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Abstract. We compile and analyse all available geothermal heat flow measurements collected in and around Greenland into a 

new database of 419 sites and generate an accompanying spatial map. This database includes 290 sites previously reported by 25 

the International Heat Flow Commission (IHFC), for which we now standardize measurement and metadata quality. This 

database also includes 129 new sites, which have not been previously reported by the IHFC. These new sites consist of 88 

offshore measurements and 41 onshore measurements, of which 24 are subglacial. We employ machine learning to synthesize 

these in situ measurements into a gridded geothermal heat flow model that is consistent across both continental and marine 

areas in and around Greenland. This model has a native horizontal resolution of 55 km. In comparison to five existing 30 

Greenland geothermal heat flow models, our model has the lowest mean geothermal heat flow for Greenland onshore areas. 

Our modelled heat flow in Central North Greenland is highly sensitive to whether the NGRIP elevated heat flow anomaly is 

included in the training dataset. Our model’s most distinctive spatial feature is pronounced low geothermal heat flow (< 40 

mW m–2) across the North Atlantic Craton of southern Greenland. Crucially, our model does not show an area of elevated heat 

flow that might be interpreted as remnant from the Icelandic Plume track. Finally, we discuss the substantial influence of 35 

paleoclimatic and other corrections on geothermal heat flow measurements in Greenland. The in-situ measurement database 
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and gridded heat flow model, as well as other supporting materials, are freely available from the GEUS Dataverse 

(https://doi.org/10.22008/FK2/F9P03L; Colgan and Wansing, 2021). 

1 Introduction 

Assessing the magnitude and spatial distribution of geothermal heat flow across Greenland is important for many reasons, such 40 

as mapping geothermal springs and energy resources, constraining a key basal boundary condition for the permafrost, glaciers, 

and the ice sheet, constraining the thermal structure and material properties of the lithosphere, and understanding the generation 

and preservation of hydrocarbon accumulations. However, the current generation of Greenland regional heat flow models still 

show substantial disagreement (Rezvanbehbahani et al., 2017; Martos et al., 2018; Greve, 2019). A fundamental challenge in 

reliably interpolating the magnitude and spatial distribution of geothermal heat flow across Greenland is the paucity of local 45 

heat flow measurements with which to constrain regional heat flow models.  

Of the 40,870 onshore heat flow measurements presently catalogued in the International Heat Flow Commission 

(IHFC) database, just ten (~0.02%) are onshore in Greenland (Fuchs et al., 2021a). As Greenland represents ~1.5% of global 

land area, this makes the country disproportionately underrepresented in the IHFC database. While several studies have 

assembled additional non-IHFC heat flow measurements from published sources (Martos et al., 2018; Rysgaard et al., 2018), 50 

it is highly desirable to have a comprehensive, and continuously updated, open-access repository of all Greenland heat flow 

measurements. It is similarly desirable to have an open-access Greenland heat-flow map that is self-consistent with that 

updating repository.  

 The goal of this study is to develop and describe this first version of the Greenland Geothermal Heat Flow Database 

and Map. First, we collect existing and new heat flow measurements in and around Greenland into a database with uniform 55 

metadata. Second, we apply machine learning to this database, along with other geophysical datasets, to produce a regional 

model of the magnitude and spatial distribution of Greenland heat flow that is consistent with these measurements. These data 

products and their supporting information are publicly available. We anticipate updating the heat flow database and map as 

new measurements become available. Here, we describe the development of these data products and discuss their implications 

for advancing our understanding of Greenland’s geothermal heat flow. 60 

2 Methods 

2.1 Heat Flow Measurement Database 

We use the 2018 IHFC database as the foundation upon which to build a region-specific update of Greenland heat flow 

measurements. This 2018 version of the IHFC database, which contains 58,536 measurements (both onshore and offshore) 

with no quality documentation, is an updated version of the 2013 IHFC database (Global Heat Flow Compilation Group, 2013; 65 

https://doi.org/10.1594/PANGAEA.810104). Within our Greenland domain, the IHFC 2018 database contains 290 heat flow 

https://doi.org/10.22008/FK2/F9P03L
https://doi.org/10.1594/PANGAEA.810104
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measurements, the majority of which are offshore (Figure 1). In 2021, the fundamental structure of the IHFC database was 

revised for the first time since 1976 (Jessop et al., 1976; Fuchs et al., 2021b). While the previous 1976 IHFC database structure 

contained 17 data fields for each heat flow measurement, the new 2021 IHFC database structure now contains 59 data fields 

for each heat flow measurement, 18 of which are “mandatory”, 32 of which are “recommended”, and 9 of which are “optional”. 70 

The novel heat flow database we present here has 26 data fields for each heat flow measurement. Eighteen of these fields have 

100% data coverage, but these do not align with all 18 “mandatory” IHFC2018 fields (Table A1). Four fields, associated with 

the temperature gradient, depth range and thermal conductivity, have better than 81% data coverage. The last four fields, 

associated with topographic correction of heat flow, have 34% data coverage. 

We briefly introduce and describe the fields of our database in Table 1. While our database generally exceeds the 75 

information required by the IHFC 1976 database structure, it does not contain 8 of the 18 mandatory fields information required 

by the IHFC 2021 database structure (Table A1). Conforming and assimilating our database into the IHFC 2021 database and 

structure remains a near-term but non-trivial goal. While translating the “Measurement Type” of this study into “Geographical 

Environment” of IHFC 2021 is relatively straightforward, assessing IHFC 2021 fields like “TC Saturation” or “TC pT 

Conditions” requires reviewing historical measurements on a site-by-site basis. Similar to the IHFC databases, however, our 80 

present database has a “one borehole, one estimate” philosophy. This merges multiple estimates for a single borehole into a 

single best or consensus estimate for that borehole. Generally, for the predominantly subglacial sites where multiple estimates 

have been published, the consensus estimate is reached by expert elicitation within our author team. Further, our database only 

includes direct heat flow estimates; those derived from temperature gradient measurements. Following the IHFC, we exclude 

heat flow estimates derived from remotely sensed approaches (i.e. Cox et al., 2021). 85 

Generally, our present database has a greater focus on three-dimensional positional accuracy than the IHFC databases. 

We report positions, elevations, and uncertainties in both latitude/longitude and the popular EPSG:3413 coordinate system 

adopted by many Greenland-focused and Arctic-wide data products. The EPSG:3413 system, also known as the NSIDC Sea 

Ice Polar Stereographic North projection, has its latitude of origin at 70°N and its central meridian at 45°W, and provides a 

polar projection for data products (see: http://epsg.io/3413; last access 8 February 2022). This focus on three-dimensional 90 

positional uncertainty is intended to facilitate future investigations of local heat flow corrections, such as those associated with 

paleoclimate or topography. As Greenland is a high-relief land mass with a complex climate history, these corrections are 

likely more important in modifying contemporary heat-flow measurements in Greenland than lower relief and more temperate 

regions of Earth. 

 95 
Table 1 - Database fields in this study. 

Field  
[units] Description 

Site Name  Unique text string identification for each entry in the database. For existing 

http://epsg.io/3413
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[text] IHFC 2018 sites, names are retained. Ambiguous IHFC 2018 names are made 
unique by adding alphanumeric suffixes based on measurement year. For new 
sites, names are derived from primary literature and/or personal 
communications. 

ID 
[unitless] 

Unique numeric identification for each entry in the database. 1000-level 
denotes submarine sites, 2000-level denotes subaerial sites, 3000-level denotes 
subglacial sites. Generally equivalent to the discontinued “Data Number” field 
in IHFC2018.  

IHFC Status  
[unitless] 

Code to identify each entry in the database as either: “0” (existing entry in 
IHFC 2018), “1” (new entry, not contained in IHFC 2018), “2” (uncertain data 
availability at this site) and “3” (no heat flow can be calculated at this site). 

Type  
[text] 

Code to identify each entry in the database into one of three classes: 
“subaerial”, “subglacial” or “submarine”. 

Latitude  
[ºN] 

The decimal degree latitude for each entry in the database. For existing IHFC 
2018 sites, existing latitude is retained. For new sites, latitude is derived from 
published literature and/or personal communications.  

Longitude  
[ºE] 

The decimal degree longitude for each entry in the database. For existing IHFC 
2018 sites, existing longitude is retained. For new sites, longitude is derived 
from published literature and/or personal communications. 

Latitude and Longitude 
Uncertainty  
[º] 

Order-of-magnitude estimate of the positional uncertainty of each entry in 
decimal degrees: 0.01, 0.001, or 0.0001 º. For existing IHFC 2018 sites, this 
uncertainty is estimated from a combination of reported decimal places and 
measurement year. For new sites, this is based on reported decimal places 
and/or personal communications.  

Easting  
[m] 

The local easting position of each entry in the database in the EPSG:3413 
projection, derived from longitude using the MATLAB “polarstereo_fwd” 
conversion tool (Bliss, 2021). 

Northing  
[m] 

The local northing position of each entry in the database in the EPSG:3413 
projection, derived from latitude using the MATLAB “polarstereo_fwd” 
conversion tool (Bliss, 2021). 

Easting and Northing 
Uncertainty 
[m] 

Order-of-magnitude estimate of the positional uncertainty in each entry in 
meters: 1100, 110, or 11 m. Converted from latitude and longitude uncertainty 
in decimal degrees. 

Elevation 
[m] 

Elevation above sea level of each entry. For existing IHFC 2018 sites, 
elevations are retained where available. For new sites, elevations are derived 
from primary literature and/or personal communications. Where elevation is 
not available, it is interpolated from either BedMachine v3 or ETOPO1 digital 
elevation models (Amante, and Eakins, 2009; Morlighem et al., 2017) and 
noted in the comments section. For subglacial sites, this is the elevation of the 
ice–bed interface.  
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Elevation Uncertainty 
[m]  

Uncertainty in elevation above sea level of each entry. Unless otherwise noted, 
this is assumed to be 5 m where elevation is reported, and 20 m where elevation 
is interpolated from a digital elevation model. 

Year 
[CE] 

Common Era (CE) measurement year of each entry. For existing IHFC 2018 
sites, this is retained as the “Year of Publication”, or the latest “Year of 
Publication”, when a range is provided. For new sites, this is derived from 
published literature and/or personal communications.  

Minimum Depth 
[m] 

The minimum depth, relative to site elevation, of the temperature profile used 
to compute heat flow for each entry in the database. For existing IHFC 2018 
sites, this is retained as “Minimum Depth” where available. Where unavailable 
in IHFC 2018, it remains unavailable in this database. For new sites, this is 
derived from published literature or personal communications. For subglacial 
sites, temperature profiles are collected above the bedrock, so depths are 
negative.  

Maximum Depth 
[m] 

The maximum depth, relative to site elevation, of the temperature profile used 
to compute heat flow for each entry in the database. For existing IHFC 2018 
sites, this is retained as “Maximum Depth” where available. Where 
unavailable in IHFC 2018, it remains unavailable in this database. For new 
sites, this is derived from published literature or personal communications. For 
subglacial sites, temperature profiles are collected above the bedrock, so 
depths are negative.  

Gradient 
[K km–1] 

The temperature gradient used to compute heat flow for each entry. For 
existing IHFC 2018 sites, this is retained as “Gradient” where available. Where 
unavailable in IHFC 2018, it remains unavailable in this database. For new 
sites, this is derived from published literature or personal communications. 

Conductivity 
[W m–1 K–1] 

Thermal conductivity used to compute heat flow for each entry. For existing 
IHFC 2018 sites, this is retained as “Conductivity” where available. Where 
unavailable in IHFC 2018, it remains unavailable in this database. For new 
sites, this is derived from published literature or personal communications. 
Where conductivity has been assumed, rather than measured, is noted in the 
comments section. 

Heat Flow 
[mW m–2] 

Heat flow computed for each entry. For existing IHFC 2018 sites, this is 
retained as “Heat Flow”. For new sites, this is derived from the site gradient 
and site conductivity reported in the database. 

Heat Flow Uncertainty 
[mW m–2] 

Uncertainty in heat flow for each entry. For both existing IHFC 2018 sites and 
new sites, unless otherwise stated, this is estimated as 5% where both gradient 
and conductivity are reported, 10% where only gradient is reported and 
conductivity is assumed, and 15% when only heat flow is reported without any 
information about gradient or conductivity.  

Topographic Correction 
[unitless] 

Topographic correction for geothermal heat flow for each entry. This value 
represents the fraction by which local topography enhances measured heat 
flow. For both existing IHFC 2018 sites and new sites, where available, this is 
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derived from an existing data product (Colgan et al., 2021). Where unavailable 
in this product, topographic correction remains unavailable in the database. 
Mean topographic correction is interpolated within the positional uncertainty 
of each entry. 

Uncertainty in Topographic 
Correction 
[unitless] 

Uncertainty in topographic correction for geothermal heat flow for each entry 
in the database. For both existing IHFC 2018 sites and new sites, this is derived 
from the Colgan et al. (2021) product where available. 

Topographically Corrected 
Heat Flow  
[mW m–2] 

Topographically corrected geothermal heat flow for each entry, where 
topographic correction is available.   

Uncertainty in 
Topographically Corrected 
Heat Flow 
[mW m–2] 

Uncertainty in topographically corrected geothermal heat flow for each entry, 
where topographic correction is available. 

Source 
[text] 

This is the source of the heat flow value for each. For existing IHFC 2018 sites, 
this is listed as “IHFC2018”. For new sites, this is either listed as the individual 
who is most familiar with site-specific calculation, or “As Published” for 
previously published values.  

Comment 
[text] 

This field contains relevant additional notes for each entry. This includes ice 
thickness for subglacial sites, heat flow corrections where available, 
assumptions about conductivity, source of elevation data, or edits made to 
IHFC 2018 data. This field also aggregates information in less frequently used 
fields of the IHFC 1975 structure, such as “Heat Production” and “Number of 
Sites”. 

Reference 
[text] 

This is the most relevant article or report discussing the temperature profile, or 
other metadata, for each entry. These references have been updated since 
IHFC2018 where possible. The most relevant reference will not necessarily 
contain a heat flow estimate for the site, but it serves as the best starting point 
to learn more about a site.  

 

2.2 Heat Flow Measurements 

Heat flow measurements typically rely on knowledge of local temperature gradient and local thermal conductivity, with the 

product of these two terms yielding heat flow. There can be substantial diversity in the depth interval over which temperature 100 

gradient is measured, from kilometer-scale deep boreholes to meter-scale heat probes. Similarly, there can be substantial 

diversity in how thermal conductivity is estimated, ranging from relatively precise continuous-core laboratory analysis to less 

precise estimations based on tabulated data from analogous rock types. For this reason, it is desirable to present a heat flow 

measurement with sufficient metadata for users to assess the relative differences in data quality between sites (Table 1). In this 

database, we assess uncertainty in heat flow based on the quality of the local temperature gradient and thermal conductivity 105 
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data comprising the heat flow. In the following, all mentions of “conductivity” relate to “thermal conductivity”. We divide the 

heat flow measurements into four types: Type 0 are measurements already included in IHFC 2018, Type 1 are “new” 

measurements that are not included in IHFC 2018, Type 2 are sites for which we are uncertain if sufficient data exists to 

estimate heat flow, and finally, Type 3 are sites where we fell there is insufficient data to estimate heat flow with available 

methods.  110 

2.2.1 Type 0 - Included in IHFC 2018 

The IHFC 2018 database contains 290 heat flow measurements within our Greenland domain (Figure 1). Here, we provide the 

first systematic quality control of these existing IHFC data, as part of a broader community effort to bring all historical IHFC 

into compliance with the most recent IHFC data standards (Fuchs et al., 2021a). During this quality control, we reassess 10 of 

these historical IHFC heat flow values in our present database (Table 2). The remaining 280 historical IHFC heat flow 115 

measurements are unchanged.  

The largest reassessment is site V28-11. The heat flow at this site – 871 mW m–2 – is a clear outlier within the IHFC 

2018 database, exceeding the next highest value within the Greenland region by a factor of two. It is also more than an order 

of magnitude greater than the contemporaneous measurement at V30-96, located 72 km away. While all temperature gradients 

measured during the V28/V30 cruises range between 35 and 181 K km–1, the V28-11 temperature gradient is listed as 1000 K 120 

km–1 in IHFC 2018. Such an extreme heat gradient seems implausible (Bons et al., 2021). We attribute this to a transposed 

decimal place and revise the gradient to a more reasonable 100 K km–1. This accordingly reassesses the V28-11 heat flow to 

87 mW m–2. In comparison, the nearby V30-96 heat flow measurement is 52 mW m-2.  

There are nine other heat flow measurements where the product of reported gradient and conductivity is more than 

±2 mW m–2 different from the reported heat flow. In these instances, heat flow has been revised to reflect the product of 125 

reported gradient and conductivity. This approach assumes that gradient and conductivity are the primary measurements from 

which heat flow is secondary derived product. The discrepancy of this reassessment of reported gradient and conductivity 

product is greatest at Ymer 80-133 – where heat flow is reassessed from 442 to 120 mW m–2. Table 2 summarizes all instances 

of reassessed IHFC 2018 heat flows. Generally, these reassessments can be described as down revising extreme heat flow 

values from oceanographic surveys conducted in the vicinity of the Mid Atlantic Ridge in the late 1970s and early 1990s. 130 

These reassessments are also noted in the Comment section of each entry in the database. 

This study adds significant metadata to many of the existing IHFC 2018 entries. First, all 290 existing IHFC 2018 

entries are coded as either “subaerial”, “submarine” or “subglacial”. Heat flow uncertainties are also estimated for all 290 sites. 

Where site-specific measurements of both temperature gradient and thermal conductivity are available, an uncertainty of ±5% 

is assumed. Where only site-specific temperature gradient is measured and thermal conductivity is assumed, an uncertainty of 135 

±10% is assumed. Where only heat flow is reported, without a specific temperature gradient or thermal conductivity, an 

uncertainty of ±15% is assumed. This approach is applied to all Type 0 (and Type 1) sites for which formal uncertainties are 

not previously reported. For 50 of the Type 0 existing IHFC 2018 sites, a previously unavailable elevation of measurement is 
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interpolated from a digital elevation model. Within the immediate proximity of Greenland, the higher resolution BedMachine 

v3 elevation model is used (150 m horizontal resolution), while for areas more distal to Greenland, the lower resolution 140 

ETOPO1 elevation model is used (1 arc-minute or ~1.8 km horizontal resolution; Amante, and Eakins, 2009; Howat et al., 

2014; Morlighem et al., 2017). For a further ten sites, corresponding to the “OU” cruise, measurement elevations were revised 

from a positive water depth to a negative ocean bottom elevation. Finally, for 51 of these existing sites, a previously unavailable 

measurement year is now estimated from the IHFC 2018 “year of publication” field. 

 In addition to these batch additions of metadata, we also revised existing site-specific metadata in several instances. 145 

This includes renaming two non-unique “Akureyri” sites as “Akureyri73” and “Akureyri91”, and non-unique “Grundarfjordur” 

sites as “Grundarfjordur91A” and “Grundarfjordur91B”, and finally two non-unique “Hvammstangi” sites as 

“Hvammstangi73” and “Hvammstangi91”. The numeric suffixes are based on measurement year. We remove an apparent 

IHFC 2018 double-entry of “V29-155”. For the GRIP ice core site, the measured elevation is revised from sea-level (0 m 

elevation) to the observed ice–bed interface at 203 m elevation. For GRIP, the heat flow was also re-assessed with the approach 150 

described in Section 2.2.2 to be consistent with the heat flow assessed for other subglacial sites. 

 
Table 2 - Reassessed heat flows between IHFC 2018 and this study.  

Site Latitude 
[°N] 

Longitude 
[°E] 

IHFC 2018  
[mW m–2] 

This study  
[mW m–2] 

Change 
[mW m–2] 

Change 
[%] 

V28-11 63.750 -28.970 871 87±4 –784 –90 

787 63.367 -27.333 280 278±14 –2 –1 

807 67.750 -18.500 197 241±12 +44 +22 

AS-151 77.000 -3.667 78 86±4 +8 +10 

AS-210 72.967 -7.433 193 196±10 +3 +2 

Svalbard84-42 78.828 4.499 117 122±6 +5 +4 

Ymer 80-131 81.108 3.272 343 125±6 –218 –64 

Ymer 80-132 80.786 5.107 212 113±6 –99 –47 

Ymer 80-133 79.997 -2.363 442 120±6 –322 –73 

Ymer 80-134 79.853 -1.175 147 111±6 –36 –24 

GRIP 72.600 -37.600 51 61±2 +10 +20 
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2.2.2 Type 1 - Not included in IHFC 2018 155 

Our database includes 129 heat flow values that were not included in IHFC 2018 (Figure 1). Of these, 54 heat flow values are 

collected from previously published grey-literature reports or peer-reviewed articles (Classon, 1977; Colebeck and Gow, 1979; 

Van Tatenhove and Olesen, 1994; Müller et al., 2006; Taylor et al., 2006; Damm, 2010; Harper et al., 2011; Rysgaard et al., 

2018; Hartikainen et al., 2021). In the database, the “Source” field of these heat flow values is listed as “As Published.” The 

remaining 75 heat flow values are previously unreported. While heat flow values have been previously published at a handful 160 

of these sites, we reassess these heat flows using a consistent methodology. In the database, the “Source” field of these heat 

flow values is listed as the author of this study who is most familiar with this calculation. Below, we provide a brief overview 

of these 75 heat flow values.    

 The first type of new heat flow measurements in the database is submarine measurements (44 of 75 new values). Of 

these, 30 measurements were collected during cruise 2005-040 of the Canadian Coast Guard Ship Hudson. These 165 

measurements comprise east–west and north–south transects in water depths of between 1015 and 2550 m within the Davis 

Strait. These heat flow values were calculated from site-specific measurements of temperature gradient and thermal 

conductivity measured by a 4 m heat probe deployed in the uppermost layers of submarine sediments. For these heat-probe 

measurements, site-specific heat flow uncertainty is propagated from gradient and conductivity uncertainties.  

The remaining fourteen new submarine measurements are derived from deep marine exploration wells and cored 170 

boreholes drilled offshore West Greenland between 1976 and 2011. These wells are between 1148 and 4385 m deep, and in 

water depths between 104 and 1508 m. For these sites, the temperature gradient is calculated from Horning-corrected bottom-

hole temperature and an assumed top-hole temperature of 4°C, reflecting assumed bottom water temperature. We assume that 

any seasonal cycle in bottom water temperatures at these sites is small in comparison to the temperature difference between 

the top- and bottom-hole temperatures. For the fourteen deep exploration wells presented here, the average top-to-bottom 175 

temperature difference is 86°C. In the absence of a method to systematically convert borehole stratigraphy into depth-

integrated conductivity, we assume a bulk thermal conductivity of 2.00 W m–1 K–1 for all these deep boreholes. This 

approximates the back-calculated bulk thermal conductivity inferred by Rolle (1985) at five of these wells. We accordingly 

assume a 10% uncertainty in heat flow at these sites. 

 180 
Table 3 - Reassessed heat flows between previous studies and this study. 

Site Latitude 
[°N] 

Longitude 
[°E] 

Previous  
study 

[mW m-2] 

This  
study  

[mW m-2] 

Change 
[mW m-2] 

Change  
[%] Reference 

Hellefisk-1 67.8781 -56.7392 50 49 ± 5 –1 –2 Issler & Beaumont (1987) 

Ikermiut-1 66.9367 -56.5906 51 58 ± 6 +7 +13 Issler & Beaumont (1987) 
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Kangâmiut-1  66.1503 -56.1900 55 54 ± 5 –1 –2 Issler & Beaumont (1987) 

Nukik-1 65.6317 -54.7669 56 42 ± 4 –14 –25 Issler & Beaumont (1987) 

Nukik-2 65.5267 -54.7606 54 39 ± 4 –15 –28 Issler & Beaumont (1987) 

CampCentury 77.1797 -61.1097 42 
40 40 ± 2 –2 

0 
–5 
0 

Hansen & Langway (1966) 
Weertman (1968) 

 GRIP 72.600 -37.600 51 
59 61 ± 2 +10 

+2 
+20 
+3 

 Dahl-Jensen et al. (1998) 
 Martos et al. (2018) 

 NEEM 77.45 -51.07 58 65 ± 5 +7 +12  Martos et al. (2018) 
 DYE-3 65.18 -43.82 25 26 ± 3 +1 +4  Greve (2005) 

 

Issler and Beaumont (1987) previously estimated heat flows at five of these deep wells (Hellefisk-1, Ikermiut-1, 

Kangâmiut-1 and Nukik-1/2) that are generally higher than our heat flows (Table 3). While Issler and Beaumont (1987) do not 

provide the gradients or conductivities used in their calculations, the gradients we calculate are nearly identical to those 185 

published contemporaneously by Rolle (1985). We therefore speculate that the disparity between our heat flows and those of 

Issler and Beaumont (1987) results from differences in assumed conductivity. 

The second type of new measurements in the database is subaerial measurements. This category specifically denotes 

ice-free onshore sites (11 of 75 new values). They are generally derived by applying an assumed thermal conductivity to a 

measured borehole temperature gradient. At three sites (DH-GAP01, Skaergaard_89-09B and Skaergaard_90-11), thermal 190 

conductivity has also been measured (Balling and Brooks, 1991; Harper et al., 2011). At these sites, we estimate the uncertainty 

in heat flow from site-specific uncertainties in gradient and conductivity.  

At the remaining eight sites, thermal conductivity has not been measured so we must therefore assume a value 

(Roethlisberger, 1961; Dam and Christiansen, 1994; Van Tatenhove and Olesen, 1994; Bjerager et al. 2018). At sites located 

within the Precambrian Shield of South Greenland (Alcoa_Site7e-I, Alcoa_Site7e-P, Alcoa_Site6g-P, SIS2019-02) we assume 195 

a thermal conductivity of 2.50 W m–1 K–1, based on the thermal conductivity measured near Kangerlussuaq (Harper et al., 

2011). At sites located within the basaltic intrusions stretching across Central Greenland from Disko Island to Geikie Plateau 

(G02_Paakitsoq, Marraat-1, Blokelv-1), we assume a thermal conductivity of 2.25 W m–1 K–1, based on thermal conductivity 

measured in the Skaergaard Formation (Balling and Brooks, 1991). At Thule (Thule_1002feet) we similarly assume a thermal 

conductivity of 2.25 W m–1 K–1, although with no guidance from measurements in analogous geological formations 200 

(Roethlisberger, 1961; Davies et al., 1963; Dawes, 2009). At all eight sites, we assume an uncertainty in heat flow of 10%.  

For all subaerial sites, where possible, we calculate temperature gradients below 75 m depth. As recent near-surface 

warming can decrease the near-surface temperature gradient and thus decrease near-surface heat flow in comparison to deeper 

values, we prefer not to use ground temperature data from depths shallower than 75 m. This approach minimizes the influence 

of recent, meaning post-1990, pronounced atmospheric warming on the near-surface temperature gradient (Balling and Brooks, 205 



11 
 

1991). This can be considered a basic paleoclimatic correction to remove the influence of recent climate change over the past 

century (Beltrami and Mareschal, 1991; Mareschal and Beltrami, 1992).  

The third type of new measurements in the database is subglacial measurements (20 of 75 new heat flow values). This 

category specifically denotes onshore sites located beneath glaciers. Heat flow has been previously assessed at four of these 

sites (Table 3). For all subglacial sites, heat flow is calculated using a slightly modified version of the temperature gradient 210 

approach. We use ice temperature profiles from the Greenland Ice Borehole Temperature Profile Database (Mankoff, 2021; 

https://github.com/GEUS-PROMICE/greenland_ice_borehole_temperature_profiles; last access 8 February 2022). At sites 

where the ice temperature profile is complete, meaning it spans the full ice thickness from surface to bed (Devon73, 

PrinceWales05, Meighen67, Agassiz77/79A/79B/84, Penny96, CampCentury, DYE-3, GISP2, NEEM, HansTausen_Dome, 

HansTausen_Hare), we fit a second-order temperature–depth function in the bottom 10% of the borehole (Paterson, 1968; 215 

Weertman, 1968; Paterson et al., 1977; Fisher and Koerner, 1984; Gundestrup and Hansen, 1984; Clarke et al., 1987; Fisher 

et al., 1988; Clausen et al., 2001; Kinnard et al., 2008; Rasmussen et al., 2013; MacGregor et al., 2015). We then adopt the 

temperature gradient at the deepest 1% of this second-order polynomial fit. This approach standardizes the approximation of 

temperature gradient across sites by accounting for differences in the depth interval of temperature measurements. It also 

acknowledges the characteristic non-linearity of basal ice temperature profiles (Hooke, 2019).  220 

At some subglacial sites, however, the ice temperature profile is incomplete, meaning it does not reach the ice–bed 

interface (Devon72/98, Renland88, FladeIsblink06) (Paterson et al., 1977; Hansson, 1994; Kinnard et al., 2006; Lemark and 

Dahl-Jensen, 2010). At these sites, we must extrapolate the temperature profile to the ice–-bed interface to approximate the 

temperature gradient in the deepest 1% of the borehole. For this extrapolation, we generate a second-order polynomial fit to 

the deepest portion of the measured temperature–depth profile that is the same thickness as the depth range that is missing 225 

measurements, i.e., the depth range that must be extrapolated. For example, if ice temperatures are not available in the bottom 

10% of the borehole, then we fit the temperature–depth profile to the deepest available 10% of the borehole where ice 

temperatures are available; the bottom 20 down to the bottom 10 % of the borehole. This ensures a 1:1 ratio between the 

observation and extrapolation depth increments. To quantify the uncertainty associated with this extrapolation, we then repeat 

the extrapolation of the deepest 1% gradient ten times but adjust the shallowest depth of the data range up the ice column 1% 230 

each time. We make available a sample of this code for the Devon72 extrapolation (Figure 2) in the provided database 

associated with this article. 

For all subglacial boreholes, thermal conductivity (κ; in W m–1 K–1) is estimated as a function of ice temperature (Ti; 

in K) based on the following relation (Yen, 1981): 

 235 

κ = -0.013 Ti + 2.1           (1) 

 

We prescribe the thermal conductivity of ice based on the ice temperature in the bottom 1% of the borehole.  

https://github.com/GEUS-PROMICE/greenland_ice_borehole_temperature_profiles
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Four subglacial sites have unique glaciological settings requiring further explanation. Basal melting presently occurs 

at both NGRIP and NEEM. This loss of basal ice is evident in local radiostratigraphy and depth–age relations at both sites. 240 

NGRIP has substantial basal melting, which prevents application of the basal temperature gradient approach described above. 

For this site, we estimate basal heat flow as 130 ± 30 mW m-2, based on the published range of values based on 

thermomechanical ice modelling (Dahl-Jensen et al., 2003; Greve, 2005; Buchardt and Dahl-Jensen, 2007). At NEEM, where 

there is evidence of trace basal melting, the basal temperature gradient approach is still valid, but we add a +5 ± 5 mW/m2 

correction to account for an estimated 0.5 mm yr–1 of basal melt there (Rasmussen et al., 2013). At Tuto_D-11, the ice thickness 245 

is only 48 m. We therefore use a simple linear relation to constrain the temperature gradient in the lowermost 33 m of the ice, 

within a generous uncertainty from a digitized version of the published temperature profile (Davis, 1967).   

Finally, at HansTausen_Hare, the borehole is drilled in a relatively high deformation setting, where the ice surface 

speed is ~20 m yr–1 with an ice thickness of 289 m (Clausen et al., 2001; Reeh et al., 2001). This situation implies that 

deformational heating is a significant heat source in the deepest part of the ice column there. Assuming n = 3 deformational 250 

and isothermal ice flow, the bottom 1% (3 m) of the HansTausen_Hare borehole has an along-flow strain rate of 0.27 yr–1 

(Hooke, 2019). Assuming an overburden confining stress of 2.6 MPa (286 m ⨉ 917 kg m–3 ⨉ 9.8 m s–2), this calculation yields 

66 mW m–2 of deformational heating (3 m ⨉ 0.27 yr-1 ⨉ 2.6 MPa) in the bottom 3 m of the HansTausen_Hare borehole 

(Marshall et al., 2005). We therefore apply a –66 ± 33 mW m-2 correction to account for significant basal deformational heating 

at HansTausen_Hare, but we note that the geothermal gradient is likely also influenced by deformational heating higher in the 255 

ice-temperature profile. Comparison with the upstream HansTausen_Dome borehole, which is unaffected by deformational 

heating, suggests a deformation heating correction of closer to –100 mW m-2 may be appropriate at HansTausen_Hare. 

2.2.3 Type 2 – No Heat Flow (Uncertain Data) 

Our database includes 66 entries where at least one borehole has been drilled to >100 m depth, but for which we are presently 

uncertain of the availability of borehole temperature data (Figure 1). While no heat flow values are presently available for 260 

these sites, the possibility exists that sufficient data may become available to assess heat flow values in future studies. Where 

multiple deep boreholes are known to exist at a single site, the number of boreholes is noted in the “Comment” field of the 

database. For all these Type 2 entries, the database includes metadata showing the site or borehole name, type of site, 

characteristic drill year, and decimal degree and EPSG:3413 positional and elevation data.  

These sites were identified from the Greenland National Petroleum Data Repository (GNPDR) 265 

(http://greenpetrodata.gl; last access 8 February 2022 - formerly the “GEUS Oil & Gas” database), the Greenland Mineral 

(GreenMin) database (http://www.greenmin.gl; last access 8 February 2022 - formerly the “GEUS SAMBA” database), and 

also the International Ocean Discovery Program (IODP) drilling database (https://iodp.tamu.edu/scienceops/maps.html; last 

access 8 February 2022). For several GNPDR and GreenMin sites, a comprehensive evaluation of non-digitized hardcopy 

reports would likely yield temperature gradients omitted from our preliminary evaluation of digitized reports. We appeal to 270 

http://greenpetrodata.gl/
http://www.greenmin.gl/
https://iodp.tamu.edu/scienceops/maps.html


13 
 

persons with site-specific knowledge of the availability of temperature profiles at these Type 2 sites to contact our team to help 

us parse these sites as either Type 1 or Type 3 in future versions of this database. 

2.2.4 Type 3 - No Heat Flow (Insufficient Data) 

Finally, our database also includes entries where a borehole has been drilled and a heat flow cannot be calculated with presently 

available data and methods. Our database contains 74 of these Type 3 sites (Figure 1). Thirty-three of these sites appear in 275 

IHFC 2018, but have no associated heat flow value, or primary gradient and conductivity values from which to calculate heat 

flow. All but one of these sites is submarine. At a combination of 27 subaerial and submarine sites, we ascertain through end-

of-well reports or personal communications that no temperature profile was collected in the borehole. Finally, at 14 subglacial 

sites, an ice temperature profile has been collected, but it is not possible to use this profile to calculate heat flow for one or two 

reasons. First, if the temperature profile is not deep enough to make a reasonable extrapolation of the temperature gradient at 280 

the ice–bed interface (i.e. SiteII). Second, if the basal ice is at the pressure-melting-point additional glaciological data is needed 

to characterize basal frictional heating, which warms ice temperatures, and/or basal melting, which cools ice temperatures 

(Karlsson et al., 2021). At temperate sites, where friction heating or basal melting are not constrained, heat flow cannot be 

estimated using the standard basal temperature gradient approach due to complex thermodynamics associated with ice–water 

phase changes (i.e. Jakobshavn_A). 285 

 Despite these limitations, we consider it important to inventory Type 3 subaerial and subglacial boreholes, as they 

may be useful for resolving future heat flow values. Where subaerial boreholes have been capped with metal sealers, as opposed 

to filled with concrete, it may be possible to re-open them and insert thermistor strings (Balling and Brooks, 1991). 

Instrumenting abandoned boreholes drilled into consolidated bedrock is unconventional but could be an inexpensive 

opportunity to rapidly expand the number of reliable Greenlandic heat flow measurements. Any frozen drilling fluid in these 290 

boreholes, while extremely dirty in comparison to glacier ice, should be significantly easier to penetrate in comparison to 

surrounding bedrock. Perhaps similarly, while it is not presently possible to resolve a geothermal heat flow estimate from 

subglacial temperature profiles near the pressure-melting-point using the basal temperature gradient approach, future 

methodological improvements may allow heat flow to be inferred where complex water–ice phase changes are present 

(Colebeck and Gow, 1979; Iken et al., 1993; Lüthi et al., 2015; Doyle et al., 2018). 295 

 

2.3. Topographic Correction 

The database includes an explicit correction for the influence of topography on geothermal heat flow for all heat flow 

measurement sites (Types 0 and 1). This topographic correction accounts for elevated heat flow in valleys and correspondingly 

diminished heat flow along ridge lines (Lees, 1910). We interpolate this site-specific correction from the geostatistical product 300 

of Colgan et al. (2020), which is based on the BedMachine v3 digital elevation model (Morlighem et al., 2017). As the 

BedMachine domain covers only part of the larger Greenland domain of this study, this topographic correction is only available 

for c. 34% of heat flow measurement sites. However, this subregion does include all subaerial and subglacial sites in Greenland, 
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and most submarine sites on the Greenlandic continental shelf. Most of the sites for which this systematic topographic 

correction is not available may be considered abyssal submarine sites, meaning beyond the continental shelf, where 305 

topographic variation is generally more subdued compared to subaerial or subglacial sites. Within our Greenland domain, this 

topographic correction ranges from a minimum of –21±5% at Hole 38 in Ilímaussaq, South Greenland (Sass et al., 1972), to 

+55±10% at the Dybet site in Young Sound, East Greenland (Rysgaard et al., 2018). These end-member sites highlight the 

potential importance of acknowledging topographic influence on local heat flow when interpreting heat flow measurements. 

Critically, however, the database only provides these topographically corrected heat flow values as a supplement to measured 310 

heat flow values. The machine learning analysis that we perform to interpolate a regularly spaced heat flow map across our 

Greenland domain (Section 2.4) uses uncorrected heat flow measurements. We discuss other heat flow corrections of concern 

in the Greenland context in Sections 4.1 and 4.2. 

2.4 Greenland Heat Flow Map  

We derive a spatial heat flow map across our Greenland domain using a machine learning approach that combines the heat 315 

flow measurements described above with other geophysical datasets. We employ the machine learning approach to estimate 

geothermal heat flow at the lithospheric surface, meaning the subaerial, subglacial or submarine plane. This approach was 

initially presented for Greenland by Rezvanbehbahani et al. (2017) and subsequently revised for Antarctica by Lösing and 

Ebbing (2021) (https://github.com/MareenLoesing/GHF-Antarctica-MachineLearning; last access 8 February 2022). Lösing 

and Ebbing (2021) enhanced the machine learning algorithm by using an advanced, and more regularized, gradient boosting 320 

regression and provided more detailed evaluation of the influence of regional and global geophysical datasets. This evaluation 

showed the added value of applying well-constrained regional data, as global datasets often have a high uncertainty in polar 

regions. In total, twelve features are used for the machine learning algorithm (Table A2), three of them are boundary layers: 

the topography, the crust-mantle boundary (Moho depth) and the lithosphere-asthenosphere boundary (LAB). A magnetic 

susceptibility model includes crustal constraints. Seismological information is added to the model as a tectonic regionalisation, 325 

calculated from a tomography model. In addition, the vertical magnetic field and the gravity field, the latter represented by its 

mean curvature, are included. Finally, the predicted geothermal heat flow also depends on the distance to five major tectonic 

elements (trenches, ridges, transform faults, young rifts, and volcanoes). More technical descriptions on the method can be 

found in Rezvanbehbahani et al. (2017) and Lösing and Ebbing (2021) and a graphical overview of these datasets is provided 

in the Appendix of this study. 330 

Following Lösing and Ebbing (2021), we optimize a global supervised machine learning regression approach by 

incorporating regional datasets best suited for Greenland (Figure A1). We combine the heat flow measurements described 

above with the global point dataset used by Lösing and Ebbing (2021). All the global or regional predictive geophysical 

datasets are similarly interpolated from their native resolution to a common 55 km grid, which defines the fundamental 

resolution of the final heat flow solution. For some datasets, this means increasing the spatial resolution from coarser native 335 

resolutions using bilinear interpolation, while for other datasets this means decreasing the spatial resolution from finer native 

https://github.com/MareenLoesing/GHF-Antarctica-MachineLearning
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resolutions using area averaging. The heat flow measurements are similarly binned into 55 km cells. Where multiple heat flow 

measurements exist within a 55 km single cell, they are averaged. We exclude heat flow measurements >200 mW/m2, as these 

high values are representing local anomalies, rather than regional heat flow at the 55 km scale. We also exclude four on-shore 

measurements where heat flow is strongly influenced by various local processes (DH-GAP01, Marraat-1, Alert_203-1, 340 

HansTausen_Hare; Section 4.2). 

To ensure globally consistent results, the machine learning algorithm is trained with global data and the prediction is 

also global. The training data set for this algorithm contains 80% of all available global heat flow measurements, but we include 

100% of all available heat flow measurements within the Greenland domain. As this study focuses on heat flow in and around 

Greenland, we present only the Greenland domain of this simulation. The Greenland domain contains both continental and 345 

oceanic crust, which are known to have markedly different thermal characteristics and geological histories (Dawes, 2009). We 

therefore run the algorithm separately for each crust type to optimize heat-flow prediction. For the continental simulation, we 

assign the measurements associated with the present-day Iceland plume to the remaining 20% of the testing dataset. This 

removes regions of active volcanism from the training data but maintains regions of paleo plume activity within the training 

data. We also employ a jackknife resampling method with the 60 available continental measurements. This means we calculate 350 

sixty individual simulations, and in each simulation one of the Greenland onshore heat flow points is left out from the machine 

learning training dataset. From this simulation ensemble, minimum, mean and maximum heat flow estimates are calculated 

(Figure 3). This jackknifing indicates that the magnitude and spatial distribution of continental heat flow is disproportionately 

sensitive to the inclusion or exclusion of the relatively high and uncertain heat flow measurement at NGRIP. No other point 

influences the predicted heat flow results to such a degree.   355 

The jackknifing ensembles suggest that the NGRIP measurement is not representative of the regional background 

lithospheric heat flow being simulated by the machine learning approach. Simply put, there is no plausible source for high heat 

flow at NGRIP in the twelve input geophysical datasets provided to the machine learning algorithm (Figure A1). However, 

NGRIP and the presence of the Northeast Greenland Ice Stream strongly suggest elevated heat flow in North Greenland. Given 

appreciable community interest in the NGRIP anomaly, we follow Rezvanbehbahani et al. (2017) and run the machine learning 360 

algorithm with training datasets that both include and exclude NGRIP. We make both these “with” and “without” NGRIP heat 

flow maps available in the database and describe the influence of the NGRIP anomaly on the machine learning approach in 

Section 3.2. Generally, while the location of the NGRIP measurement is unique within Greenland for spatial interpolations, 

from a machine learning perspective, the relations between observations and geophysical fields are more important than spatial 

relations. In this sense, our machine learning algorithm does not consider NGRIP a spatial outlier, but rather a geophysical 365 

outlier; the heat flow at NGRIP is not consistent with other observations of heat flow in similar settings. This suggests that the 

NGRIP heat flow anomaly is due to local processes that are not captured in the twelve input geophysical datasets. 

For the regional overview considered here, precise placement of the continent–ocean transition and type of transitional 

crust is not critical, so we use the 1000-m bathymetry contour as a simple proxy to delineate oceanic and continental domains. 

This is a reasonable first-order approximation everywhere except along the Greenland–Iceland Ridge where the boundary is 370 
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complex. For the oceanic portion of the domain, where spatial variations in submarine topography and ocean-bottom 

temperatures influencing heat flow are generally more subtle than on land, we do not employ a jackknife resampling method, 

and instead provide a single heat flow estimate. Although the continental and oceanic simulations were run separately, no edge 

effects are apparent along the continent–ocean transition. 

Figure 4 shows the importance of the individual input variables to the machine learning algorithm for the continental 375 

and the oceanic domains of our model. The importance parameter evaluates the relative importance of each input dataset for 

predicting the results. More details about the calculation and theory of the importance parameter can be found in Lösing and 

Ebbing (2021). For the continental simulation domain, the distance to volcanoes is the most important feature, followed by the 

Moho depth and the tectonic regionalization. The mean curvature of the gravity data, the susceptibility model, and the vertical 

magnetic field component (Bz) are the least important features. For the oceanic simulation domain, the distance to the nearest 380 

ridge, the lithosphere-asthenosphere boundary depth and the tectonic regionalization are the most important features. 

Differences in feature importance between the continental and oceanic domains supports the idea that machine learning can 

be more precise when each domain is modelled individually. The inclusion or exclusion of NGRIP from the training data does 

not fundamentally shift this importance ranking of the input geophysical datasets. 

3 Data Products 385 

3.1 Heat Flow Measurement Database 

The heat flow measurement database presented here contains 290 measurements that are carried forward from IHFC 2018. 

Eleven of these measurements have been reassessed with new heat flow values (Table 2). The database contains a further 129 

measurements that did not appear in IHFC 2018. The majority of these measurements have not been previously published 

elsewhere. They consist of 88 offshore measurements and 41 onshore measurements, of which 24 are subglacial. Perhaps most 390 

notably, these new measurements provide the first comprehensive sampling of heat flow in Davis Strait and Baffin Bay. The 

mean distance between a new measurement (Type 1) and an existing IHFC 2018 measurement (Type 0) is 251 km, with 

distance ranging from <1 km (HF4-9 in Davis Strait) to 645 km (DANA06-HF93_01 in Baffin Bay). The Greenland domain 

that we employ has an area of 6.4 ⨉ 106 km2, which yields a characteristic measurement density of one measurement per 

~15,000 km2. 395 

Within the Greenland domain, the median of all heat flow measurements (n = 419) is 79 mW m-2 with a standard 

deviation of 53 mW m-2 (Figure 5). The highest heat flow measurement is 377 mW m-2 at the RK2105 site on the Mid-Atlantic 

Ridge just north of Iceland. The lowest heat flow measurement is 3 mW m-2 at the DH-GAP01 site in a permafrost talik in 

southwestern Greenland. While there is a large range of both onshore and offshore heat flow values, a two-tailed t-test, 

assuming two samples with unequal variance, suggests that the population of offshore heat flows (median 85 mW m-2 and 400 

standard deviation 52 mW m-2) is significantly (p < 0.05) warmer than the population of onshore heat flows (mean 58 mW m-

2 and standard deviation 55 mW m-2). This difference can be attributed to the more intensively sampled elevated heat flow in 
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the vicinity of the Mid-Atlantic Ridge, in the eastern portion of our Greenland domain. Of the n = 419 heat flow measurements, 

53% have a measurement uncertainty of <5 mW m-2, 40% have a measurement uncertainty of between 5 and 20 mW m-2, and 

7% have a measurement uncertainty of >20 mW m-2 (Figure 6). 405 

3.2 Greenland Heat Flow Map 

Combining multiple simulations from the machine learning algorithm provides a seamless heat flow map across both 

continental and oceanic areas around Greenland (Figure 7). This seamless heat flow map represents the mean, or “best 

estimate”, of geothermal heat flow across the domain. Our “without NGRIP” heat flow simulation suggests a mean onshore 

heat flow across Greenland of 44 mW m-2, ranging from 28 to 76 mW m-2 across the country. Aside from a heat flow anomaly 410 

of up to 100 mW m-2 in Central North Greenland, our “with NGRIP” heat flow simulation is broadly similar to the “without 

NGRIP” simulation. The presence of the NGRIP anomaly, however, increases the mean onshore heat flow across Greenland 

to 48 mW m-2. Generally, the range between maximum and minimum heat flow simulations is <20 mW m-2 for most continental 

areas. The heat flow anomaly around NGRIP is caused by the machine learning algorithm classifying the anomaly region as 

broadly similar to NGRIP, based on the twelve input geophysical datasets.  415 

Aside from the NGRIP anomaly, the most distinctive onshore heat flow feature is the relatively low heat flow within 

the North Atlantic Craton of South Greenland. As the North Atlantic Craton is an old Archaean block, it is expected to have 

an average surface heat flow significantly less than younger continental terrains (Goes et al., 2020). Apart from the NGRIP 

anomaly, the highest onshore heat flow is in central eastern Greenland. This positive anomaly, or warm bias, in heat flow is 

attributable to proximity to the Mid-Atlantic Ridge. Offshore, there is a clear asymmetry to the east and west of Greenland. 420 

West of Greenland, in Davis Strait and Baffin Bay, heat flow is generally similar to continental values with some indications 

of near-shore warm anomalies. However, these warm anomalies may be due to our approximate delineation between 

continental and oceanic crust types. East of Greenland, in the North Atlantic and Greenland Sea, there is a pronounced high 

heat flow along the Mid-Atlantic Ridge. Offshore heat flow is enhanced throughout the Irminger Basin off Southeast 

Greenland. 425 

We compare our modelled heat flow map with the measured heat flow values (Figure 8). Generally, the residuals 

between measured and modelled heat flow are <20 mW m-2 in the continental portion of the domain. NGRIP, however, is a 

clear outlier in this n = 419 site comparison. In the oceanic portion of the domain, the residuals are typically larger. This 

asymmetry may be attributable to both our coarse resolution of the continent–ocean crustal boundary or differences in the 

accuracy and resolution of geophysical datasets in the onshore and offshore portions of the domain. Our relatively poor 430 

delineation of the continent–ocean crustal boundary inevitably results in some oceanic measurements lumped into the 

continental simulations, and vice versa. These larger residuals suggest that available geophysical datasets do not capture local 

processes offshore, especially along the Mid Atlantic Ridge, as well as in some onshore areas. In other words, the global or 

regional datasets upon which the machine learning algorithm depends have insufficient resolution to capture the variety of 

local processes reflected in heat flow measurements (Section 4.2). This is a fundamental limitation of the 55 km spatial 435 
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resolution we adopted to ensure a globally consistent heat flow simulation. We expect these residuals to decrease with finer 

spatial resolution and the inclusion of more geophysical datasets.  

The magnitude and spatial distribution of heat flow is clearly very sensitive to the inclusion of the relatively high and 

uncertain NGRIP heat flow measurement (129±30 mW m-2). This machine learning outcome is similar to that highlighted by 

Rezvanbehbahani et al. (2017). The inclusion of NGRIP in the training data introduces substantial ensemble uncertainty in 440 

Central North Greenland, as the machine learning algorithm cannot reconcile the NGRIP anomaly with available input 

geophysical datasets. The magnitude and spatial distributions of the ensemble uncertainty ranges of the “with” and “without” 

NGRIP simulations clearly show that, of all on-shore measurements, the machine learning algorithm is most sensitive to the 

inclusion or exclusion of NGRIP (Figure 9). Our recommendation to exclude NGRIP from the training data is on the basis that 

it is not representative of the regional background lithospheric heat flow. The heat flow measured at NGRIP is ~86 mW m-2 445 

greater than the heat flow we simulate at NGRIP: 43 mW m-2 with a range of 35 to 45 mW m-2. However, strictly speaking, 

the NGRIP ice borehole measurement reflects elevated heat flow in the basal layers of the ice sheet and is not necessarily 

representative of thermal conditions in the underlying bedrock. A substantial portion of this ~86 mW m-2 discrepancy between 

observed basal and simulated geothermal heat flows may be attributable to local subglacial hydrological processes (Gooch et 

al., 2016; Bons et al., 2021; Smith-Johnsen et al., 2021). For example, subglacial water flow or hot springs are much finer-450 

scale processes in comparison to the 55 km resolution of our machine learning algorithm. We note that future additional 

measurements of elevated heat flows in Central North Greenland may yet render NGRIP statistically representative of the 

broader region. We therefore make both the “with” and “without” NGRIP heat flow maps available in the database.  

4 Discussion 

4.1 Paleoclimate Correction 455 

Ground surface temperature is an important boundary condition for geothermal flow. Increases in surface temperature 

generally decrease the temperature gradient and heat flow, while decreases in surface temperature generally increase the 

temperature gradient and heat flow. The depth of these heat flow perturbations depends on the magnitude and duration of the 

paleoclimatic shift. In Arctic settings, the most striking paleoclimatic heat flow perturbations are those associated with 

submarine to subaerial transition. In areas where crustal uplift causes land to emerge from the ocean, geothermal flow is greatly 460 

enhanced by the transition from a relatively warm ocean-bottom boundary temperature to a relatively cold atmospheric 

boundary temperature. While this heat flow anomaly is limited to low-elevation coastal fringes, it can be surprisingly 

pronounced. For example, a heat flow of 148 mW m-2 was measured in the Alert_203-1 borehole at 5 m elevation, whereas a 

heat flow of 72 mW m-2 was measured in the Alert_202-2 at 77 m elevation <2 km away (Taylor et al., 2006). Similarly, the 

Marraat-1 borehole at 13 m elevation yielded a geothermal flow of 132 mW m-2 (Damm and Christensen, 1994), which is ~160 465 

% greater than the 50 mW m-2 measured at G02_Paakitsoq at higher elevations ~110 km away (Tatenhove and Olesen, 1994). 
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While the basalt and gneiss rock types are different between the Marraat-1 and G02_Paakitsoq sites, their thermal properties 

are not sufficiently different to readily explain this discrepancy in local heat flows.  

 We demonstrate the magnitude and duration of a submarine to subaerial paleoclimate perturbation using a simple 1-

D heat flow model. In this model, we prescribe a constant basal heat flow of 50 mW m-2 applied at 500 m depth and uniform 470 

thermal diffusivity of 0.5 mm2 s–1. We then assume that the surface boundary condition shifts from a +4°C submarine setting 

to a –6°C subaerial setting at model initialization. For this submarine to subaerial transition, which is characteristic of the 

Ilulissat area, it is plausible that geothermal flows of >150 mW m-2 can persist to depths of 100 m for >400 years as freshly 

emerged coastal land cools in the atmosphere (Figure 10). While it is clear that the Alert_203-1 and Marraat-1 boreholes 

represent encounters with the elevated coastal heat flow anomaly associated with recent land emergence, this effect may 475 

influence other heat flow measurements in the database to a lesser degree. Caution should be exercised when interpreting heat 

flow measurements from land that has emerged in geologically recent times (i.e. since the Little Ice Age). While it may be 

difficult to interpret anomalous coastal heat flow measurements, it is conceivable that this coastal heat flow anomaly could be 

harnessed as an indirect, or low-temperature, geothermal heat source for coastal settlements around Greenland. 

 A second paleoclimatic heat flow perturbation is that associated with subglacial to subaerial transitions (and vice 480 

versa), as well as transitions between cold-based (or frozen) and warm-based (or thawed) subglacial conditions. The effect of 

such transitions is highlighted by 2D simulations of bedrock temperature and heat flow at the DH-GAP04 borehole in West 

Greenland (Claesson Liljedahl et al., 2016; Hartikainen et al., 2021). For this site, an uncorrected heat flow of 28 mW m-2 was 

calculated over the 280-480 m depth range. The uppermost 280 m of borehole temperatures were discarded to avoid the effect 

of topography and recent variations in surface climate. Calculating a longer-term paleoclimatic correction, one that accounts 485 

for both ice-sheet history and climatic events influencing ground surface temperature, has been performed using a 2D cross-

sectional simulation and site-specific data for the past 100 ka (Hartikainen et al., 2021). This period includes a full glacial 

cycle, during which DH-GAP04 transitioned between ice-covered and ice-free periods, as well as between cold- and warm-

based ice-sheet conditions. This approach suggests a paleoclimatically corrected heat flow of 38±2 mW m-2, which is ~36% 

greater than the present-day measurement. This paleoclimatically corrected heat flow represents the equilibrium heat flow 490 

through Earth’s crust, unaffected by long-term variations in ground surface temperature over millennial time scales. When 

interpreting near-surface heat flow in previously glaciated terrain, it is important to use a paleoclimatically corrected heat flow 

as the deep, or lower boundary condition, in heat flow simulations. 

Figure 11 shows a 2D cross-sectional heat flow simulation at DH-GAP04 that exemplifies both types of glacial 

transitions described above. First, at around 10 ka (3 kyr before deglaciation), the local basal thermal state of the ice sheet 495 

changes from being cold-based (basal ice temperature ~−8°C) to warm-based (basal ice temperature at the pressure melting 

point, ~−1°C; Hartikainen et al., 2021). This results in a very strong decrease in heat flow. At the DH-GAP04 borehole, the 

heat flow is reduced from 35±3 to 12±1 mW m-2 (~65% decrease). Subsequently, at the time of deglaciation (around 7 ka), the 

ground surface cools by 2–6°C, compared to the ice-covered warm-based period, as the area becomes subject to Holocene air 

temperatures. This cooling lithospheric surface boundary condition increases heat flow to 25±5 mW m–2. At this site, the 500 
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glacial transitions therefore result in complex changes in heat flow, with values ranging from 11 to 38 mW m–2 over the past 

100 ka (Hartikainen et al., 2021). Across its 25-km transect distance, this simulation also highlights considerable spatial 

variability in the heat flow response to glacial transitions. Thus, similar to submarine to subaerial transitions, glacial transitions 

may result in considerable temporal variations in geothermal heat flow with a complex kilometer-scale spatial pattern. 

Paleoclimatic corrections for previously glaciated terrain will always have some degree of uncertainty associated with assumed 505 

basal ice temperature, near-surface ground temperature, and ice-cover histories.   

A third paleoclimatic heat flow consideration is the propagation of surface temperature changes through persistent 

ice-sheet cover to the subglacial interface where heat flow is measured (Calov and Hutter, 1997). The propagation of surface 

temperatures through the ice sheet is controlled by heat conduction and advection, where the latter is caused by a combination 

of snowfall leading to vertical transport of relatively cold surface snow downwards, and ice-flow dynamics giving rise to 510 

horizontal ice transport from colder interior sites to warmer marginal sites (Hooke, 2019). In the interior of the ice sheet, 

advection generally dominates in the upper ice column. There, vertical velocity at the ice-sheet surface is effectively equivalent 

to the snowfall rate, which means that downward advection outpaces upward conduction from the bed. Lower in the ice 

column, where vertical velocities become smaller, conduction becomes increasingly important. This means that – even in the 

absence of heat sources or sinks – a deep ice temperature profile measured today, is typically not representative of present-day 515 

climate but is instead a convolution of competing advection and conduction processes (Calov and Hutter, 1997). Measurements 

of ice temperatures on the ice divide thus display a cold anomaly in the Last Glacial Period ice temperatures (115–11 ka) and 

a warm anomaly in the part of the ice column that corresponds in age to the Holocene Climatic Optimum (8–5 ka) (Gundestrup 

et al., 1994; Dahl-Jensen et al., 2003). Due to conduction, the magnitudes of these anomalies moderate over time. Simply put, 

however, there can be a multi-centurial to multi-millennial time lag, depending on ice thickness, for surface temperature 520 

changes to reach the ice-bed interface at the ice divide. In the ice-sheet interior, present-day basal ice temperatures still reflect 

a past cooler climate and measured temperature gradient and heat flow will be greater than if Greenland’s climate had not 

changed significantly in the past c. 100 ka. Indeed, the 61±2 mW m-2 present-day heat flow that we estimate at GRIP is ~20% 

greater than the 51 mW m-2 estimated for that site with differing paleoclimatic corrections (Dahl-Jensen et al., 1998; Greve, 

2019). 525 

4.2 Other Corrections 

In addition to correcting local heat flow measurements to account for the effect of non-steady local past climate, there are 

several other heat flow corrections relevant within the Greenland domain. First, there is local topographic correction, to account 

for elevated heat flow in valleys and correspondingly diminished heat flow along ridge lines (Lees, 1910). This is the only 

systematic correction currently provided in the database, based on the geostatistical model of Colgan et al. (2020). Within our 530 

Greenland domain, this topographic correction ranges from a minimum of –21±5% at Hole 38 in Ilímaussaq, South Greenland 

(Sass et al., 1972), to +55±10% at the Dybet site in Young Sound, East Greenland (Rysgaard et al., 2018). These end-member 

sites highlight the potential importance of acknowledging topographic influence on local heat flow. However, there are several 
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measurement sites where topographic correction is not resolved by the Colgan et al. (2020) product, primarily due to 

geographic limitations. At Agassiz Ice Cap, for example, four borehole ice temperature profiles have been measured within 535 

±1100 m of the same position (Agassiz77, 79A, 79B and 84; Clarke et al., 1987; Fisher and Koerner, 1994). The ice thicknesses 

vary between 128 and 341 m across these sites and assessed heat flows vary between 51±6 and 58±5 mW m-2. Topography 

likely explains part of the apparent discrepancy among those four closely spaced measurements.  

 Second, groundwater flow can substantially modify the apparent geothermal heat gradient. The heat advection 

associated with even relatively small ~1 L s-1 groundwater flows can be comparable to the heat diffusion associated with the 540 

geothermal gradient (Mansure and Reiter, 1979). In Greenland, there are clearly some areas where groundwater flow is 

substantially suppressing or enhancing the apparent geothermal heat gradient. For example, at the DH-GAP01 site near 

Kangerlussuaq, in Southwest Greenland, the apparent geothermal gradient in a talik beneath a small lake is almost entirely 

moderated by groundwater flow. There, measured heat flow is reduced 90% in comparison to the nearby DH-GAP03 and DH-

GAP04 sites (Johansson et al., 2015). In contrast, there are also areas of Greenland with active hot springs where groundwater 545 

flow can similarly overwhelm the regional geothermal heat flow value (Persoz et al., 1972). At Unartukavsak, West Greenland, 

for example, a subaerial 15°C hot spring discharge of 1 L s–1 represents a 63 kW sensible heat source relative to a mean annual 

air temperature of 0°C (Hjartarson and Armannsson, 2010). This is equivalent to a heat flow of 6300 mW m–2 over a 

characteristic area of 100 m2. These end-member sites highlight the need to account for the differing influences of “cold” and 

“hot” groundwater flow on-shore, including in subglacial settings. 550 

 Third, while approximately half of Earth’s contemporary heat flow is ultimately derived from radioactive decay, 

primarily within the mantle, heat production from near-surface radioactive sources can influence the apparent magnitude and 

spatial distribution of the deeper geothermal gradient (Lees, 1910). The temperature profiles of the Ilímaussaq boreholes, 

drilled for the Kvanefjeld uranium prospect in South Greenland, are substantially influenced by near-surface radioactive heat 

production. Their measured heat flows (34 to 39 mW m-2) have been estimated to reflect a near-surface radioactive heat 555 

production of ~8 μW m–3 over limited horizontal (<10 km) and vertical (<1 km) extents. Based on heat flow measurements in 

analogous Precambrian Shield settings in Canada, Australia and the United States, Sass et al. (1972) suggested that the 

measured Ilímaussaq heat flows are 26 to 44 % higher than the ~27 mW m-2 heat flow that would otherwise be expected for 

Precambrian Shield. The Ilímaussaq boreholes highlight the potentially non-trivial influence of near-surface radioactive heat 

production for altering local geothermal gradients in Greenland. Given the diverse subaerial geology of Greenland, and the 560 

vast area of poorly resolved subglacial geology beneath the ice sheet (Dawes, 2009), it is likely that there are areas in the 

Greenland domain beyond Ilímaussaq/Kvanefjeld where heat flow may be similarly influenced by non-trivial heat production 

associated with near-surface geology.  

 Finally, lateral contrasts in the thermal conductivity of rock types can result in local heat flow refraction (Jaeger, 

1965; Lachenbruch, 1968). In these settings, geotherms close to the geological boundary are influenced by the contrast between 565 

relatively high and low conductivity rock types, with heat flow diverted from the low conductivity rock type into the high 

conductivity rock type. Sharp spatial contrasts in thermal conductivity associated with rock type may modify local heat flow 
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by ±15% in subglacial settings (Willcocks et al., 2021). Within our Greenland domain, the effect of lateral conductivity 

contrasts on heat flow has been qualitatively described at the Isua site. There, Colbeck and Gow (1979) suggest that the heat 

flow measured in ice-sheet boreholes may be biased low, as subglacial heat flow is potentially being diverted into the adjacent, 570 

and highly conductive, subaerial iron ore formation. With the recent availability of digital maps of subaerial Greenland geology 

available on open platforms, such as the Escher and Pulvertaft (1995) geological map that now appears in QGreenland 

(https://qgreenland.org; last access 8 February 2022), and growing knowledge of variations in thermal conductivity with rock 

type, it appears feasible to begin systematically quantifying the effect of lateral conductivity contrasts on heat flow across ice-

free areas of Greenland. 575 

 
Table 4 - Number of heat flow observations and geophysical datasets used by this study and five previous studies within the 
Greenland domain that we consider. These values may be regarded as best estimates. The interpolation method of each study is also 
listed. 

Model 

Number of Greenland heat flow measurements 
Number of 
geophysical 

datasets 

Interpolation 
method Onshore 

Offshore 
Subglacial Subaerial 

This study  25 77 317 12 Machine 
learning 

Rezvanbehbahani et al. 
(2017) 5 4 0 20 Machine 

learning 

Artemieva (2019) 1 60 229 8 Thermal isostasy 
model 

Martos et al. (2018) 6 2 0 5 Forward model 

Greve (2019) 5 3 0 3 
Paleoclimate 
and Ice flow 

model 

Lucazeau (2019) 4 62 248 14 Geostatistical 
model 

 580 

4.3 Comparison of Heat Flow Models  

We statistically compare our heat flow model to five previously published Greenland heat flow models, whose inputs and 

methods are summarized and compared with ours in Table 4. With a mean Greenland heat flow of 44 mW m-2, our “without 

NGRIP” simulation infers the lowest mean Greenland heat flow across all models to date (Table 5). Even when including 

https://qgreenland.org/


23 
 

NGRIP in the continental jackknifing simulations, our mean “with NGRIP” heat flow only increases to 48 mW m-2. When 585 

comparing all seven heat flow simulations with the n = 21 grid cells of binned heat flow measurements (including NGRIP) 

within the Greenland land area common to all seven models, we find that our model which includes NGRIP in the training 

dataset has the smallest bias and root-mean-squared-error (RMSE). Our model is followed by the model of Rezvanbehbahani 

et al. (2017) which has the second smallest bias, and the model of Greve (2019) which has the second lowest RMSE (Figure 

12). If we exclude the NGRIP measurement from the comparison our simulation trained without NGRIP yields the smallest 590 

bias (0 mW m-2) and RMSE (11 mW m-2 As we exclude the relatively high and uncertain NGRIP heat flow measurement from 

our training dataset, our model clearly does not reproduce this heat flow anomaly, unlike models that do include the NGRIP 

measurement. However, even our model that is trained with NGRIP predicts a heat flow value of only 90 mW m-2 at NGRIP, 

which is 39 mW m-2 less than the measured value (129 mW m-2). This difference of 39 mW m-2 between measured and 

predicted values remains the highest residual among all onshore sites (Figure 12). 595 

We also qualitatively compare the magnitude and spatial distribution of our geothermal heat flow map without NGRIP 

with these five previous studies (Figure 13). In comparison to the most methodologically similar model, the machine-learning 

model of Rezvanbehbahani et al. (2017), we infer a significantly cooler Central North Greenland. This pronounced difference 

can be explained partly by our choice of excluding the NGRIP measurement but also the model which is trained with NGRIP 

is colder in Central North Greenland than Rezvanbehbahani et al. (2017). We also employed more Greenland regional datasets, 600 

which are generally finer resolution, and better suited to our study area than global datasets, and trained our model with a 

significantly larger number of in situ measurements. 

The Lucazeau (2019) heat flow model is also geostatistical, as it relies on empirical correlations between global 

geophysical datasets and heat flow measurements. While the Lucazeau (2019) model shares similar length scales of spatial 

variability (~50 km), its patterns are quite different from our model. For example, they infer a relatively warm North Atlantic 605 

Craton. These differences can be attributed to our explicit preference for more detailed regional datasets, instead of global 

datasets, where possible. An additional source of deviation from the Lucazeau (2019) model may be their manually weighting 

of included geophysical datasets, whereas our machine-learning algorithm includes geophysical datasets without a priori 

weights. 

 Martos et al. (2018) based their heat flow model on identifying deep magnetic sources, assuming that the deepest 610 

sources coincide with the Curie isotherm and constructing a regional thermal model of heat flow. Their regional thermal model 

infers a band of enhanced heat flow anomaly from Central East to Northwest Greenland. Our model does not infer this 

enhanced heat flow anomaly and also finds substantially lower heat flows in the North Atlantic Craton. We attribute these 

differences to the choice of input data, including availability of heat flow measurements, and differing geostatistical and 

thermal modelling approaches.  615 

Artemieva (2019) proposed a thermal isostasy method to calculate upper mantle temperatures, lithosphere thickness 

and geothermal heat flow using bedrock topography, ice thickness and Moho depth from seismic data. This approach is 

sensitive to the choice of surface wave tomography models and reference values. Our model has the largest discrepancy with 
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the Artemieva (2019) model along the coast of Central East Greenland, where our model infers a substantially lower heat flow 

over a broad region. All four other models, however, also predict lower heat flows than Artemieva (2019) in this region, which 620 

suggests this anomaly is unique to the data or methodology of Artemieva (2019).  

Finally, the Greve (2019) heat flow model uses a numerical ice sheet model to infer the heat flow required to match 

observed basal ice temperatures at ice core locations, treating the Pollack et al. (1993) heat flow model as an a priori guess. 

Similar to the difference field with Rezvanbehbahani et al. (2017), our difference field with Greve (2019) highlights the NGRIP 

measurement site, where we predict a much lower regional heat flow. The spatial patterns in the Greve (2019) model suggest 625 

it is sensitive to a relatively small number of input heat flow measurements (n = 8). Part of the difference from our model may 

therefore be attributable to differing availability of heat flow measurements between studies. 
 

Table 5 - Minimum, mean and maximum heat flow over Greenland onshore area from this study and five previous studies. Root-
mean-squared-error (RMSE) and simulated-minus-measured bias relative to heat flow measurements within the common land area 630 
domain also shown (Figure 12). Here, the number of onshore heat flow measurements (sample) reflects binned 55-km grid cells. See 
Table 4 for a comparison of the heat flow measurements used in each of these studies. 

Model 
Min 

[mW m-2] 

Mean 

[mW m-2] 

Max 

[mW m-2] 

RMSE 

[mW m-2] 

Onshore 

bias  

[mW m-2] 

Sample 

Size 

This study (without NGRIP) 28 44 76 
11 0 20 

22 –4 21 

This study (with NGRIP) 29 48 102 13 0 21 

Rezvanbehbahani et al. (2017) 20 54 124 15 +1 21 

Artemieva (2019) 40 58 108 23 +6  21 

Martos et al. (2018) 50 60 75 24 +8 21 

Greve (2019) 32 62 130 14 +6 21 

Lucazeau (2019) 46 64 83 25 +11 21 

 

4.4 Icelandic Plume Track 

There is substantial interest in understanding the paleo Icelandic plume track beneath Greenland and its ice sheet. Generally, 635 

there is consensus among plume track models that the Icelandic plume was located in the vicinity of present-day Kangersertuaq 

Fjord in Central East Greenland at ~50 Ma (Morgen, 1983; Forsyth et al., 1986; Muller et al., 1993; Doubrovine et al., 2012; 
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Martos et al., 2018). In addition to reconstructing past tectonic motion, this paleo plume fix is supported by the presence of 

basalts up to 7 km thick from the North Atlantic Igneous Province dated to ~56 Ma along the Blosseville Coast (Storey et al., 

2007) and the presence of a relatively low upper mantle viscosity there today (Khan et al., 2016). However, there is less 640 

consensus as to the plume position prior to this time, with analogous West Coast plume positions previously hypothesized 

from Disko Island (70°N) to Petermann Glacier (81°N). It has also been recently suggested that Greenland bears the imprint 

of not just one – but two – plume tracks with differing histories of activity (Toyokuni et al., 2020). 

Our model does not show an area of elevated heat flow that might be interpreted as a remnant of the Icelandic plume 

track. This pattern is consistent with Rezvanbehbahani et al. (2017), Greve (2019) and Lucazeau (2019), but differs from 645 

Martos et al. (2018) and Artemieva (2019), which both infer plume tracks. An earlier model from Rogozhina et al. (2016), can 

also be interpreted in terms of west-to-east passage of a plume. There is debate over the potential influence of paleo plume 

activity on present-day heat flow beneath the Greenland Ice Sheet (Smith-Johnsen et al., 2020; Bons et al., 2021). It is plausible 

that enhanced heat flow of ~10 mW m-2 may exist along the most recent 50 Ma of the plume track, but heat flow anomalies 

likely become difficult to observe after this time, as heat flow returns to balance (Martos et al. 2018). The main observable 650 

impacts of paleo plume activity are now likely limited to the base of the lithosphere, meaning that plume tracks derived from 

geophysical modelling may not reflect near-surface heat flow, but rather an imprint of underlying lithospheric architecture. 

Interpretations of paleo plume tracks are further complicated by the presence of very young volcanic and geothermal 

processes. Young igneous formations in East Greenland, dated to 14 Ma, suggest very recent widespread volcanism well after 

Greenland moved off the Icelandic plume (Storey et al., 2004). Similarly, the presence of coastal geothermal hot springs in 655 

both Central West and Central East Greenland suggests appreciable contemporary heat sources far from the contemporary 

location of the Icelandic plume (Hjartarson and Armannsson, 2010; Figure 6). Storey et al. (2004) suggested that metasomatic 

processes and emplacement of volatiles from the plume into the shallow mantle may have had long-lived influence on the 

region. It is conceivable that small pressure perturbations resulting from loading and unloading of ice sheets, and/or tectonic 

stresses, could result in local volcanism in such a mantle (Jull and McKenzie, 1996). A north–south transect of on-shore heat 660 

flow measurements in Central East Greenland, either subaerial, subglacial, or a combination of both, could improve 

understanding of the residual heat flow anomaly associated with the paleo plume, as well as offer insight on elevated heat flow 

potential associated with young secondary processes.  

5 Summary Remarks 

Here, we have documented the first version of the Greenland Geothermal Heat Flow Database and Map. While we have 665 

increased the available heat flow measurements by 44% (290 to 419) within the Greenland domain, onshore measurements 

remain disproportionately scarce. Greenland represents ~1.5% of global land area, but – once our regional database is merged 

into the IHFC database – Greenland will only represent 0.08% of IHFC onshore measurements. We anticipate updating this 

measurement database as new measurements and corrections become available. We will continue efforts to parse the Type 2 
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sites (uncertain temperature data) into either Type 1 (new measurement) or Type 3 (no temperature data) classes. Topographic 670 

correction is presently the only systematic correction available within the measurement database, but there is clearly a need 

for more systematic corrections. Most notably, the application of a standardized, yet site-specific, paleoclimatic correction to 

all measurement sites would ensure that heat flow measurements are interpreted in the correct climatic context.  

We have used machine learning to create a heat flow map that is self-consistent with this measurement database. 

While there has been a proliferation of Greenland heat flow maps in the past decade, compilations of in situ heat flow 675 

measurements have generally lagged these models. The heat flow map we present may be the first of a new generation of heat 

flow maps that are self-consistent with a larger and better documented inventory of in situ heat flow measurements. Clearly, a 

fundamental question in mapping Greenland heat flow is whether or not to include NGRIP as a regionally representative heat 

flow measurement. This touches on a larger issue of how to not only understand the effect of local processes in measurements, 

but also how to represent the influence of these local processes in large-scale models. For the NGRIP measurement, this may 680 

mean resolving potential differences between “basal” and “geothermal” heat flows. In regional models, this may mean 

representing the cumulative effect of local processes like widespread hot spring activity.  

 There is a present possibility to use unconventional sources to increase the inventory of available in situ Greenland 

heat flow measurements. Abandoned prospecting wells can be repurposed for heat flow measurements by inserting temperature 

strings to measure local geothermal gradients. While this requires knowledge of well closure and present conditions, it has 685 

been successful in the past. Local temperature gradients can also be resolved by combining knowledge of seismic- or radar-

derived permafrost depth with mean annual ground temperature. This is most feasible in valley bottoms, where the permafrost 

is contained within a thick sediment package and there is free water below the permafrost limit. Finally, while hot spring 

temperatures do not serve as reliable indicators of regional geothermal heat flow, chemical analyses of their water can resolve 

deep temperatures that are characteristic of regional phenomena and heat flow. It is likely that many uncharted hot springs – 690 

both subaerial and subglacial – exist in Greenland. 

 There are presently at least four grand challenges that motivate further improvement of our scientific understanding 

of Greenland’s geothermal heat flow. First, geothermal heat flow is a critical basal boundary condition for the 

thermomechanical ice flow models being used to project Greenland’s future sea-level rise contribution. Second, geothermal 

heat flow is similarly a critical basal boundary condition influencing the stability of periglacial processes and landforms, 695 

including both onshore permafrost and shallow offshore gas hydrates, that can deteriorate under future climate change. Third, 

resolving how the present-day magnitude and spatial distribution of geothermal heat flow may reflect the pre-50 Ma influence 

of the Icelandic plume track may be key to resolving Greenland’s geologic history. Finally, from a social perspective, there 

appears to be potential for low-temperature geothermal heating to play a role in Greenland’s green energy transition.  
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Figure 1 - Overview of site locations and types in the heat flow measurement database. Reassessed heat flow values described in 
Tables 3 and 4. Dashed line denotes our study boundary, 500 km from Greenland’s coasts. The Meighen and Barnes Ice Caps lie 990 
outside this boundary, but we still report these subglacial measurements here. Projection is EPSG:3413. See Figure 6 for the sites 
overlaid on a bathymetric map.  
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Figure 2 - Extrapolating temperature gradient at the ice-bed interface in the Devon72 borehole, where ice temperature 995 
measurements are not available in the deepest 29% of the ice column.  
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Figure 3 - Machine learning results highlighting spatial variability due to the jackknifing approach within the continental portion 
of the domain. The mean (a,d), minimum (b,e) and maximum (c,f) geothermal heat flow calculated from n = 59 jackknifing 
simulations without NGRIP (a,b,c) and n = 60 jackknifing simulations with NGRIP (d,e,f). 
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Figure 4 - The importance of the 12 input variables used in the machine learning. (a) for the continental model domain and (b) for 
the oceanic model domain. “Bz” denotes the vertical magnetic field component.  
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Figure 5 - Histograms of heat flow measurements in the subaerial (n = 77), subglacial (n = 25) and submarine (n = 317) populations 
(Left) and the onshore (n = 102) and offshore (n = 317) populations (Right). 
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Figure 6 - Left: Heat flow measurements, scaled by magnitude, overlaid on the ETOPO1 digital elevation model (Amante, and 1015 
Eakins, 2009). Green dots denote onshore measurements (n = 102) and blue dots denote offshore measurements (n = 317). Magenta 
squares denote hot springs inventoried by Hjartarson and Armannsson (2010). Right: The same for uncertainty in heat flow 
measurement. Projection is EPSG:3413 (bottom x-axis and right y-axis). 
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Figure 7 - Machine learning results for the combined continental and oceanic portions of the domain. For the onshore part, the 
model trained without NGRIP is used. Note the different color scale in comparison to Figure 3. 
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Figure 8 – a) Difference (measured-minus-modelled heat flow) at measurement sites in comparison to our “without NGRIP” 
simulation. Blues denotes that the model is “colder” than the measurement. b) Comparison of modelled and observed heat flow 
values at 419 sites. The NGRIP measurement is included in this comparison as a purple dot.   
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Figure 9 – The jackknifing ensemble uncertainty range, calculated as the difference between maximum and minimum heat flow, for 
the a) “with” and b) “without” NGRIP simulations. The inclusion of NGRIP introduces substantial ensemble uncertainty in Central 
North Greenland, as the machine learning algorithm cannot reconcile the NGRIP anomaly with available input geophysical datasets 1035 
(Figure A1).  
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Figure 10 - Simulation of ground temperature (top) and geothermal flow (bottom) in response to a change in boundary temperature 1040 
from submarine to subaerial settings at year 0. This simulation is parameterized to approximate conditions characteristic of Ilulissat, 
western Greenland. 
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Figure 11 – Top: Simulated temporal changes in ground surface heat flow along a 25 km profile crossing the DH-GAP04 borehole 1045 
(at distance 0 m) during the last glacial cycle (104–0 ka). In this simulation, the ice sheet changed from cold-based to warm-based 
conditions around 10 ka, and the borehole location was deglaciated around 7 ka. Note the logarithmic scale on the y-axis. Bottom: 
Surface topography along the 2D cross-sectional model domain. The DH-GAP04 borehole is shown in pink. Present-day outlet 
glaciers are shown in light blue and lake locations are shown by dark blue bars (Hartikainen et al., 2021). 
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Figure 12 - Comparison of simulated and measured geothermal heat flow in binned 55 km grid cells within the Greenland land area 
common to all seven models (n = 21; Table 4). RMSE and bias for each model listed in Table 5. The NGRIP measurement is included 
in this comparison as a purple dot.  1055 
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Figure 13 - Comparison of the heat flow model of this study without NGRIP (a) to previously published models: (b) thermal isostasy 
from Artemieva (2019) model 1, (c) fitting to available heat flow data from Greve (2019), (d) global similarity study from Lucazeau 
(2019), (e) magnetic data from Martos et al. (2018) and (f) machine learning by Rezvanbehbahani et al. (2017) with NGRIP = 135 1060 
mW/m2. Anomaly plots are shown in (g) to (k), where blue denotes this study as “colder”. Mean geothermal heat flow of each model 
summarized in Table 6. 
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Appendix. 

Table A1 - Comparison of the data fields in the IHFC 1976 and 2021 database structures (Jessop et al., 1976; Fuchs et al., 2021a) 
and this study. ‘X’ denotes an included field. Red outlines and bold text denote the eighteen mandatory data fields of the IHFC 2021 1065 
structure and red shading denotes the eight mandatory data fields that are not available in our new database. Here, “T” denotes 
temperature and “TC” denotes thermal conductivity.  Full IHFC naming convention described in Fuchs et al. (2021a). 
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Table A2 - Geophysical datasets and features provided to the machine learning algorithm to spatially interpret point measurements 
of heat flow. Data extent is global, unless otherwise stated. A graphical overview of these input datasets is shown in Figure A1. 1070 

Feature Dataset/Method Reference 

Topography 
• Global 
• Regional 

  
• Earth 2014 
• BedMachine v3 

  
Hirt and Rexer (2015) 
Morlighem et al. (2017) 

Moho depth 
• Global 
• Regional 

  
• kriging interpolation 
• satellite gravity gradient inversion 

  
Szwillus et al. (2019)  
following the method of Haas et al. 
(2020) 

Lithosphere–Asthenosphere boundary 
• Global 
• Regional 

   
• LithoRef2018 
• AMISvArc 

   
Afonso et al. (2019) 
Steinberger et al. (2019) 

Tectonic regionalisation  
• Global 
• Regional 

 
• SL2013sv 
• NAT2021 

Schaeffer and Lebedev (2015)  
Celli et al. (2021) following the method 
of Schaeffer and Lebedev (2015) 

Magnetic susceptibility VIS model Hemant and Maus (2005) 

Vertical magnetic field  LCS-1 Ebbing et al. (2021) 

Mean curvature GOCE gravity gradient Ebbing et al. (2018) 

Distance to: 
• trench 
• ridge 
• transform faults 
• young rifts 
• volcanoes 

  
• UTIG (Plates project) 
• UTIG (Plates project) 
• UTIG (Plates project) 
• n/a 
• n/a 

  
Goutorbe et al. (2011) 
Goutorbe et al. (2011) 
Goutorbe et al. (2011) 
Şengör and Natal'in (2001) 
Siebert et al. (2010) 

 
  



51 
 

 

 
Figure A1 - Graphical overview of the twelve geophysical datasets and features provided to the machine learning algorithm (Table 1075 
A2). Each variable is shown in both global and local (Greenland) extents.  
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Figure A1 - continued.  
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