1	Full-coverage 1 km daily ambient $PM_{2.5}$ and O_3 concentrations of China in
2	2005-2017 based on multi-variable random forest model
3	
4	Runmei Ma ^{1#} , Jie Ban ^{1#} , Qing Wang ^{1#} , Yayi Zhang ¹ , Yang Yang ² , Shenshen Li ³ ,
5	Wenjiao Shi ^{4, 5} , <u>Zhen Zhou^{1,6}, Jiawei Zang^{1,6},</u> Tiantian Li ^{1*}
6	
7	¹ China CDC Key Laboratory of Environment and Population Health, National Institute of
8	Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021,
9	China
10	² Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089,
11	China
12	³ State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital
13	Earth, Chinese Academy of Sciences, Beijing, 100101, China
14	⁴ Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences
15	and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
16	⁵ College of Resources and Environment, University of Chinese Academy of Sciences,
17	Beijing 100049, China
18	⁶ School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang
19	<u>222000, China</u>
20	
21	[#] Runmei Ma, Jie Ban and Qing Wang are the co-first authors.
22	* Corresponding author: E-mail: litiantian@nieh.chinacdc.cn

23 Abstract

The health risks of fine particulate matter (PM_{2.5}) and ambient ozone (O₃) have been 24 25 widely recognized in recent years. An accurate estimate of PM_{2.5} and O₃ exposures is important for supporting health risk analysis and environmental policy-making. The 26 27 aim of our study was to construct random forest models with high-performance, and estimate daily average PM2.5 concentration and O3 daily maximum of 8h-8h-average 28 concentration (O₃-8hmax) of China in 2005-2017 at a spatial resolution of 1km×1km. 29 The model variables included meteorological variables, satellite data, chemical 30 31 transport model output, geographic variables and socioeconomic variables. Random forest model based on ten-fold cross validation was established, and spatial and 32 temporal validations were performed to evaluate the model performance. According 33 34 to our sample-based division method, the daily, monthly and yearly simulationsestimations of PM_{2.5} from test datasets gave average model fitting R² values of 0.85, 35 0.88 and 0.90, respectively; these R^2 values were 0.77, 0.77, and 0.69 for O₃-8hmax, 36 37 respectively. The meteorological variables and their lagged values can significantly affect both PM_{2.5} and O₃-8hmax simulationestimations. During 2005-2017, PM_{2.5} 38 exhibited an overall downward trend, while ambient O₃ experienced an upward trend. 39 Whilst the spatial patterns of PM_{2.5} and O₃-8hmax barely changed between 2005 and 40 2017, the temporal trend had spatial characteristic. The dataset is accessible to the 41 public at https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared 42 43 data set of Chinese Environmental Public Health Tracking: CEPHT (https://cepht.niehs.cn:8282/developSDS3.html). 44

Air pollution is becoming a main concern of modern society due to various health 46 47 risks. According to the latest Global Burden of Disease (GBD) report, air pollution has caused approximately 6.67 million deaths (95% UI: 5.90-7.49 million), and 48 49 ranked fourth on the global list of death-related risk factors in 2019 (Health Effects Institute, 2020; Murray et al., 2020). Ambient fine particulate matter (PM_{2.5}) and 50 ambient ozone (O₃) have been identified and proven to be related to many health 51 outcomes. China is known to be one of the countries with the most serious air 52 53 pollution in the world. Strict pollution control measures (including the Air Pollution *Prevention and Control Action Plan* and *three-year action plan to fight air pollution*) 54 were enacted by the Chinese government-in-order to control and reduce-serious air 55 56 pollution since 2013. The implementation of these measures has resulted in a markable drop of emissions and PM2.5 concentration. Nonetheless However, the 57 occasional haze and unsatisfactory O₃-pollution control effects events in 2013-2017, as 58 well as the short development history of air quality monitoring network, have brought 59 many difficulties to accurately capture the temporal and spatial patterns of PM_{2.5} and 60 O₃ concentrations. Therefore, it is difficult to develop a complete decision-making 61 basis for handling air pollution. In addition, there are gaps in epidemiological studies 62 linking air pollutants to health outcomes, due to the lack of accurate measurements of 63 PM_{2.5} and ambient O₃ concentrations. To this end, an accurate estimate of PM_{2.5} and 64 O3 exposures is essential to support health risk analysis and environmental 65 policy-making. 66

Suitable model variables and advanced simulationestimation method are important to 68 achieve accurate modeling. Basically, PM_{2.5} is jointly affected by both natural 69 conditions and human activities over space and time, e.g., Aerosol Optical Depth 70 71 (AOD), meteorological conditions, geographic factors and human-related features (Wei et al., 2021). While O_3 is a secondary pollutant, which is produced by a series of 72 complex photochemical reactions on the basis of precursor including nitrogen oxides 73 74 (NOx) and volatile organic compounds (VOCs) under the action of high temperature 75 and strong radiation. These complex characteristic puts forward higher requirements on the ability of the modeling method to handle multi-variable, and capture the 76 non-linear relationships between variables and air pollutants. Many models have been 77 developed to simulateestimate the spatiotemporal distribution of PM_{2.5} and O₃ 78 concentrations in China. Machine-learning approaches (e.g., random forest (RF), 79 extreme gradient boosting and deep belief network models) can mine useful 80 81 information from a large amount of input data and explore the nonlinear relationship, leading tobring a better performance in modeling work (Chen et al., 2018, 2019; Di et 82 al., 2017; Li et al., 2017; Wei et al., 2019; Zhan et al., 2018). However, most of these 83 simulation datasets cannot balance long time series and high spatiotemporal 84 resolution. Besides, there is no long-term simulationestimation dataset for both PM2.5 85 and O₃ concentrations with high temporal and spatial resolution for supporting 86 epidemiological research. Therefore, by incorporating multi-source data into random 87 forest models, this study makes an attempt to simulateestimate the high-resolution 88

 $(1 \text{km} \times 1 \text{km})$ ambient PM_{2.5} and O₃ concentrations of China in 2005-2017.

90

91 **2. Method**

The model variables of this study include meteorological variables, geographical 92 variables, socio-economic variables, satellite data and chemical transport model 93 94 output in 2013-2017. Daily average PM_{2.5} and O₃ daily maximum of 8h-8h-average concentration (O₃-8hmax) monitoring data of 1479 sites in 2013-2017 was obtained 95 (Fig. 1; Fig. S1 and Fig. S2). A 1km×1km standard grid is created across the country 96 (35.55° N to 43.12° N, and 112.95° E to 120.35° E) with a total of 9495025 grid cells. 97 98 The coordinate system of the grid is WGS-84 .-; and the projection of the grid is the Albers Conical Equal Area Projection. We construct high-performance random forest 99 (RF) models (temporal resolution: daily; spatial resolution: 1km×1km), and 100 simulateestimate the grid daily average PM_{2.5} concentration and O₃-8hmax 101 concentration of China in 2005-2017. 102

Fig.1 Station distribution in China and average ground monitoring concentration based on
 the available data of PM_{2.5} (A) and O₃-8hmax (B) from 2013 to 2017Station distribution in-

106 China and average ground monitoring concentration of PM_{2.5} (A) and O₃-8hmax (B) from

107 **2013 to 2017**

110	The model variables used in this study mainly include Aqua AOD (Aerosol Optical
111	Depth) for PM _{2.5} modeling, GEOS-Chem chemical transport model output for O ₃
112	modeling, and some variables shared by PM _{2.5} and O ₃ : 13 meteorological variables
113	(includes boundary layer height, surface pressure, 2 meter dew point temperature,
114	evaporation, albedo, low cloud cover, medium cloud cover, high cloud cover, total
115	precipitation, 10 meter U wind component, 10 meter V wind component, 2 meter
116	surface temperature and surface solar radiation downwards) and its lag 1 and lag 2,
117	geographic and socio-economic variables, such as Digital Elevation ModelDEM
118	(DEMDigital Elevation Model), Normalized Difference Vegetation IndexNDVI
119	(NDVINormalized Difference Vegetation Index), population, Gross Domestic
120	ProductGDP (GDPGross Domestic Product), road network and dummy variables
121	(includes season, month, and spatial dummy variables, province). A more detailed
122	description of the model variables is given in Table S1. The processing method has
123	been described in detail in our earlier studies (Ma et al., 2021; Zhao et al., 2019).
124	Briefly, most of the model variables are processed into 1km×1km resolution based on
125	the standard grid using interpolation methods (such as inverse distance weighted and
126	bilinear algorithm) in ArcGIS 10.2 and Python 2.7. For example, AOD is processed
127	by ENVI 5.3+IDL and extracted into standard grid using ArcPy, then the inverse
128	distance weighted interpolation is carried out to obtain the 1km×1km resolution data.
129	For the long-term variables, the corresponding monthly and annual level value is
130	assigned to each day. Subsequent modeling work was carried out based on the data set

131 that covering monitoring data and all variables.

133	2.2 Random forest model	
134	Random forest is an ensemble machine learning method consisting of many	
135	individual decision trees growing from bagged data and its prediction is a vote	result
136	of those trees (Breiman, 2001). The RF algorithm primarily integrates learning	7
137	principles, trains several individual learners, and finally forms a strong learner	
138	through a certain combination strategy; through multiple rounds of training, m	ultiple
139	prediction results are obtained, and the final results are obtained after average	
140	aggregation.	
141		
142	The random forest models are established using the 10-fold cross validation m	ethod.
143	First-of all, this method randomly divides the modeling data set into 10 parts;	then 9
144	of them are used for modeling, the remaining one is used for simulationestima	<u>tion</u> and
145	be compared with observations. The verification is repeated until every part is	
146	predicted. In this way, the modeling and verification of simulationestimation a	re
147	repeated 10 times in total, and the average values of the 10 runs is took as the	final
148	result, i.e., the CV-R ² . The formulae of the models are as follows:	
149		
150	PM _{2.5i,j} = f(METE _{i,j} , lag1METE _{ij} , lag2METE _{i,j} , AOD _{i,j} , LD _j , ROAD _j , NDVI _j , EL	E _j , GDP _j ,
151	$POP_{j}, SEASON_{i}, MON_{i}, PRO_{j})$ (1)	

 O_3 -8hmax_{i,j} = f(METE_{i,j}, lag1METE_{ij}, lag2METE_{i,j}, GEOS_{i,j}, LD_j, ROAD_j, NDVI_j, ELE_j,

GDP_j, POP_j, SEASON_i, MON_i, PRO_j)

(2)

156	where $PM_{2.5i,j}$ and O_3 -8hmax _{i,j} are the $PM_{2.5}$ and O_3 -8hmax concentrations on day i in
157	grid cell j; METE-i, j is 13 meteorological variables on day i in grid cell j, and lag 1
158	$METE_{\neg i,j}$ and lag2 $METE_{\neg i,j}$ represent corresponding one-day lag and two-day lag
159	values, respectively; GEOS- $_{i,j}$ and AOD- $_{i,j}$ are the GEOS-Chem model output and
160	AOD value on day i in grid cell j; LD-j, ROAD-j, NDVI-j, ELE-j, GDP-j and POP j are
161	the land use coverage, length of a variety of roads, NDVI, elevation, GDP and
162	population in grid cell j, respectively; SEASON- $_i$, MON- $_i$ and PRO- $_j$ are the season
163	and month of day i, and province of grid cell j, respectively.
164	

2.3 Validation method

To comprehensively verify the model performance, we construct the main models

using sample-based division method. Models using spatial-based and temporal-based
division method are further construct to test the model performance in spatial and
temporal scale.

178

179	The data set was randomly divided into training set (90% of the records) and test set
180	(10% of the records) by using the sample-based division method. We construct the
181	main model using the training set with a 10-fold cross-validation. Since the data in the
182	test set is not used in the main model, "true model performance" can be verified. The
183	coefficient of determination (R^2) of main model on test set (test- R^2), and the
184	verification indicators of model uncertainty, the root mean square error (RMSE) and
185	mean absolute error (MAE) are calculated for the $PM_{2.5}$ and O_3 -8hmax model,
186	respetively respectively. The monthly and yearly $test-R^2$ are also calculated.
187	
187 188	For the spatial verification, 90% of the monitoring stations are randomly selected. The
187 188 189	For the spatial verification, 90% of the monitoring stations are randomly selected. The monitoring data of these stations is used as the training set, and the monitoring data of
187 188 189 190	For the spatial verification, 90% of the monitoring stations are randomly selected. The monitoring data of these stations is used as the training set, and the monitoring data of remaining stations is used as the testing set. For the temporal verification, all date in
187 188 189 190 191	For the spatial verification, 90% of the monitoring stations are randomly selected. The monitoring data of these stations is used as the training set, and the monitoring data of remaining stations is used as the testing set. For the temporal verification, all date in 2013-2017 is randomly divided into nine and one, and the data in theses dates is used
187 188 189 190 191 192	For the spatial verification, 90% of the monitoring stations are randomly selected. The monitoring data of these stations is used as the training set, and the monitoring data of remaining stations is used as the testing set. For the temporal verification, all date in 2013-2017 is randomly divided into nine and one, and the data in theses dates is used as training and test sets, respectively. After that, the test-R ² , RMSE and MAE are
187 188 189 190 191 192 193	For the spatial verification, 90% of the monitoring stations are randomly selected. The monitoring data of these stations is used as the training set, and the monitoring data of remaining stations is used as the testing set. For the temporal verification, all date in 2013-2017 is randomly divided into nine and one, and the data in theses dates is used as training and test sets, respectively. After that, the test-R ² , RMSE and MAE are calculated.

195 2.4 Simulation Estimation of daily PM_{2.5} and ambient O₃ of China from 2005 to
196 2017

206 Fig. 2 The workflow of modeling process in the study

208 **3 Results and Discussion**

A total of 981744 monitoring data records were used in the final model-fitting data set. The mean \pm standard deviation of PM_{2.5} and ambient O₃ concentrations in 2013-2017 were 59.60– \pm -45.85 µg/m³ and 86.72– \pm -47.73 µg/m³, respectively. The results of descriptive analysis for variables included in PM_{2.5} and O₃-8hamx model is shown in Table S2.

214

215 **3.1 Model fitting and validation**

216 The cross-validation results indicate that the simulateestimated PM_{2.5} and O₃-8hmax

217 concentrations matched reasonably with the observed PM_{2.5} and O₃-8hmax

218 concentrations, with high fitted <u>test- R^2 values</u>. According to our sample-based

219 division method, the <u>test-R²</u> values of the <u>simulateestimate</u>d daily, monthly and yearly

220 PM_{2.5} concentrations were 0.85, 0.88 and 0.90, respectively (Fig. 3). Likewise, the

221 <u>test-R²</u> values of the <u>simulateestimate</u>d daily, monthly and yearly O_3 -8hmax

concentrations were 0.77, 0.77 and 0.69, respectively (Fig. 4). The RMSE and MAE

for PM_{2.5} in daily level were 17.72 and 9.37 μ g/m³; for O₃-8hmax, the values were

224 23.10 and 15.43 μ g/m³. The model performance is comparable to previous studies (Di

225 et al., 2017; Li and Cheng, 2021; Liu et al., 2020; Wei et al., 2021, 2020, 2019). At

- provincial/city level, <u>The model performance of PM_{2.5} simulationestimation</u>s of
- 227 Shanghai, Beijing, Hubei, Hebei and Sichuan ranked the top 5 with relatively high
- 228 <u>test-R²</u> (\geq 0.90), while those of Tibet, Qinghai, Gansu, Anhui and Yunnan were less

229accurate with relatively low test- R^2 values (<0.70). The model performance of</th>230O_3-8hmax simulationestimations of Beijing, Chongqing, Shanghai, Tianjin and Henan231ranked the top 5 with relatively high test- R^2 values (≥ 0.83), while those of Gansu,232Anhui, Heilongjiang, Guizhou and Tibet were poorer with relatively low test- R^2 233values (<0.62) (Table S3).</td>

234

Fig. 3 The density plot of PM_{2.5} model

From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is different validation method: sample-based, spatial-based and temporal-based.

238

239 Fig. 4 The density plot of O₃-8hmax model

From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is

241 different validation method: sample-based, spatial-based and temporal-based.

243	The spatial and ter	nporal test- R^2 of our	models explained th	e uncertainty of the
			· I	2

- 244 models to some content (Fig. 3 and Fig. 4). The spatial $\underline{\text{test-}}R^2$ values for daily,
- monthly and yearly $PM_{2.5}$ simulation were 0.83, 0.87 and 0.8685,
- respectively; while those of daily, monthly and yearly O₃-8hmax
- 247 simulation<u>estimation</u>s were 0.74, 0.77 and 0.68, respectively. The relatively high
- 248 <u>spatial test-R²performance</u> demonstrates the reasonable performance of our models in
- areas without monitoring stations. The temporal $\underline{\text{test-}}R^2$ values of daily, monthly and

250	yearly PM _{2.5} simulation estimation were 0.49, 0.65 and 0.76, respectively; while those
251	of daily, monthly and yearly O ₃ -8hmax simulationestimations were 0.58, 0.63 and
252	0.56, respectively. These results indicate the uncertainty of our models when
253	modeling data in historical period, although the performance is among the best
254	compared with previous studies. The simulation accuracy is a universal issue in the
255	present studies of air pollutant concentrations in historical period without monitoring
256	data. Further efforts are need to improve the model performance of historical
257	estimations.
258	
259	3.2 Feature importance

Table S4-1 and S4-2. Similar to previous studies (Chen et al., 2018; Zhan et al., 2018),

The feature importance of the variables in our random forest models is presented in

the meteorological factors and their lagged values can significantly affect both PM_{2.5}

and O₃-8hmax modeling. Moreover, the specific features for PM_{2.5} and O₃, AOD and

264 GEOS-Chem output, also demonstrated high importance in modeling work.

265

260

demonstrated high importance, which showed crucial effects of satellite data, terrain distribution characteristics in the study area, and study period on PM_{2.5} modeling. The relative contribution of land-use, NDVI, population density, road length and GDP are negligible (the importance scores less than 1%). Unlike DEM, these factors are subjected to the influence of socioeconomic status in study area. In the future study, the integration of these factors with a higher temporal resolution might change its contribution to the simulationestimation.

279

280 The feature importance of ambient O₃ is consistent with its formation and dissipation mechanism: surface solar radiation downwards and its lagged effect according for 281 38.079.2% in modeling work (Table S4-2). Other meteorological factors (2 meter 282 283 temperature, boundary layer height, 10 meter V wind component, and low cloud cover) according for totaling 9.54% importance scores. Our analysis also suggests the high 284 importance of GEOS-Chem model (7.24%), altitude (1.889%), and dummy factors 285 286 including year (2.172%) and province (1.566%) in O₃ modeling. By contrast, the relative contribution of land-use, NDVI and road length are negligible (the importance 287 scores less than 1%). The high importance rank of population and GDP might be 288 attributed to the relatively high sensitivity of O₃ to anthropogenic emission sources 289 (compared to PM_{2.5}). 290

291

3.3 The spatial characteristics and temporal trend of PM_{2.5} and ambient O₃ of
China from 2005 to 2017

294	During 2005-2017, $PM_{2.5}$ showed an overall downward trend, while ambient O_3
295	showed an upward trend in recent years (Fig. 5, Fig. S1-S3-Sand Fig. S26). Relative
296	to 2005, PM _{2.5} concentration has increased by 2.60 μ g/m ³ in 2013. Nevertheless, after
297	the implementation of the Air Pollution Prevention and Control Action Plan, a strict
298	pollution control measure, $PM_{2.5}$ concentration has declined by 11.041 $\mu g/m^3$ in 2017
299	(relative to 2013). This has resulted in a downward trend of $PM_{2.5}$ concentration in
300	2005-2017: PM _{2.5} concentration in 2017 has decreased by 8.44 μ g/m ³ relative to 2005
301	(Fig. 5 and Fig. S1S3). In key pollution areas, with the implementation of various air
302	pollution prevention and control policies, PM _{2.5} levels in the Beijing-Tianjin-Hebei
303	region have dropped the most, but the overall – concentration levels are still higher
304	than those in the Yangtze River Delta and Pearl River Delta (Fig. S4). For O ₃ -8hmax,
305	upward barely changed. Relative to 2005, O ₃ -8hmax concentrations in 2013 and 2017
306	have increased by 0.39 $\mu g/m^3$ and 7.83 $\mu g/m^3,$ respectively. The upward trend during
307	2005-2017 was mostly due to the significant changes between 2013 and 2017: relative
308	to 2013, the O ₃ -8hmax concentration has increased by 7.44 $\mu\text{g/m}^3$ in 2017 (Fig. 5 and
309	Fig. S2S5). <u>The Beijing-Tianjin-Hebei region haveregion has shown an obvious</u>
310	upward trend since 2013; while the Pearl River Delta region change trend is not
311	obvious (Fig. S6). During the strict pollution control period, VOC emissions were not
312	effectively controlled could be one of the main reasons. Therefore, integrated
313	management of VOCs and NOx in key industries and areas is important.

315 Fig.5 The temporal trend of PM_{2.5} and O₃-8hmax concentration in China from 2005-2017

316 The black dots represent the monthly average $PM_{2.5}$ and O_3 -8hmax concentration from 2005 to

2017, the blue color band represents the range of the monthly average PM_{2.5} and O₃-8hmax
concentration plus or minus the RMSE value from 2013-2017 (period with monitoring data), and

319 the green color band represents the range of the monthly average $PM_{2.5}$ and O_3 -8hmax

320 concentration plus or minus the MAE value from 2013-2017 years.

321

322 The seasonal distributions of PM_{2.5} and O₃-8hmax concentrations were obvious

during 2005-2017 (Fig. $\underline{S3}$ - $\underline{S7}$ and Fig. $\underline{S4S8}$). The lowest seasonal PM_{2.5}

324 concentration occurred in summer, with an average concentration of $33.6 \pm$

 $11.39\mu g/m^3$; and the highest seasonal PM_{2.5} concentration occurred in winter, with an

- average concentration of $57.4\pm21.76\mu$ g/m³. In winter, temperature inversion occurs
- 327 frequently, and the thickness of the mixed layer is low, which is not conducive to the
- 328 diffusion of pollutants, which leads to the accumulation of PM_{2.5} near the ground (Sun

329	et al, 2014). In opposite, the lowest seasonal O ₃ -8hmax concentration was in winter
330	with an average concentration of $72.65\pm6.28\mu g/m^3$; The highest seasonal O ₃ -8hmax
331	concentration was in summer, with an average concentration of $97.44\pm13.58\mu\text{g/m}^3$.
332	Temperatures and solar radiation conditions in summer increase the incidence of
333	severe O ₃ pollution events, which is consistent with its formation and dissipation
334	mechanism.

The PM_{2.5} concentrations in Beijing-Tianjin-Hebei, Chengdu-Chongqing and Xinjiang 336 337 regions are higher than other regions, followed by the central China. The PM_{2.5} concentrations in the southwestern regions (Yunnan and Tibet) and western part of 338 Sichuan Province, are the lowest, followed by the inner-north regions and the south 339 340 and southeastern regions (Fig. 6-and, Fig. S1S3 and Fig. S4; Table S5). The O3-8hmax concentrations in the Bohai Rim, Yangtze River Delta, Pearl River Delta and other 341 economically developed regions, southern Xinjiang, Inner Mongolia, and northeastern 342 Gansu are relatively high (Fig. 6 and, Fig. S2S5 and Fig.6; Table S5). This spatial 343 pattern barely changed during 2005-2017 (Fig. <u>\$1-\$3</u> and Fig. <u>\$2\$5</u>), but the temporal 344 trend showed spatial characteristic (Fig. 6; Fig. S4 and S6). For PM_{2.5} concentration, 345 the above-mentioned key pollution areas were severely polluted during 2005-2013. 346 The air pollution control measures of these regions were strict during 2013-2017, thus 347 the decline was obvious, especially for the Beijing-Tianjin-Hebei region. For 348 O3-8hmax concentration, the growth rate was not obvious (except for the eastern part 349 of Hubei Province) during 2005-2013. However, after 2013, there was a clear upward 350

352

Fig. 6 SimulateEstimated annual mean and difference of PM_{2.5} and O₃-8hmax concentration
 in China during 2005 to 2017

The first row is maps of $PM_{2.5}$ related indicators, and the second row is maps of O_3 -8hmax related indicators. From left to right are average concentration during 2005-2017, the difference between 2017 and 2005, the difference between 2013 and 2005, and the difference between 2017 and 2013.

358

359 **3.4 Evaluation of the PM_{2.5} and O₃ concentration products with comparison with**

- 360 other products
- 361 Our simulation datasets include the PM_{2.5} and O₃-8hmax concentration data
- of China in 2005-2017 with a spatial resolution of 1km×1km resolution. With high
- 363 spatial and temporal resolutions, our validation results are comparable with other
- 364 modeling work (see Table S6). Considering the future application in epidemiological
- 365 research, our simulation datasets would be useful: for acute effects studies,
- the high spatial resolution would effectively reduce exposure errors; for chronic

367 effects studies, long-term exposure data is essential for the development of cohort368 studies.

369

370	Nevertheless, our simulation estimation datasets also contain some limitations. First,
371	we did not use emission data in our model limited by coarse resolution. However the
372	newly published The high-resolution emission inventory of China is made accessible
373	to the public (http://meicmodel.org/) and it canmay be utilized in future
374	simulationestimation studies to improve accuracy. Second, our modeling still has
375	spatial and temporal uncertainties. In areas where monitoring sites are sparsely
376	distributed, such as western China, it may be difficult to accurately capture the
377	association between air pollution concentrations and variables. The model validation
378	of historical period is also limited. Third, the interpolation process of model features
379	inevitably introduces some errorssystematic errors. Therefore, more high-quality and
380	high-resolution basic data would be needed in the future.
381	
382	4 Data availability
383	The simulateestimated PM2.5 and O3 data are freely accessible at

384 <u>https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021)</u>, and the shared data set of

385 Chinese Environmental Public Health Tracking: CEPHT

386 (https://cepht.niehs.cn:8282/developSDS3.html).

387

388 **5** Conclusions

389	We constructed random forest models for simulating of daily average $PM_{2.5}$ and
390	O ₃ -8hmax concentrations of China during 2005-2017, with referential feature list and
391	comparable model performance. The simulationestimation dataset would be useful for
392	supporting both long-term and short-term epidemiological studies. The model can be
393	further used for simulating daily concentrations of longer time period. The key
394	findings are summarized as follows. First, RF model proved its superiority in our
395	study and can be further used in the future simulationestimation of air pollutant
396	concentration. Second, meteorological data is the most sensitive to $PM_{2.5}$ and O_3
397	modeling. For PM _{2.5} modeling work, boundary layer height, evaporation, 2 meter dew_
398	point temperature and its lagged effects showed the highest sensitivity. For O ₃
399	modeling work, surface solar radiation downwards and its lagged effect were the most
400	sensitive. Third, $PM_{2.5}$ concentration has trended downward in China, and the key
401	polluted areas during 2005-2013 were effectively controlled during 2013-2017. O ₃
402	concentration has trended upward in China, especially in the northern China during
403	2013-2017.

405 Author Contribution

406 Runmei Ma, Jie Ban and Qing Wang: Software, Investigation, Validation, Formal

407 analysis, Data curation, Writing - original draft. Yayi Zhang: Formal analysis,

408 Visualization. Yang Yang, Shenshen Li and Wenjiao Shi: Methodology, Writing -

409 Review & Editing. Tiantian Li: Conceptualization, Methodology, Writing - Review &

410 Editing.

412 **Competing Interests**

- 413 The authors declare that they have no conflict of interest.
- 414

415 Acknowledgements

- 416 This work was funded by grants from National Natural Science Foundation of China
- 417 (Grant No. 92043301 and 42071433).

- 420 Breiman, L., 2001. Random forest. Machine Learning 45, 5–32.
- Chen, G., Li, S., Knibbs, L.D., Hamm, N.A.S., Cao, W., Li, T., Guo, J., Ren, H.,
 Abramson, M.J., Guo, Y., 2018. A machine learning method to estimate
 PM2.5 concentrations across China with remote sensing, meteorological and
 land use information. Science of The Total Environment 636, 52–60.
 https://doi.org/10.1016/j.scitotenv.2018.04.251
- Chen, Z.-Y., Zhang, T.-H., Zhang, R., Zhu, Z.-M., Yang, J., Chen, P.-Y., Ou, C.-Q.,
 Guo, Y., 2019. Extreme gradient boosting model to estimate PM2.5
 concentrations with missing-filled satellite data in China. Atmospheric
 Environment 202, 180–189. https://doi.org/10.1016/j.atmosenv.2019.01.027
- Di, Q., Rowland, S., Koutrakis, P., Schwartz, J., 2017. A hybrid model for spatially
 and temporally resolved ozone exposures in the continental United States.
 Journal of the Air & Waste Management Association 67, 39–52.
 https://doi.org/10.1080/10962247.2016.1200159
- Health Effects Institute, 2020. State of Global Air 2020 28.
- Li, T., Cheng, X., 2021. Estimating daily full-coverage surface ozone concentration
 using satellite observations and a spatiotemporally embedded deep learning
 approach. International Journal of Applied Earth Observation and
 Geoinformation 101, 102356. https://doi.org/10.1016/j.jag.2021.102356
- Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L., 2017. Estimating Ground-Level PM
 2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep
 Learning Approach: Deep Learning for PM 2.5 Estimation. Geophys. Res. Lett.
 442 44, 11,985-11,993. https://doi.org/10.1002/2017GL075710
- Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., Bi, J., 2020. Spatiotemporal distributions
 of surface ozone levels in China from 2005 to 2017: A machine learning
 approach. Environment International 142, 105823.

- https://doi.org/10.1016/j.envint.2020.105823
 Ma, R., Ban, J., Wang, Q., Zhang, Y., Li, T., 2021. Full-coverage 1 km daily ambient
 PM2.5 and O3 concentrations of China in 2005-2017 based on multi-variable
 random forest model.
- Ma, R., Ban, J., Wang, Q., Zhang, Y., Li, T., 2021. Random Forest Model based Fine
 Scale Spatiotemporal O3 Trends in the Beijing-Tianjin-Hebei region in China,
 2010 to 2017. Environmental Pollution 116635.
- 453 Murray, C.J.L., Aravkin, A.Y., Zheng, Р., Abbafati, С., Abbas, K.M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., 454 455 Abdollahpour, I., Abegaz, K.H., Abolhassani, H., Aboyans, V., Abreu, L.G., 456 Abrigo, M.R.M., Abualhasan, A., Abu-Raddad, L.J., Abushouk, A.I., Adabi, M., Adekanmbi, V., Adeoye, A.M., Adetokunboh, O.O., Adham, D., Advani, 457 S.M., Agarwal, G., Aghamir, S.M.K., Agrawal, A., Ahmad, T., Ahmadi, K., 458 Ahmadi, M., Ahmadieh, H., Ahmed, M.B., Akalu, T.Y., Akinyemi, R.O., 459 Akinyemiju, T., Akombi, B., Akunna, C.J., Alahdab, F., Al-Aly, Z., Alam, K., 460 Alam, S., Alam, T., Alanezi, F.M., Alanzi, T.M., Alemu, B. wassihun, 461 Alhabib, K.F., Ali, M., Ali, S., Alicandro, G., Alinia, C., Alipour, V., Alizade, 462 H., Aljunid, S.M., Alla, F., Allebeck, P., Almasi-Hashiani, A., Al-Mekhlafi, 463 H.M., Alonso, J., Altirkawi, K.A., Amini-Rarani, M., Amiri, F., Amugsi, D.A., 464 Ancuceanu, R., Anderlini, D., Anderson, J.A., Andrei, C.L., Andrei, T., Angus, 465 C., Anjomshoa, M., Ansari, F., Ansari-Moghaddam, A., Antonazzo, I.C., 466 467 Antonio, C.A.T., Antony, C.M., Antriyandarti, E., Anvari, D., Anwer, R., Appiah, S.C.Y., Arabloo, J., Arab-Zozani, M., Ariani, F., Armoon, B., Ärnlöv, 468 J., Arzani, A., Asadi-Aliabadi, M., Asadi-Pooya, A.A., Ashbaugh, C., Assmus, 469 M., Atafar, Z., Atnafu, D.D., Atout, M.M.W., Ausloos, F., Ausloos, M., Ayala 470 Quintanilla, B.P., Ayano, G., Ayanore, M.A., Azari, S., Azarian, G., Azene, 471 Z.N., Badawi, A., Badiye, A.D., Bahrami, M.A., Bakhshaei, M.H., Bakhtiari, 472 A., Bakkannavar, S.M., Baldasseroni, A., Ball, K., Ballew, S.H., Balzi, D., 473 474 Banach, M., Banerjee, S.K., Bante, A.B., Baraki, A.G., Barker-Collo, S.L., Bärnighausen, T.W., Barrero, L.H., Barthelemy, C.M., Barua, L., Basu, S., 475 Baune, B.T., Bayati, M., Becker, J.S., Bedi, N., Beghi, E., Béjot, Y., Bell, 476 M.L., Bennitt, F.B., Bensenor, I.M., Berhe, K., Berman, A.E., Bhagavathula, 477 A.S., Bhageerathy, R., Bhala, N., Bhandari, D., Bhattacharyya, K., Bhutta, 478 Z.A., Bijani, A., Bikbov, B., Bin Sayeed, M.S., Biondi, A., Birihane, B.M., 479 Bisignano, C., Biswas, R.K., Bitew, H., Bohlouli, S., Bohluli, M., 480 Boon-Dooley, A.S., Borges, G., Borzì, A.M., Borzouei, S., Bosetti, C., 481 Boufous, S., Braithwaite, D., Breitborde, N.J.K., Breitner, S., Brenner, H., 482 Briant, P.S., Briko, A.N., Briko, N.I., Britton, G.B., Bryazka, D., Bumgarner, 483 B.R., Burkart, K., Burnett, R.T., Burugina Nagaraja, S., Butt, Z.A., Caetano 484 dos Santos, F.L., Cahill, L.E., Cámera, L.L.A., Campos-Nonato, I.R., 485 486 Cárdenas, R., Carreras, G., Carrero, J.J., Carvalho, F., Castaldelli-Maia, J.M., Castañeda-Orjuela, C.A., Castelpietra, G., Castro, F., Causey, K., Cederroth, 487 C.R., Cercy, K.M., Cerin, E., Chandan, J.S., Chang, K.-L., Charlson, F.J., 488 Chattu, V.K., Chaturvedi, S., Cherbuin, N., Chimed-Ochir, O., Cho, D.Y., 489

Choi, J.-Y.J., Christensen, H., Chu, D.-T., Chung, M.T., Chung, S.-C., 490 Cicuttini, F.M., Ciobanu, L.G., Cirillo, M., Classen, T.K.D., Cohen, A.J., 491 Compton, K., Cooper, O.R., Costa, V.M., Cousin, E., Cowden, R.G., Cross, 492 493 D.H., Cruz, J.A., Dahlawi, S.M.A., Damasceno, A.A.M., Damiani, G., Dandona, L., Dandona, R., Dangel, W.J., Danielsson, A.-K., Dargan, P.I., 494 Darwesh, A.M., Daryani, A., Das, J.K., Das Gupta, R., das Neves, J., 495 Dávila-Cervantes, C.A., Davitoiu, D.V., De Leo, D., Degenhardt, L., DeLang, 496 Dellavalle, R.P., Demeke, F.M., Demoz, G.T., Demsie, D.G., 497 М., Denova-Gutiérrez, E., Dervenis, N., Dhungana, G.P., Dianatinasab, M., Dias 498 499 da Silva, D., Diaz, D., Dibaji Forooshani, Z.S., Djalalinia, S., Do, H.T., 500 Dokova, K., Dorostkar, F., Doshmangir, L., Driscoll, T.R., Duncan, B.B., Duraes, A.R., Eagan, A.W., Edvardsson, D., El Nahas, N., El Sayed, I., El 501 Tantawi, M., Elbarazi, I., Elgendy, I.Y., El-Jaafary, S.I., Elyazar, I.R., 502 Emmons-Bell, S., Erskine, H.E., Eskandarieh, S., Esmaeilnejad, 503 S., Esteghamati, A., Estep, K., Etemadi, A., Etisso, A.E., Fanzo, J., Farahmand, 504 505 M., Fareed, M., Faridnia, R., Farioli, A., Faro, A., Faruque, M., Farzadfar, F., Fattahi, N., Fazlzadeh, M., Feigin, V.L., Feldman, R., Fereshtehnejad, S.-M., 506 Fernandes, E., Ferrara, G., Ferrari, A.J., Ferreira, M.L., Filip, I., Fischer, F., 507 Fisher, J.L., Flor, L.S., Foigt, N.A., Folayan, M.O., Fomenkov, A.A., Force, 508 509 L.M., Foroutan, M., Franklin, R.C., Freitas, M., Fu, W., Fukumoto, T., Furtado, J.M., Gad, M.M., Gakidou, E., Gallus, S., Garcia-Basteiro, A.L., 510 511 Gardner, W.M., Geberemariyam, B.S., Gebreslassie, A.A.A., Geremew, A., Gershberg Hayoon, A., Gething, P.W., Ghadimi, M., Ghadiri, K., Ghaffarifar, 512 F., Ghafourifard, M., Ghamari, F., Ghashghaee, A., Ghiasvand, H., Ghith, N., 513 Gholamian, A., Ghosh, R., Gill, P.S., Ginindza, T.G.G., Giussani, G., 514 Gnedovskaya, E.V., Goharinezhad, S., Gopalani, S.V., Gorini, G., Goudarzi, 515 H., Goulart, A.C., Greaves, F., Grivna, M., Grosso, G., Gubari, M.I.M., 516 517 Gugnani, H.C., Guimarães, R.A., Guled, R.A., Guo, G., Guo, Y., Gupta, R., Gupta, T., Haddock, B., Hafezi-Nejad, N., Hafiz, A., Haj-Mirzaian, Arvin, 518 Haj-Mirzaian, Arya, Hall, B.J., Halvaei, I., Hamadeh, R.R., Hamidi, S., 519 Hammer, M.S., Hankey, G.J., Haririan, H., Haro, J.M., Hasaballah, A.I., 520 Hasan, M.M., Hasanpoor, E., Hashi, A., Hassanipour, S., Hassankhani, H., 521 Havmoeller, R.J., Hay, S.I., Hayat, K., Heidari, G., Heidari-Soureshjani, R., 522 Henrikson, H.J., Herbert, M.E., Herteliu, C., Heydarpour, F., Hird, T.R., Hoek, 523 H.W., Holla, R., Hoogar, P., Hosgood, H.D., Hossain, N., Hosseini, M., 524 Hosseinzadeh, M., Hostiuc, M., Hostiuc, S., Househ, M., Hsairi, M., Hsieh, 525 V.C., Hu, G., Hu, K., Huda, T.M., Humayun, A., Huynh, C.K., Hwang, B.-F., 526 Iannucci, V.C., Ibitoye, S.E., Ikeda, N., Ikuta, K.S., Ilesanmi, O.S., Ilic, I.M., 527 Ilic, M.D., Inbaraj, L.R., Ippolito, H., Iqbal, U., Irvani, S.S.N., Irvine, C.M.S., 528 Islam, M.M., Islam, S.M.S., Iso, H., Ivers, R.Q., Iwu, C.C.D., Iwu, C.J., Iyamu, 529 530 I.O., Jaafari, J., Jacobsen, K.H., Jafari, H., Jafarinia, M., Jahani, M.A., Jakovljevic, M., Jalilian, F., James, S.L., Janjani, H., Javaheri, T., Javidnia, J., 531 Jeemon, P., Jenabi, E., Jha, R.P., Jha, V., Ji, J.S., Johansson, L., John, O., 532 John-Akinola, Y.O., Johnson, C.O., Jonas, J.B., Joukar, F., Jozwiak, J.J., 533

Jürisson, M., Kabir, A., Kabir, Z., Kalani, H., Kalani, R., Kalankesh, L.R., 534 Kalhor, R., Kanchan, T., Kapoor, N., Karami Matin, B., Karch, A., Karim, 535 M.A., Kassa, G.M., Katikireddi, S.V., Kayode, G.A., Kazemi Karyani, A., 536 537 Keiyoro, P.N., Keller, C., Kemmer, L., Kendrick, P.J., Khalid, N., Khammarnia, M., Khan, E.A., Khan, M., Khatab, K., Khater, M.M., Khatib, 538 M.N., Khayamzadeh, M., Khazaei, S., Kieling, C., Kim, Y.J., Kimokoti, R.W., 539 Kisa, A., Kisa, S., Kivimäki, M., Knibbs, L.D., Knudsen, A.K.S., Kocarnik, 540 J.M., Kochhar, S., Kopec, J.A., Korshunov, V.A., Koul, P.A., Koyanagi, A., 541 Kraemer, M.U.G., Krishan, K., Krohn, K.J., Kromhout, H., Kuate Defo, B., 542 Kumar, G.A., Kumar, V., Kurmi, O.P., Kusuma, D., La Vecchia, C., Lacey, B., 543 544 Lal, D.K., Lalloo, R., Lallukka, T., Lami, F.H., Landires, I., Lang, J.J., Langan, S.M., Larsson, A.O., Lasrado, S., Lauriola, P., Lazarus, J.V., Lee, P.H., Lee, 545 S.W.H., LeGrand, K.E., Leigh, J., Leonardi, M., Lescinsky, H., Leung, J., 546 Levi, M., Li, S., Lim, L.-L., Linn, S., Liu, Shiwei, Liu, Simin, Liu, Y., Lo, J., 547 Lopez, A.D., Lopez, J.C.F., Lopukhov, P.D., Lorkowski, S., Lotufo, P.A., Lu, 548 A., Lugo, A., Maddison, E.R., Mahasha, P.W., Mahdavi, M.M., Mahmoudi, 549 M., Majeed, A., Maleki, A., Maleki, S., Malekzadeh, R., Malta, D.C., Mamun, 550 A.A., Manda, A.L., Manguerra, H., Mansour-Ghanaei, F., Mansouri, B., 551 Mansournia, M.A., Mantilla Herrera, A.M., Maravilla, J.C., Marks, A., Martin, 552 553 R.V., Martini, S., Martins-Melo, F.R., Masaka, A., Masoumi, S.Z., Mathur, M.R., Matsushita, K., Maulik, P.K., McAlinden, C., McGrath, J.J., McKee, M., 554 555 Mehndiratta, M.M., Mehri, F., Mehta, K.M., Memish, Z.A., Mendoza, W., Menezes, R.G., Mengesha, E.W., Mereke, A., Mereta, S.T., Meretoja, A., 556 Meretoja, T.J., Mestrovic, T., Miazgowski, B., Miazgowski, T., Michalek, 557 I.M., Miller, T.R., Mills, E.J., Mini, G., Miri, M., Mirica, A., Mirrakhimov, 558 E.M., Mirzaei, H., Mirzaei, M., Mirzaei, R., Mirzaei-Alavijeh, M., Misganaw, 559 A.T., Mithra, P., Moazen, B., Mohammad, D.K., Mohammad, Y., Mohammad 560 Gholi Mezerji, N., Mohammadian-Hafshejani, A., Mohammadifard, N., 561 Mohammadpourhodki, R., Mohammed, A.S., Mohammed, H., Mohammed, 562 J.A., Mohammed, S., Mokdad, A.H., Molokhia, M., Monasta, L., Mooney, 563 M.D., Moradi, G., Moradi, M., Moradi-Lakeh, M., Moradzadeh, R., Moraga, 564 P., Morawska, L., Morgado-da-Costa, J., Morrison, S.D., Mosapour, A., 565 Mosser, J.F., Mouodi, S., Mousavi, S.M., Mousavi Khaneghah, A., Mueller, 566 U.O., Mukhopadhyay, S., Mullany, E.C., Musa, K.I., Muthupandian, S., 567 Nabhan, A.F., Naderi, M., Nagarajan, A.J., Nagel, G., Naghavi, M., 568 Naghshtabrizi, B., Naimzada, M.D., Najafi, F., Nangia, V., Nansseu, J.R., 569 Naserbakht, M., Nayak, V.C., Negoi, I., Ngunjiri, J.W., Nguyen, C.T., Nguyen, 570 H.L.T., Nguyen, M., Nigatu, Y.T., Nikbakhsh, R., Nixon, M.R., Nnaji, C.A., 571 Nomura, S., Norrving, B., Noubiap, J.J., Nowak, C., Nunez-Samudio, V., 572 Otoiu, A., Oancea, B., Odell, C.M., Ogbo, F.A., Oh, I.-H., Okunga, E.W., 573 574 Oladnabi, M., Olagunju, A.T., Olusanya, B.O., Olusanya, J.O., Omer, M.O., Ong, K.L., Onwujekwe, O.E., Orpana, H.M., Ortiz, A., Osarenotor, O., Osei, 575 F.B., Ostroff, S.M., Otstavnov, N., Otstavnov, S.S., Øverland, S., Owolabi, 576 M.O., P A, M., Padubidri, J.R., Palladino, R., Panda-Jonas, S., Pandey, A., 577

Parry, C.D.H., Pasovic, M., Pasupula, D.K., Patel, S.K., Pathak, M., Patten, 578 S.B., Patton, G.C., Pazoki Toroudi, H., Peden, A.E., Pennini, A., Pepito, 579 V.C.F., Peprah, E.K., Pereira, D.M., Pesudovs, K., Pham, H.Q., Phillips, M.R., 580 581 Piccinelli, C., Pilz, T.M., Piradov, M.A., Pirsaheb, M., Plass, D., Polinder, S., Polkinghorne, K.R., Pond, C.D., Postma, M.J., Pourjafar, H., Pourmalek, F., 582 Poznańska, A., Prada, S.I., Prakash, V., Pribadi, D.R.A., Pupillo, E., Quazi 583 Syed, Z., Rabiee, M., Rabiee, N., Radfar, A., Rafiee, A., Raggi, A., Rahman, 584 M.A., Rajabpour-Sanati, A., Rajati, F., Rakovac, I., Ram, P., Ramezanzadeh, 585 K., Ranabhat, C.L., Rao, P.C., Rao, S.J., Rashedi, V., Rathi, P., Rawaf, D.L., 586 Rawaf, S., Rawal, L., Rawassizadeh, R., Rawat, R., Razo, C., Redford, S.B., 587 588 Reiner, R.C., Reitsma, M.B., Remuzzi, G., Renjith, V., Renzaho, A.M.N., Resnikoff, S., Rezaei, Negar, Rezaei, Nima, Rezapour, A., Rhinehart, P.-A., 589 Riahi, S.M., Ribeiro, D.C., Ribeiro, D., Rickard, J., Rivera, J.A., Roberts, 590 N.L.S., Rodríguez-Ramírez, S., Roever, L., Ronfani, L., Room, R., Roshandel, 591 592 G., Roth, G.A., Rothenbacher, D., Rubagotti, E., Rwegerera, G.M., Sabour, S., Sachdev, P.S., Saddik, B., Sadeghi, E., Sadeghi, M., Saeedi, R., Saeedi 593 Moghaddam, S., Safari, Y., Safi, S., Safiri, S., Sagar, R., Sahebkar, A., Sajadi, 594 S.M., Salam, N., Salamati, P., Salem, H., Salem, M.R.R., Salimzadeh, H., 595 Salman, O.M., Salomon, J.A., Samad, Z., Samadi Kafil, H., Sambala, E.Z., 596 Samy, A.M., Sanabria, J., Sánchez-Pimienta, T.G., Santomauro, D.F., Santos, 597 I.S., Santos, J.V., Santric-Milicevic, M.M., Saraswathy, 598 S.Y.I., 599 Sarmiento-Suárez, R., Sarrafzadegan, N., Sartorius, B., Sarveazad, A., Sathian, B., Sathish, T., Sattin, D., Saxena, S., Schaeffer, L.E., Schiavolin, S., Schlaich, 600 M.P., Schmidt, M.I., Schutte, A.E., Schwebel, D.C., Schwendicke, F., Senbeta, 601 A.M., Senthilkumaran, S., Sepanlou, S.G., Serdar, B., Serre, M.L., Shadid, J., 602 Shafaat, O., Shahabi, S., Shaheen, A.A., Shaikh, M.A., Shalash, A.S., 603 Shams-Beyranvand, M., Shamsizadeh, M., Sharafi, K., Sheikh, A., 604 605 Sheikhtaheri, A., Shibuya, K., Shield, K.D., Shigematsu, M., Shin, J.I., Shin, M.-J., Shiri, R., Shirkoohi, R., Shuval, K., Siabani, S., Sierpinski, R., 606 Sigfusdottir, I.D., Sigurvinsdottir, R., Silva, J.P., Simpson, K.E., Singh, J.A., 607 Singh, P., Skiadaresi, E., Skou, S.T.S., Skryabin, V.Y., Smith, E.U.R., Soheili, 608 A., Soltani, S., Soofi, M., Sorensen, R.J.D., Soriano, J.B., Sorrie, M.B., 609 Soshnikov, S., Soyiri, I.N., Spencer, C.N., Spotin, A., Sreeramareddy, C.T., 610 Srinivasan, V., Stanaway, J.D., Stein, C., Stein, D.J., Steiner, C., Stockfelt, L., 611 Stokes, M.A., Straif, K., Stubbs, J.L., Sufiyan, M.B., Suleria, H.A.R., 612 Suliankatchi Abdulkader, R., Sulo, G., Sultan, I., Szumowski, Ł., 613 Tabarés-Seisdedos, R., Tabb, K.M., Tabuchi, T., Taherkhani, A., Tajdini, M., 614 Takahashi, K., Takala, J.S., Tamiru, A.T., Taveira, N., Tehrani-Banihashemi, 615 A., Temsah, M.-H., Tesema, G.A., Tessema, Z.T., Thurston, G.D., Titova, 616 M.V., Tohidinik, H.R., Tonelli, M., Topor-Madry, R., Topouzis, F., Torre, 617 618 A.E., Touvier, M., Tovani-Palone, M.R.R., Tran, B.X., Travillian, R., Tsatsakis, A., Tudor Car, L., Tyrovolas, S., Uddin, R., Umeokonkwo, C.D., 619 Unnikrishnan, B., Upadhyay, E., Vacante, M., Valdez, P.R., van Donkelaar, 620 A., Vasankari, T.J., Vasseghian, Y., Veisani, Y., Venketasubramanian, N., 621

Violante, F.S., Vlassov, V., Vollset, S.E., Vos, T., Vukovic, R., Waheed, Y., 622 Wallin, M.T., Wang, Y., Wang, Y.-P., Watson, A., Wei, J., Wei, M.Y.W., 623 Weintraub, R.G., Weiss, J., Werdecker, A., West, J.J., Westerman, R., 624 Whisnant, J.L., Whiteford, H.A., Wiens, K.E., Wolfe, C.D.A., Wozniak, S.S., 625 Wu, A.-M., Wu, J., Wulf Hanson, S., Xu, G., Xu, R., Yadgir, S., Yahyazadeh 626 Jabbari, S.H., Yamagishi, K., Yaminfirooz, M., Yano, Y., Yaya, S., 627 Yazdi-Feyzabadi, V., Yeheyis, T.Y., Yilgwan, C.S., Yilma, M.T., Yip, P., 628 Yonemoto, N., Younis, M.Z., Younker, T.P., Yousefi, B., Yousefi, Z., 629 Yousefinezhadi, T., Yousuf, A.Y., Yu, C., Yusefzadeh, H., Zahirian 630 Moghadam, T., Zamani, M., Zamanian, M., Zandian, H., Zastrozhin, M.S., 631 Zhang, Y., Zhang, Z.-J., Zhao, J.T., Zhao, X.-J.G., Zhao, Y., Zhou, M., 632 Ziapour, A., Zimsen, S.R.M., Brauer, M., Afshin, A., Lim, S.S., 2020. Global 633 burden of 87 risk factors in 204 countries and territories, 1990-2019: a 634 systematic analysis for the Global Burden of Disease Study 2019. The Lancet 635 396, 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2 636

- Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., Cribb, M., 2019. Estimating
 1-km-resolution PM2.5 concentrations across China using the space-time
 random forest approach. Remote Sensing of Environment 231, 111221.
 https://doi.org/10.1016/j.rse.2019.111221
- Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J.,
 Lyapustin, A., Liu, L., Wu, H., Song, Y., 2020. Improved 1 km resolution
 PM<sub>2.5</sub> estimates across China using enhanced
 space-time extremely randomized trees. Atmos. Chem. Phys. 20, 3273–3289.
 https://doi.org/10.5194/acp-20-3273-2020
- Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., Cribb, M., 2021.
 Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to
 2018 in China: spatiotemporal variations and policy implications. Remote
 Sensing of Environment 252, 112136.
 https://doi.org/10.1016/j.rse.2020.112136
- Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B., 2018.
 Spatiotemporal prediction of daily ambient ozone levels across China using
 random forest for human exposure assessment. Environmental Pollution 233,
 464–473. https://doi.org/10.1016/j.envpol.2017.10.029
- Zhao, C., Wang, Q., Ban, J., Liu, Z., Li, T., 2019. Estimating the daily PM2.5
 concentration in the Beijing-Tianjin-Hebei region using a random forest model
 with a 0.01° × 0.01° spatial resolution. Environment international 134, 105297.