there are many small-boat facilities, often not even 628 
selling fuel, yet at the same time the island region outside of Bergen is also heavily trafficked by large 629 
offshore work ships and cargo ships. Improving the methods use for spatializing emissions from 630 
marine bunker fuel use would help Improve the model for Norway and other countries with extensive 631 
marine traffic. 632 

 633 

Table 2: Estimated emissions for 2018 for the top 20 emitting municipalities in Norway, as generated by ESCI. 634 

 635 

The model can be explored as tabular data, as a gridded raster model, or visualized on a map. Figure 636 
9 provides an overview of the distribution of emissions across Norway, aggregated at the county and 637 
municipality levels. A concentration of emissions in Stavanger (in the southwest corner) and Porsgrunn 638 
(an industrial area in the south) is clearly visible. 639 

 640 

  

Figure 9: Heatmap visualization of ESCI-estimated emissions at the NUTS-2 county level (left) and municipality level (right) in 641 
Norway. Regions are color coded from green (lowest) to red (highest) emitting region in the country. 642 

Municipality (kommune) Total Airports Buildings ETS Farms Vehicles Harbours Refineries Trains TiOx

Stavanger 12,109,439        -                    149,270       11,779,396        4,935          146,650       28,932          -                  256           -                

Porsgrunn 2,079,447          -                    17,446          1,989,186          441             67,040          4,822            -                  512           -                

Sola 1,395,161          208,654           23,320          1,100,663          448             37,710          24,110          -                  256           -                

Tønsberg 1,262,066          -                    81,972          347,759              3,731          67,040          4,822            756,230         512           -                

Ullensaker 1,223,520          1,128,279        29,898          -                       1,981          62,850          -                -                  512           -                

Haugesund 1,202,557          -                    17,292          1,133,338          1,015          46,090          4,822            -                  -            -                

Øygarden 1,088,329          -                    37,224          67,910                2,695          79,610          144,660       756,230         -            -                

Sandnes 905,490              -                    56,100          -                       980             92,180          -                756,230         -            -                

Alver 864,906              -                    31,174          -                       9,198          58,660          9,644            756,230         -            -                

Bergen 729,745              331,913           157,344       30,033                3,353          205,310       -                -                  1,792       -                

Oslo 724,800              -                    386,628       10,468                2,002          322,630       -                -                  3,072       -                

Sunndal 694,376              -                    8,008            670,648              3,150          12,570          -                -                  -            -                

Karmøy 616,538              27,177              20,218          442,562              413             58,660          67,508          -                  -            -                

Bamble 596,183              -                    3,388            541,806              77                46,090          4,822            -                  -            -                

Rana 584,501              20,400              7,920            503,573              6,006          46,090          -                -                  512           -                

Vefsn 530,372              14,620              34,936          446,234              294             33,520          -                -                  768           -                

Fredrikstad 518,362              -                    186,010       71,105                8,722          117,320       9,644            -                  256           125,305       

Årdal 467,475              -                    2,288            456,373              434             8,380            -                -                  -            -                

Trondheim 458,851              -                    233,640       45,422                2,289          167,600       9,644            -                  256           -                

Senja 451,891              -                    27,962          304,611              266             41,900          77,152          -                  -            -                
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Internally, the model attributes all national emissions to points across the country. It is possible to 643 
zoom in and view these emission point sources. Figure 10 provides a screenshot from the model 644 
visualization for the city of Trondheim, a city of 200,000 located in mid-Norway. The dots over each 645 
building, farm, fuel station, and ETS facility are scaled according to the estimated amount emissions 646 
coming from that point. Orange dots show ETS-registered facilities. Purple dots in the figure show fuel 647 
stations. The fine grey dots in the figure show all buildings registered in OSM. As detailed in the 648 
Methods, emissions from several categories are allocated to buildings. The use of fossil fuel for 649 
building heating is extremely rare in Norway. The emissions in the “building” category in Norway are 650 
mostly from light commercial activity: boilers, generators, ovens, and the similar emissions from light 651 
commercial activity which are below the ETS reporting threshold. As discussed above, it is difficult to 652 
characterize buildings (e.g. buildings as different as a hospital, mall, auto body shop, and small cottage 653 
are not distinguishable, nor can mansions be differentiated from cottages) (Milojevic-Dupont et al., 654 
2020), but this is clearly a frontier where further work is merited. 655 

 656 

 657 

Figure 10: Example visualization of spatialized emissions inventory for Trondheim, a city of 200,000 in mid-Norway, and the 658 
surrounding region. Small grey dots represent individual buildings; purple dots are emissions from fuel stations, and the large 659 
orange dots are ETS-registered point source facilities (a waste incineration plant and a factory making mineral wool). This 660 
detailed view, while only an estimate, can provide residents and government agencies a thought-provoking view of what 661 
decarbonization will look like for their town. 662 

 663 

 664 

5. Code Availability 665 

The source code not available at the time of writing. The authors plan to clean up the code and prepare 666 
a publicly usable version in the future. This will be linked at the Zenodo data repository and project 667 
home page. 668 

 669 

6. Data Availability 670 

Datasets are available via Zenodo at https://doi.org/10.5281/zenodo.5482480 (Moran, 2021) 671 

The Zenodo DOI is: 10.5281/zenodo.5482480 672 
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The model homepage, with an interactive map, is: https://openghgmap.net 673 

 674 

7. Limitations and Future Work 675 

One limitation of the approach presented in this paper, and a potential source of difficult-to-detect 676 
bias, could be inconsistent coverage in OpenStreetMap. As OSM is a crowd-sourced dataset there is 677 
no assurance of homogeneous coverage. Some areas of the country may be well-covered in OSM and 678 
others only sparsely (Hecht et al., 2013). This could introduce biases such as underreporting the 679 
number of fueling stations and thus underestimating vehicle traffic. The authors are not aware of any 680 
effort to characterize the consistency of OSM coverage; this would be a valuable next step both for 681 
the work presented here as well as for the OSM project and work derived therefrom. 682 

For countries which do not participate in the ETS and do not have a similar domestic MRV system for 683 
large point source carbon emitters, spatializing emissions from point source polluters will be a 684 
challenge. Resources such as OSM and the Power Plant Database, which have considerable 685 
information at the facility level (e.g. output in megawatts and fuel source for power plants), could be 686 
of use. 687 

The spatialization of emissions from vehicles and buildings - the two largest emissions categories - is 688 
challenging. The assumption in ESCI that every fuel station serves an equal volume and mix of vehicles 689 
is simplistic. The lack of even basic data characterizing buildings by height, area, age, or material, 690 
makes it impossible to differentiate buildings as varied as a terrace house block, separated house, 691 
mall, or hospital. Some novel approaches for characterizing building stocks have recently been 692 
proposed (Haberl et al., 2021; Milojevic-Dupont et al., 2020; Peled and Fishman, 2021) which could be 693 
used. Developing more accurate town-level models of building emissions may require different 694 
modelling approaches, such as utilizing data from national building cadaster registries or from 695 
advanced remote sensing datasets such as from synthetic aperture radar satellite constellations, 696 
airborne LIDAR sensors, and machine learning used with mobile airborne or ground cameras. 697 

Our emissions inventory can support local authorities in their journeys towards climate neutrality in 698 
multiple manners. The inventory can help make local and regional sources of emissions more tangible 699 
for diverse politicians, city administrations and local communities and provides a good starting point, 700 
especially for communities that lack a detailed GHG emissions inventory. Making an abstract concept 701 
such as greenhouse gas emissions more visible will enable discussions regarding localization and 702 
upgrading of facilities and infrastructures and will provide a basis for emblematic changes with high 703 
impact potential for the region. Connecting the inventory to digital urban twins with detailed 704 
information regarding built environment characteristics, may help overcome the current limitations 705 
of lack of building data.  706 

In order to further develop the model, we will actively discuss and test it with local authorities to fine-707 
tune it to their needs in order to make informed decisions. Furthermore, we will explore how we can 708 
further refine data collection, analysis and spatialization through the use of GIS combined with 709 
crowdsourcing and citizen science.  710 

To conclude, we present a new European emissions inventory which disaggregates national CO2 711 
inventories to city and county level administrative jurisdictions. The model is broadly consistent with 712 
the ODIAC and EDGAR results but shows higher cell-level variability and provides results per-713 
jurisdiction rather than in a gridded form. The estimated inventories provided by this model can help 714 
local governments begin establishing an emissions inventory.  715 

 716 

8. Author Contributions 717 
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