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Abstract 18 

City-level CO2 emissions inventories are foundational for supporting the EU’s decarbonization goals. 19 
Inventories are essential for priority setting and for estimating impacts from the decarbonization 20 
transition. Here we present a new CO2 emissions inventory for all 116,572 municipal and local 21 
government units in Europe, containing 108,000 cities at the smallest scale used. The inventory 22 
spatially disaggregates the national reported emissions, using 9 spatialization methods to distribute 23 
the 167 line items detailed in the National Inventory Reports (NIRs) using the UNFCCC Common 24 
Reporting Framework (CRF). The novel contribution of this model is that results are provided per 25 
administrative jurisdiction at multiple administrative levels, following the region boundaries defined 26 
OpenStreetMap, using a new spatialization approach. All data from this study is available at Zenodo 27 
https://doi.org/10.5281/zenodo.5482480 and via an interactive map at https://openghgmap.net. 28 

 29 

1. Background 30 

While climate goals are set at the national and international level it is often local governments and 31 
citizens who are most intimately involved in the accomplishment of these goals, and who must adapt 32 
to the implied changes. The European Commission has been clear that cities will play a central role in 33 
reaching European climate goals. As with nation-states, a greenhouse gas (GHG) inventory is the first 34 
step to preparing a local climate action plan (CAP). Cities often use one of the various protocols 35 
available or develop their own methodology to create an emissions inventory. And for good reason - 36 
an inventory informs all levels of municipal decision making, from long-term planning strategies to 37 
infrastructure investments and day-to-day management of building permits. Nevertheless, many local 38 
governments in Europe still do not have a good estimate of their own GHG emissions. Establishing an 39 
emissions inventory is laborious and can be costly for jurisdictions that do not have in-house expertise. 40 
Hence, as the spotlight turns to cities to effect and manage a successful transition to carbon neutrality, 41 
many see the preparation and maintenance of a local emissions inventory as a considerable challenge. 42 

Cities can develop their own inventories using a protocol such Global Protocol for Community-Scale 43 
Greenhouse Gas Emissions Inventories (Fong et al., 2016) a joint initiative of WRI, the C40, Global 44 
Covenant of Mayors, and ICLEI (Kona et al., 2021). An inventory informs all levels of municipal decision 45 
making, from long-term planning strategies to infrastructure investments and day-to-day 46 
management of building permits. 47 
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A number of GHG monitoring, reporting, and verification (MRV) solutions have been put forward. 48 
These include sensor networks (both ground and space-based), and a range of accounting and model-49 
based approaches. No one of these approaches is ideal: they differ in terms of accuracy, precision, 50 
cost, and scalability. In response it has therefore been suggested that MRV efforts should aim at 51 
triangulating true CO2 emissions using a mix of empirical, modeling, and statistical methods (Lauvaux 52 
et al., 2020; Mallia et al., 2020). The model presented here should be seen as one estimate, to be 53 
combined with other estimation approaches and local knowledge, to triangulate towards an 54 
actionable emissions inventory. 55 

One approach for cities to monitor emissions is by using atmospheric measurement of GHG 56 
concentrations and “inverting” that for an emission quantity. These efforts require atmospheric 57 
transport models to translate the atmospheric mixing ratios into surface fluxes of GHGs (Davis et al., 58 
2017; Ghosh et al., 2021). Concentration measurements can include dense, low-cost sensors (Kim et 59 
al., 2018), high-precision tower-mounted instruments (Turnbull et al., 2019; Whetstone, 2018), 60 
aircraft and satellite-based measurements (Nasa, 2021; Jaxa, 2021; Wu et al., 2020), the EU’s CoCO2 61 
and ICOS Cities projects, NASA’s OSSE project (Ott et al., 2017)  and/or combinations of all of the 62 
above. By combining these approaches with high-resolution emission data products built using 63 
bottom-up approaches, attribution to emitting source by sector or fuel is possible and has shown good 64 
convergence (Basu et al., 2020; Lauvaux et al., 2020; Mueller et al., 2021). 65 

Many estimates of emissions using techniques independent of atmospheric monitoring have also been 66 
accomplished. These inventory approaches are often described as being either “top-down” or 67 
“bottom-up” (though in fact models may use a combination of these approaches). Top-down models 68 
begin from national statistics, such as national energy use or fuel import statistics, while bottom-up 69 
approaches estimate emissions at the point of combustion or emission release based on deterministic 70 
information (e.g. fuel combustion characteristics, leak rates) and then aggregate these to an implied 71 
national total. The top-down approach uses spatial proxies such as gridded population, nighttime 72 
lights, GDP estimates, and other available spatial proxy variables to allocate national total emissions 73 
across grid cells in each country. Bottom-up techniques often use a mixture of data such as direct flux 74 
monitoring (e.g. powerplant stack monitors), local fuel or utility data, and traffic monitoring. 75 

Several global and country-scale spatially explicit GHG inventories have been developed based on 76 
either bottom-up or top-down approaches. The JRC EDGAR v6.0 (Crippa et al., 2020), ODIAC (Oda and 77 
Maksyutov, 2011; Oda et al., 2018) are well-established examples of global emission data products 78 
but others have been developed (Andres et al., 1996; Andres et al., 2016; Asefi-Najafabady et al., 2014; 79 
Nassar et al., 2013; Rayner et al., 2010; Wang et al., 2013), including some at the national/regional 80 
scale (Bun et al., 2019; Zheng et al., 2021; Jones et al., 2020; Kurokawa et al., 2013; Meng et al., 2014). 81 
A number of these models use nighttime lights data as one input signal (or gridded population datasets 82 
which in turn may be based on nighttime lights), though at least one study has found this is only 83 
moderately predictive (Gaughan et al., 2019). 84 

Spatially explicit bottom up GHG inventories have been accomplished at the regional, national and 85 
urban scale. For example, the US 1 km2/hourly VULCAN CO2 emissions data product (Gurney et al., 86 
2020a; Gurney et al., 2009; Gurney et al., 2020b) and the Northeast US 1km2 ACES (Gately and Hutyra, 87 
2018) data product. Similarly, work in Poland has achieved similar success (Bun et al., 2010; Bun et al., 88 
2019). Building/street scale bottom-up efforts have also been accomplished with the HESTIA Project 89 
which has estimated hourly urban CO2 data products in the four US cities (Gurney et al., 2019; Gurney 90 
et al., 2012; Patarasuk et al., 2016; Roest et al., 2020).  91 

Finally, urban emissions have been estimated at the whole-city scale using both top-down and 92 
bottom-up techniques as individual city studies or as collections of urban areas (Ramaswami and 93 
Chavez, 2013; Chen et al., 2019; Harris et al., 2020; Jones et al., 2020; Meng et al., 2014; Shan et al., 94 
2018; Shan et al., 2017; Zheng et al., 2021; Long et al., 2021) as well as results focused on city results 95 
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in England (Baiocchi et al., 2015), China (Liu et al., 2020; Wang et al., 2017), and Europe (Baur et al., 96 
2015). Many of these studies extend analysis to include Scope 3 or consumption emissions. 97 

Here we provide a new pan-European model estimating emissions at the municipality level (Moran, 98 
2021). This is intended to be useful for cities which have not conducted their own inventory. The 99 
inventory disaggregates the totals from the official national CO2 inventory, summarizing the 167 line 100 
items of the UNFCCC’s Common Reporting Framework  (hereafter, CRF) (Ipcc, 2006) into nine 101 
emissions categories. The model identifies up to five levels of administrative hierarchy across 34 102 
European nations including the UK. 103 

This paper proceeds by first situating this contribution with respect to similar work. We then present 104 
the methodology and results, including a pixel and city-level comparison with EDGAR and ODAIC and 105 
a first validation against 43 existing urban emissions inventories assembled by individual cities. We 106 
conclude with a discussion in which we reflect on use cases and next steps. 107 

The JRC EDGAR database, ODIAC, and GCP-GridFED databases are obvious points of comparison to the 108 
model we present in this study. Section 3 presents a conceptual and numerical comparison of these 109 
datasets. The main innovations presented by this model over EDGAR and ODIAC are (a) results are 110 
provided for administrative jurisdictions rather than on a raster grid and (b) the use of OpenStreetMap 111 
is novel. Additionally, our model is targeted to be useful to citizens and local governments, at city level, 112 
by identifying the sources of their city's CO2 emissions. This influences some of our modeling 113 
approaches, such as emissions attribution from ships and planes to ports and airports rather than 114 
along their physical voyage tracks. But it is the provision of ready-to-use results at the city, county, 115 
and state level across Europe which we believe is the core contribution of this database. 116 

The method described here is intended for creating an inventory of direct emissions. It is worthwhile 117 
to recall the distinction between scope 1, 2, and scope 3 emissions inventories as defined in the WRI’s 118 
Greenhouse Gas Protocol nomenclature (WRI et al., 2014). An inventory of direct emissions is called a 119 
scope 1 inventory, a territorial emissions account, or a production-based emissions account (PBA). A 120 
scope 2 inventory will be largely identical to a scope 1 inventory but reallocate the emissions from 121 
electricity production to the location where that electricity is directly used. A scope 3 inventory, also 122 
called a footprint or a consumption-based account (CBA), will further expand the scope and attribute 123 
to consumers all emissions associated with imported goods and services produced domestically or 124 
abroad, and emissions associated with waste exported outside the jurisdictional bounds. For urban 125 
areas with little production and much consumption, scope 3 emissions can be substantial: studies 126 
estimate that for many urban cores their scope 1 emissions are 30-50% of their total scope 3 footprint. 127 
Scope 3 inventories are estimated using trade and supply chain databases and rely on robust (i.e. well-128 
modeled or empirically validated) scope 1 inventories as a starting point.  There is an active community 129 
working to prepare Scope 3 assessments at the city level (Chen et al., 2019b, a; Guan et al., 2020; 130 
Heinonen et al., 2020; Minx et al., 2013; Moran et al., 2018; Pichler et al., 2017; Ramaswami et al., 131 
2021; Wiedmann et al., 2021; Zheng et al., 2021b).  132 

 133 

2. Methods 134 

The approach presented here spatializes the national emissions inventory using activity data from 135 
Open Street Map (OSM), the EU’s Emissions Trading System registry of point source emitters, and 136 
traffic data for airports. This method sums to a national total equal to the national inventory, 137 
generates results as both a gridded dataset and per administrative unit and preserves detail on the 138 
sources of emissions. The intention is to best locate emissions to where they physically or legally occur. 139 

As the spatial resolution of the inventory increases an interesting consideration emerges, namely that 140 
there is some discretion in where emissions should be spatially located. The emissions for a passenger 141 
ferry for example could be spatially located over water where they physically occur, at the office of 142 
the ferry company which is legally responsible, at an industrial harbor where the boat takes on fuel, 143 
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or at the passenger terminals where it traffics. At larger grid cell sizes these four locations are more 144 
likely to share the same grid cell, but with highly resolved models this becomes a modeling choice. 145 
Our choices on such decisions are documented in the relevant section of methods which describes 146 
each emissions category, but as a general principle we opt to locate emissions where it makes most 147 
sense for communication and outreach by those using the results, where policy tools are easiest to 148 
apply, or where they physically occur, in that order. 149 

Scope of coverage: The model is currently built for the year 2018. This is the most recent year for 150 
which official national inventories were available from EUROSTAT when the model was assembled. 151 
The list of countries covered is provided in the Results section of this paper. The UK is included in the 152 
model. Regarding the impact of the UK’s exit from the EU, we anticipate this will not substantially 153 
reduce the ability to use this model for the UK, since the UK has established its own UK ETS and, we 154 
presume, will continue to publish an emissions inventory in CRF (the Common Reporting Format) 155 
format. This study focuses only on CO2 emissions; other greenhouse gasses are not included. In each 156 
relevant section of the Methods a discussion is included about how the model could be extended to 157 
handle other GHGs. One rationale for this choice is that the second largest GHG, CH4, is heavily driven 158 
by agricultural activities and rogue emissions and these are some of the hardest to accurately 159 
spatialize. Furthermore, the intention in this study is to focus on fossil fuel use and not short-cycle 160 
carbon such as emissions related to land use and agriculture. Therefore, the model does not include 161 
emissions from land use, land-use change, and forestry (LULUCF). The choice to exclude these from 162 
the model was based on considerations including (a) estimates of total LULUCF emissions are often 163 
poorly constrained, (b) they are difficult to spatialize accurately, (c) local government policy have 164 
fewer immediate policy options for managing these emissions, (d) national climate targets often 165 
exclude LULUCF emissions, (e) there are diverse approaches to accounting for LULUCF and carbon 166 
sinks, leading to significant variability (Grassi et al., 2018; Petrescu et al., 2020). 167 

The model assembly procedure can be summarized as follows. Further detail and discussion on each 168 
aspect is provided in the following subsections. First, emissions which can be attributed to point 169 
source facilities reporting under the ETS are separated from the national inventory.  ETS-registered 170 
emissions are geolocated at the street address registered for that permitholder. In the cases where 171 
the location of emissions differs from the registered address (e.g. offshore oil activities, or some 172 
company activities) this approach can still be rationalized since (a) physically locating all facilities which 173 
are not at their mailing address will be difficult, and (b) legally, the control of the emissions is likely at 174 
the registered address, so there is sense in calling attention to emissions which are controlled from 175 
there. Emissions from vehicles are apportioned equally to fuel stations as located in OSM. The model 176 
amortizes total national vehicle fuel use evenly across all fuel stations, though this will not correctly 177 
capture subtleties such as fleet and trucking-only fuel depots, nor differentiate between small (1-2 178 
pump) stations and large filling stations with multiple pumps. Emissions which are associated with 179 
buildings (heating and cooling, construction, and light commercial activity), plus the residual industrial 180 
emissions which cannot be attributed to ETS sources, are apportioned equally onto all buildings 181 
registered in OSM. (OSM does allow buildings to be tagged with extended attributes such as floor size, 182 
stories, and use, but in our investigations <1% of buildings use these attributes so for now we have 183 
not attempted to utilize those fields.) Emissions from marine bunker fuels are apportioned equally to 184 
harbors as located in OSM (note that diesel fuel for small vessels will be treated as vehicle fuel). 185 
Emissions from aviation bunker fuel are spatialized onto airports proportional to the volume of 186 
passenger traffic handled at each airport, as reported by Eurostat. Fugitive emissions and emissions 187 
from petroleum byproducts are spatialized equally across national refineries and associated oil 188 
storage facilities. CO2 emissions from farming and forestry are apportioned to farmed areas as located 189 
in OSM (these are based on the EU CORINE land use map). Emissions from trains are mapped to 190 
passenger train stations.  191 

Figure 1 displays the total emissions covered in the model, excluding of LULUCF and carbon sinks, 192 
grouped according to the methods used to spatialize those emissions, and color coded according to 193 
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the approximate level of difficulty, or degree of uncertainty, of that spatialization, with greyer colors 194 
representing more easily spatialized emissions and brighter colors indicating emissions categories 195 
which, in the authors’ experience, are more difficult to confidently spatialize. 196 

 197 

 198 
Figure 1: Composition of emissions across the 34 European countries covered. ETS shows the volume of emissions associated 199 
with ETS-registered point source emitters; fuel stations show emissions from vehicles; the ‘buildings’ category comprises 200 
emissions from building heating, cooling, construction, and light commercial activity. Non-ETS point source emissions is a 201 
residual category representing the difference between industrial emissions as reported in the national inventory and the sum 202 
of emissions reported by facilities participating in the ETS. Nearly half (42%) of these occurs in Turkey, which as of publication 203 
does not participate in the ETS, but this discrepancy is also observed in large emitters like Germany, France, the UK, and 204 
Poland. These residual emissions are spatialized using OSM records instead of ETS addresses. 205 

 206 

a. Mapping point source emissions regulated by the EU Emissions Trading System 207 

The EU’s Emission Trading System (ETS) requires large point-source emitters to report emissions and 208 
report an address for every permitholder. A geolocation API was used to translate these addresses 209 
into latitude-longitude coordinates. While for many facilities the address where the emissions are 210 
legally controlled is the same as the facility’s physical address, or in a nearby town, in some cases the 211 
two locations can differ more substantially (emissions from Norwegian offshore activities are largely 212 
legally controlled in the city of Stavanger, for example).  The emissions associated with ETS permitted 213 
facilities are then subtracted from the CRF inventory thus leaving fewer total emissions remaining to 214 
be spatialized. The allocation of CRF emissions to ETS facilities is done as follows. For a number of CRF 215 
sectors (for example, “Fuel combustion in manufacture of iron and steel” (1.A.2.A)), some or all of the 216 
sector’s emissions are attributable to ETS facilities. We constructed a priority-ranked concordance 217 
table to determine which CRF emissions are already covered by ETS-registered permits. Normally the 218 
ETS-reported emissions for a given activity are less than or equal to the CRF-reported emissions for 219 
that category and there is only a small residual between the CRF-reported value and sum across 220 
pertinent ETS permits, however in some cases this residual is substantial. 221 

The mapping between ETS categories and CRF categories is not always one-to-one. For example, the 222 
ETS uses the code “24: Production of pig iron or steel”. These facilities may correspond to the CRF 223 
activities, Fuel combustion in manufacture of iron and steel (1.A.2.A), Iron and steel production (2.C.1), 224 
or Ferroalloys construction (2.C.2). In our ranked concordance matrix approach, a rank of 1 is given to 225 
the first CRF activity, a rank of 2 is given to the second CRF activity, and a rank of 3 is given to the third 226 
CRF activity. The emissions from those ETS facilities from code 24 are first attributed to the rank 1 CRF 227 
activity until it is sated, then excess ETS emissions are assumed to come from the rank 2 activity until 228 
that volume is sated, the same for rank 3, and so on. Using the above example that could mean that 229 
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all emissions under the first two CRF categories would be fully attributed to ETS iron and steel facilities, 230 
and a portion of the emissions under rank 3, Ferroalloys construction (2.C.2), which cannot be 231 
attributed to ETS facilities, would remain to be spatialized. 232 

In some cases it is unclear what the ranking of CRF activities should be. For example after allocating 233 
ETS emissions from “production of lime, or calcination of dolomite/magnesite” (ETS category 30) first 234 
to  lime production (2.A.2) and secondarily to glass production (2.A.3), should excess ETS facility 235 
emissions from code 30 best be attributed to Cement production (2.A.1), Fuel combustion in 236 
manufacture of non-metallic mineral products (1.A.2.F), or Fuel combustion in other manufacturing 237 
industries and construction (1.A.2.G)? In this case the last three sectors are sated in smallest-to-largest 238 
order until no ETS emissions remain to be allocated. The rationale for the ascending sort order is that 239 
larger CRF categories will be easier to spatialize using other methods. In the earlier example of 240 
aluminum production, any surplus reported in ETS which exceeds the CRF reported aluminum 241 
production emissions is then assigned to the rank 2 CRF category of “Fuel combustion in other 242 
manufacturing industries and construction”, decreasing the amount of emissions in that CRF category 243 
which remain to be spatialized. We also note that not all facilities use the expected ETS activity code. 244 
For example we have observed some fertilizer plants reporting emissions under ETS activity code 42 245 
“Other Bulk Chemicals” instead of activity 41, “Ammonia production”. Such misattributions can 246 
introduce distortions in the model results. To characterize the impact of these distortions the 247 
allocation of ETS emissions through the ranked priority allocation system into CRF would need to be 248 
followed manually in detail. 249 

After linking ETS-reported emissions to the national inventory, the remaining CRF-reported emissions 250 
are spatialized using the methods described as follows. 251 

 252 

b. Vehicles 253 

These are emissions from the following five CRF categories 254 

1.A.3.B.i   Fuel combustion in cars 255 
1.A.3.B.ii  Fuel combustion in light duty trucks 256 
1.A.3.B.iii Fuel combustion in heavy duty trucks and buses 257 
1.A.3.B.iv  Fuel combustion in motorcycles 258 
1.A.5.B Mobile fuel combustion sectors n.e.c. 259 

These emissions are specialized according to the location of vehicle fueling stations as documented in 260 
OpenStreetMap. We make the assumption that the number of vehicle fuel stations in an area is 261 
proportional to the volume of traffic served. This is a simplifying assumption and it is clearly 262 
communicated in the model presentation. In future development of the model, localizing vehicle 263 
emissions will be a top priority (for comparison, we note the Carbon Monitor project’s use of TomTom 264 
live vehicle location data to spatialize traffic.(Liu et al., 2020)). This approach assumes that every fuel 265 
station supplies a similar level of vehicle traffic. It could be the case that some stations are small single 266 
pump gas stations while others are large facilities, for example such as located along a major highway 267 
rest stop. To address this one future solution could be introduce better road traffic estimates. While 268 
traffic load estimates are available for some roads, these estimates tend to be for only a few dozen 269 
specific highways. Fu and colleagues (Fu et al., 2017) proposed a method using neural networks to 270 
estimate vehicle flow on every road using OSM data and gridded population models. (Osses et al., 271 
2021) recently prepared a high-resolution map of emissions from vehicles in Chile. Better modeling 272 
vehicle traffic, not only fuel station availability, would make the model more accurate in spatially 273 
estimating vehicle fuel emissions. Another potential solution would be to identify data on fuel station 274 
volume, e.g. sales estimates or number of pumps installed, but this may be challenging in practice. A 275 
second assumption is that every station serves a homogeneous mix of vehicles. It may be the case that 276 
some stations serve a specific fleet, for example a city bus fleet, and better identifying the mix of 277 



7 
 

vehicles served by each fuel station would allow the above five emissions categories to be more 278 
precisely spatialized. Insofar as electric car adoption drives some fuel stations to close the model will 279 
reflect lower vehicular emissions in areas with more electric vehicles. An interesting note is that in 280 
some urban centers light truck traffic is suspected to be a larger emission source than passenger 281 
vehicles. Better distinguishing types of traffic and vehicles would be useful for helping guide 282 
decarbonization plans that are most appropriate for various areas. 283 

 284 

c. Trains 285 

Trains are a relatively minor source. Emissions for Fuel combustion in railways (1.A.3.C) were 286 
spatialized using passenger train stations as reported in OSM. Every train station was allocated an 287 
equal share of the total emissions. A limitation of this approach is that it may be that not all train 288 
traffic is equally fuel-intensive: some individual trains or sections of the rail network could be fully 289 
electrified and other areas not. Another limitation is that the method allocates total train emissions 290 
(both passenger and cargo) equally across passenger stations, yet passenger stations are not all 291 
equally used, and cargo train activity would be more appropriately localized at freight yards. Reporting 292 
train emissions at passenger terminals does service a communicative value as it reminds viewers that 293 
train traffic is not entirely emissions-free.  294 

 295 

d. Buildings 296 

In the following categories, only a portion of the emissions can be spatialized to ETS locations, but 297 
there remain emissions which must be spatialized onto buildings: 298 

1.A.2.G Fuel combustion in other manufacturing industries and construction 299 
1.A.4.A Fuel combustion in commercial and institutional sector 300 
1.A.4.B Fuel combustion by households 301 
1.D.3 Biomass - CO2 emissions (memo item) 302 
2.D.3 Other non-energy product use  303 

The largest shares of these remaining emissions are driven by building heating and cooling and fuel 304 
combustion by light industry and construction.  305 

Correctly spatializing these emissions associated with buildings is a substantial challenge. OSM is 306 
sometimes known as Open Buildings Map since the database actually contains more buildings than 307 
streets. The OSM dataset reports an extensive number of buildings, but little data is available to 308 
characterize each building. OSM does not record all buildings. In many areas, including small towns, 309 
only a street address is marked but there is no point or polygon data indicating what is built at that 310 
address. While it might be possible to obtain maps of all buildings from national cadaster agencies, 311 
part of our intention in the model is to develop methods which are replicable across other countries 312 
and not rely on single-country datasets. Of the buildings recorded in OSM, only a small percentage (1-313 
5%, depending on country) contain any information characterizing the building such as number of 314 
floors, main usage activity, building material type, or building age. Some recent offerings which 315 
provide building footprints (e.g. products from Maxar or Predicio Building Footprint Data, free 316 
offerings from Bing / Microsoft, and academic initiatives such as coordinated through spacenet.ai) 317 
could be used to identify at least building footprint size, and potentially height or construction 318 
material. 319 

The approach used in the model is to apportion all of the emissions associated with buildings equally 320 
among all buildings and registered street addresses in each country. It is important to recall that for 321 
buildings heated by electricity, CO2 emissions associated with electricity production will be located at 322 
ETS-registered power plants. As noted above, there is a paucity of information available by which we 323 
could further characterize building size or use. 324 
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 325 

e. Aviation 326 

Total emissions associated with kerosene used for aviation fuel (the sum of the CRF categories “Fuel 327 
combustion in domestic aviation (1.A.3.A)” and “International aviation (1.D.1.A)”) reported by EU 328 
member states and calculated compliant with IPCC 2006 guidelines (Maurice et al., 2006). These 329 
emissions are attributed to airports proportionally to total passenger kilometers (pkm). Fuel use from 330 
military aviation is excluded. 331 

Total pkm are derived from the combination of EUROSTAT statistics of route traffic and passenger 332 
traffic per airport. This procedure is preferred over an attribution based solely on total passenger or 333 
flight numbers, since we here implicitly incorporate information on both the flight length and aircraft 334 
size. These parameters are two major drivers for fuel consumption and emissions (Yanto and Liem, 335 
2018).  336 

 337 

f. Farming Activity 338 

The CRF uses the following three categories for farming-associated activities: 339 

1.A.4.C Fuel combustion in agriculture, forestry and fishing 340 
3.G Liming 341 
3.H Urea application 342 

The largest of these, category 1.A.4.C, is challenging to spatialize for two reasons: First, the inclusion 343 
of fishing activity means emissions in this category overlap with emissions in marine traffic. To handle 344 
this, emissions from fishing would have to be estimated, removed from this amount, and spatialized 345 
separately. Even then, the remaining emissions from fuel combustion in agriculture and forestry would 346 
still be difficult to spatialize. Second, we have not been able to identify a suitable dataset to use to 347 
divide and appropriately spatialize forestry as distinct from farming. 348 

Our approach is to map these collected emissions onto locations of farmland as identified by the EU’s 349 
CORINE land-use dataset, which is already incorporated into OSM. The above emissions were evenly 350 
allocated to the centroid points of all polygons tagged as farmland from CORINE. This approach will 351 
not correctly spatialize emissions associated with forestry. Also, this approach allocates the emissions 352 
evenly across every polygon tagged as farmland, regardless of the size of each patch. A future 353 
improvement could be to weight this allocation by patch size and thus assume every hectare of 354 
farmland is equally emissions-intensive to manage, or to introduce activity-level data for agriculture, 355 
such as integrating maps of dairy cattle operations (Neumann et al., 2009) or similar. 356 

As discussed in the introduction, and in section 10 below on short-cycle carbon, currently the model 357 
intentionally excludes emissions from land use, land use change, and biotic processes such as cattle 358 
digestion and manure handling.  359 

The following categories in the CRF report also relate to farming: 360 

3 Agriculture 361 
3.1 Livestock 362 
3.A Enteric fermentation 363 
3.B Manure management 364 
3.C Rice cultivation 365 
3.D Managed agricultural soils 366 
3.E Prescribed burning of savannas 367 
3.F Field burning of agricultural residues 368 

 369 
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g. Marine 370 

Emissions from the maritime sector are part of international bunker fuel emissions together with 371 
international aviation. In both cases, emissions are calculated as part of the national GHG inventories 372 
but not included in national totals. 373 

Emissions in this sector are comprised of the following CRF emissions categories: 374 

1.A.3.D 4 Fuel combustion in domestic navigation 375 
1.D.1.B 4 International navigation 376 

This covers tank-to-wake emissions that stem from fuel combustion. Total fuel consumption is 377 
calculated by a top-down assessment based on annual sales of bunker fuel in each country, comprising 378 
marine gas oil (MGO) and heavy fuel oils and distillates (HFO), and geospatially distributed across the 379 
888 ports.  380 

Port-allocation of bunkered fuels is based on the total transport work for berth-to-berth ship voyages, 381 
as obtained from IHS Markit, totaling 773 000 port calls. Ship voyages are combined with their ship's 382 
respective average fuel consumption as reported by shipowners to the European Union's emissions 383 
monitoring scheme (the EU MRV, Monitoring, Reporting and Verification), given as kilograms of fuel 384 
per nautical mile. This covers all vessels operating in EU ports above 5000 GT, totalling approximately 385 
11 000 vessels. The distance covered with each voyage is calculated by applying the Dijkstra's 386 
algorithm (Dijkstra, 1959) to find the shortest path between two ports, followed by a curve smoothing 387 
process by the Ramer–Douglas–Peucker algorithm (Douglas and Peucker, 1973; Ramer, 1972). The 388 
average fuel consumption and distance sailed is used to estimate total bunker demand at the port 389 
level, by weighing the national reported bunker sales. This approach is expected to be gradually 390 
replaced by the bottom-up emission inventory provided by the MariTEAM model (Kramel et al., 2021).  391 
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 392 

This assessment does not include leisure crafts, considered negligible in comparison to cargo vessels, 393 
neither does include warships, naval auxiliaries, fish-catching or fish-processing ships that are exempt 394 
of reporting their activity to MRV. 395 

 396 

 397 

h. Other 398 

There are some emissions which are difficult to spatialize. These are: 399 

1.C Transport and storage of CO2 (memo item) 400 
2.A.4 Other process uses of carbonates 401 
2.D.1 Lubricant use 402 
2.D.2 Paraffin wax use 403 

In the model these emissions are included in and spatialized using the same strategy as emission from 404 
buildings as described above.  405 

 406 

i. Refineries 407 

The following CRF emissions categories are associated with oil refineries and fossil fuel infrastructure: 408 

1.B 2 Fuels - fugitive emissions 409 
1.B.1 Solid fuels - fugitive emissions 410 
1.B.2 Oil, natural gas and other energy production - fugitive emissions 411 
2.B.8 Petrochemical and carbon black production 412 

Carbon black, item 2.B.8, used to produce black ink, is a byproduct from fracking at refineries. Fugitive 413 
emissions (1.B.2) are by their nature difficult to spatialize (Plant et al., 2019). A number of studies in 414 
California have tried to characterize fugitive emissions from the ageing oil wells and modern fracking 415 
equipment in the region (Hsu et al., 2010; Rafiq et al., 2020; Townsend-Small et al., 2012; Wennberg 416 
et al., 2012). In our model all fugitive emissions are attributed evenly across refineries and associated 417 
storage tanks as located in OSM. The fugitive emissions are apportioned equally among the buildings 418 
tagged [industrial=refinery] or [industrial=oil] in OSM. This approach has the disadvantage of not 419 
correctly spatializing fugitive emissions at the various wellheads, pumping and storage locations 420 
where such emissions physically occur, but has the advantage of attributing fugitive emissions to 421 
refineries so that policy planning can recognize that fossil fuel creates emissions both when it is 422 
combusted but also during its production. This approach follows the guiding philosophy of locating 423 
emissions where they best connect to the relevant policy discussion. 424 

 425 

j. Land Use, Forestry, Stock Change, and Waste (Short-cycle carbon) 426 

Our model is focused on reporting CO2 emissions from fossil fuel combustion and industrial processes. 427 
We explicitly set aside so-called “short cycle carbon”, that is, carbon which is already in the biosphere 428 
stock. We limit the model to focus on emissions of carbon taken from the fossil stock. 429 

Carbon put into sinks (under CRF table 5 - Waste), either natural (terrestrial, aquatic, or marine) or 430 
manmade (e.g. timber construction or paper or biomass put into landfill) sinks is not spatialized or 431 
included in the results. Negative emissions from carbon capture and storage facilities are presently 432 
excluded from the model.  433 

CO2 emissions from CRF category 4, encompassing land use, land use change, and forestry, are also 434 
not included. Our intention is to spatialize fossil fuel combustion associated with agriculture and 435 
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forestry but not emissions associate with landscape-scale soil and biotic processes. We reason that 436 
such landscape-scale emissions are both large, and very challenging to address using locally available 437 
policy tools. Including them in a city-oriented plan, particularly in rural municipalities, could lead to a 438 
situation where the results are heavily dominated by an emissions category with few viable solutions. 439 

In future iterations of the model it may be preferable to allow users to easily include or exclude the 440 
emissions in the model results. Currently our model does not include direct CH4 emissions from cattle 441 
digestion and manure fermentation. This is a substantial emissions category with some remediation 442 
options so it may be useful to include this in a future iteration of the model. 443 

Another detail in this category is sewage treatment and landfills. These act as both sources and sinks 444 
of carbon. It is unclear whether net emissions from sewage plants and landfills are included inside the 445 
CRF category “Long-term storage of carbon in waste disposal sites” (5.F.1) or included in another 446 
category. As category 5.F.1 is not included in the model, if net emissions from sewage are included in 447 
this category those emissions will not be included in the model. Quantifying emissions associated with 448 
sewage treatment and local landfills would be an improvement to the model. 449 

 450 

3. Benchmarking 451 

We do not intend here to provide an exhaustive survey of available spatial emissions models. Here we 452 
only compare the OpenGHGMap model with some widely used global-level models. A full comparison 453 
of spatial emissions models, including several strong single-country models, would be a valuable 454 
contribution to the field, but is not within the scope of the present paper. For one such comparison 455 
we refer to (Hutchins et al., 2017). 456 

Table 1 provides an overview and comparison of OpenGHGMap with ODIAC (Oda and Maksyutov, 457 
2011), JRC’s EDGAR (Crippa et al., 2020; Crippa et al., 2019), and the Global Carbon Project’s GCP-458 
GridFED (Jones et al., 2020) spatial emissions models.  459 
 460 

 Resolution Itemization Temporal Results by 
jurisdiction 

Scope Method synopsis 

ODIAC 1km Total emissions Monthly Country Global Spatialize national 
emissions using 
nighttime lights 
and power plant 
locations 

EDGAR v6.0 0.1° (11km at 
the equator) 

31 IPCC CRF 
categories 

Up to 
hourly 

Country Global Collected activity-
level data sources 
(e.g steel industry, 
FAO for farming 
activity, ship and 
flight tracks) 

GCP-GridFED 0.1° (11km at 
the equator) 

Total emissions, 
per 5 fossil fuels 

Monthly Country Global National totals 
from GCP, 
spatialized using 
EDGAR 

OpenGHGMap 
(our model) 

Point-source, 
1km grid, or 
per 
municipality 
 

 9 categories Annual Country, State, 
County, 
Municipality, 
facility 

Europe Spatialize national 
emissions using 
activity data from 
OpenStreetMap 

Table 1: Comparative overview of several spatial emissions datasets. 461 

Comparison to EDGAR, and GCP-GridFED which uses EDGAR’s spatialization layer: At the time of 462 
writing, the report with the methodology used for the EDGAR v6.0 has not been published. Based on 463 
the data sources mentioned at the EDGAR website it appears that activity-level data has been 464 
obtained for various industrial activities (e.g. farming, fertilizer production, steel refineries, electricity 465 
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generation), and plane and ship emissions are mapped to voyage tracks, but it is not published how 466 
emissions from buildings, light commercial activity, and vehicles are spatialized, except the GHS-POP 467 
gridded population dataset is mentioned. Since OpenGHGMap uses ETS facility-level data to map 468 
industrial emissions (an advantage afforded by its Europe-only focus) it may be that the two models 469 
will come to similar results for mapping industrial emissions since presumably the activity-level 470 
datasets for industry used by EDGAR will be largely identical to the facility-level data from ETS. If 471 
EDGAR uses population density as a proxy to map vehicle and building emissions, this is a slightly 472 
different approach than OpenGHGMap’s use of fuel stations and building locations from OSM. 473 

Compared to ODIAC: The original ODIAC was a ground-breaking project and introduced the approach 474 
of using power plant locations and nighttime lights as a proxy for emission activities. Since that project, 475 
more recent projects have introduced more proxy variables and activity inventories. In our results 476 
comparison (below) the ODIAC results still agree, but ODIAC does not present results with 477 
sector/activity detail which is important for further insight and to guide action. 478 

In addition to this conceptual comparison of methods we also compare the numerical results. To 479 
compare the results of the OpenGHGMap model to ODIAC and EDGAR v6.0 to the OpenGHGMap 480 
model was rasterized to a 30″ (arcsecond) raster (approximately 650 m2 cells at 45° latitude) to permit 481 
a direct cell-level comparison across emissions models and the GHS-POP gridded population model. 482 
The EDGAR dataset version is v6.0, data year 2018, with a native resolution of 0.1° (360″) before re-483 
gridding. For ODIAC the model version is 2020, with data for 2018, with a native resolution of 1km2 484 
cells. The three modeled inventories report slightly different totals for total European emissions. This 485 
is due (a) to differences in emissions categories covered, (b) for ODIAC, the monthly allocation, and 486 
(c), for EDGAR, the fact that in EDGAR aviation and marine emissions are spatialized over ship and 487 
flight traffic routes rather than allocated to grid cells in the country. For this initial cross-model 488 
comparison, the three datasets were normalized to include only grid cells covered by all three models 489 
and then by normalizing the total emissions across the three models so that we compare solely the 490 
spatial allocation. This is a simplified method for cross-model comparison and leaves considerable 491 
scope for future work on cross-model comparison. Our main aim here is to document this new model 492 
and conduct a preliminary validation, not conduct a robust cross-model comparison. 493 

The cross-model cell-level comparison (Figure 2) shows the degree of  convergence between the 494 
OpenGHGMap and the EDGAR model. The OpenGHGMap reports more cells with low (<100 t CO2/yr) 495 
and very high (>1000t CO2/yr) emissions. The OpenGHGMap model also reports higher cell-level 496 
variability than does ODIAC: the ODIAC model reports most cells have emissions in the range of 102-497 
104, whereas the OpenGHGMap model reports cells with a range of 101-105 t CO2/yr. This could 498 
potentially be an artefact due to aggregation of ODIAC. The ODIAC model is natively provided at 1km2 499 
resolution, corresponding to a cell size of 0.07-0.04ʺ depending on latitude, and it could be that the 500 
aggregation to 30ʺ cells for the purpose of comparison has masked higher variability within the 30ʺ 501 
grid. Another hypothesis is that this homogeneity is due to ODIAC’s use of nighttime lights data, and 502 
that while illumination is relatively homogenous across urban and peri-urban areas, the emissions 503 
within similarly lit areas can be starkly different. Another noteworthy feature is that OpenGHGMap 504 
reports many more areas with low (<100t) emissions compared to both EDGAR and ODIAC. One 505 
hypothesis is that this is related to the method of spatializing emissions from vehicle fuels to fuel 506 
stations. Since fuel stations often are spaced >650m apart, especially in rural areas, this could result 507 
in many pixels in rural areas being assigned zero fuel emissions. As discussed elsewhere, the decision 508 
to localize vehicle emissions at fuel stations was a deliberate design choice in this model. Other models 509 
may choose to localize these emissions on roads, or pro-rate them across a gridded population map 510 
on a per-capita basis. 511 

 512 
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Figure 2: Emissions per standardized grid cell, cross-model comparisons, and frequency analysis. Compared to the ODIAC 513 
dataset (panel a, c), OpenGHGMap reports higher cell-level variability ranging from 101 to 105 t CO2/yr, while ODIAC reports 514 
most cells in the range of 102-104 t CO2/yr. Compared to the EDGAR v6.0 dataset (panel b, c), the OpenGHGMap dataset 515 
reports more cells with small (<102 t CO2) emissions and fewer cells with high (>104 t CO2) emissions. The OpenGHGMap 516 
dataset reveals a higher variability in emissions per cell than do other models. 517 

 518 

Next, we converted the administrative region definitions from OpenGHGMap to a raster map 519 
compatible with the EDGAR v6.0 and ODIAC gridded datasets and we compared the results aggregated 520 
by administrative level across the models, at the city level (i.e. by city) across the models. We 521 
compared results both at the city level, i.e. at the highest level of regional detail per country, and at 522 
the county level, i.e. the administrative level one step above that. These results are presented in Figure 523 
3.  524 

 525 

(a) 

 

(b) 

 
(c) (d) 
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 526 

Figure 3: Cross-model comparison of CO2 emissions per city (using the finest level of regional detail) 527 
and per county (using the next-finest level of regional detail per country). 528 

 529 

Currently no methodology has been developed to quantify uncertainty in the model. In addition to 530 
being technically challenging, it is difficult to quantify uncertainty in any single portion of the model, 531 
much less the whole. Even if the national inventory or ETS inventory are taken to be 100% reliable, 532 
errors and biases introduced during the various steps of spatializing these emissions are difficult to 533 
quantify. Developing a strategy for parameterizing reliability of model results would be a valuable next 534 
step in the research. Previous studies which have investigated techniques for parameterizing 535 
uncertainty in gridded spatial proxy models could be useful (Andres et al., 2016; Bun et al., 2010; 536 
Hogue et al., 2016; Hutchins et al., 2017; Woodard et al., 2014). 537 

 538 

Validation against city inventories 539 

The main objective of the OpenGHGMap database is to provide easily accessible estimates for GHG 540 
emission inventories at the municipal level to assist local governments in developing more detailed 541 
inventories or in developing their own climate action plans (CAP). We compare our OpenGHGMap 542 
estimates for external validation with existing municipal GHG inventories compiled from a variety of 543 
sources in the 343 Cities dataset (Nangini et al., 2019). These emissions inventories are largely self-544 
reported, of varying quality, and follow different protocols, but still provide the most concrete point 545 
of comparison for our Scope 1 emissions estimates at the municipal level. In total, Scope 1 emission 546 
values for 44 European cities can be found in the database, which are compared to the OpenGHGMap 547 
estimates in Figure 4.   548 
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 549 
Figure 4: Comparison between OpenGHGMap results and the community level emissions inventories of 44 European cities. 550 
Color coding is used to indicate whether the city self-reports CO2 or GHG (CO2eq) emissions.  Since OpenGHGMap reports 551 
only CO2 emissions this is limited to an indicative comparison, not a precise comparison. 552 

The figure shows very high agreement (Pearson correlation coefficient 0.937), despite the different 553 
methods and timing of the city inventories (emission years between 1994 and 2016 with a median of 554 
2013). Only Ravenna, Italy, differs by several orders of magnitude, but the value in the 343-city 555 
database is not realistic (11ktCO2 for a population of 150000 is unrealistically low).  556 

 557 

4. Main Findings 558 

 559 

a. Results overview 560 

An overview of the results for Europe is shown in Figure 5. The results are presented both in absolute 561 
and per capita terms. Some noteworthy features are the high emissions in coastal Netherlands, 562 
associated with marine activity, and the high emissions from Gotland island in the Baltic sea, driven 563 
by one large cement facility there. Emissions in France are remarkably concentrated into a few, 564 
primarily coastal, cities. 565 

One limitation which must be kept in mind when looking at the results at the municipal level is that 566 
municipalities vary in size between countries. In continental Europe municipalities are quite small 567 
while in the Scandinavian countries the most local administrative units are relatively large and thus 568 
aggregate more emissions and are more visually prominent. For some analyses, gridded maps, where 569 
the spatial unit of analysis is consistent, are preferable to political maps.  570 

Population per administrative area was estimated by overlaying the administrative boundary on the 571 
GHS-POP gridded population map. Gray areas indicate areas where no model results are available. In 572 
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some cases (as seen for example in Ukraine and Romania) the administrative regions at that level are 573 
not exhaustive.   574 

  

 575 

Figure 5: OpenGHGMap.net website screenshots. CO2 emissions per municipality in absolute terms (left panel) 576 
and per capita terms (right panel).  Darker colors (browns, purples) indicate higher emissions (absolute values 577 
can be found at the website http://openghgmap.net). 578 

 579 

In many countries, emissions are remarkably concentrated in a few regions. As seen in Figure 6, in 21 580 
of the 34 countries assessed, >30% of national emissions arise from ten municipalities. This implies 581 
that focused changes in a few political regions could contribute substantially to achieving national 582 
reduction targets. 583 

 584 
Figure 6: share of national emissions arising from the top 10 emitting municipalities (or smallest finest 585 
administrative distinct) in each country. (Liechtenstein is not shown because the country only has 11 586 
municipalities.) 587 

 588 

The important role of high-emitting municipalities is seen at the European level as well. Figure 7 589 
presents a Lorenz curve showing the contribution of municipality to the total European emissions. A 590 
striking degree of concentration is visible, with 10 municipal regions across Europe driving 7.5% of 591 
emissions, 100 driving 20%, and the top 10 cities in each country collectively driving 33.4% of total 592 
European emissions.  These highest-emitting regions are not necessarily the most populous, since in 593 
many cases outlying industrial facilities are major drivers of emissions. 594 

  595 
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 596 
Figure 7: Lorenz curve showing cumulative contribution to total emissions from each municipality. 597 

 598 

 599 

b. Case study of Norway 600 

To demonstrate the results provided by the model we investigate Norway as a case study. In Norway 601 
there are just two levels of administrative hierarchy: counties (fylke) and municipalities (kommune), 602 
corresponding to the NUTS-2 and NUTS-3 levels respectively. This is a relatively simple configuration; 603 
for many European countries the System of administrative hierarchy is complex and deeply historical. 604 
For example in Germany some cities are peers with states and the administrative configuration is 605 
slightly different between states (in some states there is a level 7 administrative subdividision while 606 
in other states there is not); In Switzerland not all cantons use subdivisions; and in some places statistic 607 
agglomerations of areas, such as capital cities with their suburbs, maybe more relevant than the 608 
judicial regions. Our model provides results at all administrative levels in a country as defined in OSM. 609 
There are up to 10 levels available (we do not include level 11, which is for neighborhoods and 610 
parishes) and most countries use between 2 and 5 levels. 611 

The results for Norway at the NUTS-2 (fylke) level, (612 

  613 

Figure 8) level show concentration and highlight the importance of industrial sources in Norway.  614 

Rogaland fylke is the highest emitting. This is because in Stavanger, a city in Rogaland known as ‘the 615 
oil capital of Norway’, in addition to reported emissions from petroleum facilities physically around 616 
the city, many of the ETS-registered point source emissions from offshore facilities are legally 617 
registered to company offices in Stavanger.  618 
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  619 

Figure 8: CO2 emissions per NUTS-2 region (fylke) in Norway. The very high emissions in Stavanger (Rogaland) are driven 620 
largely by ETS-registered point sources. Stavanger is known as the oil capital of Norway. Note that Oslo fylke itself is small 621 
(ranked 11th), coextensive with only the heart of the city, and that Viken (ranked 4th) is the region which encompasses the 622 
greater Oslo region. 623 

Viken, the region of greater Oslo, has 5.8Mt of CO2 emissions. The model results show that 32% of 624 
these emissions come from vehicles and 36% from buildings. Fossil fuel heating has been phased out 625 
of most buildings in Norway so these emissions are from light commercial activity, such as small 626 
burners, boilers, and generators not reporting to the ETS. A full 20% of emissions in Viken (1.1Mt) are 627 
associated with Norway’s largest airport, the Oslo airport at Gardermoen. As described in the 628 
Methods, total emissions from aviation bunker fuel use in the country are allocated across airports in 629 
the country pro-rated by 2018 passenger volume. This approach could be biased and emissions from 630 
cargo flights, long-haul flights, and military aviation, should be located at airports different from those 631 
handling the most passenger traffic. This is a limitation of the current model. 632 

Table 2 presents results at the municipality (kommune, or LAU-1) level for the top 20 municipalities. 633 
The relatively low emissions from the cities of Oslo (ranked 11th), Bergen (ranked 10th) and 634 
Trondheim (ranked 19th) is surprising given these are the three largest cities in Norway. Industrial 635 
emissions from ETS sources are the primary emissions drivers for the top four cities. The city-level 636 
results do also reveal some challenges with the model. The “refineries” category is defined as the 637 
residual between the national total emissions associated with industrial facilities and the total 638 
reported by the ETS facilities, and this residual is allocated evenly across facilities tagged as “refineries” 639 
in OSM. Overall this residual is small, but since there are few refineries, for individual cities it is 640 
substantial. Also noteworthy are the major emissions from harbors in the residential island 641 
archipelago of Øygarden. Currently emissions from marine bunker fuel are allocated evenly across all 642 
facilities tagged as “harbor” in OSM. In Øygarden there are many small-boat facilities, often not even 643 
selling fuel, yet at the same time the island region outside of Bergen is also heavily trafficked by large 644 
offshore work ships and cargo ships. Improving the methods use for spatializing emissions from 645 
marine bunker fuel use would help Improve the model for Norway and other countries with extensive 646 
marine traffic. 647 
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 648 
Table 2: Estimated CO2 emissions for 2018 for the top 20 emitting municipalities in Norway, as generated by OpenGHGMap. 649 

 650 

The model can be explored as tabular data, as a gridded raster model, or visualized on a map. Figure 651 
9 provides an overview of the distribution of emissions across Norway, aggregated at the county and 652 
municipality levels. A concentration of emissions in Stavanger (in the southwest corner) and Porsgrunn 653 
(an industrial area in the south) is clearly visible. 654 

 655 

  
Figure 9: Screenshot of the website heatmap visualization of OpenGHGMap-estimated CO2 emissions at the NUTS-2 county 656 
level (left) and municipality level (right) in Norway. Regions are color coded from green (lowest) to red (highest) emitting 657 
region in the country. 658 

Internally, the model attributes all national emissions to points across the country. It is possible to 659 
zoom in and view these emission point sources. Figure 10 provides a screenshot from the model 660 
visualization for the city of Trondheim, a city of 200,000 located in mid-Norway. The dots over each 661 
building, farm, fuel station, and ETS facility are scaled according to the estimated amount emissions 662 

Municipality (kommune) Total Airports Buildings ETS Farms Vehicles Harbours Refineries Trains TiOx
Stavanger 12,109,439        -                    149,270       11,779,396        4,935          146,650       28,932          -                  256           -                
Porsgrunn 2,079,447          -                    17,446          1,989,186          441             67,040          4,822            -                  512           -                
Sola 1,395,161          208,654           23,320          1,100,663          448             37,710          24,110          -                  256           -                
Tønsberg 1,262,066          -                    81,972          347,759              3,731          67,040          4,822            756,230         512           -                
Ullensaker 1,223,520          1,128,279        29,898          -                       1,981          62,850          -                -                  512           -                
Haugesund 1,202,557          -                    17,292          1,133,338          1,015          46,090          4,822            -                  -            -                
Øygarden 1,088,329          -                    37,224          67,910                2,695          79,610          144,660       756,230         -            -                
Sandnes 905,490              -                    56,100          -                       980             92,180          -                756,230         -            -                
Alver 864,906              -                    31,174          -                       9,198          58,660          9,644            756,230         -            -                
Bergen 729,745              331,913           157,344       30,033                3,353          205,310       -                -                  1,792       -                
Oslo 724,800              -                    386,628       10,468                2,002          322,630       -                -                  3,072       -                
Sunndal 694,376              -                    8,008            670,648              3,150          12,570          -                -                  -            -                
Karmøy 616,538              27,177              20,218          442,562              413             58,660          67,508          -                  -            -                
Bamble 596,183              -                    3,388            541,806              77                46,090          4,822            -                  -            -                
Rana 584,501              20,400              7,920            503,573              6,006          46,090          -                -                  512           -                
Vefsn 530,372              14,620              34,936          446,234              294             33,520          -                -                  768           -                
Fredrikstad 518,362              -                    186,010       71,105                8,722          117,320       9,644            -                  256           125,305       
Årdal 467,475              -                    2,288            456,373              434             8,380            -                -                  -            -                
Trondheim 458,851              -                    233,640       45,422                2,289          167,600       9,644            -                  256           -                
Senja 451,891              -                    27,962          304,611              266             41,900          77,152          -                  -            -                
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coming from that point. Orange dots show ETS-registered facilities. Purple dots in the figure show fuel 663 
stations. The fine grey dots in the figure show all buildings registered in OSM. As detailed in the 664 
Methods, emissions from several categories are allocated to buildings. The use of fossil fuel for 665 
building heating is extremely rare in Norway. The emissions in the “building” category in Norway are 666 
mostly from light commercial activity: boilers, generators, ovens, and the similar emissions from light 667 
commercial activity which are below the ETS reporting threshold. As discussed above, it is difficult to 668 
characterize buildings (e.g. buildings as different as a hospital, mall, auto body shop, and small cottage 669 
are not distinguishable, nor can mansions be differentiated from cottages) (Milojevic-Dupont et al., 670 
2020), but this is clearly a frontier where further work is merited. 671 

 672 

 673 
Figure 10: Example visualization of spatialized CO2 emissions inventory for Trondheim, a city of 200,000 in mid-Norway, and 674 
the surrounding region. Small grey dots represent individual buildings; purple dots are emissions from fuel stations, and the 675 
large orange dots are ETS-registered point source facilities (a waste incineration plant and a factory making mineral wool). 676 
This detailed view, while only an estimate, can provide residents and government agencies a thought-provoking view of what 677 
decarbonization will look like for their town. 678 

 679 

 680 

5. Code Availability 681 

The source code not available at the time of writing. The authors plan to clean up the code and prepare 682 
a publicly usable version in the future. This will be linked at the Zenodo data repository and project 683 
home page. 684 

 685 

6. Data Availability 686 

Datasets are available via Zenodo at https://doi.org/10.5281/zenodo.5482480 (Moran, 2021) 687 

The Zenodo DOI is: 10.5281/zenodo.5482480 688 

The model homepage, with an interactive map, is: https://openghgmap.net 689 

 690 
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7. Limitations, Uncertainties, and Future Work 691 

One limitation of the approach presented in this paper, and a potential source of difficult-to-detect 692 
bias, could be inconsistent coverage in OpenStreetMap. As OSM is a crowd-sourced dataset there is 693 
no assurance of homogeneous coverage. Some areas of the country may be well-covered in OSM and 694 
others only sparsely (Hecht et al., 2013). This could introduce biases such as underreporting the 695 
number of fueling stations and thus underestimating vehicle traffic. The authors are not aware of any 696 
effort to characterize the consistency of OSM coverage; this would be a valuable next step both for 697 
the work presented here as well as for the OSM project and work derived therefrom. 698 

For countries which do not participate in the ETS and do not have a similar domestic MRV system for 699 
large point source carbon emitters, spatializing emissions from point source polluters will be a 700 
challenge. Resources such as OSM and the Power Plant Database, which have considerable 701 
information at the facility level (e.g. output in megawatts and fuel source for power plants), could be 702 
of use. 703 

The spatialization of emissions from vehicles and buildings - the two largest emissions categories - is 704 
challenging. The assumption in OpenGHGMap that every fuel station serves an equal volume and mix 705 
of vehicles is simplistic. The lack of even basic data characterizing buildings by height, area, age, or 706 
material, makes it impossible to differentiate buildings as varied as a terrace house block, separated 707 
house, mall, or hospital. Some novel approaches for characterizing building stocks have recently been 708 
proposed (Haberl et al., 2021; Milojevic-Dupont et al., 2020; Peled and Fishman, 2021) which could be 709 
used. Developing more accurate town-level models of building emissions may require different 710 
modelling approaches, such as utilizing data from national building cadaster registries or from 711 
advanced remote sensing datasets such as from synthetic aperture radar satellite constellations, 712 
airborne LIDAR sensors, and machine learning used with mobile airborne or ground cameras. 713 

OpenGHGmap treats the CRF National Inventory Reports (NIRs) as authoritative. However, these 714 
inventories contain uncertainties. The NIR reports provide annexes which discuss uncertainties at the 715 
sector, sub-sector, and activity levels. The current version of the OpenGHGMap model does not exploit 716 
this uncertainty information, but future versions may. At the present time the OpenGHGMap focuses 717 
on spatially distributing the reported national emissions totals, and limits uncertainties to that 718 
spatialization exercise rather than including also the uncertainties within the NIR itself. Related to this 719 
it is noteworthy to mentioned related work on intercomparison of national emissions totals (Elguindi 720 
et al., 2020) and an assessment of uncertainty in the bottom-up EDGAR v6.0 model (Solazzo et al., 721 
2021). Since OpenGHGMap treats national inventories as a fixed constraint with no uncertainty, the 722 
sources of uncertainty in the model are purely related to the spatialization of emissions. These 723 
uncertainties, and modeling choices, are discussed in the relevant section of Methods above. 724 

Our emissions inventory can support local authorities in their journeys towards climate neutrality in 725 
multiple manners. The inventory can help make local and regional sources of emissions more tangible 726 
for diverse politicians, city administrations and local communities and provides a good starting point, 727 
especially for communities that lack a detailed GHG emissions inventory. Making an abstract concept 728 
such as greenhouse gas emissions more visible will enable discussions regarding localization and 729 
upgrading of facilities and infrastructures and will provide a basis for emblematic changes with high 730 
impact potential for the region. Connecting the inventory to digital urban twins with detailed 731 
information regarding built environment characteristics, may help overcome the current limitations 732 
of lack of building data.  733 

In order to further develop the model, we will actively discuss and test it with local authorities to fine-734 
tune it to their needs in order to make informed decisions. Furthermore, we will explore how we can 735 
further refine data collection, analysis and spatialization through the use of GIS combined with 736 
crowdsourcing and citizen science. 737 
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We foresee a number of use cases for the results presented here. For one, many local governments in 738 
Europe do not have an emissions inventory. The estimated inventory presented here presents a 739 
baseline initial estimate. This can be used to reveal which are the priority areas for reduction in each 740 
locale. For example, while vehicle electrification is highly promoted, it could be the case that for some 741 
regions emissions from residential or commercial buildings, or industrial sources are multiple times 742 
higher than from private cars and thus represent more important reduction opportunities. The results 743 
presented here are not a full replacement for an inventory prepared using a tool like the GHG Protocol 744 
for Cities. A bespoke inventory will be more detailed but the approach presented here can act as a 745 
starting point, help with classifying emissions and provide a benchmark against which estimates can 746 
be compared or even calibrated. The process of preparing the inventory itself usually triggers 747 
discussions about solutions. As the body of solutions grows it is possible to imagine cities soon able to 748 
construct a Climate Action Plan based on a menu of options. An estimated inventory like the one 749 
presented here could be used to prioritize or filter a longer list of solutions into the shorter set most 750 
suitable for each city. Finally, the results presented here have some communication value. There is 751 
much discussion about decarbonization at the national and EU level, but many are curious about what 752 
this should look like at their town, building, or business level. The results presented here can help 753 
people translate macro-level concerns into a more tangible vision of what should change in their home 754 
town, and how they can participate in that transition. 755 

To conclude, we present a new European emissions inventory which disaggregates national CO2 756 
inventories to city and county level administrative jurisdictions. The model is broadly consistent with 757 
the ODIAC and EDGAR results but shows higher cell-level variability and provides results per-758 
jurisdiction rather than in a gridded form. The estimated inventories provided by this model can help 759 
local governments begin establishing an emissions inventory.  760 
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