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Abstract

The health risks of fine particulate matter (PM>5) and ambient ozone (O3) have been
widely recognized in recent years. An accurate estimate of PMa.s and O3 exposures is
important for supporting health risk analysis and environmental policy-making. The
aim of our study was to construct random forest models with high-performance, and
estimate daily average PMas concentration and O3 daily maximum of 8h-average
concentration (O3-8hmax) of China in 2005-2017 at a spatial resolution of 1kmx1km.
The model variables included meteorological variables, satellite data, chemical
transport model output, geographic variables and socioeconomic variables. Random
forest model based on ten-fold cross validation was established, and spatial and
temporal validations were performed to evaluate the model performance. According
to our sample-based division method, the daily, monthly and yearly estimations of
PM, s from test datasets gave average model fitting R? values of 0.85, 0.88 and 0.90,
respectively; these R? values were 0.77, 0.77, and 0.69 for Os-8hmax, respectively.
The meteorological variables and their lagged values can significantly affect both
PM:s and Os3-8hmax estimations. During 2005-2017, PMas exhibited an overall
downward trend, while ambient O3 experienced an upward trend. Whilst the spatial
patterns of PM> s and O3-8hmax barely changed between 2005 and 2017, the temporal
trend had spatial characteristic. The dataset is accessible to the public at

https://doi.org/10.5281/zen0d0.4009308 (Ma et al., 2021), and the shared data set of

Chinese Environmental Public Health Tracking: CEPHT

(https://cepht.niehs.cn:8282/developSDS3.html).
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1 Introduction

Air pollution is becoming a main concern of modern society due to various health
risks. According to the latest Global Burden of Disease (GBD) report, air pollution
has caused approximately 6.67 million deaths (95% UI: 5.90-7.49 million), and
ranked fourth on the global list of death-related risk factors in 2019 (Health Effects
Institute, 2020; Murray et al., 2020). Ambient fine particulate matter (PMzs) and
ambient ozone (O3) have been identified and proven to be related to many health
outcomes. China is known to be one of the countries with the most serious air
pollution in the world. Strict pollution control measures (including the Air Pollution
Prevention and Control Action Plan and three-year action plan to fight air pollution)
were enacted by the Chinese government to control and reduce air pollution since
2013. The implementation of these measures has resulted in a markable drop of
emissions and PM s concentration. However, the occasional pollution events, as well
as the short development history of air quality monitoring network, have brought
many difficulties to accurately capture the temporal and spatial patterns of PM> s and
Os concentrations. Therefore, it is difficult to develop a complete decision-making
basis for handling air pollution. In addition, there are gaps in epidemiological studies
linking air pollutants to health outcomes, due to the lack of accurate measurements of
PM>s and ambient O3 concentrations. To this end, an accurate estimate of PM, s and
O; exposures is essential to support health risk analysis and environmental

policy-making.
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Suitable model variables and advanced estimation method are important to achieve
accurate modeling. Basically, PM> s is jointly affected by both natural conditions and
human activities over space and time, e.g., Aerosol Optical Depth (AOD),
meteorological conditions, geographic factors and human-related features (Wei et al.,
2021). While Os is a secondary pollutant, which is produced by a series of complex
photochemical reactions on the basis of precursor including nitrogen oxides (NOXx)
and volatile organic compounds (VOCs) under the action of high temperature and
strong radiation. These complex characteristic puts forward higher requirements on
the ability of the modeling method to handle multi-variable, and capture the
non-linear relationships between variables and air pollutants. Many models have been
developed to estimate the spatiotemporal distribution of PM» 5 and O3 concentrations
in China. Machine-learning approaches (e.g., random forest (RF), extreme gradient
boosting and deep belief network models) can mine useful information from a large
amount of input data and explore the nonlinear relationship, bring a better
performance in modeling work (Chen et al., 2018, 2019; Di et al., 2017; Li et al.,
2017; Wei et al., 2019; Zhan et al., 2018). However, most of these estimation datasets
cannot balance long time series and high spatiotemporal resolution. Besides, there is
no long-term estimation dataset for both PM:s and Os concentrations with high
temporal and spatial resolution for supporting epidemiological research. Therefore, by
incorporating multi-source data into random forest models, this study makes an
attempt to estimate the high-resolution (lkmxlkm) ambient PMs and Os

concentrations of China in 2005-2017.
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2. Method

The model variables of this study include meteorological variables, geographical
variables, socio-economic variables, satellite data and chemical transport model
output in 2013-2017. Daily average PMzs and O3 daily maximum of 8h-average
concentration (O3-8hmax) monitoring data of 1479 sites in 2013-2017 was obtained
(Fig. 1; Fig. S1 and Fig. S2). A 1kmx1km standard grid is created across the country
(35.55° N to 43.12° N, and 112.95° E to 120.35° E) with a total of 9495025 grid cells.
The coordinate system of the grid is WGS-84; and the projection of the grid is the
Albers Conical Equal Area Projection. We construct high-performance random forest
(RF) models (temporal resolution: daily; spatial resolution: 1kmx1km), and estimate
the grid daily average PMas concentration and Os-8hmax concentration of China in

2005-2017.
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103 Fig.1 Station distribution in China and average ground monitoring concentration based on
104 the available data of PM»5 (A) and O3-8hmax (B) from 2013 to 2017
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106 2.1 Data set
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The model variables used in this study mainly include Aqua AOD for PM:.s modeling,
GEOS-Chem chemical transport model output for O; modeling, and some variables
shared by PMz s and Os: 13 meteorological variables (includes boundary layer height,
surface pressure, 2 meter dew point temperature, evaporation, albedo, low cloud cover,
medium cloud cover, high cloud cover, total precipitation, 10 meter U wind
component, 10 meter V wind component, 2 meter surface temperature and surface
solar radiation downwards) and its lag 1 and lag 2, geographic and socio-economic
variables, such as Digital Elevation Model (DEM), Normalized Difference Vegetation
Index (NDVI), population, Gross Domestic Product (GDP), road network and dummy
variables (includes season, month, and spatial dummy variables, province). A more
detailed description of the model variables is given in Table S1. The processing
method has been described in detail in our earlier studies (Ma et al., 2021; Zhao et al.,
2019). Briefly, most of the model variables are processed into 1kmx1km resolution
based on the standard grid using interpolation methods (such as inverse distance
weighted and bilinear algorithm) in ArcGIS 10.2 and Python 2.7. For example, AOD
is processed by ENVI 5.3+IDL and extracted into standard grid using ArcPy, then the
inverse distance weighted interpolation is carried out to obtain the lkmx1lkm
resolution data. For the long-term variables, the corresponding monthly and annual
level value is assigned to each day. Subsequent modeling work was carried out based

on the data set that covering monitoring data and all variables.

2.2 Random forest model
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Random forest is an ensemble machine learning method consisting of many
individual decision trees growing from bagged data and its prediction is a vote result
of those trees (Breiman, 2001). The RF algorithm primarily integrates learning
principles, trains several individual learners, and finally forms a strong learner
through a certain combination strategy; through multiple rounds of training, multiple
prediction results are obtained, and the final results are obtained after average

aggregation.

The random forest models are established using the 10-fold cross validation method.
First, this method randomly divides the modeling data set into 10 parts; then 9 of them
are used for modeling, the remaining one is used for estimation and be compared with
observations. The verification is repeated until every part is predicted. In this way, the
modeling and verification of estimation are repeated 10 times in total, and the average
values of the 10 runs is took as the final result, i.e., the CV-R%. The formulae of the

models are as follows:

PM2,5i,j :jMETEi,j, lag]METE,-j, lag2METEi,j,AOD[,j, LDj, ROADj, NDV]j, ELEJ‘, GDPj,
POP;, SEASON,, MON;, PRO;) (D)
O3-8hmaxl;j :jMETEi,j, lagIMETE,-j, lagZMETEl;j, GEOS[,], LDj, ROADJ', ND VIj, ELEj,

GDP;, POP;, SEASON,, MON,, PRO)) )

where PMsij and O3-8hmax;; are the PM> s and O3-8hmax concentrations on day i in
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grid cell j; METE;; is 13 meteorological variables on day i in grid cell j, and lag 1
METE;; and lag2 METE;; represent corresponding one-day lag and two-day lag
values, respectively; GEOS;j and AOD; j are the GEOS-Chem model output and AOD
value on day i in grid cell j; LD;, ROADj, NDVI;, ELE;, GDP;and POP are the land
use coverage, length of a variety of roads, NDVI, elevation, GDP and population in
grid cell j, respectively; SEASON;, MON; and PRO; are the season and month of day i,

and province of grid cell j, respectively.

In general, the random forest parameters that need to be adjusted include n_estimators
(number of decision trees) and the max_depth (maximum depth of the trees). Unlike
the previous methods of manually adjusting parameters, the parameters of random
forest were optimized using GridSearchCV, which can realize cross-validated
grid-search over a parameter grid. After GridSearchCV, we set max_depth as 36 and
n_estimators as 200 for PMz s modeling. For O3-8hmax modeling, we set max_depth

as 54 and n_estimators as 200.

2.3 Validation method

To comprehensively verify the model performance, we construct the main models
using sample-based division method. Models using spatial-based and temporal-based
division method are further construct to test the model performance in spatial and

temporal scale.
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The data set was randomly divided into training set (90% of the records) and test set
(10% of the records) by using the sample-based division method. We construct the
main model using the training set with a 10-fold cross-validation. Since the data in the
test set is not used in the main model, "true model performance" can be verified. The
coefficient of determination (R?) of main model on test set (test-R?), and the
verification indicators of model uncertainty, the root mean square error (RMSE) and
mean absolute error (MAE) are calculated for the PM; 5 and Os-8hmax model,

respectively. The monthly and yearly test-R? are also calculated.

For the spatial verification, 90% of the monitoring stations are randomly selected. The
monitoring data of these stations is used as the training set, and the monitoring data of
remaining stations is used as the testing set. For the temporal verification, all date in
2013-2017 is randomly divided into nine and one, and the data in theses dates is used
as training and test sets, respectively. After that, the test-R?, RMSE and MAE are

calculated.

2.4 Estimation of daily PM:.s and ambient O3 of China from 2005 to 2017

Based on the final models of PM> s and O3-8hmax, we estimate the gridded daily
average PMz s concentration and Os3-8hmax concentration of China in 2005-2017. The
spatial pattern and temporal trend of PM> s and O3-8hmax concentrations are analyzed,

and compared with other modeling products.

10
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The modeling and estimations are performed in Python 2.7.13 using the
scikit-learn-0.20.3 and GridSearchCV packages. The workflow of this study is

displayed in Fig. 2.

Ground Meteorological Geographic Socioeconomic GEOS-Chem
measurements variables variables variables model output / AOD
Process datasets to standard grid 1kmx1km standard grid

Match all variables by grid
for model fitting

1

Divide the training set
and validation set

> Model fitting

1

10-fold cross validation

Model adjustment Over-fitting?

Test set validation

Model performance verification

Spatial validation and
temporal validation

Estimate PM2.5 and O3 concentration of 2005-2017

Fig. 2 The workflow of modeling process in the study

3 Results and Discussion
A total of 981744 monitoring data records were used in the final model-fitting data set.
The mean + standard deviation of PM» s and ambient O3 concentrations in 2013-2017

were 59.60+45.85 pg/m? and 86.72+47.73 ug/m3, respectively. The results of
11
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descriptive analysis for variables included in PMz s and O3-8hamx model is shown in

Table S2.

3.1 Model fitting and validation

The cross-validation results indicate that the estimated PM> 5 and O3-8hmax
concentrations matched reasonably with the observed PM:.s and O3-8hmax
concentrations, with high fitted test-R? values. According to our sample-based
division method, the test-R? values of the estimated daily, monthly and yearly PM> s
concentrations were 0.85, 0.88 and 0.90, respectively (Fig. 3). Likewise, the test-R?
values of the estimated daily, monthly and yearly Os-8hmax concentrations were 0.77,
0.77 and 0.69, respectively (Fig. 4). The RMSE and MAE for PM: s in daily level
were 17.72 and 9.37 pg/m?; for O3-8hmax, the values were 23.10 and 15.43 pg/m>.
The model performance is comparable to previous studies (Di et al., 2017; Li and
Cheng, 2021; Liu et al., 2020; Wei et al., 2021, 2020, 2019). At provincial/city level,
The model performance of PM, s estimations of Shanghai, Beijing, Hubei, Hebei and
Sichuan ranked the top 5 with relatively high test-R? (>0.90), while those of Tibet,
Qinghai, Gansu, Anhui and Yunnan were less accurate with relatively low test-R?
values (<0.70). The model performance of O3-8hmax estimations of Beijing,
Chongging, Shanghai, Tianjin and Henan ranked the top 5 with relatively high test-R?
values (>0.83), while those of Gansu, Anhui, Heilongjiang, Guizhou and Tibet were

poorer with relatively low test-R? values (<0.62) (Table S3).

12
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233 different validation method: sample-based, spatial-based and temporal-based.

234

235  The spatial and temporal test-R? of our models explained the uncertainty to some

236 content (Fig. 3 and Fig. 4). The spatial test-R? values for daily, monthly and yearly
237  PMays estimation were 0.83, 0.87 and 0.85, respectively; while those of daily, monthly
238  and yearly Os-8hmax estimations were 0.74, 0.77 and 0.68, respectively. The

239  relatively high spatial test-R? demonstrates the reasonable performance of our models
240  in areas without monitoring stations. The temporal test-R? values of daily, monthly
241  and yearly PM; s estimations were 0.49, 0.65 and 0.76, respectively; while those of

14



242 daily, monthly and yearly Os-8hmax estimations were 0.58, 0.63 and 0.56,

243 respectively. These results indicate the uncertainty of our models when modeling data
244 in historical period, although the performance is among the best compared with

245  previous studies. The simulation accuracy is a universal issue in the present studies of
246  air pollutant concentrations in historical period without monitoring data. Further

247  efforts are need to improve the model performance of historical estimations.

248

249 3.2 Feature importance

250  The feature importance of the variables in our random forest models is presented in
251  Table S4-1 and S4-2. Similar to previous studies (Chen et al., 2018; Zhan et al., 2018),
252 the meteorological factors and their lagged values can significantly affect both PMz s
253  and O3-8hmax modeling. Moreover, the specific features for PM» s and O3, AOD and
254 GEOS-Chem output, also demonstrated high importance in modeling work.

255

256 For PM2s modeling work (Table S4-1), the meteorological variables (boundary layer
257  height, evaporation, 2 meter dew point temperature) and its lagged effect were among
258  the top ten important factors, totaling 33.6% in modeling work. The lagged effects
259  greatly contributed to PM2.s modeling. For example, the lagl boundary layer height
260  ranked first (17.2%) in our study, which is similar to previous studies (Zhao et al.,

261 2019). The interpolated AOD (5.6%), DEM (4.9%) and season (3.7%) also

262  demonstrated high importance, which showed crucial effects of satellite data, terrain
263  distribution characteristics in the study area, and study period on PM2.s modeling. The

15
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relative contribution of land-use, NDVI, population density, road length and GDP are
negligible (the importance scores less than 1%). Unlike DEM, these factors are
subjected to the influence of socioeconomic status in study area. In the future study,
the integration of these factors with a higher temporal resolution might change its

contribution to the estimation.

The feature importance of ambient O3 is consistent with its formation and dissipation
mechanism: surface solar radiation downwards and its lagged effect according for
39.2% in modeling work (Table S4-2). Other meteorological factors (2 meter
temperature, boundary layer height, 10 meter V wind component, and low cloud cover)
according for totaling 9.54% importance scores. Our analysis also suggests the high
importance of GEOS-Chem model (7.2%), altitude (1.9%), and dummy factors
including year (2.2%) and province (1.6%) in Oz modeling. By contrast, the relative
contribution of land-use, NDVI and road length are negligible (the importance scores
less than 1%). The high importance rank of population and GDP might be attributed
to the relatively high sensitivity of O3 to anthropogenic emission sources (compared

to PMas).

3.3 The spatial characteristics and temporal trend of PM:s and ambient O3 of
China from 2005 to 2017

During 2005-2017, PM> 5 showed an overall downward trend, while ambient O3
showed an upward trend in recent years (Fig. 5, Fig. S3-S6). Relative to 2005, PM2 s

16
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concentration has increased by 2.60 pg/m? in 2013. Nevertheless, after the
implementation of the Air Pollution Prevention and Control Action Plan, a strict
pollution control measure, PM> s concentration has declined by 11.041 pg/m?3 in 2017
(relative to 2013). This has resulted in a downward trend of PM 5 concentration in
2005-2017: PM, s concentration in 2017 has decreased by 8.44 pg/m? relative to 2005
(Fig. 5 and Fig. S3). In key pollution areas, with the implementation of various air
pollution prevention and control policies, PM2 5 levels in the Beijing-Tianjin-Hebei
region have dropped the most, but the overall concentration levels are still higher than
those in the Yangtze River Delta and Pearl River Delta (Fig. S4). For O3-8hmax,
upward barely changed. Relative to 2005, O3-8hmax concentrations in 2013 and 2017
have increased by 0.39 pg/m? and 7.83 pg/m?, respectively. The upward trend during
2005-2017 was mostly due to the significant changes between 2013 and 2017: relative
to 2013, the O3-8hmax concentration has increased by 7.44 pg/m3in 2017 (Fig. 5 and
Fig. S5). The Beijing-Tianjin-Hebei region has shown an obvious upward trend since
2013; while the Pearl River Delta region change trend is not obvious (Fig. S6). During
the strict pollution control period, VOC emissions were not effectively controlled
could be one of the main reasons. Therefore, integrated management of VOCs and

NOx in key industries and areas is important.
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Fig.5 The temporal trend of PM; 5 and O3-8hmax concentration in China from 2005-2017
The black dots represent the monthly average PM2 s and O3-8hmax concentration from 2005 to
2017, the blue color band represents the range of the monthly average PM» s and O3-8hmax
concentration plus or minus the RMSE value from 2013-2017 (period with monitoring data), and
the green color band represents the range of the monthly average PM» 5 and O3-8hmax
concentration plus or minus the MAE value from 2013-2017 years.

The seasonal distributions of PMz s and O3-8hmax concentrations were obvious
during 2005-2017 (Fig. S7 and Fig. S8). The lowest seasonal PM» 5 concentration
occurred in summer, with an average concentration of 33.6 4 11.39ug/m?; and the
highest seasonal PM 5 concentration occurred in winter, with an average
concentration of 57.4+21.76ug/m3. In winter, temperature inversion occurs frequently,
and the thickness of the mixed layer is low, which is not conducive to the diffusion of

pollutants, which leads to the accumulation of PM> s near the ground (Sun et al, 2014).
18
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In opposite, the lowest seasonal O3-8hmax concentration was in winter, with an
average concentration of 72.65+6.28ug/m?; The highest seasonal O3-8hmax
concentration was in summer, with an average concentration of 97.44+13.58ug/m?>.
Temperatures and solar radiation conditions in summer increase the incidence of
severe Os pollution events, which is consistent with its formation and dissipation

mechanism.

The PM s concentrations in Beijing-Tianjin-Hebei, Chengdu-Chongqing and Xinjiang
regions are higher than other regions, followed by the central China. The PMa s
concentrations in the southwestern regions (Yunnan and Tibet) and western part of
Sichuan Province, are the lowest, followed by the inner-north regions and the south
and southeastern regions (Fig. 6, Fig. S3 and Fig. S4; Table S5). The Os-8hmax
concentrations in the Bohai Rim, Yangtze River Delta, Pearl River Delta and other
economically developed regions, southern Xinjiang, Inner Mongolia, and northeastern
Gansu are relatively high (Fig. 6, Fig. S5 and Fig.6; Table S5). This spatial pattern
barely changed during 2005-2017 (Fig. S3 and Fig. S5), but the temporal trend
showed spatial characteristic (Fig. 6; Fig. S4 and S6). For PM2 s concentration, the
key pollution areas were severely polluted during 2005-2013. The air pollution
control measures of these regions were strict during 2013-2017, thus the decline was
obvious, especially for the Beijing-Tianjin-Hebei region. For Os-8hmax concentration,
the growth rate was not obvious (except for the eastern part of Hubei Province) during
2005-2013. However, after 2013, there was a clear upward trend across the country,

19



341

342
343

344
345
346
347

348

349

350

351

352

353

354

355

356

especially in the northern China.

Wik Wk nrE 2k

Wk ok ok e
Average concentration during 2005-2017 Difference between 2013 and 2005

& ST S
I A JNCIRC I

PR IE R

03

Differcnce between 2017 and 2013
)

N

= wer oer
Average concentration during 2005-2017

& & P oE S A R L R A S R I s R D B S g

Fig. 6 Estimated annual mean and difference of PM;s and O3-8hmax concentration in China
during 2005 to 2017

The first row is maps of PMa s related indicators, and the second row is maps of O3-8hmax related
indicators. From left to right are average concentration during 2005-2017, the difference between
2017 and 2005, the difference between 2013 and 2005, and the difference between 2017 and 2013.

3.4 Evaluation of the PMzs and O3 concentration products with comparison with
other products

Our estimation datasets include the PM2s and O3-8hmax concentration data of China
in 2005-2017 with a spatial resolution of 1kmx1km resolution. With high spatial and
temporal resolutions, our validation results are comparable with other modeling work
(see Table S6). Considering the future application in epidemiological research, our
estimation datasets would be useful: for acute effects studies, the high spatial

resolution would effectively reduce exposure errors; for chronic effects studies,
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long-term exposure data is essential for the development of cohort studies.

Nevertheless, our estimation datasets also contain some limitations. First, we did not
use emission data in our model limited by coarse resolution. However the newly
published high-resolution emission inventory of China (http://meicmodel.org/) may
be utilized in future estimation studies to improve accuracy. Second, our modeling
still has spatial and temporal uncertainties. In areas where monitoring sites are
sparsely distributed, such as western China, it may be difficult to accurately capture
the association between air pollution concentrations and variables. The model
validation of historical period is also limited. Third, the interpolation process of model
features inevitably introduces systematic errors. Therefore, more high-quality and

high-resolution basic data would be needed in the future.

4 Data availability
The estimated PM2.s and Os data are freely accessible at

https://doi.org/10.5281/zen0d0.4009308 (Ma et al., 2021), and the shared data set of

Chinese Environmental Public Health Tracking: CEPHT

(https://cepht.niehs.cn:8282/developSDS3.html).

5 Conclusions
We constructed random forest models for simulating of daily average PM,s and
Os3-8hmax concentrations of China during 2005-2017, with referential feature list and
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comparable model performance. The estimation dataset would be useful for
supporting both long-term and short-term epidemiological studies. The model can be
further used for simulating daily concentrations of longer time period. The key
findings are summarized as follows. First, RF model proved its superiority in our
study and can be further used in the future estimation of air pollutant concentration.
Second, meteorological data is the most sensitive to PM2s and O3 modeling. For
PM: s modeling work, boundary layer height, evaporation, 2 meter dew point
temperature and its lagged effects showed the highest sensitivity. For O3 modeling
work, surface solar radiation downwards and its lagged effect were the most sensitive.
Third, PM> 5 concentration has trended downward in China, and the key polluted areas
during 2005-2013 were effectively controlled during 2013-2017. O3 concentration has

trended upward in China, especially in the northern China during 2013-2017.
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