Dear the reviewers:

First of all, we would like to take this opportunity to thank the reviewer for your constructive comments and relevant questions. By adding the answers/revisions to these questions to the revised version of the manuscript, we feel that the quality of the manuscript has been improved. A revised manuscript has been submitted, and all of corrections/modifications are only included in the revised manuscript for the sake of non-repeat. Extra answers to your concerns and questions are presented as follows.

Reviewer 1:

Comments

Review of Zhang et al.

I'm satisfied with the response provided by the authors and I think that the manuscript has clearly been improved. There is now a good discussion of the strengths and limitations of this new dataset, which I think will be greatly appreciated by future users. The metadata have also been corrected. I made a few minor comments below (the line numbers refer to the line numbers of the track-changed manuscript):

L12: Please state concisely what 'The sophisticated corrections' consist of here. This is too vague for an abstract.

Answer: Thanks for pointing out this issue. The corrections are intermission bias corrections. We shouldn't use sophisticated here. We have made relevant revision in the revised manuscript.

L124-127: You need to justify your choice of retracker here. You spend some time in the introduction (L56-61) to mention three different techniques to mitigate the effects of radar penetration so I think it would be nice to reflect on that and state what method you chose and why.

Answer: Thank you for the suggestion. We have justified in the revised manuscript.

L162: Do you have enough data within a 2 km grid cell to constrain the least-square fit during the ERS-1/2 missions?

Answer: Sorry to mislead you. In this study, the least-squares fitting was performed on a 2 km polar-stereographic grid, but not within a 2 km grid cell. For each grid node, all observations within 2.5 km of the centre of the grid node are used for the iterative least-squares estimation. This can ensure that the most grid node have enough data to constrain the least-squares fitting during each mission, including the ERS-1 and ERS-2 missions. We have made relevant revision in the revised manuscript.

L163: What ice sheet mask/delineations are you using? Please specify here whether you're using Rignot's, Zwally's definition or something else.

Answer: Thank you for the suggestion. In this study, we used the Zwally's ice sheet mask. We have specified it in the revised manuscript.

L178: I would add 'at least 100 elevation anomalies in the 216 months of the 2003-2020 period are retained' for clarity

Answer: Thank you for the suggestion. We have added it in the revised manuscript.

L191: 'and then add them back to the EOF reconstruction results' instead of 'return them'

Answer: Thank you for the suggestion. We have made relevant revision in the revised manuscript.

L199: 'can be calculated'

Answer: Thanks for pointing out this issue, and we have made relevant revision in the revised manuscript.

L267: 'The ilce velocity'

Answer: Thanks for pointing out this issue, and we have made relevant revision in the revised manuscript.

L277-279: I suggest moving this sentence at the end of section 2.4 as it belongs more to the methodology than the results section.

Answer: Thank you for the suggestion. We have moved it at the end of section 2.4 in the revised manuscript.

L398: 'even when applying'

Answer: Thanks for pointing out this issue, and we have made relevant revision in the revised manuscript.

L399: I would be more specific 'a small residual signal caused by the 2012 melt event and manifesting as a surface elevation increase signal is found in the merged time-series'. Can you quantify this elevation step in your time-series to give the user an indication of how small the signal is? You could calculate the elevation difference before/after summer 2012 for the ice sheet as a metric.

Answer: Thank you for the suggestion. We have estimated that the mean elevation difference before/after summer 2012 for the regions above 2000 m in altitude is about 0.16 m between the months before (January–June, 2012) and after (August–December, 2012) the extreme melt event, which is consistent with Slater et al. (2019) of 0.21 \pm 0.09 m. And we have made relevant revision in the revised manuscript.

References cited in authors' response:

Slater, T., Shepherd, A., Mcmillan, M., Armitage, T. W. K., Otosaka, I., and Arthern, R. J.: Compensating Changes in the Penetration Depth of Pulse-Limited Radar Altimetry Over the Greenland Ice Sheet, IEEE Transactions on Geoscience and Remote Sensing, 57, 9633-9642, doi:10.1109/TGRS.2019.2928232, 2019.