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Abstract23

The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been24

widely recognized in recent years. An accurate estimate of PM2.5 and O3 exposures is25

important for supporting health risk analysis and environmental policy-making. The26

aim of our study was to construct random forest models with high-performance, and27

estimate daily average PM2.5 concentration and O3 daily maximum of 8h 8h-average28

concentration (O3-8hmax) of China in 2005-2017 at a spatial resolution of 1km×1km.29

The model variables included meteorological variables, satellite data, chemical30

transport model output, geographic variables and socioeconomic variables. Random31

forest model based on ten-fold cross validation was established, and spatial and32

temporal validations were performed to evaluate the model performance. According33

to our sample-based division method, the daily, monthly and yearly simulations34

estimations of PM2.5 from test datasets gave average model fitting R2 values of 0.85,35

0.88 and 0.90, respectively; these R2 values were 0.77, 0.77, and 0.69 for O3-8hmax,36

respectively. The meteorological variables and their lagged values can significantly37

affect both PM2.5 and O3-8hmax simulationestimations. During 2005-2017, PM2.538

exhibited an overall downward trend, while ambient O3 experienced an upward trend.39

Whilst the spatial patterns of PM2.5 and O3-8hmax barely changed between 2005 and40

2017, the temporal trend had spatial characteristic. The dataset is accessible to the41

public at https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared42

data set of Chinese Environmental Public Health Tracking: CEPHT43

(https://cepht.niehs.cn:8282/developSDS3.html).44
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1 Introduction45

Air pollution is becoming a main concern of modern society due to various health46

risks. According to the latest Global Burden of Disease (GBD) report, air pollution47

has caused approximately 6.67 million deaths (95% UI: 5.90-7.49 million), and48

ranked fourth on the global list of death-related risk factors in 2019 (Health Effects49

Institute, 2020; Murray et al., 2020). Ambient fine particulate matter (PM2.5) and50

ambient ozone (O3) have been identified and proven to be related to many health51

outcomes. China is known to be one of the countries with the most serious air52

pollution in the world. Strict pollution control measures (including the Air Pollution53

Prevention and Control Action Plan and three-year action plan to fight air pollution)54

were enacted by the Chinese government in order to control and reduce serious air55

pollution since 2013. The implementation of these measures has resulted in a56

markable drop of emissions and PM2.5 concentration. NonethelessHowever, the57

occasional haze and unsatisfactory O3 pollution control effects eventsin 2013-2017, as58

well as the short development history of air quality monitoring network, have brought59

many difficulties to accurately capture the temporal and spatial patterns of PM2.5 and60

O3 concentrations. Therefore, it is difficult to develop a complete decision-making61

basis for handling air pollution. In addition, there are gaps in epidemiological studies62

linking air pollutants to health outcomes, due to the lack of accurate measurements of63

PM2.5 and ambient O3 concentrations. To this end, an accurate estimate of PM2.5 and64

O3 exposures is essential to support health risk analysis and environmental65

policy-making.66
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67

Suitable model variables and advanced simulationestimation method are important to68

achieve accurate modeling. Basically, PM2.5 is jointly affected by both natural69

conditions and human activities over space and time, e.g., Aerosol Optical Depth70

(AOD), meteorological conditions, geographic factors and human-related features71

(Wei et al., 2021). While O3 is a secondary pollutant, which is produced by a series of72

complex photochemical reactions on the basis of precursor including nitrogen oxides73

(NOx) and volatile organic compounds (VOCs) under the action of high temperature74

and strong radiation. These complex characteristic puts forward higher requirements75

on the ability of the modeling method to handle multi-variable, and capture the76

non-linear relationships between variables and air pollutants. Many models have been77

developed to simulateestimate the spatiotemporal distribution of PM2.5 and O378

concentrations in China. Machine-learning approaches (e.g., random forest (RF),79

extreme gradient boosting and deep belief network models) can mine useful80

information from a large amount of input data and explore the nonlinear relationship,81

leading tobring a better performance in modeling work (Chen et al., 2018, 2019; Di et82

al., 2017; Li et al., 2017; Wei et al., 2019; Zhan et al., 2018). However, most of these83

simulationestimation datasets cannot balance long time series and high spatiotemporal84

resolution. Besides, there is no long-term simulationestimation dataset for both PM2.585

and O3 concentrations with high temporal and spatial resolution for supporting86

epidemiological research. Therefore, by incorporating multi-source data into random87

forest models, this study makes an attempt to simulateestimate the high-resolution88
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(1km×1km) ambient PM2.5 and O3 concentrations of China in 2005-2017.89

90

2. Method91

The model variables of this study include meteorological variables, geographical92

variables, socio-economic variables, satellite data and chemical transport model93

output in 2013-2017. Daily average PM2.5 and O3 daily maximum of 8h 8h-average94

concentration (O3-8hmax) monitoring data of 1479 sites in 2013-2017 was obtained95

(Fig. 1; Fig. S1 and Fig. S2). A 1km×1km standard grid is created across the country96

(35.55° N to 43.12° N, and 112.95° E to 120.35° E) with a total of 9495025 grid cells.97

The coordinate system of the grid is WGS-84. ; and the projection of the grid is the98

Albers Conical Equal Area Projection. We construct high-performance random forest99

(RF) models (temporal resolution: daily; spatial resolution: 1km×1km), and100

simulateestimate the grid daily average PM2.5 concentration and O3-8hmax101

concentration of China in 2005-2017.102
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103
Fig.1 Station distribution in China and average ground monitoring concentration based on104
the available data of PM2.5 (A) and O3-8hmax (B) from 2013 to 2017Station distribution in105
China and average ground monitoring concentration of PM2.5 (A) and O3-8hmax (B) from106
2013 to 2017107

108
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2.1 Data set109

The model variables used in this study mainly include Aqua AOD (Aerosol Optical110

Depth) for PM2.5 modeling, GEOS-Chem chemical transport model output for O3111

modeling, and some variables shared by PM2.5 and O3: 13 meteorological variables112

(includes boundary layer height, surface pressure, 2 meter dew point temperature,113

evaporation, albedo, low cloud cover, medium cloud cover, high cloud cover, total114

precipitation, 10 meter U wind component, 10 meter V wind component, 2 meter115

surface temperature and surface solar radiation downwards) and its lag 1 and lag 2,116

geographic and socio-economic variables, such as Digital Elevation ModelDEM117

(DEMDigital Elevation Model), Normalized Difference Vegetation IndexNDVI118

(NDVINormalized Difference Vegetation Index), population, Gross Domestic119

ProductGDP (GDPGross Domestic Product), road network and dummy variables120

(includes season, month, and spatial dummy variables, province). A more detailed121

description of the model variables is given in Table S1. The processing method has122

been described in detail in our earlier studies (Ma et al., 2021; Zhao et al., 2019).123

Briefly, most of the model variables are processed into 1km×1km resolution based on124

the standard grid using interpolation methods (such as inverse distance weighted and125

bilinear algorithm) in ArcGIS 10.2 and Python 2.7. For example, AOD is processed126

by ENVI 5.3+IDL and extracted into standard grid using ArcPy, then the inverse127

distance weighted interpolation is carried out to obtain the 1km×1km resolution data.128

For the long-term variables, the corresponding monthly and annual level value is129

assigned to each day. Subsequent modeling work was carried out based on the data set130



8

that covering monitoring data and all variables.131

132

2.2 Random forest model133

Random forest is an ensemble machine learning method consisting of many134

individual decision trees growing from bagged data and its prediction is a vote result135

of those trees (Breiman, 2001). The RF algorithm primarily integrates learning136

principles, trains several individual learners, and finally forms a strong learner137

through a certain combination strategy; through multiple rounds of training, multiple138

prediction results are obtained, and the final results are obtained after average139

aggregation.140

141

The random forest models are established using the 10-fold cross validation method.142

First of all, this method randomly divides the modeling data set into 10 parts; then 9143

of them are used for modeling, the remaining one is used for simulationestimation and144

be compared with observations. The verification is repeated until every part is145

predicted. In this way, the modeling and verification of simulationestimation are146

repeated 10 times in total, and the average values of the 10 runs is took as the final147

result, i.e., the CV-R2. The formulae of the models are as follows:148

149

PM2.5i,j =f(METEi,j, lag1METEij, lag2METEi,j,AODi,j, LDj, ROADj, NDVIj, ELEj, GDPj,150

POPj, SEASONi, MONi, PROj) (1)151

O3-8hmaxi,j =f(METEi,j, lag1METEij, lag2METEi,j,GEOSi,j, LDj, ROADj, NDVIj, ELEj,152
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GDPj, POPj, SEASONi, MONi, PROj)153

(2)154

155

where PM2.5 i,j and O3-8hmaxi,j are the PM2.5 and O3-8hmax concentrations on day i in156

grid cell j; METE i, j is 13 meteorological variables on day i in grid cell j, and lag 1157

METE i,j and lag2 METE i,j represent corresponding one-day lag and two-day lag158

values, respectively; GEOS i,j and AOD i, j are the GEOS-Chem model output and159

AOD value on day i in grid cell j; LD j, ROAD j, NDVI j, ELE j, GDP j and POP j are160

the land use coverage, length of a variety of roads, NDVI, elevation, GDP and161

population in grid cell j, respectively; SEASON i, MON i and PRO j are the season162

and month of day i, and province of grid cell j, respectively.163

164

In general, the random forest parameters that need to be adjusted include n_estimators165

(number of decision trees) and the max_depth (maximum depth of the trees). Unlike166

the previous methods of manually adjusting parameters, the parameters of random167

forest were optimized using GridSearchCV, which can realize cross-validated168

grid-search over a parameter grid. After GridSearchCV, we set max_depth as 36 and169

n_estimators as 200 for PM2.5 modeling. For O3-8hmax modeling, we set max_depth170

as 54 and n_estimators as 200.171

172

2.3 Validation method173

To comprehensively verify the model performance, we construct the main models174
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using sample-based division method. Models using spatial-based and temporal-based175

division method are further construct to test the model performance in spatial and176

temporal scale.177

178

The data set was randomly divided into training set (90% of the records) and test set179

(10% of the records) by using the sample-based division method. We construct the180

main model using the training set with a 10-fold cross-validation. Since the data in the181

test set is not used in the main model, "true model performance" can be verified. The182

coefficient of determination (R2) of main model on test set (test-R2), and the183

verification indicators of model uncertainty, the root mean square error (RMSE) and184

mean absolute error (MAE) are calculated for the PM2.5 and O3-8hmax model,185

respetivelyrespectively. The monthly and yearly test-R2 are also calculated.186

187

For the spatial verification, 90% of the monitoring stations are randomly selected. The188

monitoring data of these stations is used as the training set, and the monitoring data of189

remaining stations is used as the testing set. For the temporal verification, all date in190

2013-2017 is randomly divided into nine and one, and the data in theses dates is used191

as training and test sets, respectively. After that, the test-R2, RMSE and MAE are192

calculated.193

194

2.4 SimulationEstimation of daily PM2.5 and ambient O3 of China from 2005 to195

2017196
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Based on the final models of PM2.5 and O3-8hmax, we simulateestimate the gridded197

daily average PM2.5 concentration and O3-8hmax concentration of China in198

2005-2017. The spatial pattern and temporal trend of PM2.5 and O3-8hmax199

concentrations are analyzed, and compared with other modeling products.200

201

The modeling and simulationestimations are performed in Python 2.7.13 using the202

scikit-learn-0.20.3 and GridSearchCV packages. The workflow of this study is203

displayed in Fig. 2.204

205

Fig. 2 The workflow of modeling process in the study206
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207

3 Results and Discussion208

A total of 981744 monitoring data records were used in the final model-fitting data set.209

The mean ± standard deviation of PM2.5 and ambient O3 concentrations in 2013-2017210

were 59.60 ± 45.85 μg/m3 and 86.72 ± 47.73 μg/m3, respectively. The results of211

descriptive analysis for variables included in PM2.5 and O3-8hamx model is shown in212

Table S2.213

214

3.1 Model fitting and validation215

The cross-validation results indicate that the simulateestimated PM2.5 and O3-8hmax216

concentrations matched reasonably with the observed PM2.5 and O3-8hmax217

concentrations, with high fitted test-R2 values. According to our sample-based218

division method, the test-R2 values of the simulateestimated daily, monthly and yearly219

PM2.5 concentrations were 0.85, 0.88 and 0.90, respectively (Fig. 3). Likewise, the220

test-R2 values of the simulateestimated daily, monthly and yearly O3-8hmax221

concentrations were 0.77, 0.77 and 0.69, respectively (Fig. 4). The RMSE and MAE222

for PM2.5 in daily level were 17.72 and 9.37 μg/m3; for O3-8hmax, the values were223

23.10 and 15.43 μg/m3. The model performance is comparable to previous studies (Di224

et al., 2017; Li and Cheng, 2021; Liu et al., 2020; Wei et al., 2021, 2020, 2019). At225

provincial/city level, The model performance of PM2.5 simulationestimations of226

Shanghai, Beijing, Hubei, Hebei and Sichuan ranked the top 5 with relatively high227

test-R2 (≥0.90), while those of Tibet, Qinghai, Gansu, Anhui and Yunnan were less228
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accurate with relatively low test-R2 values (<0.70). The model performance of229

O3-8hmax simulationestimations of Beijing, Chongqing, Shanghai, Tianjin and Henan230

ranked the top 5 with relatively high test-R2 values (≥0.83), while those of Gansu,231

Anhui, Heilongjiang, Guizhou and Tibet were poorer with relatively low test-R2232

values (<0.62) (Table S3).233

234
Fig. 3 The density plot of PM2.5 model235
From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is236
different validation method: sample-based, spatial-based and temporal-based.237
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238
Fig. 4 The density plot of O3-8hmax model239
From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is240
different validation method: sample-based, spatial-based and temporal-based.241

242

The spatial and temporal test-R2 of our models explained the uncertainty of the243

models to some content (Fig. 3 and Fig. 4). The spatial test-R2 values for daily,244

monthly and yearly PM2.5 simulationestimation were 0.83, 0.87 and 0.8685,245

respectively; while those of daily, monthly and yearly O3-8hmax246

simulationestimations were 0.74, 0.77 and 0.68, respectively. The relatively high247

spatial test-R2performance demonstrates the reasonable performance of our models in248

areas without monitoring stations. The temporal test-R2 values of daily, monthly and249
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yearly PM2.5 simulationestimations were 0.49, 0.65 and 0.76, respectively; while those250

of daily, monthly and yearly O3-8hmax simulationestimations were 0.58, 0.63 and251

0.56, respectively. These results indicate the uncertainty of our models when252

modeling data in historical period, although the performance is among the best253

compared with previous studies. The simulation accuracy is a universal issue in the254

present studies of air pollutant concentrations in historical period without monitoring255

data. Further efforts are need to improve the model performance of historical256

estimations.257

258

3.2 Feature importance259

The feature importance of the variables in our random forest models is presented in260

Table S4-1 and S4-2. Similar to previous studies (Chen et al., 2018; Zhan et al., 2018),261

the meteorological factors and their lagged values can significantly affect both PM2.5262

and O3-8hmax modeling. Moreover, the specific features for PM2.5 and O3, AOD and263

GEOS-Chem output, also demonstrated high importance in modeling work.264

265

For PM2.5 modeling work (Table S4-1), the meteorological variables (boundary layer266

height, evaporation, 2 meter dew point temperature) and its lagged effect were among267

the top ten important factors, totaling 33.6% in modeling work. The lagged effects268

greatly contributed to PM2.5 modeling. For example, the lag1 boundary layer height269

ranked first (17.2%) in our study, which is similar to previous studies (Zhao et al.,270

2019). The interpolated AOD (5.6%), DEM (4.9%) and season (3.7%) also271
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demonstrated high importance, which showed crucial effects of satellite data, terrain272

distribution characteristics in the study area, and study period on PM2.5 modeling. The273

relative contribution of land-use, NDVI, population density, road length and GDP are274

negligible (the importance scores less than 1%). Unlike DEM, these factors are275

subjected to the influence of socioeconomic status in study area. In the future study,276

the integration of these factors with a higher temporal resolution might change its277

contribution to the simulationestimation.278

279

The feature importance of ambient O3 is consistent with its formation and dissipation280

mechanism: surface solar radiation downwards and its lagged effect according for281

38.079.2% in modeling work (Table S4-2). Other meteorological factors (2 meter282

temperature, boundary layer height, 10 meter V wind component, and low cloud cover)283

according for totaling 9.54% importance scores. Our analysis also suggests the high284

importance of GEOS-Chem model (7.24%), altitude (1.889%), and dummy factors285

including year (2.172%) and province (1.566%) in O3 modeling. By contrast, the286

relative contribution of land-use, NDVI and road length are negligible (the importance287

scores less than 1%). The high importance rank of population and GDP might be288

attributed to the relatively high sensitivity of O3 to anthropogenic emission sources289

(compared to PM2.5).290

291

3.3 The spatial characteristics and temporal trend of PM2.5 and ambient O3 of292

China from 2005 to 2017293
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During 2005-2017, PM2.5 showed an overall downward trend, while ambient O3294

showed an upward trend in recent years (Fig. 5, Fig. S1 S3-Sand Fig. S26). Relative295

to 2005, PM2.5 concentration has increased by 2.60 μg/m3 in 2013. Nevertheless, after296

the implementation of the Air Pollution Prevention and Control Action Plan, a strict297

pollution control measure, PM2.5 concentration has declined by 11.041 μg/m3 in 2017298

(relative to 2013). This has resulted in a downward trend of PM2.5 concentration in299

2005-2017: PM2.5 concentration in 2017 has decreased by 8.44 μg/m3 relative to 2005300

(Fig. 5 and Fig. S1S3). In key pollution areas, with the implementation of various air301

pollution prevention and control policies, PM2.5 levels in the Beijing-Tianjin-Hebei302

region have dropped the most, but the overall concentration levels are still higher303

than those in the Yangtze River Delta and Pearl River Delta (Fig. S4). For O3-8hmax,304

upward barely changed. Relative to 2005, O3-8hmax concentrations in 2013 and 2017305

have increased by 0.39 μg/m3 and 7.83 μg/m3, respectively. The upward trend during306

2005-2017 was mostly due to the significant changes between 2013 and 2017: relative307

to 2013, the O3-8hmax concentration has increased by 7.44 μg/m3 in 2017 (Fig. 5 and308

Fig. S2S5). The Beijing-Tianjin-Hebei region haveregion has shown an obvious309

upward trend since 2013; while the Pearl River Delta region change trend is not310

obvious (Fig. S6). During the strict pollution control period, VOC emissions were not311

effectively controlled could be one of the main reasons. Therefore, integrated312

management of VOCs and NOx in key industries and areas is important.313
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314
Fig.5 The temporal trend of PM2.5 and O3-8hmax concentration in China from 2005-2017315
The black dots represent the monthly average PM2.5 and O3-8hmax concentration from 2005 to316
2017, the blue color band represents the range of the monthly average PM2.5 and O3-8hmax317
concentration plus or minus the RMSE value from 2013-2017 (period with monitoring data), and318
the green color band represents the range of the monthly average PM2.5 and O3-8hmax319
concentration plus or minus the MAE value from 2013-2017 years.320

321

The seasonal distributions of PM2.5 and O3-8hmax concentrations were obvious322

during 2005-2017 (Fig. S3 S7 and Fig. S4S8). The lowest seasonal PM2.5323

concentration occurred in summer, with an average concentration of 33.6±324

11.39μg/m3; and the highest seasonal PM2.5 concentration occurred in winter, with an325

average concentration of 57.4±21.76μg/m3. In winter, temperature inversion occurs326

frequently, and the thickness of the mixed layer is low, which is not conducive to the327

diffusion of pollutants, which leads to the accumulation of PM2.5 near the ground (Sun328
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et al, 2014). In opposite, the lowest seasonal O3-8hmax concentration was in winter,329

with an average concentration of 72.65±6.28μg/m3; The highest seasonal O3-8hmax330

concentration was in summer, with an average concentration of 97.44±13.58μg/m3.331

Temperatures and solar radiation conditions in summer increase the incidence of332

severe O3 pollution events, which is consistent with its formation and dissipation333

mechanism.334

335

The PM2.5 concentrations in Beijing-Tianjin-Hebei, Chengdu-Chongqing and Xinjiang336

regions are higher than other regions, followed by the central China. The PM2.5337

concentrations in the southwestern regions (Yunnan and Tibet) and western part of338

Sichuan Province, are the lowest, followed by the inner-north regions and the south339

and southeastern regions (Fig. 6 and, Fig. S1S3 and Fig. S4; Table S5). The O3-8hmax340

concentrations in the Bohai Rim, Yangtze River Delta, Pearl River Delta and other341

economically developed regions, southern Xinjiang, Inner Mongolia, and northeastern342

Gansu are relatively high (Fig. 6 and, Fig. S2S5 and Fig.6; Table S5). This spatial343

pattern barely changed during 2005-2017 (Fig. S1 S3 and Fig. S2S5), but the temporal344

trend showed spatial characteristic (Fig. 6; Fig. S4 and S6). For PM2.5 concentration,345

the above-mentioned key pollution areas were severely polluted during 2005-2013.346

The air pollution control measures of these regions were strict during 2013-2017, thus347

the decline was obvious, especially for the Beijing-Tianjin-Hebei region. For348

O3-8hmax concentration, the growth rate was not obvious (except for the eastern part349

of Hubei Province) during 2005-2013. However, after 2013, there was a clear upward350
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trend across the country, especially in the northern China.351

352
Fig. 6 SimulateEstimated annual mean and difference of PM2.5 and O3-8hmax concentration353
in China during 2005 to 2017354
The first row is maps of PM2.5 related indicators, and the second row is maps of O3-8hmax related355
indicators. From left to right are average concentration during 2005-2017, the difference between356
2017 and 2005, the difference between 2013 and 2005, and the difference between 2017 and 2013.357

358

3.4 Evaluation of the PM2.5 and O3 concentration products with comparison with359

other products360

Our simulationestimation datasets include the PM2.5 and O3-8hmax concentration data361

of China in 2005-2017 with a spatial resolution of 1km×1km resolution. With high362

spatial and temporal resolutions, our validation results are comparable with other363

modeling work (see Table S6). Considering the future application in epidemiological364

research, our simulationestimation datasets would be useful: for acute effects studies,365

the high spatial resolution would effectively reduce exposure errors; for chronic366
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effects studies, long-term exposure data is essential for the development of cohort367

studies.368

369

Nevertheless, our simulationestimation datasets also contain some limitations. First,370

we did not use emission data in our model limited by coarse resolution. However the371

newly published The high-resolution emission inventory of China is made accessible372

to the public (http://meicmodel.org/) and it canmay be utilized in future373

simulationestimation studies to improve accuracy. Second, our modeling still has374

spatial and temporal uncertainties. In areas where monitoring sites are sparsely375

distributed, such as western China, it may be difficult to accurately capture the376

association between air pollution concentrations and variables. The model validation377

of historical period is also limited. Third, the interpolation process of model features378

inevitably introduces some errorssystematic errors. Therefore, more high-quality and379

high-resolution basic data would be needed in the future.380

381

4 Data availability382

The simulateestimated PM2.5 and O3 data are freely accessible at383

https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared data set of384

Chinese Environmental Public Health Tracking: CEPHT385

(https://cepht.niehs.cn:8282/developSDS3.html).386

387

5 Conclusions388
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We constructed random forest models for simulating of daily average PM2.5 and389

O3-8hmax concentrations of China during 2005-2017, with referential feature list and390

comparable model performance. The simulationestimation dataset would be useful for391

supporting both long-term and short-term epidemiological studies. The model can be392

further used for simulating daily concentrations of longer time period. The key393

findings are summarized as follows. First, RF model proved its superiority in our394

study and can be further used in the future simulationestimation of air pollutant395

concentration. Second, meteorological data is the most sensitive to PM2.5 and O3396

modeling. For PM2.5 modeling work, boundary layer height, evaporation, 2 meter dew397

point temperature and its lagged effects showed the highest sensitivity. For O3398

modeling work, surface solar radiation downwards and its lagged effect were the most399

sensitive. Third, PM2.5 concentration has trended downward in China, and the key400

polluted areas during 2005-2013 were effectively controlled during 2013-2017. O3401

concentration has trended upward in China, especially in the northern China during402

2013-2017.403
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