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Abstract23

The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been24

widely recognized in recent years. An accurate estimate of PM2.5 and O3 exposures is25

important for supporting health risk analysis and environmental policy-making. The26

aim of our study was to construct random forest models with high-performance, and27

estimate daily average PM2.5 concentration and O3 daily maximum of 8h-average28

concentration (O3-8hmax) of China in 2005-2017 at a spatial resolution of 1km×1km.29

The model variables included meteorological variables, satellite data, chemical30

transport model output, geographic variables and socioeconomic variables. Random31

forest model based on ten-fold cross validation was established, and spatial and32

temporal validations were performed to evaluate the model performance. According33

to our sample-based division method, the daily, monthly and yearly estimations of34

PM2.5 from test datasets gave average model fitting R2 values of 0.85, 0.88 and 0.90,35

respectively; these R2 values were 0.77, 0.77, and 0.69 for O3-8hmax, respectively.36

The meteorological variables and their lagged values can significantly affect both37

PM2.5 and O3-8hmax estimations. During 2005-2017, PM2.5 exhibited an overall38

downward trend, while ambient O3 experienced an upward trend. Whilst the spatial39

patterns of PM2.5 and O3-8hmax barely changed between 2005 and 2017, the temporal40

trend had spatial characteristic. The dataset is accessible to the public at41

https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared data set of42

Chinese Environmental Public Health Tracking: CEPHT43

(https://cepht.niehs.cn:8282/developSDS3.html).44
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1 Introduction45

Air pollution is becoming a main concern of modern society due to various health46

risks. According to the latest Global Burden of Disease (GBD) report, air pollution47

has caused approximately 6.67 million deaths (95% UI: 5.90-7.49 million), and48

ranked fourth on the global list of death-related risk factors in 2019 (Health Effects49

Institute, 2020; Murray et al., 2020). Ambient fine particulate matter (PM2.5) and50

ambient ozone (O3) have been identified and proven to be related to many health51

outcomes. China is known to be one of the countries with the most serious air52

pollution in the world. Strict pollution control measures (including the Air Pollution53

Prevention and Control Action Plan and three-year action plan to fight air pollution)54

were enacted by the Chinese government to control and reduce air pollution since55

2013. The implementation of these measures has resulted in a markable drop of56

emissions and PM2.5 concentration. However, the occasional pollution events, as well57

as the short development history of air quality monitoring network, have brought58

many difficulties to accurately capture the temporal and spatial patterns of PM2.5 and59

O3 concentrations. Therefore, it is difficult to develop a complete decision-making60

basis for handling air pollution. In addition, there are gaps in epidemiological studies61

linking air pollutants to health outcomes, due to the lack of accurate measurements of62

PM2.5 and ambient O3 concentrations. To this end, an accurate estimate of PM2.5 and63

O3 exposures is essential to support health risk analysis and environmental64

policy-making.65

66



4

Suitable model variables and advanced estimation method are important to achieve67

accurate modeling. Basically, PM2.5 is jointly affected by both natural conditions and68

human activities over space and time, e.g., Aerosol Optical Depth (AOD),69

meteorological conditions, geographic factors and human-related features (Wei et al.,70

2021). While O3 is a secondary pollutant, which is produced by a series of complex71

photochemical reactions on the basis of precursor including nitrogen oxides (NOx)72

and volatile organic compounds (VOCs) under the action of high temperature and73

strong radiation. These complex characteristic puts forward higher requirements on74

the ability of the modeling method to handle multi-variable, and capture the75

non-linear relationships between variables and air pollutants. Many models have been76

developed to estimate the spatiotemporal distribution of PM2.5 and O3 concentrations77

in China. Machine-learning approaches (e.g., random forest (RF), extreme gradient78

boosting and deep belief network models) can mine useful information from a large79

amount of input data and explore the nonlinear relationship, bring a better80

performance in modeling work (Chen et al., 2018, 2019; Di et al., 2017; Li et al.,81

2017; Wei et al., 2019; Zhan et al., 2018). However, most of these estimation datasets82

cannot balance long time series and high spatiotemporal resolution. Besides, there is83

no long-term estimation dataset for both PM2.5 and O3 concentrations with high84

temporal and spatial resolution for supporting epidemiological research. Therefore, by85

incorporating multi-source data into random forest models, this study makes an86

attempt to estimate the high-resolution (1km×1km) ambient PM2.5 and O387

concentrations of China in 2005-2017.88
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89

2. Method90

The model variables of this study include meteorological variables, geographical91

variables, socio-economic variables, satellite data and chemical transport model92

output in 2013-2017. Daily average PM2.5 and O3 daily maximum of 8h-average93

concentration (O3-8hmax) monitoring data of 1479 sites in 2013-2017 was obtained94

(Fig. 1; Fig. S1 and Fig. S2). A 1km×1km standard grid is created across the country95

(35.55° N to 43.12° N, and 112.95° E to 120.35° E) with a total of 9495025 grid cells.96

The coordinate system of the grid is WGS-84; and the projection of the grid is the97

Albers Conical Equal Area Projection. We construct high-performance random forest98

(RF) models (temporal resolution: daily; spatial resolution: 1km×1km), and estimate99

the grid daily average PM2.5 concentration and O3-8hmax concentration of China in100

2005-2017.101
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102
Fig.1 Station distribution in China and average ground monitoring concentration based on103
the available data of PM2.5 (A) and O3-8hmax (B) from 2013 to 2017104

105

2.1 Data set106
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The model variables used in this study mainly include Aqua AOD for PM2.5 modeling,107

GEOS-Chem chemical transport model output for O3 modeling, and some variables108

shared by PM2.5 and O3: 13 meteorological variables (includes boundary layer height,109

surface pressure, 2 meter dew point temperature, evaporation, albedo, low cloud cover,110

medium cloud cover, high cloud cover, total precipitation, 10 meter U wind111

component, 10 meter V wind component, 2 meter surface temperature and surface112

solar radiation downwards) and its lag 1 and lag 2, geographic and socio-economic113

variables, such as Digital Elevation Model (DEM), Normalized Difference Vegetation114

Index (NDVI), population, Gross Domestic Product (GDP), road network and dummy115

variables (includes season, month, and spatial dummy variables, province). A more116

detailed description of the model variables is given in Table S1. The processing117

method has been described in detail in our earlier studies (Ma et al., 2021; Zhao et al.,118

2019). Briefly, most of the model variables are processed into 1km×1km resolution119

based on the standard grid using interpolation methods (such as inverse distance120

weighted and bilinear algorithm) in ArcGIS 10.2 and Python 2.7. For example, AOD121

is processed by ENVI 5.3+IDL and extracted into standard grid using ArcPy, then the122

inverse distance weighted interpolation is carried out to obtain the 1km×1km123

resolution data. For the long-term variables, the corresponding monthly and annual124

level value is assigned to each day. Subsequent modeling work was carried out based125

on the data set that covering monitoring data and all variables.126

127

2.2 Random forest model128



8

Random forest is an ensemble machine learning method consisting of many129

individual decision trees growing from bagged data and its prediction is a vote result130

of those trees (Breiman, 2001). The RF algorithm primarily integrates learning131

principles, trains several individual learners, and finally forms a strong learner132

through a certain combination strategy; through multiple rounds of training, multiple133

prediction results are obtained, and the final results are obtained after average134

aggregation.135

136

The random forest models are established using the 10-fold cross validation method.137

First, this method randomly divides the modeling data set into 10 parts; then 9 of them138

are used for modeling, the remaining one is used for estimation and be compared with139

observations. The verification is repeated until every part is predicted. In this way, the140

modeling and verification of estimation are repeated 10 times in total, and the average141

values of the 10 runs is took as the final result, i.e., the CV-R2. The formulae of the142

models are as follows:143

144

PM2.5i,j =f(METEi,j, lag1METEij, lag2METEi,j,AODi,j, LDj, ROADj, NDVIj, ELEj, GDPj,145

POPj, SEASONi, MONi, PROj) (1)146

O3-8hmaxi,j =f(METEi,j, lag1METEij, lag2METEi,j,GEOSi,j, LDj, ROADj, NDVIj, ELEj,147

GDPj, POPj, SEASONi, MONi, PROj) (2)148

149

where PM2.5 i,j and O3-8hmaxi,j are the PM2.5 and O3-8hmax concentrations on day i in150
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grid cell j; METEi,j is 13 meteorological variables on day i in grid cell j, and lag 1151

METEi,j and lag2 METEi,j represent corresponding one-day lag and two-day lag152

values, respectively; GEOSi,j and AODi, j are the GEOS-Chem model output and AOD153

value on day i in grid cell j; LDj, ROADj, NDVIj, ELEj, GDPj and POP j are the land154

use coverage, length of a variety of roads, NDVI, elevation, GDP and population in155

grid cell j, respectively; SEASONi, MONi and PROj are the season and month of day i,156

and province of grid cell j, respectively.157

158

In general, the random forest parameters that need to be adjusted include n_estimators159

(number of decision trees) and the max_depth (maximum depth of the trees). Unlike160

the previous methods of manually adjusting parameters, the parameters of random161

forest were optimized using GridSearchCV, which can realize cross-validated162

grid-search over a parameter grid. After GridSearchCV, we set max_depth as 36 and163

n_estimators as 200 for PM2.5 modeling. For O3-8hmax modeling, we set max_depth164

as 54 and n_estimators as 200.165

166

2.3 Validation method167

To comprehensively verify the model performance, we construct the main models168

using sample-based division method. Models using spatial-based and temporal-based169

division method are further construct to test the model performance in spatial and170

temporal scale.171

172
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The data set was randomly divided into training set (90% of the records) and test set173

(10% of the records) by using the sample-based division method. We construct the174

main model using the training set with a 10-fold cross-validation. Since the data in the175

test set is not used in the main model, "true model performance" can be verified. The176

coefficient of determination (R2) of main model on test set (test-R2), and the177

verification indicators of model uncertainty, the root mean square error (RMSE) and178

mean absolute error (MAE) are calculated for the PM2.5 and O3-8hmax model,179

respectively. The monthly and yearly test-R2 are also calculated.180

181

For the spatial verification, 90% of the monitoring stations are randomly selected. The182

monitoring data of these stations is used as the training set, and the monitoring data of183

remaining stations is used as the testing set. For the temporal verification, all date in184

2013-2017 is randomly divided into nine and one, and the data in theses dates is used185

as training and test sets, respectively. After that, the test-R2, RMSE and MAE are186

calculated.187

188

2.4 Estimation of daily PM2.5 and ambient O3 of China from 2005 to 2017189

Based on the final models of PM2.5 and O3-8hmax, we estimate the gridded daily190

average PM2.5 concentration and O3-8hmax concentration of China in 2005-2017. The191

spatial pattern and temporal trend of PM2.5 and O3-8hmax concentrations are analyzed,192

and compared with other modeling products.193

194
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The modeling and estimations are performed in Python 2.7.13 using the195

scikit-learn-0.20.3 and GridSearchCV packages. The workflow of this study is196

displayed in Fig. 2.197

198

Fig. 2 The workflow of modeling process in the study199

200

3 Results and Discussion201

A total of 981744 monitoring data records were used in the final model-fitting data set.202

The mean ± standard deviation of PM2.5 and ambient O3 concentrations in 2013-2017203

were 59.60±45.85 μg/m3 and 86.72±47.73 μg/m3, respectively. The results of204
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descriptive analysis for variables included in PM2.5 and O3-8hamx model is shown in205

Table S2.206

207

3.1 Model fitting and validation208

The cross-validation results indicate that the estimated PM2.5 and O3-8hmax209

concentrations matched reasonably with the observed PM2.5 and O3-8hmax210

concentrations, with high fitted test-R2 values. According to our sample-based211

division method, the test-R2 values of the estimated daily, monthly and yearly PM2.5212

concentrations were 0.85, 0.88 and 0.90, respectively (Fig. 3). Likewise, the test-R2213

values of the estimated daily, monthly and yearly O3-8hmax concentrations were 0.77,214

0.77 and 0.69, respectively (Fig. 4). The RMSE and MAE for PM2.5 in daily level215

were 17.72 and 9.37 μg/m3; for O3-8hmax, the values were 23.10 and 15.43 μg/m3.216

The model performance is comparable to previous studies (Di et al., 2017; Li and217

Cheng, 2021; Liu et al., 2020; Wei et al., 2021, 2020, 2019). At provincial/city level,218

The model performance of PM2.5 estimations of Shanghai, Beijing, Hubei, Hebei and219

Sichuan ranked the top 5 with relatively high test-R2 (≥0.90), while those of Tibet,220

Qinghai, Gansu, Anhui and Yunnan were less accurate with relatively low test-R2221

values (<0.70). The model performance of O3-8hmax estimations of Beijing,222

Chongqing, Shanghai, Tianjin and Henan ranked the top 5 with relatively high test-R2223

values (≥0.83), while those of Gansu, Anhui, Heilongjiang, Guizhou and Tibet were224

poorer with relatively low test-R2 values (<0.62) (Table S3).225



13

226
Fig. 3 The density plot of PM2.5 model227
From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is228
different validation method: sample-based, spatial-based and temporal-based.229
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230
Fig. 4 The density plot of O3-8hmax model231
From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is232
different validation method: sample-based, spatial-based and temporal-based.233

234

The spatial and temporal test-R2 of our models explained the uncertainty to some235

content (Fig. 3 and Fig. 4). The spatial test-R2 values for daily, monthly and yearly236

PM2.5 estimation were 0.83, 0.87 and 0.85, respectively; while those of daily, monthly237

and yearly O3-8hmax estimations were 0.74, 0.77 and 0.68, respectively. The238

relatively high spatial test-R2 demonstrates the reasonable performance of our models239

in areas without monitoring stations. The temporal test-R2 values of daily, monthly240

and yearly PM2.5 estimations were 0.49, 0.65 and 0.76, respectively; while those of241
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daily, monthly and yearly O3-8hmax estimations were 0.58, 0.63 and 0.56,242

respectively. These results indicate the uncertainty of our models when modeling data243

in historical period, although the performance is among the best compared with244

previous studies. The simulation accuracy is a universal issue in the present studies of245

air pollutant concentrations in historical period without monitoring data. Further246

efforts are need to improve the model performance of historical estimations.247

248

3.2 Feature importance249

The feature importance of the variables in our random forest models is presented in250

Table S4-1 and S4-2. Similar to previous studies (Chen et al., 2018; Zhan et al., 2018),251

the meteorological factors and their lagged values can significantly affect both PM2.5252

and O3-8hmax modeling. Moreover, the specific features for PM2.5 and O3, AOD and253

GEOS-Chem output, also demonstrated high importance in modeling work.254

255

For PM2.5 modeling work (Table S4-1), the meteorological variables (boundary layer256

height, evaporation, 2 meter dew point temperature) and its lagged effect were among257

the top ten important factors, totaling 33.6% in modeling work. The lagged effects258

greatly contributed to PM2.5 modeling. For example, the lag1 boundary layer height259

ranked first (17.2%) in our study, which is similar to previous studies (Zhao et al.,260

2019). The interpolated AOD (5.6%), DEM (4.9%) and season (3.7%) also261

demonstrated high importance, which showed crucial effects of satellite data, terrain262

distribution characteristics in the study area, and study period on PM2.5 modeling. The263
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relative contribution of land-use, NDVI, population density, road length and GDP are264

negligible (the importance scores less than 1%). Unlike DEM, these factors are265

subjected to the influence of socioeconomic status in study area. In the future study,266

the integration of these factors with a higher temporal resolution might change its267

contribution to the estimation.268

269

The feature importance of ambient O3 is consistent with its formation and dissipation270

mechanism: surface solar radiation downwards and its lagged effect according for271

39.2% in modeling work (Table S4-2). Other meteorological factors (2 meter272

temperature, boundary layer height, 10 meter V wind component, and low cloud cover)273

according for totaling 9.54% importance scores. Our analysis also suggests the high274

importance of GEOS-Chem model (7.2%), altitude (1.9%), and dummy factors275

including year (2.2%) and province (1.6%) in O3 modeling. By contrast, the relative276

contribution of land-use, NDVI and road length are negligible (the importance scores277

less than 1%). The high importance rank of population and GDP might be attributed278

to the relatively high sensitivity of O3 to anthropogenic emission sources (compared279

to PM2.5).280

281

3.3 The spatial characteristics and temporal trend of PM2.5 and ambient O3 of282

China from 2005 to 2017283

During 2005-2017, PM2.5 showed an overall downward trend, while ambient O3284

showed an upward trend in recent years (Fig. 5, Fig. S3-S6). Relative to 2005, PM2.5285
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concentration has increased by 2.60 μg/m3 in 2013. Nevertheless, after the286

implementation of the Air Pollution Prevention and Control Action Plan, a strict287

pollution control measure, PM2.5 concentration has declined by 11.041 μg/m3 in 2017288

(relative to 2013). This has resulted in a downward trend of PM2.5 concentration in289

2005-2017: PM2.5 concentration in 2017 has decreased by 8.44 μg/m3 relative to 2005290

(Fig. 5 and Fig. S3). In key pollution areas, with the implementation of various air291

pollution prevention and control policies, PM2.5 levels in the Beijing-Tianjin-Hebei292

region have dropped the most, but the overall concentration levels are still higher than293

those in the Yangtze River Delta and Pearl River Delta (Fig. S4). For O3-8hmax,294

upward barely changed. Relative to 2005, O3-8hmax concentrations in 2013 and 2017295

have increased by 0.39 μg/m3 and 7.83 μg/m3, respectively. The upward trend during296

2005-2017 was mostly due to the significant changes between 2013 and 2017: relative297

to 2013, the O3-8hmax concentration has increased by 7.44 μg/m3 in 2017 (Fig. 5 and298

Fig. S5). The Beijing-Tianjin-Hebei region has shown an obvious upward trend since299

2013; while the Pearl River Delta region change trend is not obvious (Fig. S6). During300

the strict pollution control period, VOC emissions were not effectively controlled301

could be one of the main reasons. Therefore, integrated management of VOCs and302

NOx in key industries and areas is important.303
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304
Fig.5 The temporal trend of PM2.5 and O3-8hmax concentration in China from 2005-2017305
The black dots represent the monthly average PM2.5 and O3-8hmax concentration from 2005 to306
2017, the blue color band represents the range of the monthly average PM2.5 and O3-8hmax307
concentration plus or minus the RMSE value from 2013-2017 (period with monitoring data), and308
the green color band represents the range of the monthly average PM2.5 and O3-8hmax309
concentration plus or minus the MAE value from 2013-2017 years.310

311

The seasonal distributions of PM2.5 and O3-8hmax concentrations were obvious312

during 2005-2017 (Fig. S7 and Fig. S8). The lowest seasonal PM2.5 concentration313

occurred in summer, with an average concentration of 33.6±11.39μg/m3; and the314

highest seasonal PM2.5 concentration occurred in winter, with an average315

concentration of 57.4±21.76μg/m3. In winter, temperature inversion occurs frequently,316

and the thickness of the mixed layer is low, which is not conducive to the diffusion of317

pollutants, which leads to the accumulation of PM2.5 near the ground (Sun et al, 2014).318
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In opposite, the lowest seasonal O3-8hmax concentration was in winter, with an319

average concentration of 72.65±6.28μg/m3; The highest seasonal O3-8hmax320

concentration was in summer, with an average concentration of 97.44±13.58μg/m3.321

Temperatures and solar radiation conditions in summer increase the incidence of322

severe O3 pollution events, which is consistent with its formation and dissipation323

mechanism.324

325

The PM2.5 concentrations in Beijing-Tianjin-Hebei, Chengdu-Chongqing and Xinjiang326

regions are higher than other regions, followed by the central China. The PM2.5327

concentrations in the southwestern regions (Yunnan and Tibet) and western part of328

Sichuan Province, are the lowest, followed by the inner-north regions and the south329

and southeastern regions (Fig. 6, Fig. S3 and Fig. S4; Table S5). The O3-8hmax330

concentrations in the Bohai Rim, Yangtze River Delta, Pearl River Delta and other331

economically developed regions, southern Xinjiang, Inner Mongolia, and northeastern332

Gansu are relatively high (Fig. 6, Fig. S5 and Fig.6; Table S5). This spatial pattern333

barely changed during 2005-2017 (Fig. S3 and Fig. S5), but the temporal trend334

showed spatial characteristic (Fig. 6; Fig. S4 and S6). For PM2.5 concentration, the335

key pollution areas were severely polluted during 2005-2013. The air pollution336

control measures of these regions were strict during 2013-2017, thus the decline was337

obvious, especially for the Beijing-Tianjin-Hebei region. For O3-8hmax concentration,338

the growth rate was not obvious (except for the eastern part of Hubei Province) during339

2005-2013. However, after 2013, there was a clear upward trend across the country,340
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especially in the northern China.341

342
Fig. 6 Estimated annual mean and difference of PM2.5 and O3-8hmax concentration in China343
during 2005 to 2017344
The first row is maps of PM2.5 related indicators, and the second row is maps of O3-8hmax related345
indicators. From left to right are average concentration during 2005-2017, the difference between346
2017 and 2005, the difference between 2013 and 2005, and the difference between 2017 and 2013.347

348

3.4 Evaluation of the PM2.5 and O3 concentration products with comparison with349

other products350

Our estimation datasets include the PM2.5 and O3-8hmax concentration data of China351

in 2005-2017 with a spatial resolution of 1km×1km resolution. With high spatial and352

temporal resolutions, our validation results are comparable with other modeling work353

(see Table S6). Considering the future application in epidemiological research, our354

estimation datasets would be useful: for acute effects studies, the high spatial355

resolution would effectively reduce exposure errors; for chronic effects studies,356
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long-term exposure data is essential for the development of cohort studies.357

358

Nevertheless, our estimation datasets also contain some limitations. First, we did not359

use emission data in our model limited by coarse resolution. However the newly360

published high-resolution emission inventory of China (http://meicmodel.org/) may361

be utilized in future estimation studies to improve accuracy. Second, our modeling362

still has spatial and temporal uncertainties. In areas where monitoring sites are363

sparsely distributed, such as western China, it may be difficult to accurately capture364

the association between air pollution concentrations and variables. The model365

validation of historical period is also limited. Third, the interpolation process of model366

features inevitably introduces systematic errors. Therefore, more high-quality and367

high-resolution basic data would be needed in the future.368

369

4 Data availability370

The estimated PM2.5 and O3 data are freely accessible at371

https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared data set of372

Chinese Environmental Public Health Tracking: CEPHT373

(https://cepht.niehs.cn:8282/developSDS3.html).374

375

5 Conclusions376

We constructed random forest models for simulating of daily average PM2.5 and377

O3-8hmax concentrations of China during 2005-2017, with referential feature list and378
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comparable model performance. The estimation dataset would be useful for379

supporting both long-term and short-term epidemiological studies. The model can be380

further used for simulating daily concentrations of longer time period. The key381

findings are summarized as follows. First, RF model proved its superiority in our382

study and can be further used in the future estimation of air pollutant concentration.383

Second, meteorological data is the most sensitive to PM2.5 and O3 modeling. For384

PM2.5 modeling work, boundary layer height, evaporation, 2 meter dew point385

temperature and its lagged effects showed the highest sensitivity. For O3 modeling386

work, surface solar radiation downwards and its lagged effect were the most sensitive.387

Third, PM2.5 concentration has trended downward in China, and the key polluted areas388

during 2005-2013 were effectively controlled during 2013-2017. O3 concentration has389

trended upward in China, especially in the northern China during 2013-2017.390
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