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Dear Topical Editor and Reviewers: 

 

On behalf of my co-authors, we thank you very much for reviewing our manuscript and giving us the 

opportunity to revise the manuscript. We appreciate the comments on our manuscript entitled “GISD30: 

global 30-m impervious surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery 

on the Google Earth Engine platform” (essd-2021-285). 

We have revised the manuscript carefully according to the comments. All the changes were high-

lighted (red color) in the manuscript. And the point-by-point response to the comments of the reviewers 

is also listed below. 

Looking forward to hearing from you soon. 

 

Best regards, 

 

Prof. Liangyun Liu 

liuly@radi.ac.cn 

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences 

No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China 
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Response to comments 

Paper #: essd-2021-285 

Title: GISD30: global 30-m impervious surface dynamic dataset from 1985 to 2020 using time-series 

Landsat imagery on the Google Earth Engine platform 

Journal: Earth System Science Data 

 

Reviewer #1 

This manuscript was trying to derive a new time-series (every five-year interval from 1985 to 2020) impervious 

surface dataset from Landsat imagery with the aid of the Google Earth Engine (GEE) platform. The authors 

divided the land surface into 961 5°×5° geographical tiles, and used random forest classifiers to identify 

impervious surfaces in each tile and period. Then they adopt a temporal consistency correction method to 

smooth the independent results classified during different five-year periods. A satisfactory performance was 

claimed (an overall accuracy of 91.5% and a kappa coefficient of 0.866) using more than 18 thousand validation 

samples. However, there are a number of concerns on the framing and introduction, the scientific contribution 

to literature and current datasets, the clarity of the methodology and results, and most importantly, the validation 

of the derived dataset. Below I highlight these key areas. 

Great thanks for the detailed and useful comments. The manuscript has been greatly improved according to your 

and another reviewer’s comments. 

 

The frame of the introduction 

In the introduction, the authors reviewed many previous studies and existing impervious surface products, and 

summarized a series of existing problems, such as significant inconsistency and uncertainty within existing 

datasets (L65-69), the monitoring efficiency of the time-series change detection strategy being very low (L81-

82, not necessarily true), image classification strategy performing well but collecting training samples being 

time-consuming and labor-intensive (L94-95). However, all these problems raised are not solved in the current 

version of manuscript and the objective of this study is missing. Are the authors going to reduce the uncertainty 

in inconsistent areas, or trying to improve the efficiency of the classification procedure?  

Great thanks for pointing out the issue. Yes, we raised a lot of problems after reviewing many previous studies 

and existing impervious surface products. In this study, we proposed a novel and automatic method to improve 

the efficiency of the classification procedure and then produced an accurate global 30 m impervious surface 

dynamic datasets. 

Firstly, the problem of significant inconsistency and uncertainty within existing datasets in the Introduction 

section has been removed and revised as: 

In recent years, with the continuous improvement of remote sensing techniques as well as computer storage and 

computing capabilities, global impervious surface monitoring has been undergoing a transition from the coarse 

spatial resolution of 1 km to the fine resolution of 30/10 m (Corbane et al., 2020; Gong et al., 2020; Liu et al., 

2018; Liu et al., 2020b; Schneider et al., 2009; Zhao et al., 2020; Zhou et al., 2018). Specifically, coarse 

impervious surface products primarily use time-series nighttime light datasets (including DMSP and VIIRS 

NTL imagery) (Xie and Weng, 2017; Zhao et al., 2020) and MODIS imagery (Huang et al., 2020; Schneider et 
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al., 2010) to capture global impervious surface dynamics; for example, Huang et al. (2021) used a fully 

automated mapping method to produce global 250 m urban area products for 2001 to 2018 using time-series 

MODIS imagery. Zhou et al. (2018) used the Defense Meteorological Satellite Program Linescane System’s 

nighttime light data to develop temporally and spatially consistent global 1 km urban maps for 1992 to 2013. 

Although these coarse global impervious surface dynamic products could capture global urban expansion trends, 

they are unsuitable for many regional applications, because a large quantity of broken and small-sized 

impervious surfaces are missed in coarse remote sensing imagery (Gong et al., 2020). Recently, benefiting from 

the improvements and maturity of cloud computing platforms (such as Google Earth Engine (Gorelick et al., 

2017)), many global 30 m multitemporal impervious surface products have been produced using long time-

series Landsat imagery (Florczyk et al., 2019a; Gong et al., 2020; Liu et al., 2018; Liu et al., 2020b). Liu et al. 

(2021a) comprehensively reviewed current seven global 30 m impervious surface products, and found only four 

products could capture the impervious expansion at the long time-series. Specifically, Liu et al. (2018) proposed 

a new index to develop multitemporal global 30 m urban land maps for 1990 to 2010 with 5-years intervals, but 

the products suffered the low producer's accuracy and user's accuracy of 0.50–0.60 and 0.49–0.61. Gong et al. 

(2020) used a combination of “exclusion–inclusion” and “temporal check” methods to generate the first annual 

global 30 m artificial impervious surface area dataset for 1985 to 2018, but the cross-comparisons in the Zhang 

et al. (2020) found that this annual dataset achieved great performance on mega-cities but suffered the under-

estimation problems in the rural areas. The global human settlement layer (GHSL) monitored the impervious 

dynamic from 1975 to 2015 (Florczyk et al., 2019b), but it suffered the overestimation problems at early stage 

and also missed the fragmented impervious objects (Gong et al., 2020). Therefore, an accurate global 30 m 

impervious surface dynamic product, which could accurately capture the spatiotemporal dynamic of various 

impervious objects including cities and rural, is still urgently needed. 

Then, the objective of the manuscript was to propose a novel method for automatically monitoring impervious 

surface dynamics at long time-series and then produce an accurate. The Introduction section about the objective 

of this study has been revised and added as: 

“To solve the time-consuming and manual participation problems for collecting massive training samples, 

many studies have proposed to derive training samples from existing land-cover products after using a 

series of refinement rules, and successfully produced the large-area land-cover maps with fulfilling 

performances (Zhang and Roy, 2017; Zhang et al., 2021; Zhang et al., 2019). For example, Zhang and 

Roy (2017) derived the training samples from time-series MCD12Q1 land-cover products and then used 

the derived samples for generating the 30 m land-cover maps with the overall accuracy of 95.44% over 

the whole America. Similarly, Zhang et al. (2021) combined the CCI_LC land-cover products and time-

series MCD43A4 to extract the confidence training samples and then produced the global 30 m land-

cover products with the overall accuracy of 82.5%. However, it should be noted that the derived samples 

usually selected these spatiotemporal stable pixels as candidate samples for ensuring the confidence of 

training samples. Namely, these changed information cannot be captured using this derived strategy. In 

addition, the spectral generalization strategy had also been demonstrated to have great performance for 

automatic land-cover mapping (Phalke and Özdoğan, 2018; Wessels et al., 2016; Woodcock et al., 2001; 

Zhang et al., 2019). For example, Zhang et al. (2019) used the training spectra from MCD43A4 products 

to classify the multitemporal Landsat imagery in China with the overall accuracy of 80.7%. However, 

the spectral generalization strategy usually needed the prior reference training spectra to build the 

generalized classifier.  



4 

 

Mapping of impervious surface is a challenging task due to its high spatiotemporal heterogeneity. In this study, 

we proposed to a novel and automatic method by combining the advantages of spectral generalization 

and automatic sample extraction strategy for monitoring time-series impervious surface dynamics. 

Specifically, we derived the training samples from prior land-cover products to solve the time-consuming 

and manual participation problems for manually collecting massive training samples. Then, we combined 

the derived training samples with the temporally spectral generalization to independently mapping 

impervious surfaces at long time-series. Next, a spatiotemporal consistency correction method was 

applied to the independent impervious surface maps to minimize the effects of classification errors and 

ensure the spatiotemporal consistency of the final dynamic impervious surface dataset. Finally, we 

produced an accurate and novel global 30 m impervious surface dynamic dataset (GISD30) from 1985 to 

2020 by combining the proposed method and Google Earth Engine cloud computing platform, which also 

provide vital support for monitoring regional or global urbanization and performing related tasks.” 

 

There have been already serval impervious surface products available, and why the authors still tried to derived 

a new one?  

Great thanks for pointing out the issue. The reasons why we derive a new impervious dynamic dataset has been 

revised as: 

“many global 30 m multitemporal impervious surface products have been produced using long time-series 

Landsat imagery (Florczyk et al., 2019a; Gong et al., 2020; Liu et al., 2018; Liu et al., 2020b). Liu et al. (2021a) 

comprehensively reviewed current seven global 30 m impervious surface products, and found only four 

products could capture the impervious expansion at the long time-series. Specifically, Liu et al. (2018) 

proposed a new index to develop multitemporal global 30 m urban land maps for 1990 to 2010 with 5-years 

intervals, but the products suffered the low producer's accuracy and user's accuracy of 0.50–0.60 and 

0.49–0.61. Gong et al. (2020) used a combination of “exclusion–inclusion” and “temporal check” methods to 

generate the first annual global 30 m artificial impervious surface area dataset for 1985 to 2018, but the cross-

comparisons in the Zhang et al. (2020) found that this annual dataset achieved great performance on 

mega-cities but suffered the under-estimation problems in the rural areas. The global human settlement 

layer (GHSL) monitored the impervious dynamic from 1975 to 2015 (Florczyk et al., 2019b), but it 

suffered the overestimation problems at early stage and also missed the fragmented impervious objects 

(Gong et al., 2020). Therefore, an accurate global 30 m impervious surface dynamic product, which could 

accurately capture the spatiotemporal dynamic of various impervious objects including cities and rural, 

is still urgently needed.” 

 

The text in the last paragraph of the introduction “The aim of the study was to automatically produce an accurate 

and novel global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020…” (L102-104) is more 

like a task rather than a study to solve particular scientific problem(s). I suggest that in the introduction the 

authors need to focus more on the what is/are the most urgent problem(s) in current studies, what are the main 

challenges behind these problems, and why the proposed methods / strategies are capable of solving these 

problems. 

Great thanks for the suggestion. Based on the suggestion, the last paragraph has been revised as: 

“Monitoring impervious surface dynamics is a challenging and time-consuming task due to its high 

spatiotemporal heterogeneity. In this study, we proposed to a novel and automatic method by combining the 
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advantages of spectral generalization and automatic sample extraction strategy for monitoring time-series 

impervious surface dynamics. Specifically, we derived the training samples from prior land-cover products to 

solve the time-consuming and manual participation problems for manually collecting massive training samples. 

Then, we combined the derived training samples with the temporally spectral generalization to independently 

mapping impervious surfaces at long time-series. Next, a spatiotemporal consistency correction method was 

applied to independent impervious surface maps to minimize the effects of classification errors and ensure the 

reliability and spatiotemporal consistency of the final dynamic impervious surface dataset. Finally, we produced 

an accurate and novel global 30 m impervious surface dynamic dataset (GISD30) from 1985 to 2020 by 

combining the proposed method and Google Earth Engine cloud computing platform, which also provide vital 

support for monitoring regional or global urbanization and performing related tasks.” 

 

The methodology 

1. As described in L135, the authors extracted the impervious surfaces in 2020 from the GLC_FCS30-2020 

(Zhang, et al., 2021) and used it as a baseline to derive the time-series impervious surfaces from 1985 to 2020. 

It is not clear what is the difference between this extracted impervious surface layer and the impervious surfaces 

derived by the authors. Is the extracted impervious surface layer directly used as the result for period of 2015-

2020?  

Great thanks for the comment. It is different between the derived impervious surface maps during 2015-2020 

and the prior impervious surface layer in GLC_FCS30-2020. Specifically, the impervious layer in GLC_FCS30-

2020 was only one of dataset to derive impervious surface training samples and the maximum impervious 

surface extents, while the derived impervious surface map during 2015-2020 was developed by the local 

adaptive classification models and then optimized by the temporal consistency checking algorithm. The 

explanation has been added in the revised manuscript as: 

It should be noted that the impervious surface layer in the GLC_FCS30-2020 dataset, which was independently 

produced by combining multisource and multitemporal remote sensing imagery and achieved an overall 

accuracy of 95.1% and a kappa coefficient of 0.898 (Zhang et al., 2020), was not used as the result for period 

of 2015-2020 in the final results, instead, only used as the prior dataset for deriving training samples and 

determining the broadest extents. 

 

2. The authors mentioned plenty times of their previous studies in the methodology section, such as Zhang et 

al., 2018, Zhang et al., 2019, Zhang et al., 2020, and Zhang et al., 2021. I am aware that the method used in this 

manuscript was developed based upon their previous ones. But most of these descriptions should be moved to 

the introduction and leave only the most original ones in the methodology section. Again, many discussions on 

other previous studies are found in the methodology section, too. They should also be moved to the introduction. 

In the current version, I can hardly see the core method proposed by the author or the adaptations/modifications 

of previous methods to derive time-series impervious surface.  

Great thanks for the comment. According to the suggestion, the previous works have been moved to the 

introduction. The method section has been totally improved and rewritten as: 

To achieve the automatic monitoring of the spatiotemporal dynamics of impervious surfaces, we proposed 

to transfer the pervious samples in 2020 to other periods by the irreversible assumption, and simultaneously 

migrated the impervious reflectance spectra in 2020 to other periods using spectral generalization strategy. The 
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key steps of the novel method were: 1) deriving training samples and maximum impervious surface extents 

from the prior GLC_FCS30-2020 land-cover products and other impervious surface products; 2) multitemporal 

imagery composting and relative radiometric normalization, which guarantees the feasibility of migrating the 

reflectance spectra of impervious surfaces in 2020 to other periods. 

3.1.1 Deriving training samples and maximum impervious surface extents from existing products 

As opposed to the traditional method of collecting training samples based on visual interpretation, in this 

study, the global training samples, including those of the impervious surface and the pervious surface, were 

automatically derived from the prior GLC_FCS30-2020 land-cover products and other prior impervious surface 

products by using a series of refinement rules. The reasons why we mainly chose the GLC_FCS30-2020 as the 

reference dataset were because: 1) the impervious surface layer in the GLC_FCS30-2020 was independently 

produced by combining multisource and multitemporal imagery with the high user’s accuracy of 93.2% and a 

producer’s accuracy of 94.8% (Zhang et al., 2020); 2) the other pervious land-cover types in the GLC_FCS30-

2020 also achieved a great performance with the overall accuracy 82.5%. Specifically, we firstly determined 

the maximum impervious surface extents and impervious training samples from prior products. Although the 

impervious layer in GLC_FCS30-2020 had an omission error of only 5.2% (Zhang et al., 2020), we still 

combined multiple global 30 m impervious surface products (GAIA-2018 (𝐼𝑆𝑔𝑎𝑖𝑎 ), GHSL-2014 (𝐼𝑆𝑔ℎ𝑠𝑙 ), 

impervious layer in the GlobeLand30-2020 (𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30) and GLC_FCS30-2020 (𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30)) to capture all 

the impervious surfaces as effectively as possible. Namely, the maximum impervious surface extents (𝐼𝑆𝑚𝑎𝑥), 

derived via the union of these four global impervious surface products (formula (1)), was used as the maximum 

boundary of subsequent time-series classifications. 

𝐼𝑆𝑚𝑎𝑥 = 𝐼𝑆𝑔𝑎𝑖𝑎 ∪ 𝐼𝑆𝑔ℎ𝑠𝑙 ∪ 𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30 ∪ 𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30  (1) 

Then, as for how to derive impervious training samples, the GAIA and GHSL datasets were demonstrated 

to suffer the problem of missing these fragmented impervious objects (such as: rural villages, roads) (Sun et al., 

2019), so the intersection operation was only applied to the impervious layer in the GlobeLand30-2020 

(𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30) and GLC_FCS30-2020 (𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30) to comprehensively capture impervious samples in both 

cities or small villages and minimize the effect of commission error in this two products. Afterwards, as the 

transition areas between two different land-cover types had high probability of being misclassified (Radoux et 

al., 2014), the spatial homogeneity of each candidate impervious sample was calculated using a local window 

of 3×3: 

𝑃𝑥,𝑦 =
1

𝑁
[∑ ∑ 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝)

𝑦+1
𝑦−1

𝑥+1
𝑥−1 ]  (2) 

where 𝑃𝑥,𝑦  denotes the spatial homogeneity of candidate pixel 𝐿𝑥,𝑦 , 𝐿𝑖𝑚𝑝  represents the label value of 

impervious surface, and the 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝) is the indicator function and N is the size of the local window size. 

In this study, we only retained these spatial homogeneity candidate impervious samples. Namely, if the 𝑃𝑥,𝑦 of 

candidate pixel was less than 1, the candidate impervious sample would be discarded. 

As we have combined four prior 30 m impervious surface products to determine the maximum impervious 

surface extents in 2020 (𝐼𝑆𝑚𝑎𝑥), the remaining areas outside 𝐼𝑆𝑚𝑎𝑥  were considered as pervious surfaces 

(𝑃𝑆𝑐𝑜𝑛𝑑𝑖). However, due to the complicated makeup and spectral heterogeneity of impervious surfaces, some 

pervious surface types such as: bare land, grassland and cropland would be spectrally confused with the 

impervious surfaces. For example, bare land was spectrally similar to the high-reflectance impervious surfaces 

because composition materials of the impervious surface, including the cement bricks and stone, were also 

present in the bare land. Meanwhile, cropland was also easily confused with impervious surfaces, especially in 
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the cases of some rural buildings (Sun et al., 2019), because both are composed of low-reflectance vegetation 

and high-reflectance artificial materials or bare soil. Therefore, we proposed to further split 𝑃𝑆𝑐𝑎𝑛𝑑𝑖 into three 

sub-classes (cropland, bare land and others) by using the GLC_FCS30-2020. Meanwhile, the spatial 

homogeneity checking (formula (2)) was also applied to each 𝑃𝑆𝑐𝑜𝑛𝑑𝑖 sample to minimize the confusions in 

these land-cover transition areas. 

Although we used refinement rules to extract high confidence training samples, the volume of candidate 

training points (including impervious surface and pervious surfaces) was still large especially for the pervious 

samples. Some studies have quantitatively demonstrated that the distribution, balance and size of training 

samples affect the classification accuracy (Jin et al., 2014; Mellor et al., 2015; Zhu et al., 2016). In this study, 

as the impervious surface was sparser than other pervious surfaces (cropland, bare land and others) in term of 

global total distribution areas, the training samples with equal allocation were used to guarantee training sample 

balance and to capture the spectral heterogeneity of impervious surfaces as effectively as possible. Namely, the 

ratio of impervious samples and pervious samples was close to 1:3. In addition, the spatial distribution of 

impervious surfaces greatly varies in different regions, therefore, if we derived training samples on a global 

scale, the continents with more sparse impervious surfaces (South America, Africa and Oceania) would lack 

sufficient samples to characterize their impervious surfaces. In order to further ensure that the training samples 

were locally adaptive, we adopted the tiled solution used in (Zhang et al., 2021), splitting the global land-area 

into approximately 961 5°×5° geographical tiles (Figure 4), and independently deriving training samples for 

each geographical tile. As for the sample size in each tile, Zhu et al. (2016) quantitatively demonstrated that the 

mapping accuracy first increased and then stabilized with the increase of the sample size and suggested a 

minimum of 600 training samples and a maximum of 8000 training samples per class. In this study, the sample 

size was about 5000 for each class, and the ratio between impervious surfaces and pervious surfaces was 1:3. 

3.1.2 Multitemporal imagery composting and relative radiometric normalization 

As our previous work (Zhang et al. (2020)) had quantitatively demonstrated that multitemporal information 

made a positive contribution to large-area impervious surface mapping, and the availability of Landsat imagery 

varied with the spatial distribution in Figure 1, it was necessary to decompose the time-series Landsat imagery 

into multitemporal features. According to the reviews in the Gomez et al. (2016), there were two main options—

“selection-based” and “transform-based”—for extracting multitemporal information from time-series imagery. 

The “selection-based” option was to use user-defined criteria to select the most suitable observation from the 

time-series imagery, so the composited imagery still contained the characteristics of surface reflectance. For 

example, the maximum NDVI (Normalized Difference Vegetation Index) compositing method was to select the 

observation with the largest NDVI value from time-series observations. While the “transform-based” method 

was to use the transform models (Fourier transform, mathematical statistics, etc.) to transform the time-series 

observations into new variables band by band, for example, the widely used quantile compositing method was 

to transform the time-series spectra into several quantiles based on the ranking of the values. Therefore, the 

composited imagery derived by the “transform-based” strategy cannot represented the actual characteristics of 

surface reflectance at wavelength dimension.  

As we needed to migrate the reflectance spectra of impervious surfaces in 2020 to other periods, the 

“selection-based” strategy was the optimal solution for spectral generalization. To select the user-defined 

criteria to composite the multitemporal features, given that the best-available-pixel (BAP) method could 

simultaneously take into account four factors (sensor type, day of year, distance to cloud or cloud shadow and 

aerosol optical thickness (White et al., 2014)), it has been widely used for generating annual or seasonal cloud-
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free composited imagery (Chen et al., 2021; Liu et al., 2019). In this study, in order to capture the multitemporal 

information from the time-series Landsat imagery, the seasonal BAP composited method, which applies the 

BAP compositing approach for each season, was used on time-series Landsat imagery in each period. Therefore, 

we derived four sets of seasonally composited Landsat imagery for each period. It should be noted that we 

categorized the time-series Landsat imagery from 1982 to 2020 into 8 periods with the interval of 5 years 

corresponding to the Figure 1. It should be noted that we assumed that the land-cover in those areas with missing 

would remain stable during this period. 

Meanwhile, for each seasonally composited imagery, excluding those in six optical bands (blue, green, red, 

NIR, SWIR1 and SWIR2), three spectral indexes, including the normalized difference built-up index (NDBI), 

normalized difference water index (NDWI) and normalized difference vegetation index (NDVI), were also 

imported, because NDBI was a good indicator of impervious surface and bareland, NDVI was sensitive to the 

vegetation, and NDWI was one of the most popular indices for mapping water bodies. Eventually, a total of 36 

multitemporal spectral features were derived for four seasonal composites.  

𝑁𝐷𝐵𝐼 =
𝜌𝑠𝑤𝑖𝑟1−𝜌𝑛𝑖𝑟

𝜌𝑠𝑤𝑖𝑟1+𝜌𝑛𝑖𝑟
, 𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
, 𝑁𝐷𝑉𝐼 =

𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
  (3) 

Afterwards, the prerequisite for temporally spectral generalization was the consistency between reference 

imagery and unclassified imagery. In this study, some measures were taken to ensure the highest possible 

spectral consistency in the Landsat composited imagery for the reference period and other periods: 1) the 

“selection-based” strategy was applied to ensure that the composited imagery could characterize the reflective 

characteristics of the land surface; 2) the seasonal BAP method was used to guarantee the phenological 

consistency of each set of seasonally composited imagery. However, there was still a small difference in the 

spectral response between Landsat sensors (TM, ETM+ and OLI) (Roy et al., 2016), and some factors (including 

the number of available Landsat observations, frequency of cloud and shadow, etc.) caused small temporal 

difference in the seasonal composites between the reference imagery and unclassified imagery. Therefore, we 

used the relative radiometric normalization method to further ensure the spectral consistency between reference 

and unclassified imagery. Specifically, as we migrated the reflectance spectra of impervious surfaces in 2020 to 

other periods, the seasonal composites in 2020 were the dependent variables (𝜌𝑅,𝑆𝑗
(𝜆𝑖)): 

𝜌𝑅,𝑆𝑗
(𝜆𝑖) = 𝛼𝑖 × 𝜌𝑡,𝑆𝑗

(𝜆𝑖) + 𝛽𝑖  (4) 

where 𝜌𝑡(𝜆𝑖) is the surface reflectance in band 𝜆𝑖 in the period 𝑡 (𝑡 = 1985, 1990, … , 2015), 𝑆𝑗 represents 

the seasonal composites in different seasons, and 𝛼𝑖  and 𝛽𝑖  denote the slope and intercept of the linear 

regression model. 

 

3. Perhaps I missed it but I couldn’t see how many training samples the authors used to calibrate the random 

forest classifier in each 5°×5° tile and five-year interval.  

Thanks for the comment. The sample size in each geographical tile was missed in the previous manuscript. 

Actually, the sample size in each tile was approximately 20,000 when the local region simultaneously contained 

the impervious surfaces, bare land, cropland and other pervious land-cover types. In the revised manuscript, we 

added the sample size in each tile as: 

“As for the sample size in each tile, Zhu et al. (2016) quantitatively demonstrated that the mapping accuracy 

first increased and then stabilized with the increase of the sample size and suggested a minimum of 600 training 

samples and a maximum of 8000 training samples per class. In this study, the sample size is about 5000 for each 

class, and the ratio between impervious surfaces and pervious surfaces is 1:3.” 
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Meanwhile, we only derived training samples one time in 2020 excluding other periods, because we transferred 

the pervious samples in 2020 to other periods using the land-cover irreversible assumption, then, we proposed 

to temporally generalize the reflectance spectra of impervious surfaces in 2020 to other periods after relative 

radiometric normalization to solve the lack of samples for impervious surfaces before 2020. We combined the 

temporally spectral generalization and deriving training samples from existing products to achieve the 

automatically monitoring impervious surface dynamics. It has been added in the Section 3.2 as: 

“Based on the assumption that the land-cover transition from impervious surface to pervious surface was 

irreversible, the derived pervious samples in 2020 (Section 3.1.1) would be directly transferred to other periods, 

but the impervious surface samples in 2020 cannot be transferred. To solve the lack of samples for impervious 

surfaces before 2020, we normalized the reflectance spectra of impervious surfaces in other epochs to those in 

2020 using the relative radiometric normalization method (Section 3.1.2)” 

 

4. According to the manuscript, the global training samples were automatically collected from the GLC_FCS30-

2020 land-cover product. Did the authors check the reliability of the labels in these training samples? Even 

though a high accuracy was achieved in this GLC_FCS30-2020 product, false labels still exist when the training 

samples are located in incorrect detected areas (impervious surfaces, cropland, bare land, and other pervious 

surfaces). These training samples with false label can directly bias the classifiers which were later on used to 

identify the time-series impervious surfaces. 

Great thanks for the comment. Yes, we have checked the reliability of the confidence of these training samples, 

and found that these derived impervious training samples in 2020 achieved the overall accuracy of 95.52% in 

the Section 5.1. As for the erroneous training samples, we have added the qualitative analysis of the relationship 

between overall accuracy and impervious producer’s accuracy with the percentage of erroneous training samples 

in the Section 5.1 as: 

In order to assess the accuracy of all training samples, we randomly selected 10,000 impervious surface samples 

from the global sample pool, and the 10,000 random samples were interpreted by visual interpretation. The 

validation result showed that these impervious training samples achieved an overall accuracy of 95.52% in 2020. 

To demonstrate whether the erroneous training samples can affect the performance of the classifiers, we 

gradually increased the percentage of erroneous training samples with the step of 1 % and then repeated 100 

times in Figure 16, it can be found that the local adaptive random forest models had great performance to be 

resistant to noise and erroneous training samples, and the overall accuracy and impervious surface producer’s 

accuracy kelp stable when the percentage of erroneous training samples were controlled within 40% and then 

obviously decreased after exceeding the threshold. Similarly, Gong et al. (2019b) also found that the overall 

accuracy kept stable when the percentage of erroneous training samples was within 20%. Therefore, the training 

samples derived in Section 3.1 were accurate enough for monitoring impervious surface dynamics. 
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Figure 16. The relationship between overall accuracy and impervious producer’s accuracy with the percentage 

of erroneous training samples using the random forest classification model. 

 

5. Besides, the equation in L264 is unnumbered, and it is the only equation throughout the manuscript. I believe 

this is not rigorous enough for a manuscript considering for publication in ESSD. I suggest the authors add more 

equations to better describe the techniques used in this study.  

Great thanks for the comment. The formula number has been added. Based on your suggestion, the method 

section has been totally improved and rewritten and more equations has been added in the revised manuscript 

as: 

Section 3.1.1 

Specifically, we firstly determined the maximum impervious surface extents and impervious training samples 

from prior products. Although the impervious layer in GLC_FCS30-2020 had an omission error of only 5.2% 

(Zhang et al., 2020), we still combined multiple global 30 m impervious surface products (GAIA-2018 (𝐼𝑆𝑔𝑎𝑖𝑎), 

GHSL-2014 (𝐼𝑆𝑔ℎ𝑠𝑙 ), impervious layer in the GlobeLand30-2020 ( 𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30 ) and GLC_FCS30-2020 

(𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30)) to capture all the impervious surfaces as effectively as possible. Namely, the maximum impervious 

surface extents (𝐼𝑆𝑚𝑎𝑥), derived via the union of these four global impervious surface products (formula (1)), 

was used as the maximum boundary of subsequent time-series classifications. 

𝐼𝑆𝑚𝑎𝑥 = 𝐼𝑆𝑔𝑎𝑖𝑎 ∪ 𝐼𝑆𝑔ℎ𝑠𝑙 ∪ 𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30 ∪ 𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30  (1) 

Then, as for how to derive impervious training samples, the GAIA and GHSL datasets were demonstrated 

to suffer the problem of missing these fragmented impervious objects (such as: rural villages, roads) (Sun et al., 

2019), so the intersection operation was only applied to the impervious layer in the GlobeLand30-2020 

(𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30) and GLC_FCS30-2020 (𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30) to comprehensively capture impervious samples in both 

cities or small villages and minimize the effect of commission error in this two products. Afterwards, as the 

transition areas between two different land-cover types had high probability of being misclassified (Radoux et 

al., 2014), the spatial homogeneity of each candidate impervious sample was calculated using a local window 

of 3×3: 

𝑃𝑥,𝑦 =
1

𝑁
[∑ ∑ 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝)

𝑦+1
𝑦−1

𝑥+1
𝑥−1 ]  (2) 
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where 𝑃𝑥,𝑦  denotes the spatial homogeneity of candidate pixel 𝐿𝑥,𝑦 , 𝐿𝑖𝑚𝑝  represents the label value of 

impervious surface, and the 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝) is the indicator function and N is the size of the local window size. 

In this study, we only retained these spatial homogeneity candidate impervious samples. Namely, if the 𝑃𝑥,𝑦 of 

candidate pixel was less than 1, the candidate impervious sample would be discarded. 

Section 3.1.2 

Meanwhile, for each seasonally composited imagery, excluding those in six optical bands (blue, green, red, 

NIR, SWIR1 and SWIR2), three spectral indexes, including the normalized difference built-up index (NDBI), 

normalized difference water index (NDWI) and normalized difference vegetation index (NDVI), were also 

imported, because NDBI was a good indicator of impervious surface and bareland, NDVI was sensitive to the 

vegetation, and NDWI was one of the most popular indices for mapping water bodies. Eventually, a total of 36 

multitemporal spectral features were derived for four seasonal composites.  

𝑁𝐷𝐵𝐼 =
𝜌𝑠𝑤𝑖𝑟1−𝜌𝑛𝑖𝑟

𝜌𝑠𝑤𝑖𝑟1+𝜌𝑛𝑖𝑟
, 𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
, 𝑁𝐷𝑉𝐼 =

𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
  (3) 

Afterwards, the prerequisite for temporally spectral generalization was the consistency between reference 

imagery and unclassified imagery. In this study, some measures were taken to ensure the highest possible 

spectral consistency in the Landsat composited imagery for the reference period and other periods: 1) the 

“selection-based” strategy was applied to ensure that the composited imagery could characterize the reflective 

characteristics of the land surface; 2) the seasonal BAP method was used to guarantee the phenological 

consistency of each set of seasonally composited imagery. However, there was still a small difference in the 

spectral response between Landsat sensors (TM, ETM+ and OLI) (Roy et al., 2016), and some factors (including 

the number of available Landsat observations, frequency of cloud and shadow, etc.) caused small temporal 

difference in the seasonal composites between the reference imagery and unclassified imagery. Therefore, we 

used the relative radiometric normalization method to further ensure the spectral consistency between reference 

and unclassified imagery. Specifically, as we migrated the reflectance spectra of impervious surfaces in 2020 to 

other periods, the seasonal composites in 2020 were the dependent variables (𝜌𝑅,𝑆𝑗
(𝜆𝑖)): 

𝜌𝑅,𝑆𝑗
(𝜆𝑖) = 𝛼𝑖 × 𝜌𝑡,𝑆𝑗

(𝜆𝑖) + 𝛽𝑖  (4) 

where 𝜌𝑡(𝜆𝑖) is the surface reflectance in band 𝜆𝑖 in the period 𝑡 (𝑡 = 1985, 1990, … , 2015), 𝑆𝑗 represents 

the seasonal composites in different seasons, and 𝛼𝑖  and 𝛽𝑖  denote the slope and intercept of the linear 

regression model. 

Section 3.2 

   Based on the assumption that the land-cover transition from impervious surface to pervious surface was 

irreversible, the derived pervious samples in 2020 (Section 3.1.1) would be directly transferred to other periods, 

but the impervious surface samples in 2020 cannot be transferred. To solve the lack of impervious surface 

samples before 2020, we normalized the reflectance spectra of impervious surfaces in other epochs to those in 

2020 using the relative radiometric normalization method (Section 3.1.2). Specifically, we independently 

trained the classification models at each period using the generalized impervious reflectance spectra 

(𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020) and the pervious samples (𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡) as: 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡 = [∑ (𝜌𝑏
𝑠𝑖,𝑡

, 𝜌𝑔
𝑠𝑖,𝑡

, 𝜌𝑟
𝑠𝑖,𝑡

, 𝜌𝑛𝑖𝑟
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟2
𝑠𝑖,𝑡

, 𝑛𝑑𝑏𝑖𝑠𝑖,𝑡, 𝑛𝑑𝑣𝑖𝑠𝑖,𝑡 , 𝑛𝑑𝑤𝑖𝑠𝑖,𝑡)𝑠𝑖
]  

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020 = [∑ (𝜌𝑏
𝑠𝑖 , 𝜌𝑔

𝑠𝑖 , 𝜌𝑟
𝑠𝑖 , 𝜌𝑛𝑖𝑟

𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟2

𝑠𝑖 , 𝑛𝑑𝑏𝑖𝑠𝑖 , 𝑛𝑑𝑣𝑖𝑠𝑖 , 𝑛𝑑𝑤𝑖𝑠𝑖)𝑠𝑖
]  

(5) 
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where 𝑠𝑖  denotes various seasonal composites and 𝑡  is the monitored period. It can be found that the 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡  varies with the 𝑡 , namely, the training spectra of pervious surfaces came from the 

unclassified imagery. 

 

Lastly, as the time-series impervious surface products were produced by independent classification, it was 

necessary to use the post-processing method to optimize the time-series impervious products from 1985 to 2020 

and minimize the influence of classification error. Over the past few years, many post-processing methods have 

been proposed, including maximum a posteriori Markov random fields (Cai et al., 2014) and temporal 

consistency checks (Li et al., 2015), both of which use contextual spatiotemporal information and prior 

knowledge to reduce the illogical land-cover transitions caused by classification error. In this study, the 

“temporal consistency correction” proposed by (Li et al., 2015) was applied to optimize our impervious time-

series products. It mainly comprised procedures of spatiotemporal filtering and illogical transition checking, the 

former of which iteratively calculates the probability of the same land-cover pixels occurring in the 

neighborhoods within a 3×3×3 spatiotemporal window as: 

𝑃𝑥,𝑦,𝑡 =
1

𝑁
[∑ ∑ ∑ 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡)𝑡′=𝑡+1

𝑡′=𝑡−1
𝑦′=𝑦+1
𝑦′=𝑦−1

𝑥′=𝑥+1
𝑥′=𝑥−1 ]   (6) 

where 𝐿𝑥′,𝑦′,𝑡′ denotes the adjacent pixels in the spatiotemporal window, 𝐿𝑥,𝑦,𝑡  reprensents the label of the 

target pixel (𝑥, 𝑦) in the period of 𝑡, and 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡) is the indicator function. Usually, the value of 

𝑃𝑥,𝑦,𝑡 could reflect the accuracy of 𝐿𝑥,𝑦,𝑡, namely, a higher value of 𝑃𝑥,𝑦,𝑡 means the high confidence of 𝐿𝑥,𝑦,𝑡. 

Therefore, the threshold of 0.5 for the 𝑃𝑥,𝑦,𝑡  (suggested by the Li et al., 2015) was applied to reduce the 

influence of classification error caused by individual classifications. If the 𝑃𝑥,𝑦,𝑡 for each impervious surface 

pixel was lower than 0.5, the corresponding label was adjusted as the opposite. Afterwards, the illogical 

transition checking mainly employed the irreversibility assumption to remove illogical transitions from 

impervious surface to pervious surface. 

 

6. The authors said that they independently train the classification models at each period (L311-312). How did 

they collect the training samples and obtain the labels in period other than 2020? 

Great thanks for the comment. The novelty of our method was to derive training samples one time in 2020 by 

combine temporally spectral generalization and deriving training samples from existing products for monitoring 

impervious surface dynamics. Specifically, we transferred the pervious samples in 2020 to other periods using 

the land-cover irreversible assumption, then temporally generalized the reflectance spectra of impervious 

surfaces in 2020 to other periods after relative radiometric normalization to solve the lack of impervious surfaces 

samples before 2020. The explanation has been added in the revised manuscript as: 

Based on the assumption that the land-cover transition from impervious surface to pervious surface was 

irreversible, the derived pervious samples in 2020 (Section 3.1.1) would be directly transferred to other periods, 

but the impervious surface samples in 2020 cannot be transferred. To solve the lack of impervious surface 

samples before 2020, we normalized the reflectance spectra of impervious surfaces in other epochs to those in 

2020 using the relative radiometric normalization method (Section 3.1.2). Specifically, we independently 

trained the classification models at each period using the generalized impervious reflectance spectra 

(𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020) and the pervious samples (𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡) as: 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡 = [∑ (𝜌𝑏
𝑠𝑖,𝑡

, 𝜌𝑔
𝑠𝑖,𝑡

, 𝜌𝑟
𝑠𝑖,𝑡

, 𝜌𝑛𝑖𝑟
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟2
𝑠𝑖,𝑡

, 𝑛𝑑𝑏𝑖𝑠𝑖,𝑡, 𝑛𝑑𝑣𝑖𝑠𝑖,𝑡 , 𝑛𝑑𝑤𝑖𝑠𝑖,𝑡)𝑠𝑖
]  (5) 
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𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020 = [∑ (𝜌𝑏
𝑠𝑖 , 𝜌𝑔

𝑠𝑖 , 𝜌𝑟
𝑠𝑖 , 𝜌𝑛𝑖𝑟

𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟2

𝑠𝑖 , 𝑛𝑑𝑏𝑖𝑠𝑖 , 𝑛𝑑𝑣𝑖𝑠𝑖 , 𝑛𝑑𝑤𝑖𝑠𝑖)𝑠𝑖
]  

where 𝑠𝑖  denotes various seasonal composites and 𝑡  is the monitored period. It can be found that the 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡  varies with the 𝑡 , namely, the training spectra of pervious surfaces came from the 

unclassified imagery. It should be noted that there may not be cloud-free imagery available especially for the 

rainy season before 2000 in the tropical rainforest areas. In this case, we discarded this missed seasonal features 

when training the classification models, namely, the number of training features varied with the availability of 

Landsat observations. 

 

7. How to deal with the situation where there is no Landsat imagery available? The author presented the 

availability of Landsat observation during each five-year interval (figure 1).  

Great thanks for the comment. Firstly, as for these no Landsat observation areas, we assumed the land-cover in 

these areas would remain stable. According to our statistics in Figure 1, we found the missing Landsat 

observations during 1986 to 1995 mainly concentrated on the Northeast Asia where contained a small number 

of impervious surfaces, so the unchanged assumption had little effect in these time periods. Similarly, almost 

all existing time-series land-cover products (including impervious surface products, GAUD and GAIA) also 

used the assumption in those no observation areas. The assumption has been added in the Section 3.1.2 as: 

It should be noted that we categorized the time-series Landsat imagery from 1982 to 2020 into 8 periods with 

the interval of 5 years corresponding to the Figure 1. Meanwhile, we also assumed that the land-cover in those 

no Landsat observation areas would remain stable during the period. Fortunately, the missing Landsat 

observations during 1986 to 1995 mainly concentrated on the Northeast Asia where contained a small number 

of impervious surfaces, so the unchanged assumption had little effect in these time periods. 

However, the proposed method uses seasonally composited imageries as input features of the classifier (L243-

247), and there may not be cloud-free imagery available especially for the rainy season before 2000 in the 

tropical rainforest areas. 

Great thanks for the comment. Yes, there may not be cloud-free imagery available especially for the rainy season 

before 2000 in the tropical rainforest areas. In this study, we discarded the corresponding seasonal composites 

if there were no enough Landsat observations to derive the seasonal composites. Namely, we might use two or 

three seasonal composites (except for the rainy season) as the input features to train the classifiers. The statement 

has been added in the revised manuscript as: 

Based on the assumption that the land-cover transition from impervious surface to pervious surface was 

irreversible, the derived pervious samples in 2020 (Section 3.1.1) would be directly transferred to other periods, 

but the impervious surface samples in 2020 cannot be transferred. To solve the lack of impervious surface 

samples before 2020, we normalized the reflectance spectra of impervious surfaces in other epochs to those in 

2020 using the relative radiometric normalization method (Section 3.1.2). Specifically, we independently 

trained the classification models at each period using the generalized impervious reflectance spectra 

(𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020) and the pervious samples (𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡) as: 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡 = [∑ (𝜌𝑏
𝑠𝑖,𝑡

, 𝜌𝑔
𝑠𝑖,𝑡

, 𝜌𝑟
𝑠𝑖,𝑡

, 𝜌𝑛𝑖𝑟
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟2
𝑠𝑖,𝑡

, 𝑛𝑑𝑏𝑖𝑠𝑖,𝑡, 𝑛𝑑𝑣𝑖𝑠𝑖,𝑡 , 𝑛𝑑𝑤𝑖𝑠𝑖,𝑡)𝑠𝑖
]  

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020 = [∑ (𝜌𝑏
𝑠𝑖 , 𝜌𝑔

𝑠𝑖 , 𝜌𝑟
𝑠𝑖 , 𝜌𝑛𝑖𝑟

𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟2

𝑠𝑖 , 𝑛𝑑𝑏𝑖𝑠𝑖 , 𝑛𝑑𝑣𝑖𝑠𝑖 , 𝑛𝑑𝑤𝑖𝑠𝑖)𝑠𝑖
]  

(5) 

where 𝑠𝑖  denotes various seasonal composites and 𝑡  is the monitored period. It can be found that the 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡  varies with the 𝑡 , namely, the training spectra of pervious surfaces came from the 
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unclassified imagery. It should be noted that there may not be cloud-free imagery available especially for 

the rainy season before 2000 in the tropical rainforest areas. In this case, we discarded this missed 

seasonal features when training the classification models, namely, the number of training features varied 

with the availability of Landsat observations.  

 

8. The authors did not mention the exact time-span of Landsat imagery used to derive each impervious surface 

layer. I guess the time-spans correspond to the periods presented in figure 1. For example, they used Landsat 

imageries during 1991-1995 to derive the impervious surface layer for 1995. But I believe it is more reasonable 

to use imageries before and after the target year, for example, using imageries during 1993-1997 to derive the 

impervious surface layer for 1995. 

Great thanks for the comment. The time-span of Landsat imagery used to derive each impervious surface layer 

has been added in the revised manuscript as: 

It should be noted that we categorized the time-series Landsat imagery from 1982 to 2020 into 8 periods with 

the interval of 5 years corresponding to the Figure 1. Meanwhile, we also assumed that the land-cover in those 

no Landsat observation areas would remain stable during the period. Fortunately, the missing Landsat 

observations during 1986 to 1995 mainly concentrated on the Northeast Asia where contained a small number 

of impervious surfaces, so the unchanged assumption had little effect in these time periods. 

Further, we greatly appreciate the suggestion of using the imagery before and after the target year for mapping 

impervious surfaces in target year. Our next updated version of the products would adopt the suggestion. 

 

The results 

1. The spatial distribution of the time-series global impervious surface presented in figure 5 does not provide 

much spatial details nor temporal dynamics for the impervious surface because of relatively small size of 

impervious surface expansion compared to the entire terrestrial surface. Local enlargements of hotspot area 

should be presented here for better illustration of the results. 

Great thanks for the suggestion. The local enlargements of hotspot areas in China and India have been added in 

the Figure 5 and the explanation about the figure has also revised as: 

“Figure 5 illustrates the spatial distributions of time-series global 30 m impervious surface maps and two local 

enlargements in China and India during 1985-2020 with intervals of 5 years. Intuitively, as the world’s main 

impervious surfaces and economic activities are mainly concentrated in the northern hemisphere, the intensity 

of impervious surface expansion in the northern hemisphere is more significant than that in the southern 

hemisphere. Specifically, the impervious surfaces have undergone rapid urbanization in past 35 years especially 

in developing countries such as China and India in Figure 5a and b. It can be found that many low-density areas 

in 1985 were transformed into medium/high-density areas in 2020, the cities were obviously connected by the 

new impervious surfaces especially in the mega-cities such as Shanghai and Guangzhou in China, and mega-

cities (Bangkok, New Delhi and Beijing in Figure 5a and b) experienced faster impervious surface expansion 

than the surrounding villages, small cities, etc.” 
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Figure 5. The spatial distributions of time-series global 30 m impervious surface results and two local 

enlargements from 1985 to 2020 with intervals of 5 years. Each pixel represents the fraction of impervious 

surface within each 0.05°×0.05° spatial grid.  

 

2. Again, the comparison between the derived pattern and other available products in figure 10 is not clear from 

the global view. Local enlargements should be presented, too. 

Great thanks for the suggestion. Two local enlargements in China and Europe have been added and the 

explanation about the Figure has been revised as: 

As the six global 30 m impervious surface products displayed large differences in estimated global total 

impervious area in Figure 9, it was necessary to further assess the performances of these products. Figure 10 

illustrates the spatial patterns of these products at globe and two local enlargements in China and Europe (Figure 

10a and b) after aggregating to the resolution of 0.05°. Overall, there was great spatial consistency between the 

GISD30, GHSL, GAUD and GlobeLand30 products—all of them captured the actual patterns of global 
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impervious surfaces, mainly those concentrated between approximately 20°N and 60°N. Detailedly, the local 

enlargement in Figure 10a illustrated that GHSL showed smaller impervious areas and a lower intensity than 

GISD30, GAUD and GlobeLand30 in China, which meant a lot of small impervious surface pixels were 

underestimated by the GHSL-2015 dataset. Next, the impervious area given by GlobeLand30 in the America 

was greater than that given by GISD30, GAUD and GHSL, because many cities in America display a serious 

mix of houses and vegetation while some vegetation surfaces around buildings were regarded as artificial 

surfaces in GlobeLand30. It should be noted that there was highest consistency between GISD30 and 

GlobeLand30 in these two local enlargements. Further, the GAUD, optimized from the NUACI dataset (Liu et 

al., 2020b), simultaneously captured the urbans and rural areas at globe and achieved the higher performance 

than the NUACI dataset in two local enlargements, but it still showed lower impervious area and intensity than 

GISD30 and GlobeLand30 in the local regions (red rectangle regions in Figure 10a and b). Comparatively, the 

NUACI dataset showed the smallest impervious surface areas and the lowest intensity compared to the other 

products especially in Europe (Figure 10b), India and China (Figure 10a), because it only identified urban pixels 

and excluded rural areas (Liu et al., 2018). As for the GAIA dataset, although it simultaneously identified urban 

and rural pixels, their impervious surface areas were still significantly smaller than in the GISD30, GHSL, 

GAUD and GlobeLand30 products especially in Europe (Figure 10b), which indicated that the GAIA suffered 

the underestimation problem in these rural areas. 
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Figure 10. The spatial patterns of six global 30 m impervious surface products and two local enlargements in 

China (a) and Europe (b) after aggregating to the resolution of 0.5°×0.5°. 

 

3. There are several problems/confusions in the scatter plots in figure 11. The authors did not give clear labels 

to the axes. I guess they refers to the proportions of impervious surface after aggregation into the coarse 

resolution. The color map below the scatter plots is not clear, too. Maybe the color refers to the scatter density 

in the plots. The root-mean-square error (RMSE) and the coefficient of determination (R2) presented here are 

mathematically/statistically incorrect, because these two indicators are usually used as a measure of how well 

the reference data (observed outcomes) are replicated by the model outputs, while the compared products here 

are not ground truths. Instead, the authors should present the measure of correlation coefficients.  

Great thanks for the suggestion. Yes, the label of x and y axis was the proportions of impervious surface in each 

0.05°×0.05° spatial grid, it has been added in the title of the Figure 11. Then, the color referred to the scatter 

density in the plots, it has added in the Figure 11. And two metrics have been replaced by the correlation 

coefficients based on the comment as: 
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Figure 11. The scatter plots between our GISD30 dataset (x axis) and five global 30 m impervious surface 

products (y axis, GAIA, NUACI, GAUD, GlobeLand30 and GHSL) at the spatial resolution of 0.05°×0.05°. It 

should be noted that the label of x and y axis was the proportion of impervious surface in each 0.05°×0.05° 

spatial grid. 

I don’t know the exact geographical distributions of the scatters, but I believe the numerical distribution of the 

scatters is problematic. There are too many scatters located at/closed to 0-value, while only a small proportion 

of them fall within the range of 20%-100%. This will largely bias the slope and intercept of the fitting lines. The 

authors should reduce the number of 0-value scatters and at the same time increase the number of scatters with 

higher values (do not include too scatters with 100% value). 

Great thanks for the comment. After carefully checking, there was no error in the numerical distribution of the 

scatters. Firstly, we derived the scatters from the fraction of impervious surface maps at the spatial resolution 

of 0.05°×0.05°, and used the rule of whether the impervious pixel in each dataset was greater than 0. Then, the 

reason why there were too many scatters closed to 0-value was because broken country houses and small villages 

were more widely distributed than large cities over the globe. As for the suggestion of reducing the number of 

0-value scatters, as Figure 11 was used to analyze the consistency of the GISD30 dataset with five previous 

impervious surface products at the global scale, we cannot artificially adjust the distribution of scatter points. 

To make the Figure 11 clearer, the explanation of the Figure 11 has been revised as: 
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To quantitatively assess the consistency of the GISD30 dataset with five previous impervious surface products, 

the scatter plots and the corresponding regression functions were illustrated in the Figure 11. It should be noted 

that the scatter points in the Figure 11 represented the proportions of impervious area in each 0.05°×0.05° grid. 

Overall, the consistency between GISD30 and other products increased with time, and the regression slope also 

increasingly approached 1.0 (the solid regression lines were getting closer and closer to the dotted 1:1 reference 

line). Specifically, as for the scatter plots between GAIA and GISD30 dataset, most scatter points were 

obviously concentrated below the 1:1 line at early stage and then slowly distributed on both sides of the 1:1 line, 

and the regression slope and correlation coefficient also increased from 0.498 to 0.871 and 0.789 to 0.907, 

respectively. Next, as the NUACI dataset only identified the urban pixels and excluded rural areas (Liu et al., 

2018), we could find that most scatter points were located below the 1:1 line especially in the ‘low fraction’ 

interval and the regression slopes were less than 1.0. Then, the scatter plots between GISD30 and GAUD 

datasets indicated that the impervious surfaces captured by the GISD30 was larger than that of GAUD, and the 

correlation coefficients and slopes between these two datasets increased with time especially in 2015 with the 

highest correlation coefficient of 0.931. Further, as the GlobeLand30 defined the vegetation in cities as artificial 

surfaces (Chen et al., 2015), we could find a lot of scatter points located above the 1:1 line. Meanwhile, as the 

GlobeLand30 used the minimum mapping unit of 4×4 for impervious surface (Chen et al., 2015), which meant 

that a large number of fragmented and small impervious surfaces were missed, the regression slopes between 

GlobeLand30 and GISD30 were still less than 1.0. Lastly, there was greater agreement between GISD30 and 

GHSL dataset than between other products in term of the spatial distributions of scatter points and the regression 

slope. 

 

4. The paragraph related to figure 11 (L509-520) should be rephrased to explain why the derived results yields 

smaller proportions of impervious surface compared with all other pervious products. Are the derived results 

underestimate the actual situation? Moreover, it confuses me that the results in figure 11 are somewhat 

contradictory to the results in figure 9. According to results in figure 9, the areas of the derived impervious 

surface are larger than those of the GAIA, NUACI, and GHSL across different continents. But the results in 

figure 11 show smaller proportions of derived impervious surface. 

Great thanks for the comment. I think the comment is a bit misleading for interpreting the Figure 11. Actually, 

our derived results had higher proportions of impervious surfaces compared with other previous products 

according to the figure 11. It should be noted that the x-axis and y-axis represented our GISD30 products and 

other products, respectively. We could find that almost all the regression lines (black dotted line) were below 

1:1 line (black solid line), which clearly demonstrated that the derived results yielded higher proportions of 

impervious surface compared with all other pervious products. Therefore, the conclusions of Figure 11 and 

Figure 9 were consistent, namely, the derived products had better ability to capture these fragmented and small 

impervious surface objects. 
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Figure 11. The scatter plots between our GISD30 dataset (x axis) and five global 30 m impervious surface 

products (y axis, GAIA, NUACI, GAUD, GlobeLand30 and GHSL) at the spatial resolution of 0.05°×0.05°. It 

should be noted that the label of x and y axis was the proportion of impervious surface in each 0.05°×0.05° 

spatial grid. 

 

5. To justified the outperformance of the derived dataset, the authors should directly compare the accuracies of 

the derived and previous datasets using the same validation samples, since the accuracies (OA and kappa 

coefficient) can vary greatly when calculated using different validation samples. 

Great thanks for the suggestion. The accuracy metrics between our products and previous datasets have been 

calculated using same validation dataset in the revised manuscript as: 

Except for the consistency analysis, the quantitative accuracy assessments for four global impervious surface 

products were calculated using the same validation dataset, as listed in the Table 2. The GHSL and GlobeLand30 

datasets were excluded because both of them cannot cover the whole period with 5-years interval. Overall, the 

GISD30 achieved the highest performance with the overall accuracy of 0.901 and kappa coefficient of 0.865, 

compared with 0.797 and 0.702 for GAIA, 0.843 and 0.748 for GAUD, as well as 0.745 and 0.702 for NUACI. 

Specifically, in terms of the pervious surfaces, it can be found that all four products achieved similar and great 

producer’s accuracy exceeding 0.94. As the previous comparisons have illustrated that GAIA, NUACI and 
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GAUD datasets underestimated the impervious surfaces, the user’s accuracy of them was lower than the GISD30 

dataset. Afterwards, as for the performances of impervious surfaces, the NUACI suffered the lowest user’s 

accuracy and producer’s accuracy in 1985 because it only identified the urban areas (Liu et al., 2018) and 

overestimated some increased impervious surfaces as the early impervious surfaces before 2000 (see Figure 13). 

Similarly, the GAIA and GAUD also missed some fragmented and small impervious surfaces, so the producer’s 

accuracy of them in 1985 was also greatly lower than that of the GISD30. Then, the accuracy metrics of these 

increased impervious surfaces were similar to the overall accuracies, namely, the GISD30 could accurate 

capture the spatiotemporal dynamics of impervious surfaces, followed by the GAUD, GAIA and NUACI 

datasets. 

Table 2. The accuracy metrics of four global 30 m impervious surface dynamic products using the same 

validation datasets. 

  P.S. 1985 85~90 90~95 95~00 00~05 05~10 10~15 15~20 O.A. Kappa 

GISD30 
P.A. 0.985  0.923  0.737  0.748  0.759  0.816  0.851  0.671  0.720  

0.901 0.865 
U.A. 0.958  0.935  0.809  0.779  0.848  0.863  0.837  0.855  0.882  

GAIA 
P.A. 0.969 0.755 0.552 0.510 0.494 0.489 0.474 0.663 0.531 

0.797 0.702 
U.A. 0.873 0.932 0.445 0.469 0.532 0.627 0.621 0.488 0.608 

NUACI 
P.A. 0.940 0.660 0.459 0.348 0.317 0.422 0.395 0.482  

0.745 0.609 
U.A. 0.839 0.796 0.160 0.348 0.398 0.624 0.626 0.608  

GAUD 
P.A. 0.978 0.855 0.516 0.554 0.528 0.551 0.520 0.571  

0.843 0.748 
U.A. 0.896 0.901 0.535 0.620 0.642 0.693 0.637 0.614  

Note: P.S.: pervious surface; 1985: impervious surface before 1985; 85~90: expansion of impervious surface 

during 1985~1990; …, 15~20: expansion of impervious surface during 2015~2020; U.A.: user’s accuracy; P.A.: 

producer’s accuracy; O.A.: overall accuracy. 

 

6. The author should include the recent GAUD product (Liu et al., 2020, cited by the authors) into their 

comparison, since it provides annual impervious surface layers. 

Great thanks for the suggestion. The GAUD product has been added in the cross-comparison section as: 

Specifically, GISD30, GAIA, NUACI, GAUD and GHSL showed great area-consistency in North America, 

while GlobeLand30 displayed a degree of overestimation, and its estimated area was almost 0.5×105 km2 higher 

than that for other products. Then, on the remaining five continents, GAIA showed the lowest total impervious 

area compared with the other global 30 m impervious products. Similarly, the comparison in Gong et al. (2020) 

also indicated that GAIA showed the lowest impervious area among several global 30 m impervious surface 

products (NUACI, GHSL and GlobeLand30). As the NUACI only monitored the global urban dynamics and 

excluded the rural areas (Liu et al., 2018), it was expected that the total impervious areas given by NUACI 

would be lower than those given by GISD30, GHSL and GlobeLand30. As for GHSL, its impervious area varied 

greatly on different continents; for example, the total impervious area was close to that of GISD30 in North 

America and Europe, of NUACI in Asia, South America and Oceania, and of GlobeLand30 in Africa. However, 

compared with the GISD30 and GlobeLand30, the GHSL still underestimated the impervious surfaces in most 

continents. Next, the GlobeLand30 gave the largest total impervious area for each continent, mainly because it 

also defined the vegetation in cities as artificial surfaces (Chen et al., 2015). Lastly, the GAUD dataset showed 
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the second lowest total impervious areas among the 6 products in Asia, South America, Africa and Oceania 

continents, and had the slowest impervious surface growth rates among six impervious surface products.  

 

Figure 9. The impervious area of six global 30 m impervious surface products on six continents over the period 

of 1985-2020.  

As the six global 30 m impervious surface products displayed large differences in estimated global total 

impervious area in Figure 9, it was necessary to further assess the performances of these products. Figure 10 

illustrates the spatial patterns of these products at globe and two local enlargements in China and Europe (Figure 

10a and b) after aggregating to the resolution of 0.05°. Overall, there was great spatial consistency between the 

GISD30, GHSL, GAUD and GlobeLand30 products—all of them captured the actual patterns of global 

impervious surfaces, mainly those concentrated between approximately 20°N and 60°N. Detailedly, the local 

enlargement in Figure 10a illustrated that GHSL showed smaller impervious areas and a lower intensity than 

GISD30, GAUD and GlobeLand30 in China, which meant a lot of small impervious surface pixels were 

underestimated by the GHSL-2015 dataset. Next, as GlobeLand30 defined vegetation in cities as artificial 

surfaces (Chen et al., 2015), the impervious area given by GlobeLand30 in the America was greater than that 

given by GISD30, GAUD and GHSL, because many cities in America display a serious mix of houses and 

vegetation. It should be noted that there was highest consistency between GISD30 and GlobeLand30 in these 

two local enlargements. Further, the GAUD, optimized from the NUACI dataset (Liu et al., 2020b), 

simultaneously captured the urbans and rural areas at globe and achieved the higher performance than the 

NUACI dataset in two local enlargements, but it still showed lower impervious area and intensity than GISD30 

and GlobeLand30 in the local regions (red rectangle regions in Figure 10a and b). Comparatively, the NUACI 

dataset showed the smallest impervious surface areas and the lowest intensity compared to the other products 

especially in Europe (Figure 10b), India and China (Figure 10a), because it only identified urban pixels and 

excluded rural areas (Liu et al., 2018). As for the GAIA dataset, although it simultaneously identified urban and 

rural pixels, their impervious surface areas were still significantly smaller than in the GISD30, GHSL, GAUD 

and GlobeLand30 products especially in Europe (Figure 10b), which indicated that the GAIA suffered the 

underestimation problem in these rural areas.  
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Figure 10. The spatial patterns of six global 30 m impervious surface products and two local enlargements in 

China (a) and Europe (b) after aggregating to the resolution of 0.5°×0.5°. 
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To quantitatively assess the consistency of the GISD30 dataset with five previous impervious surface products, 

the scatter plots and the corresponding regression functions were illustrated in the Figure 11. It should be noted 

that the scatter points in the Figure 11 represented the proportions of impervious area in each 0.05°×0.05° grid. 

Overall, the consistency between GISD30 and other products increased with time and the regression slope also 

increasingly approached 1.0 (the solid regression lines were getting closer and closer to the dotted 1:1 reference 

line). Specifically, as for the scatter plots between GAIA and GISD30 dataset, it can be found that most scatter 

points were obviously concentrated below the 1:1 line at early stage and then slowly distributed on both sides 

of the 1:1 line, and the regression slope and correlation coefficient also increased from 0.498 to 0.871 and 0.789 

to 0.907, respectively. Next, as the NUACI dataset only identified the urban pixels and excluded rural areas 

(Liu et al., 2018), we could find that most scatter points were located below the 1:1 line especially in the ‘low 

fraction’ interval and the regression slopes were less than 1.0. Then, the scatter plots between GISD30 and 

GAUD datasets indicated that the impervious surfaces captured by the GISD30 was larger than that of GAUD, 

and the correlation coefficients and slopes between these two datasets increased with time especially in 2015 

with the highest correlation coefficient of 0.931. Further, as the GlobeLand30 defined the vegetation in cities as 

artificial surfaces (Chen et al., 2015), we could find a lot of scatter points located above the 1:1 line. Meanwhile, 

as the GlobeLand30 used the minimum mapping unit of 4×4 for impervious surface (Chen et al., 2015), which 

meant that a large number of fragmented and small impervious surfaces were missed, the regression slopes 

between GlobeLand30 and GISD30 were still less than 1.0. Lastly, there was greater agreement between 

GISD30 and GHSL dataset than between other products in term of the spatial distributions of scatter points and 

the regression slope. 
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Figure 11. The scatter plots between our GISD30 dataset (x axis) and five global 30 m impervious surface 

products (y axis, GAIA, NUACI, GAUD, GlobeLand30 and GHSL) at the spatial resolution of 0.05°×0.05°. It 

should be noted that the label of x and y axis was the proportion of impervious surface in each 0.05°×0.05° 

spatial grid. 

 

7. The comparisons presented in figure 12, 13 and 14 are misleading for product GlobeLand30. Many 

impervious surfaces existed before 1995 are colored with yellow (2000-2005), which is obvious incorrect. 

Great thanks for the comment. As the GlobeLand30 only covered the periods of 2000-2020 with the interval of 

10 years, it was difficult to identify the impervious surface before 2000 and then we used the yellow color. To 

avoid the misleading for GlobeLand30, the GAUD data were used to replace the GlobeLand30 in Figure 12-14 

as: 
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Figure 14. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. (2019), 

and the GAUD developed by Liu et al. (2020b)) in the two representative arid cities of Phoenix and 

Johannesburg. In each case, the multi-epoch Landsat imagery, comprised by red, green and blue bands, came 

from the United States Geological Survey (https://earthexplorer.usgs.gov/). 

 

Reliability of the assessment 

1. According to the manuscript, the locations of the validation points were randomly generated using the 

stratified random sampling strategy (L150). In order to better evaluate the results, especially the time-series 

dynamics of the impervious surface, I suggest a substantial number of validation samples should be placed 

within (impervious surfaces) and around the fringe of the urban areas (pervious surfaces), which are exactly the 

most inconsistent and uncertain areas regarding the impervious surface classification problem. 

Great thanks for the suggestion. To ensure the objectivity of the entire accuracy assessment, the spatial 

distribution of impervious validation samples must first be guaranteed to be random (Olofsson et al. 2014). If 

we placed a large number of validation samples within these inconsistent and uncertain areas, it would be unfair 

for these stable impervious surfaces and pervious surfaces when calculating the accuracy metrics. Then, it 

should be noted that there was a clear difference for evaluating the global product and regional product. At 

regional scale, we could artificially place the validation samples and control the size of validation points in these 

uncertain areas. However, at global scale, we must use the sampling rules to derive the validation samples. In 

this study, a stratified random sampling based on the proportion of the land-cover areas was adapted to determine 

the sample size of each land-cover type:  

𝑛𝑖 = 𝑛 ×
𝑊𝑖×𝑝𝑖(1−𝑝𝑖)

∑ 𝑊𝑖×𝑝𝑖(1−𝑝𝑖)
;       𝑛 =  

( ∑ 𝑊𝑖×√𝑆𝑖(1−𝑆𝑖) )2

[𝑆(�̂�]2+∑ 𝑊𝑖×𝑆𝑖(1−𝑆𝑖)/𝑁
≈ (

∑ 𝑊𝑖𝑆𝑖

𝑆(�̂�)
)

2

     (1) 

where 𝑊𝑖 was the area proportion for class 𝑖 over the globe, 𝑆𝑖 is the standard deviation of class 𝑖, 𝑆(�̂�) is 

the standard error of the estimated overall accuracy, 𝑝𝑖 is the expected accuracy of class 𝑖 and 𝑛𝑖 represents 

the sample size of the class 𝑖. 
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Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices 

for estimating area and assessing accuracy of land change, Remote Sensing of Environment, 148, 42-57, 

https://doi.org/10.1016/j.rse.2014.02.015, 2014. 

As we cannot artificially move the place of the validation samples in the uncertain areas, 4682 impervious 

validation points were further added into the validation dataset under the condition that ensuring the random 

allocation of validation sample. The spatial distribution of validation samples after adding new impervious 

samples was revised as: 

To quantitatively assess the accuracies of our impervious surface dynamic time-series products, 23,322 

validation samples (Figure 2), including 13,236 impervious samples and 9,986 pervious samples, covering the 

long-term time-series from 1985 to 2020, were randomly generated using the stratified random sampling 

strategy, and further interpreted on the Google Earth Engine computing platform. 

 

Figure 2. The spatial distribution of the global multitemporal impervious surface validation dataset for 1985-

2020. 

 

2. Eyeballing the map of figure 2 there seems to be considerable number of samples located far away from the 

urban areas. These areas are well detected as pervious surface by many previous methods, or can be easily 

masked out for example by nightlight observations. Validation samples within these areas do not contribute to 

justifying the superiority of the derived results, but instead just smoothing the performance difference between 

the derived and previous datasets. 

Great thanks for the comment. Yes, there was a lot of pervious validation samples located away from the urban 

areas in Figure 2, and these pervious samples would smooth the performance difference between the derived 

and previous datasets. However, as mentioned in the previous comment, the locations of pervious samples were 

randomly derived without any artificial participation, meanwhile, to ensure the objectivity of the entire accuracy 

assessment, the pervious sample size was also determined by the stratified random sampling method. If we 

artificially remove these pervious validation samples, the objectivity of the final accuracy metrics cannot be 

guaranteed. 
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3. The number of validation samples in each five-year interval should be large enough to evaluate the impervious 

surface dynamics during the corresponding time periods. According to the manuscript, the land surface is 

divided totally 961 geographical tiles (5°×5°) and only 18,540 validation samples were used (L150). I did a 

rough calculation. There are only ~20 samples on average within each tile, which is definitely too sparse for the 

evaluation of 30 m classification results in a large area of 5°×5° tile, not to mention that these ~20 samples were 

divided into eight time periods. Great uncertainties/bias are expected in the calculated OAs and Kappa 

coefficients with these samples. 

Great thanks for the comment. Firstly, we completely agreed that the number of validation samples in each five-

year interval should be large enough to evaluate the impervious surface dynamics during the corresponding time 

periods. However, the collection of validation samples was a very time-consuming and difficult task especially 

at the early stage (lacking high-resolution imagery), therefore, the previous impervious products (including: 

GAIA, GAUD, NUACI and GlobeLand30) were validated only using a few thousand points. For example, Gong 

et al. (2020) used 3500 validation points (including impervious surface and pervious surface) to analyze their 

performances.  

Then, it might be unreasonable to directly distribute the validation samples into geographical tiles, because the 

spatial distribution of validation samples was non-uniform. In the Figure 2, it can be found that the impervious 

surface validation samples mainly concentrated on the regions with dense impervious surfaces such as: Europe, 

North America and China.  

Lastly, based on previous suggestions and this comment, 4682 impervious validation points were further added 

into the validation dataset to comprehensively analyze the performance of the GISD30 dataset. The spatial 

distribution of validation samples after adding new impervious samples was revised as: 

To quantitatively assess the accuracies of our impervious surface dynamic time-series products, 23,332 

validation samples (Figure 2), including 13,236 impervious samples and 9,986 pervious samples, covering the 

long-term time-series from 1985 to 2020, were randomly generated using the stratified random sampling 

strategy, and further interpreted on the Google Earth Engine computing platform. 
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Figure 2. The spatial distribution of the global multitemporal impervious surface validation dataset for 1985-

2020. 

 

4. As presented in table 1, only hundreds of validation samples were used to evaluate the performances of each 

five-year period. If I read it correctly, there are less than 1 sample on average within each 5°×5° tile for each 

five-year period. Assessment with these validation samples is definitely unreliable and cannot truly reflect the 

quality of the derived dataset. The authors should substantially increase their number of validation samples to 

achieve a more reliable assessment. 

Great thanks for the comment. As mentioned in the previous comments, it might be unreasonable to directly 

distribute the validation samples into geographical tiles, because the spatial distribution of validation samples 

was non-uniform. According to the statistics in Results Section, the increased impervious surfaces mainly 

concentrated on the Asia, Europe and North America, actually, our multitemporal impervious validation 

samples also mainly distributed around these rapidly expanding areas. 

Then, the sample size of these increased impervious surfaces was determined by the stratified random sampling 

method as: 

𝑛𝑖 = 𝑛 ×
𝑊𝑖×𝑝𝑖(1−𝑝𝑖)

∑ 𝑊𝑖×𝑝𝑖(1−𝑝𝑖)
     (1) 

where 𝑊𝑖 was the area proportion for class 𝑖 over the globe, 𝑝𝑖 is the expected accuracy of class 𝑖 and 𝑛𝑖 

represents the sample size of the class 𝑖. 

Lastly, based on the suggestion and previous comments, we additionally added 4682 impervious validation 

points into the validation dataset under the condition that ensuring the random allocation of validation sample. 

Afterwards, the Table 1 has been revised as: 

Table 1. The confusion matrix of our global 30 m impervious surface dynamic products using 23,332 validation 

samples. 

 P.S.  1985 85~90 90~95 95~00 00~05 05~10 10~15 15~20 Total U.A. 

P.S. 9840 11 20 14 22 21 14 24 20 9986 0.985  

1985 247 5408 61 49 41 17 20 8 5 5856 0.923  

85~90 28 74 555 27 11 14 19 16 9 753 0.737  

90~95 43 58 20 556 19 19 10 13 5 743 0.748  

95~00 70 72 13 31 902 35 31 16 19 1189 0.759  

00~05 76 62 12 36 42 1383 49 29 5 1694 0.816  

05~10 52 37 13 14 14 42 1201 18 21 1412 0.851  

10~15 47 52 11 21 23 36 69 566 19 844 0.671  

15~20 55 59 8 7 14 21 30 43 608 845 0.720  

Total 10268 5786 686 714 1064 1602 1435 662 689 23322 
 

P.A. 0.958  0.935  0.809  0.779  0.848  0.863  0.837  0.855  0.882   

O.A. 0.901 

Kappa 0.865 

Note: P.S.: pervious surface; 1985: impervious surface before 1985; 85~90: expansion of impervious surface 

during 1985~1990; …, 15~20: expansion of impervious surface during 2015~2020; U.A.: user’s accuracy; P.A.: 

producer’s accuracy; O.A.: overall accuracy. 
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5. Apart from point-based validation, the area-based validation strategy, i.e., visual interpreting impervious area 

in small blocks near the urban fringe and comparing them with the derived results, is more encouraged, 

considering the sparse distribution of impervious surfaces 

Great thanks for the comment. Based on your suggestion, the cross-comparison in the sparse distribution of 

impervious surfaces has been added in the revised manuscript as: 

Lastly, the cross-comparison between GISD30 and four previous datasets in the rural villages (containing 

sparse impervious surfaces) was illustrated in the Figure 15. Overall, except for our GISD30, the remaining 

impervious surface datasets failed to identify these small rural buildings around the central villages. In terms of 

the spatial pattern of villages, the NUACI dataset obviously misclassified a lot of croplands as the increased 

impervious surfaces and also missed those stable impervious surfaces in the central villages. The GAUD dataset 

performed well in the early stage and accurately captured these old impervious surfaces, but these increased 

impervious surfaces after 2000 were missed. In fact, the village experienced significant impervious expansions 

after 2000 by visually interpreting the multitemporal Landsat imagery. The GAIA partly captured the 

spatiotemporal expansion in the village, but the impervious areas in the GAIA was obviously smaller than the 

actual situation, which indicated that the GAIA dataset suffered the underestimation problem in this rural village. 

Further, it can be found that there was highest consistency between GISD30 and GHSL, both of them captured 

the expansion pattern of “center-to-periphery”, however, the increased impervious surfaces in the GHSL were 

still less than the actual increases.  

 
Figure 15. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. (2019), 

and the GAUD developed by Liu et al. (2020b)) in the rural village. The multi-epoch Landsat imagery, 

comprised by SWIR1, NIR and red bands, came from the United States Geological Survey. 

Uncertainties 

The uncertainties of the derived impervious surface layers should be discussed but missing in the current 

manuscript. This dataset at least involved uncertainties from four aspects: 1) the labels of training samples 

directly collected from the GLC_FCS30-2020 rather than visual interpretation.  

Great thanks for the comment. The sensitivity analysis between classification accuracy and the percentage of 

erroneous samples points has been added in the Discussion section as: 



31 

 

In contrast to supervised classification methods using independent samples for different periods, which require 

expensive resources to collect multitemporal training samples (Gao et al., 2012; Zhang and Weng, 2016), we 

used prior global land-cover products and the spectral generalization strategy to automatically monitor the 

impervious surface dynamics. Firstly, as the reliability of the training samples was demonstrated to directly 

affect the final classification accuracy, we combined the impervious layers in the GLC_FCS30-2020 and 

GlobeLand30-2020 land-cover products to derive candidate impervious training samples, and then adopted the 

spatial homogeneity filtering to further ensure the reliability of each sample in 2020. In order to assess the 

accuracy of training samples, we randomly selected 10,000 impervious surface samples from the global sample 

pool, and the 10,000 random samples were interpreted by visual interpretation. The validation result showed 

that these impervious training samples achieved an overall accuracy of 95.52% in 2020. To demonstrate whether 

the erroneous training samples can affect the performance of the classifiers, we gradually increased the 

percentage of erroneous training samples with the step of 1 % and then repeated 100 times illustrated in Figure 

16, it can be found that the local adaptive random forest models had great performance to be resistant to noise 

and erroneous training samples, and the overall accuracy and impervious surface producer’s accuracy kelp stable 

when the percentage of erroneous training samples were controlled within 40% and then obviously decreased 

after exceeding the threshold. Similarly, Gong et al. (2019b) also found that the overall accuracy kept stable 

when the percentage of erroneous training samples was within 20%. Therefore, the training samples derived in 

Section 3.1 were accurate enough for monitoring impervious surface dynamics. 

 

Figure 16. The relationship between overall accuracy and impervious producer’s accuracy with the percentage 

of erroneous training samples using the random forest classification model. 

 

2) The migration of reflectance spectra of impervious surfaces measured in 2020 to other periods.  

Great thanks for the comment. The feasibility of generalizing reflectance spectra of impervious surfaces 

measured in 2020 to other periods has been added in the Discussion Section as: 

Furthermore, many studies have demonstrated that the spectral inconsistency between migrated spectra and 

classified imagery directly affects classification accuracy (Woodcock et al., 2001; Zhang et al., 2018). In this 

study, we used continuous Landsat imagery to preclude the effects of different sensors, and adopted a seasonally 

composited method with relative radiometric normalization to minimize the influence of temporal difference. 

We toke the Yangtze River Delta as an example to draw scatterplots for NIR reflectance of impervious 

surfaces in 2020 against other periods at the growing season after relative radiometric normalization 
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illustrated in Figure 17. There were significant consistency in NIR band between reference period and 

other periods and most scatters were distributed on both sides of the regression line. In terms of the 

regression slope, the slope got closer and closer to 1.0 as time increased, which mainly caused by the 

shorter temporal difference and denser Landsat imagery at later periods. According to the distribution 

of scatter points and the regression lines, there was no systematic bias between reference data and other 

data, which also demonstrated that it was feasible to generalize the reflectance spectra of impervious 

surfaces in the 2020 to other periods. 

 

Figure 17. The scatterplots for NIR reflectance of impervious surface in 2020 (y-axis) against other periods (x-

axis) after relative radiometric normalization in the Yangtze River Delta region. 

 

3) The reliability of the random forest classifiers for each tile and time period.  

Great thanks for the comment. The reliability of the random forest classifiers directly depended on the 

confidence of training samples and the spectral consistency for impervious surface reflectance spectra 

between reference period and other periods. The previous two comments have quantitatively demonstrated the 

derived training samples were accurate enough for monitoring impervious surface dynamics, and the spectral 

consistency ensure the feasibility of generalizing the reflectance spectra of impervious surfaces in the 2020 to 

other periods. Therefore, after discussing the confidence of training samples and the spectral consistency, 

the local random forest classifiers used by the study were reliable for monitoring time-series impervious surface 

dynamics. 

 

4) The temporal consistency correction used to smooth the independent classification results. It is not clear how 

these uncertainties propagate along the entire derivation procedure and to what extent these uncertainties 

contribute to the final derived dataset. 

Great thanks for the comment. The temporal consistency checking is an optimization algorithm for time-series 

land-cover monitoring (eliminating the “salt-pepper” noisy in the multi-epoch impervious surface maps and 

using the irreversible assumption to remove the illogical transitions), the discussion about the method has been 

added in the Discussion as: 
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Lastly, to optimize the time-series impervious maps and minimize the influence of classification error, the 

temporal consistency checking post-processing method proposed by the Li et al. (2015) was adopted. It mainly 

used the spatiotemporal correlation information to eliminate the “salt-pepper” noisy in the multi-epoch 

impervious surface maps, and used the irreversible assumption to remove the illogical transitions. Li et al. (2015) 

quantitatively demonstrated that the post-processing method improved the overall accuracy by about 6% for 

monitoring impervious dynamics in Beijing, China. Recently, this post-processing method was involved for 

producing GAIA dataset (Gong et al., 2020) and optimizing time-series land-cover maps in China (Yang and 

Huang, 2021), both of them demonstrated that temporal consistency checking improved the reliability and 

consistency of the classification results by integrating the spatio-temporal context information. 

 

Others 

1. There are many typos in the manuscript. To name only a few for example from the methodology section: 

brackets in L220, L223, L239, L271. 

Great thanks for pointing out the issues. The manuscript has been totally revised and then we will invite a 

professional team to carefully polish the revised manuscript again. 

 

2. Some paragraphs only consist one or two sentences, e.g., L178-183, L191-196, L214-218. 

Great thanks for the comment. These broken paragraphs have been merged in the revised manuscript. 

 

3. Although the manuscript is readable, there are still many inappropriate expressions and grammar errors 

throughout the entire manuscript. Please consult a native English speaker or a commercial proofreading service. 

Great thanks for the suggestion. The manuscript has been polished before summiting. At the same time, after 

the article is received, we will also invite a professional team to carefully polish the article again. 
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Response to comments 

Paper #: essd-2021-285 

Title: GISD30: global 30-m impervious surface dynamic dataset from 1985 to 2020 using time-series 

Landsat imagery on the Google Earth Engine platform 

Journal: Earth System Science Data 

 

Reviewer #2 

 

In this manuscript, the authors produced a global 30 m impervious surface dynamic dataset from 1985 to 2020 

using the spectral generalization method and time-series Landsat imagery on GEE, and cross-compared the 

dataset with four existing global 30 m impervious surface products. The manuscript is well arranged, and the 

logic is clear. Even so, there are still some modifications need to be finished before it accepted. The following 

are the questions and some mistakes in this manuscript. 

Great thanks for the positive and careful comments. The manuscript has been improved according to your and 

another reviewer’s comments. 

Line 130: What is the size of the areas where these data are missing? Whether the assumption that their land 

cover types remain unchanged will affect the accuracy of the final classification results. 

Great thanks for the comment. According to our statistics, the proportions of missing Landsat observations in 

the first three periods (before 1985, 1986-1990 and 1991-1995) were 37.3%, 11.3% and 11.4%, respectively. 

The missing Landsat observations in the second and third periods (1986-1990 and 1991-1995) mainly 

concentrated on the Northeast Asia in which contained a small number of impervious surfaces, so the unchanged 

assumption had little effect in these two epochs. As for the first epoch, the missing observation areas covered 

the East Asia and the whole Oceania continent, so the assumption would affect the accuracy of final results. Our 

manuscript in Section 4.2 of accuracy assessment has also illustrated: 

“However, the user’s accuracy for the expansion of impervious surface after 2000 was higher than that before 

2000, which was mainly affected by the sparser available Landsat observations before 2000 in Figure 1. 

Similarly, Gong et al. (2020) also found that the monitoring uncertainty before 2000 was greater than after 2000.” 

It should be noted that almost all time-series impervious surface products (including: GAIA, NUACI, GUD and 

GHSL) also used the unchanged assumption to monitor impervious surfaces in these missing Landsat 

observation areas. 

 

Line 132: What do these numbers in the legend of Figure 1 mean? Do they represent the number of scenes in 

the images from different years? Why do not marked in the legend of the figure? 
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Great thanks for the comment. Yes, the numbers in the lower right of Figure 1 represented the available Landsat 

imagery from different years. Based on the suggestion, the figure has been revised as: 

 

Figure 1. The spatial distributions of the available Landsat observations from 1985 to 2020, with 5-year intervals. 

Lines 161~165: I do not understand this part of the text. What do you mean like ‘the location of each validation 

sample in rural areas was moved to the center of the impervious object’ With such a large sample set, how did 

you identify the validation sample in rural areas? 

Great thanks for the comment. I am sorry that it was a litter confusing in explaining the collection of impervious 

surface validation samples. Actually, only a small amount of impervious validation samples in the rural areas 

was moved to the center of impervious objects for minimizing the effect of geometry error between the high-

resolution imagery in Google earth and the Landsat imagery, because we found some rural impervious validation 

points in the boundary of impervious objects actually belonged to the pervious surfaces after projecting to the 

Landsat imagery. There was a total of 649 rural impervious surface samples have been moved according to our 

statistics. The part has been revised as: 

“as the spatial heterogeneity of the impervious surface was usually higher than that of natural land-cover types, 

the impervious area in a 30 × 30 m window should comprise more than 50% when identifying impervious 

samples (Zhang et al., 2020). Meanwhile, to minimize the effect of geometry registration between validation 

samples and our products, the geolocations of these rural impervious surface samples, located in the 

transition areas between the impervious objects (such as buildings and roads) and pervious objects, were 

re-positioned in the center of the objects.” 

The rules of how we identify the validation sample in rural areas were: 1) the size of impervious surface blocks 

(the rural areas were usually fragmented and smaller than the cities); 2) the land-cover distributions around the 

validation sample (the surrounding environment in the rural areas were usually the cropland, forest and 

grassland). 
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Lines 356~357: ‘we categorized the time-series impervious surface dynamic into 9 independent strata, including: 

pervious surfaces, impervious surfaces before 1985, and expanded impervious surfaces during 1990-1995, 

1995-2000, 2000-2005, 2005-2010, and 2015-2020.’ Whether 1985-1990 and 2010-2015 are missing from the 

presentation. 

Great thanks for pointing out the mistake. Yes, the 1985-1990 and 2010-2015 are missing in our presentation. 

It has been added in the revised manuscript as: 

“as opposed to traditional period-by-period accuracy assessments, we categorized the time-series impervious 

surface dynamic into 9 independent strata, including: pervious surfaces, impervious surfaces before 1985, and 

expanded impervious surfaces during 1985-1990, 1990-1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015 

and 2015-2020. We then calculated a comprehensive confusion matrix for these nine strata.” 

Line 364: ‘Further, we selected three types of cities (mega-cities, tropical cities and arid cities)…’ Why choose 

these three types of cities to reveal the spatiotemporal dynamic. 

Great thanks for the comment. The reasons why we choose three types of cities have been added in the 

manuscript as: 

“we compared the time-series impervious areas of five products in six continents, and further analyzed the 

spatial consistency between GISD30 and five comparative datasets at the global scale. Further, we selected three 

types of cities (mega-cities, tropical cities and arid cities) and one rural area to illustrate the performance of five 

global 30 m impervious surface products used for capturing the spatiotemporal dynamic. The reasons why we 

chose these types of cities and rural areas were that (1) the mega-cities usually experienced more intense 

urbanization, we could more intuitively understand whether there were commission error and omission 

error in each product; (2) the tropical cities usually mean sparser observations caused by the cloud 

coverage, so we could analyze the stability and robustness of each product in the tropical cities; (3) the 

arid cities were selected to analyze the ability of each product to distinguish between impervious surfaces 

and similar land types (arid soils); (4) the rural area contained sparse impervious surfaces and were prone 

to suffer the underestimation problem.” 

 

English writing needs to be further improved; some sentences are too long to affect the understanding of the 

article. The sentences can be broken down. e.g.: Lines 123~127, 127~131… 

Great thanks for the comment. Based on your suggestion, the manuscript has been totally revised and then we 

will invite a professional team to carefully polish the revised manuscript again. 

Line 22: ‘… similar to in …’ should be ‘similar to’? 

Thanks for the comment. It has been revised and we have invited a professional team to carefully polish the 

revised manuscript. 

Line 146: ‘…normalized difference water index (NDWI) and NDWI…’should be ‘NDVI’? 

Great thanks for pointing out this mistake. It was corrected in the revised manuscript. 
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Response to comments 

Paper #: essd-2021-285 

Title: GISD30: global 30-m impervious surface dynamic dataset from 1985 to 2020 using time-series 

Landsat imagery on the Google Earth Engine platform 

Journal: Earth System Science Data 

 

Community Comment #1 

Thanks for your contributions! I have several questions: 

Great thanks for your comments. Each comment has been responded at below. 

 

1. What projection is used for the generated products? Did you equal area to facilitate calculation of 

areas? If not equal area, which approach did you use to account for discrepancies in area of pixels? 

Great thanks for the comment. The GISD30 dataset used the geographical projection for the 

convenience of users. Yes, when we calculated the impervious surface area at regional and continent 

scales, the dataset was reprojected to the sinusoidal equal area projection because there was serious 

area deformation in the latitude direction for geographical projection. 

 

2. What approach did you use for calculating the area: directly from the map or from samples? The 

former is a pixel counting estimator which is biased. From confusion matrices, one can observe that 

PA and UA are not balanced, and therefore land cover area over/under-estimation can happen. For all 

area calculations, what are the uncertainties, since produced maps are not error-free? 

Great thanks for the comment. All area statistics in the manuscript were derived from the map. Yes, 

based on the confusion metrics, the area statistics in current manuscript were biased. According to the 

suggestion, the uncertainties of the area calculations have been calculated. 

Specifically, based on the work of Olofsson et al. (2013), the area uncertainties can be estimated as: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = ±2 × 𝐴 × √∑ 𝑊𝑖
2𝑞

𝑖=1

𝑛𝑖𝑗

𝑛𝑖∙
(1−

𝑛𝑖𝑗

𝑛𝑖∙
)

𝑛𝑖∙−1
,  𝑊𝑖 = 𝐴𝑖𝑚𝑝/𝐴 

where 𝐴𝑖𝑚𝑝 and A is the mapped impervious area in this study and the total area of the map, 𝑞 is the 

number of land-cover types, 𝑛𝑖𝑗 and 𝑛𝑖∙ denotes the element in the confusion matrix.  

Based on the confusion matrix in the Table 1 and the mapped impervious areas, the area uncertainties 

of impervious surfaces were calculated in 1985 and 2020 were: ± 4.502×104 km2 in 1985 and ± 

4.455×104 km2 in 2020, respectively.  

 

Olofsson, Pontus, et al. "Making better use of accuracy data in land change studies: Estimating 

accuracy and area and quantifying uncertainty using stratified estimation." Remote Sensing of 

Environment 129 (2013): 122-131. 
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Abstract 

Accurately mapping impervious surface dynamics has great scientific significance and application value 10 

for urban sustainable development research, anthropogenic carbon emission assessment and global ecological 

environment modeling. In this study, a novel and automatic method by combining the advantages of spectral 

generalization and automatic sample extraction strategy was proposed and then an novel and accurate global 30 

m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral 

generalization method and time-series Landsat imagery, on the Google Earth Engine cloud-computing platform. 15 

Firstly, the global training samples and corresponding reflectance spectra were automatically derived from prior 

global 30 m land-cover products after employing the multitemporal compositing method and relative 

radiometric normalization. Then, spatiotemporal adaptive classification models, trained with the migrated 

reflectance spectra of impervious surfaces from 2020 and pervious surface samples in the same epoch for each 

5°×5° geographical tile, were applied to map the impervious surface in each period. Furthermore, a 20 

spatiotemporal consistency correction method was presented to minimize the effects of independent 

classification errors and improve the spatiotemporal consistency of impervious surface dynamics. Our global 

30 m impervious surface dynamic model achieved an overall accuracy of 91.50.1% and a kappa coefficient of 

0.866 865 using 18,54023,322 global time-series validation samples. Cross-comparisons with four five existing 

global 30 m impervious surface products further indicated that our GISD30 dynamic product achieved the best 25 

performance in capturing the spatial distributions and spatiotemporal dynamics of impervious surfaces in 

various impervious landscapes. The statistical results indicated that the global impervious surface has doubled 

in the past 35 years, from 5.116×105 km2 in 1985 to 10.871×105 km2 in 2020, and Asia saw the largest increase 

in impervious surface area compared to other continents, with a total increase of 2.946×105 km2. Therefore, it 

was concluded that our global 30 m impervious surface dynamic dataset is an accurate and promising product, 30 

and could provide vital support in monitoring regional or global urbanization as well as in related applications. 

The global 30 m impervious surface dynamic dataset from 1985 to 2020 generated in this paper is free to access 

at http://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b). 

1. Introduction 

Impervious surfaces are usually defined as surfaces “preventing the surface water from penetrating into the 35 

ground” and are composed of anthropogenic materials, such as steel, cement, asphalt, bricks and stone (Chen et 

al., 2016; Weng, 2012; Zhang et al., 2020). Over the past few decades, with the rapid growth of the population 

and the economy, impervious surfaces have been undergoing dramatic expansion, especially in developing 

countries (Gong et al., 2019a; Kuang, 2020). Based on the statistics of the United Nations in 20142018, 5455% 

http://doi.org/10.5281/zenodo.5220816
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of the world’s total population lives in cities, and this proportion is expected to reach 6668% in 2050 (Unite 40 

Nations, 2019). As an indicator of the intensity of human activities and economic development, the dynamic 

information of impervious surfaces plays a significant role in urban planning (Li et al., 2015), biogeochemical 

cycles (Zhang and Weng, 2016), greenhouse gas emissions and urban heat island effects (Gao et al., 2012; Zhou 

et al., 2018), and urban sustainable development pathways (Liu et al., 2020b). Therefore, understanding and 

quantifying global impervious surface spatiotemporal dynamics is critical. 45 

In recent years, with the continuous improvement of remote sensing techniques as well as computer storage 

and computing capabilities, global impervious surface monitoring has been undergoing a transition from the 

coarse spatial resolution of 1 km to the fine resolution of 30/10 m (Corbane et al., 2020; Gong et al., 2020; Liu 

et al., 2018; Liu et al., 2020b; Schneider et al., 2009; Zhao et al., 2020; Zhou et al., 2018). Specifically, coarse 

impervious surface products primarily use time-series nighttime light datasets (including DMSP and VIIRS 50 

NTL imagery) (Xie and Weng, 2017; Zhao et al., 2020) and MODIS imagery (Huang et al., 2020; Schneider et 

al., 2010) to capture global impervious surface dynamics; for example, Huang et al. (2021) used a fully 

automated mapping method to produce global 250 m urban area products for 2001 to 2018 using time-series 

MODIS imagery. Zhou et al. (2018) used the Defense Meteorological Satellite Program/Operational Linescane 

System’s nighttime light data to develop temporally and spatially consistent global 1 km urban maps for 1992 55 

to 2013. Although these coarse global impervious surface dynamic products could capture global urban 

expansion trends, they are unsuitable for many regional applications, because a large quantity of broken and 

small-sized impervious surfaces are missed in coarse remote sensing imagery (Gong et al., 2020). Recently, 

benefiting from the improvements and maturity of cloud computing platforms (such as Google Earth Engine 

(Gorelick et al., 2017)), many global 30 m multitemporal impervious surface products have been produced using 60 

long time-series Landsat imagery (Florczyk et al., 2019; Gong et al., 2020; Liu et al., 2018; Liu et al., 2020b). 

Liu et al. (2021a) comprehensively reviewed current seven global 30 m impervious surface products, and found 

only four products could capture the impervious expansion at the long time-series. For exampleSpecifically, Liu 

et al. (2018) proposed a new index to develop multitemporal global 30 m urban land maps for 1990 to 2010 

with 5-years intervals, but the products suffered the low producer's accuracy and user's accuracy of 0.50–0.60 65 

and 0.49–0.61. Gong et al. (2020) used a combination of “exclusion–inclusion” and “temporal check” methods 

to generate an the first annual global 30 m artificial impervious surface area dataset for 1985 to 2018, but the 

cross-comparisons in the Zhang et al. (2020) found that this annual dataset achieved great performance on mega-

cities but suffered the under-estimation problems in the rural areas. The global human settlement layer (GHSL) 

monitored the impervious dynamic from 1975 to 2015 (Florczyk et al., 2019), but it suffered the overestimation 70 

problems at early stage and also missed the fragmented impervious objects (Gong et al., 2020). However, 

comprehensively reviewed and analyzed the accuracies and spatial consistencies of seven global 30 m 

impervious surface products, and found significant inconsistency and uncertainty inherent within these datasets, 

while quantitatively evaluated six global 30 m impervious surface products using 11,942 validation samples, 

finding unsatisfactory accuracies and low levels of agreement between them. Therefore, an accurate global 30 75 

m impervious surface dynamic product, which could accurately capture the spatiotemporal dynamic of various 

impervious objects including cities and rural, using an efficient mapping method is still urgently needed. 

Over the past few decades, many methods have been proposed for generating regional or global 

multitemporal impervious surface products. Generally, these methods can be divided into two groups: time-

series change detection (Jing et al., 2021; Li et al., 2018; Song et al., 2016) and multitemporal independent 80 
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classification/extraction (Gong et al., 2020; Liu et al., 2020b; Zhang and Weng, 2016). The time-series change 

detection strategy used change detection models to determine the break points in continuous Landsat 

observations. As this strategy makes full use of the correlations inherent within time-series imagery, it has higher 

robustness and a greater ability to capture urbanization time and frequency (Liu et al., 2019). However, as 

impervious surfaces are usually nonlinear, with high temporal and spatial heterogeneity, impervious surface 85 

monitoring is a highly difficult and challenging task, especially for arid or semi-arid areas (Reba and Seto, 2020; 

Sexton et al., 2013). Zhu et al. (2019) demonstrated that the newest continuous monitoring of land disturbance 

(COLD) method still suffer from an omission error of 27% and a commission error of 28%. Meanwhile, the 

monitoring efficiency of the time-series change detection strategy is very low, because it uses pixel-by-pixel 

modeling and by using continuous Landsat imagery.  90 

The multitemporal independent classification/extraction strategy generates multiple temporally independent 

impervious surface maps, and then derives “from–to” information through per-pixel comparison, so the means 

of generating multiple temporally independent impervious surface maps is the key issue of the strategy. Our 

previous study (Zhang et al. (2020)) concluded that there are three ways to generate independent impervious 

surface maps including: spectral mixture analysis (Wu, 2004; Zhuo et al., 2018), the spectral index-based 95 

method (Gao et al., 2012; Liu et al., 2018) and the image classification method (Zhang and Weng, 2016; Zhang 

et al., 2021a; Zhang et al., 2020). However, the spectral mixture analysis had great difficulty in finding the 

optimal endmembers, especially for long time-series monitoring. The spectral index-based method was simpler 

and more efficient than the other two strategies, but it encountered great difficulty in identifying the optimal 

threshold for deriving the impervious pixels from pervious surfaces, especially in arid areas (Sun et al., 2019). 100 

The image classification strategy uses training samples to build the classifiers for identifying impervious 

surfaces, and performed well in complex impervious surface mapping (Okujeni et al., 2013; Zhang et al., 2020). 

However, collecting training samples is a time-consuming and labor-intensive task, especially for large-area 

time-series impervious surface monitoring.  

To solve the time-consuming and manual participation problems for collecting massive training samples, 105 

many studies including our previous works have proposed to derive training samples from existing land-cover 

products after using a series of refinement rules, and successfully produced the large-area land-cover maps with 

fulfilling performances (Zhang and Roy, 2017; Zhang et al., 2021b; Zhang et al., 2019). For example, Zhang 

and Roy (2017) derived the training samples from time-series MCD12Q1 land-cover products and then used 

the derived samples for generating the 30 m land-cover maps with the overall accuracy of 95.44% over the 110 

whole America. Similarly, Zhang et al. (2021b) combined the CCI_LC land-cover products and time-series 

MCD43A4 to extract the confidence training samples and then produced the global 30 m land-cover products 

with the overall accuracy of 82.5%. However, it should be noted that the derived samples usually selected these 

spatiotemporal stable pixels as candidate samples for ensuring the confidence of training samples. Namely, 

these changed information cannot be captured using this derived strategy. In addition, the spectral generalization 115 

strategy had also been demonstrated to have great performance for automatic land-cover mapping (Phalke and 

Özdoğan, 2018; Wessels et al., 2016; Woodcock et al., 2001; Zhang et al., 2019). For example, our previous 

study in Zhang et al. (2019) used the training spectra from MCD43A4 products to classify the multitemporal 

Landsat imagery in China with the overall accuracy of 80.7%. However, the spectral generalization strategy 

usually needed the prior reference training spectra to build the generalized classifier. Fortunately, the spectral 120 

generalization strategy has been demonstrated to perform very well in automatic land-cover mapping and 
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monitoring. For example, employed the reflectance spectra from the earlier MCD43A4 NBAR dataset to 

automatically generate land-cover maps in China using multitemporal Landsat imagery, and achieved an overall 

accuracy of 80.7%.  

As impervious surfaces are usually nonlinear with high temporal and spatial heterogeneity,Monitoring 125 

impervious surface monitoring dynamics is a challenging and time-consuming task due to its high 

spatiotemporal heterogeneity. In this study, we proposed to a novel and automatic method by combining the 

advantages of spectral generalization and automatic sample extraction strategy for monitoring time-series 

impervious surface dynamics. Specifically, we derived the training samples from prior land-cover products to 

solve the time-consuming and manual participation problems for manually collecting massive training samples. 130 

Then, we combined the derived training samples withand the temporally spectral generalization to 

independently mapping impervious surfaces at long time-series. Next, a spatiotemporal consistency correction 

method was applied to independent impervious surface maps to the independent impervious surface maps to 

minimize the effects of classification errors and ensure the reliability and spatiotemporal consistency of the final 

dynamic impervious surface dataset. Finally, we produced an accurate and novel global 30 m impervious surface 135 

dynamic dataset (GISD30) from 1985 to 2020 by combining the proposed method and Google Earth Engine 

cloud computing platform, which also provide vital support for monitoring regional or global urbanization and 

performing related tasks.The aim of the study was to automatically produce an accurate and novel global 30 m 

impervious surface dynamic dataset (GISD30) for 1985 to 2020 by combining time-series Landsat imagery and 

the spectral generalization method. To achieve this goal, we first migrated the reflectance spectra of the 140 

impervious surface and simultaneously transferred the training samples of pervious surfaces to other periods in 

order to automatically monitor the spatiotemporal dynamic of impervious surface changes from 1985 to 2020. 

Then, we combined the local adaptive model and time-series Landsat imagery to independently produce 

impervious surface time-series products. Lastly, a spatiotemporal consistency correction method was applied to 

independent impervious surface products to minimize the effects of classification errors and ensure the 145 

reliability and spatiotemporal consistency of the final dynamic impervious surface dataset. The results indicate 

that our global 30 m impervious surface dynamic dataset was accurate, and could provide vital support for 

monitoring regional or global urbanization and performing related tasks. 

2. Datasets 

2.1 Time-series Landsat imagery 150 

As a single Landsat mission cannot cover the whole period of 1985 to 2020 (Roy et al., 2014), all available 

Landsat imagery, including Landsat 4, 5, 7 and 8, archived on the GEE computation platform, were collected 

to monitor the spatiotemporal dynamics of impervious surfaces. To minimize the scattering and absorption 

effects of the atmosphere, all Landsat imagery was corrected for the surface reflectance using the Land Surface 

Reflectance Code (LaSRC) (Vermote et al., 2016) and Landsat Ecosystem Disturbance Adaptive Processing 155 

System (LEDAPS) (Vermote, 2007) algorithms. Meanwhile, poor observations (including snow, shadow, cloud 

and saturated pixels) in the Landsat imagery were masked using the CFmask algorithm (Zhu and Woodcock, 

2014), which is the official Landsat processing algorithm and is included in the Landsat Surface Reflectance 

(SR) Product Handbook (USGS, 2017). Figure 1 illustrates the spatial distributions of all available Landsat 

observations from 1985 to 2020, with intervals of 5-years; clearly, the availability of Landsat imagery had a 160 

significant positive relationship with the advancement of the monitoring period, mainly because later Landsat 

satellites had greater capacities for onboard recording and satellite-to-ground transmission compared with 
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previous Landsat systems (Roy et al., 2014). In addition, as only Landsat 5 could provide observation imagery, 

and satellite-to-ground transmission capabilities were fairly low before 2000, the available Landsat observations 

available for before 2000 do not cover the whole world, and those for 1985 are especially limited; however, it 165 

should be noted that we assumed that the land-cover in these areas with missing data would remain stable during 

the period. 

 

Figure 1. The spatial distributions of the available Landsat observations from 1985 to 2020, with 5-year intervals. 

2.2 Global 30 m land-cover product in 2020 170 

To automatically monitor the spatiotemporal dynamics of impervious surfaces, it was necessary to import 

a global 30 m land-cover product from 2020, which was used as the reference dataset for deriving training 

samples in Section 3.1, and provided the broadest impervious surface information extents for monitoring 

spatiotemporal dynamics.  In this study, the GLC_FCS30-2020 (Global Land Cover product with Fine 

Classification System at 30 m in 2020) dataset, generated by combining the time-series of Landsat imagery with 175 

high-quality training data from the Global Spatial Temporal Spectra Library on the Google Earth Engine 

computing platform (Zhang et al., 2021b), was used, showing an overall accuracy of 82.5% and a kappa 

coefficient of 0.784 for the level-0 validation system (9 basic land-cover types), and an overall accuracy of 68.7% 

and kappa coefficient of 0.662 for the UN-LCCS level-2 system (24 fine land-cover types), employing 44,043 

global validation samples (Zhang et al., 2021b). It should be noted that the impervious surface layer in the 180 

GLC_FCS30-2020 dataset, which was independently produced by combining multisource and multitemporal 

remote sensing imagery, and achieved an overall accuracy of 95.1% and a kappa coefficient of 0.898 (Zhang et 

al., 2020), was not used as the result for period of 2015-2020 in the final results, instead, only used as the prior 

dataset for deriving training samples and determining the broadest extents.. The GLC_FCS30-2020 dataset is 

free to access at http://doi.org/10.5281/zenodo.4280923 (Liu et al., 2020a). 185 

2.3 Validation dataset 

http://doi.org/10.5281/zenodo.4280923
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To quantitatively assess the accuracies of our impervious surface dynamic time-series products, 

18,54023,322 validation samples (Figure 2), including 8,55413,236 impervious samples and 9,986 pervious 

samples, covering the long-term time-series from 1985 to 2020, were randomly generated using the stratified 

random sampling strategy, and further interpreted on the Google Earth Engine computing platform. Using the 190 

GEE computing platform had obvious advantages over collecting validation samples, including: 1) storing 

massive amounts of remote sensing imagery with various spatial resolutions and time spans; 2) easy access to 

different remote sensing images via simplified coding (Gorelick et al., 2017). Therefore, using multisource high-

resolution imagery archived in the GEE platform, each validation sample could be marked as "pervious surface" 

or "specific change year of impervious surface". However, as the high-resolution images from 1985 to 2000 195 

were sparse, and the Landsat imagery contained observations for that period with satisfactory spatial resolution, 

we used the time-series Landsat imagery as the auxiliary dataset for visual interpretation between 1985 and 

2000. Further, as the spatial heterogeneity of the impervious surface was usually higher than that of natural land-

cover types, and land-cover transition areas were often more prone to confusion, the location of each validation 

sample in rural areas was moved to the center of the impervious object (such as buildings and roads), and the 200 

impervious area in a 30 × 30 m window should comprise more than 50% when identifying impervious samples 

(Zhang et al., 2020). Meanwhile, to minimize the effect of geometry registration between validation samples 

and our products, the geolocations of these rural impervious surface samples, located in the transition areas of 

the impervious objects (such as buildings and roads) and pervious surfaces, were re-positioned in the center of 

the objects. Lastly, to minimize the influence of the interpreting experts’ subjective knowledge, each validation 205 

sample was to be independently interpreted by five experts.  

 

Figure 2. The spatial distribution of the global multitemporal impervious surface validation dataset for 1985-

2020. 

2.4 Existing multitemporal global 30 m impervious surface products 210 

In this study, four five existing multitemporal global 30 m impervious surface products, including GAIA 

(Global Artificial Impervious Area), GHSL (Global Human Settlement Layer), GAUD (Global Annual Urban 
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Dynamics), GlobeLand30 impervious surface layer and NUACI (Normalized Urban Areas Composite Index) -

based maps, were used to comprehensively analyze the performance of our products. Specifically, GAIA was 

generated by combining the “Exclusion/Inclusion” and “Temporal Consistency” methods and applying them to 215 

time-series Landsat imagery, which provided the global annual impervious surface from 1985 to 2018 at a 30 

m spatial resolution, with a mean accuracy of 90% using 3500 validation samples (Gong et al., 2020). 

Furthermore, tThe GHSL products, developed by fusing supervised and unsupervised classification processes 

to achieve a combination of data-driven and knowledge-driven processes, contained four epochs’ impervious 

surface dynamics (1970, 1990, 2000 and 2015) (Florczyk et al., 2019; Pesaresi et al., 2016), with the high overall 220 

accuracy of 96.28% and the low kappa coefficient of 0.323, verified using the open LUCAS (Land-Use/Cover 

Area Frame Survey) validation dataset for Europe (Pesaresi et al., 2016). The GAUD dataset, produced by 

combining four prior global urban-extent maps and time-series normalized urban areas composite index, 

monitored annual changes in urban extent from 1985 to 2015 and achieved the mean kappa coefficient of 0.57 

in 2015 (Liu et al., 2020b). Thirdly, tThe GlobeLand30 impervious surface layer, which was an independent 225 

land-cover type in the GlobeLand30 global land-cover product, was produced by combining pixel-based 

classification, multi-scale object-oriented segmentation and manual verification based on the visual 

interpretation of high-spatial resolution imagery (Chen et al., 2015). Meanwhile, to eliminate salt and pepper 

noise in the impervious surface layer, a minimum unit of 4 ×4 pixels was applied for each impervious surface 

object. In this study, three epochs’ (2000, 2010 and 2020) impervious surface layers were included in the 230 

GlobeLand30, and independent validation indicated that the accuracy of impervious surface identification was 

over 80% (Chen and Chen, 2018; Chen et al., 2016). Lastly,The NUACI-based products were generated by 

combining the multi-temporal NUACI index and adaptive threshold optimization methods and applying them 

to the time-series Landsat and nighttime light imagery (Liu et al., 2018), which contained the impervious surface 

dynamics of seven epochs from 1985 to 2015, with five-year intervals. Further,The independent validation 235 

indicated that the NUACI-based products achieved overall accuracy, producer's accuracy and user's accuracy 

of 0.81–0.84, 0.50–0.60 and 0.49–0.61, respectively, at the global level (Liu et al., 2018). 

3. Methods 

To automatically monitor the spatiotemporal dynamics of impervious surfacesIn this study, a temporal 

spectral generalization method has been proposed in Figure 3novel and automatic method, combining 240 

temporally spectral generalization and deriving training samples from existing products, was proposed to 

automatically monitor the spatiotemporal dynamics of impervious surfaces. FirstSpecifically, the training 

samples and maximum impervious surface area extents in 2020 were automatically firstly derived from the 

earlier prior GLC_FCS30-2020 land-cover products and other global 30 m impervious surface products. 

Secondly, based on the assumption that the land-cover transition from impervious surface to pervious surface 245 

was irreversible, the pervious surface samples in 2020 could bewere directly transferred to other periods. As for 

the impervious surface samples, as it was impossible to directly transform them, we proposed to migrated their 

reflectance spectra from in 2020 to other periods to achieve the automatically monitored spatiotemporal 

dynamicsby using the temporally spectral generalization strategy. Thirdly, multitemporal local adaptive random 

forest classification models, trained by the migrated reflectance spectra of impervious surfaces in 2020 and 250 

transferred pervious surface samples, were applied to independently generate time-series impervious time-series 

surface maps from 1985 to 20152020. Lastly, the temporal consistency checking method was used to ensure the 
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spatiotemporal consistency and logic of using this approach for monitoring the spatiotemporal dynamics of 

impervious surfaces. 

 255 

Figure 3. The flowchart of the spectral generalization method for automatically monitoring the spatiotemporal 

dynamics of impervious surface from 1985 to 2020. 

3.1 Deriving training reflectance spectra and maximum impervious surface area 

To achieve the automatic monitoring of the spatiotemporal dynamics of impervious surfaces, we proposed 

to transfer the pervious samples in 2020 to other periods by the irreversible assumption, and simultaneously 260 

migrated the impervious reflectance spectra in 2020 to other periods using spectral generalization strategy. two 

key measures should be taken, including:The key steps of the novel method were: 1) ensuring the spectral 

consistency between reference period and other periods, which guarantees the feasibility of migrating the 

reflectance spectra of impervious surfaces in 2020 to other periods; 21) automatically deriving training samples 

and maximum impervious surface extents from the prior GLC_FCS30-2020 land-cover products and other 265 

impervious surface products; 2) multitemporal imagery composting and relative radiometric 

normalizationensuring the spectral consistency between reference imagery and other unclassified imagery, 

which guarantees the feasibility of migrating the reflectance spectra of impervious surfaces in 2020 to other 

periods. 

3.1.1 Deriving training samples and maximum impervious surface extents from existing products 270 

As opposed to the traditional method of collecting training samples based on visual interpretation, in this 

study, the global training samples, including those of the impervious surface and the pervious surfaces, were 

automatically derived from the earlierprior GLC_FCS30-2020 land-cover products and other prior impervious 

surface products by using a series of refinement rules. The reasons why we mainly chose the GLC_FCS30-2020 

as the reference dataset were because: 1) the impervious surface layer in the GLC_FCS30-2020 was 275 

independently produced by combining multisource and multitemporal imagery with the high user’s accuracy of 

93.2% and a producer’s accuracy of 94.8% (Zhang et al., 2020); 2) the other pervious land-cover types in the 
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GLC_FCS30-2020 also achieved a great performance with the overall accuracy 82.5%. Specifically, we firstly 

determined the maximum impervious surface extents and impervious training samples from several prior 

products. Although the impervious layer in GLC_FCS30-2020 had an omission error of only 5.2% (Zhang et 280 

al., 2020), we still combined multiple global 30 m impervious surface products (GAIA-2018 (𝐼𝑆𝑔𝑎𝑖𝑎), GHSL-

2014 (𝐼𝑆𝑔ℎ𝑠𝑙), impervious layer in the GlobeLand30-2020 (𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30) and GLC_FCS30-2020 (𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30)) 

to capture all the impervious surfaces as comprehensive as possible. Namely, the maximum impervious surface 

extents (𝐼𝑆𝑚𝑎𝑥), derived via the union of these four global impervious surface products (formula (1)), was used 

as the maximum boundary of subsequent time-series classifications. 285 

𝐼𝑆𝑚𝑎𝑥 = 𝐼𝑆𝑔𝑎𝑖𝑎 ∪ 𝐼𝑆𝑔ℎ𝑠𝑙 ∪ 𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30 ∪ 𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30  (1) 

Then, as for how to derive impervious training samples, the GAIA and GHSL datasets were demonstrated 

to suffer the problem of missing these fragmented impervious objects (such as: rural villages, roads) (Sun et al., 

2019), so the intersection operation was only applied to the impervious layer in the GlobeLand30-2020 

(𝐼𝑆𝑔𝑙𝑜𝑏𝑙𝑒𝑎𝑛𝑑30) and GLC_FCS30-2020 (𝐼𝑆𝑔𝑙𝑐_𝑓𝑐𝑠30) to comprehensively capture impervious samples in both 290 

cities or small villages and minimize the effect of commission error in this two products. Afterwards, as the 

transition areas between two different land-cover types had high probability of being misclassified (Radoux et 

al., 2014), the spatial homogeneity of each candidate impervious sample was calculated using a local window 

of 3×3: 

𝑃𝑥,𝑦 =
1

𝑁
[∑ ∑ 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝)

𝑦+1
𝑦−1

𝑥+1
𝑥−1 ]  (2) 295 

where 𝑃𝑥,𝑦  denotes the spatial homogeneity of candidate pixel 𝐿𝑥,𝑦 , 𝐿𝑖𝑚𝑝  represents the label value of 

impervious surface, and the 𝐼(𝐿𝑥,𝑦 = 𝐿𝑖𝑚𝑝) is the indicator function and N is the size of the local window size. 

In this study, we only retained these spatial homogeneity candidate impervious samples. Namely, if the 𝑃𝑥,𝑦 of 

candidate pixel was less than 1, the candidate impervious sample would be discarded. 

As we have combined four prior 30 m impervious surface products to determine the maximum impervious 300 

surface extents in 2020 (𝐼𝑆𝑚𝑎𝑥), the remaining areas outside 𝐼𝑆𝑚𝑎𝑥  were considered as pervious surfaces 

(𝑃𝑆𝑐𝑜𝑛𝑑𝑖). However, due to the complicated makeup and spectral heterogeneity of impervious surfaces, some 

pervious surface types such as: bare land, grassland and cropland would be spectrally confused with the 

impervious surfaces. For example, bare land was spectrally similar to the high-reflectance impervious surfaces 

because composition materials of the impervious surface, including the cement bricks and stone, were also 305 

present in the bare land. Meanwhile, cropland was also easily confused with impervious surfaces, especially in 

the cases of some rural buildings (Sun et al., 2019), because both are composed of low-reflectance vegetation 

and high-reflectance artificial materials or bare soil. Therefore, we proposed to further split 𝑃𝑆𝑐𝑎𝑛𝑑𝑖 into three 

sub-categories (cropland, bare land and others) by using the GLC_FCS30-2020. Meanwhile, the spatial 

homogeneity checking (formula (2)) was also applied to each 𝑃𝑆𝑐𝑜𝑛𝑑𝑖 sample to minimize the confusions in 310 

these land-cover transition areas. 

Although we used refinement rules to extract high confidence training samples, the volume of candidate 

training points (including impervious surface and pervious surfaces) was still large especially for the pervious 

samples. In addition, Ssome studies have quantitatively demonstrated that the distribution, balance and size of 

training samples affect the classification accuracy (Jin et al., 2014; Mellor et al., 2015; Zhu et al., 2016). For 315 

example,  compared two sample allocation processes (proportional to area and equal allocation), and found 

that proportional allocation achieved a better performance than equal allocation; howeverIn this study, as the 
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the impervious surface comprised morewas  sparsesparser land-cover types compared tothan other pervious 

surfaces (cropland, bare land and others) in term of global total distribution areasthe pervious surfaces in this 

study, the . Therefore, similar to our previous work on global impervious surface mapping, training samples 320 

with equal allocation were used here to guarantee training sample balance and to capture as effectively as 

possible the spectral heterogeneity of impervious surfaces as effectively as possible. Namely, the ratio of 

impervious samples and pervious samples was close to 1:3. MeanwhileIn addition, as the spatial distribution of 

impervious surfaces greatly varies in different regions, andtherefore, if we derived training samples on a global 

scale, the continents with more sparse impervious surfaces (South America, Africa and Oceania) would lack 325 

sufficient samples to characterize their impervious surfaces. In order to further ensure that the training samples 

were locally adaptive, we adopted the tiled solution used in (Zhang et al., 2021b), splitting the global land-area 

into approximately 961 5°×5° geographical tiles (Figure 4), and independently deriving training samples for 

each geographical tile. As for the sample size in each tile, Zhu et al. (2016) quantitatively demonstrated that the 

mapping accuracy first increased and then stabilized with the increase of the sample size and suggested a 330 

minimum of 600 training samples and a maximum of 8000 training samples per class. In this study, the sample 

size was about 5000 for each class, and the ratio between impervious surfaces and pervious surfaces was 1:3. 

3.1.13.1.2 Multitemporal imagery composting and relative radiometric normalization 

As our previous work (Zhang et al. (2020)) had quantitatively demonstrated that multitemporal information 

made a positive contribution to large-area impervious surface mapping, and the availability of Landsat imagery 335 

varied with the spatial distribution in Figure 1, it was necessary to decompose the time-series Landsat imagery 

into multitemporal features. Our previous work (Zhang et al. (2021)) concluded thatAccording to the reviews 

in the Gomez et al. (2016), there were two main options—“selection-based” and “transform-based”—for 

extracting multitemporal information from time-series imagery. Specifically, tThe “selection-based” option 

involved usingwas to use user-defined criteria to select the most suitable observation from the time-series 340 

imagery. , so the composited imagery still contained the characteristics of surface reflectance. For example, the 

maximum NDVI (Normalized Difference Vegetation Index) compositing method was to was used to select the 

observation with the largest NDVI value from the pixel-by-pixel and time-series observations. Therefore, 

“selection-based” composited imagery can still be used to characterize the actual reflective properties of the 

land surface. Furthermore,While t the “transform-based” method was to uses the transform models (Fourier 345 

transform, mathematical statistics, etc.) to transform composite the time-series observations into new variables 

band by band,; for example,  used the statistical widely used quantile compositing method was to transform 

the time-series spectra into several quantiles based on the ranking of the valuesto extract multitemporal 

information from time-series Landsat imagery. Therefore, the composited imagery derived by the “transform-

based” strategy cannot represented the actual characteristics of surface reflectance at wavelength 350 

dimension.However, it should be noted that “transform-based” composited imagery cannot give the actual 

characteristics of the land surface, especially in the spectral dimension.   

In this study, as we needed to migratmigrateed the reflectance spectra of impervious surfaces in 2020 to 

other periods; therefore, the “selection-based” method strategy was the optimal solution for spectral 

generalization. To select the user-defined criteria to composite the multitemporal features, given that the best-355 

available-pixel (BAP) method could simultaneously take into account four factors (sensor type, day of year, 

distance to cloud or cloud shadow and aerosol optical thickness (White et al., 2014)), it has been widely used 

for generating annual or seasonal cloud-free composited imagery (Chen et al., 2021; Liu et al., 2019). In this 
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study, in order to further capture the multitemporal information from the time-series Landsat imagery, the 

seasonal BAP composited method, which applies applied the BAP compositing approach for each season, was 360 

used on time-series Landsat imagery in each period. Therefore, we derived four sets of seasonally composited 

Landsat imagery for each period. It should be noted that we categorized the time-series Landsat imagery from 

1982 to 2020 into 8 periods with the interval of 5 years corresponding to the Figure 1. It should be noted 

thatMeanwhile, we also assumed that the land-cover in those areas with missingno Landsat observation areas 

would remain stable during theis period. According to our statistics, the missing Landsat observations during 365 

1986-1995 mainly concentrated on the Northeast Asia in which contained a small number of impervious 

surfaces.d. 

In additionMeanwhile, for each set of seasonally composited imagery, excluding those in six optical bands 

(blue, green, red, NIR, SWIR1 and SWIR2), three spectral indexes, including the normalized difference built-

up index (NDBI), normalized difference water index (NDWI) and NDWInormalized difference vegetation index 370 

(NDVI), were also imported, because some studies have demonstrated that these indexes help in identifying 

impervious surfaces NDBI was a good indicator of impervious surface and bareland, NDVI was sensitive to the 

vegetation, and NDWI was one of the most popular indices for mapping water bodies. Eventually, a total of 36 

multitemporal spectral bands features were derived for four seasonal composites using continuous 5-year 

Landsat imagery for each period (Figure 1). It should be noted that we assumed that the land-cover in those 375 

areas with missing would remain stable during this period. 

𝑁𝐷𝐵𝐼 =
𝜌𝑠𝑤𝑖𝑟1−𝜌𝑛𝑖𝑟

𝜌𝑠𝑤𝑖𝑟1+𝜌𝑛𝑖𝑟
, 𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
, 𝑁𝐷𝑉𝐼 =

𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
  (3) 

Afterwards, the prerequisite for temporally spectral generalization was the spectral consistency between 

reference imagery and unclassified imagery. In our previous works, we demonstrated that the spectral 

consistency between the reference period and other periods would affect the capacity for spectral generalization. 380 

In this study, some measures were taken to ensure the highest possible spectral consistency in the Landsat 

composited imagery for the reference period and other periods: 1) the “selection-based” strategy was applied to 

ensure that the composited imagery could characterize the reflective characteristics of the land surface; 2) the 

seasonal BAP method was used to guarantee the phenological consistency of each set of seasonally composited 

imagery. However, there was still a small difference in the spectral response between Landsat sensors (TM, 385 

ETM+ and OLI) (Roy et al., 2016), and some factors (including the number of available Landsat observations, 

frequency of cloud and shadow, etc.) caused small temporal difference in the seasonal composites between the 

reference period imagery and unclassified imagerythe other periods. Therefore, to further ensure the spectral 

consistency of each seasonal composite,Therefore, we used the relative radiometric normalization method was 

appliedto further ensure the spectral consistency between reference and unclassified imagery before deriving 390 

training reflectance spectra. Specifically, as we migrated the reflectance spectra of impervious surfaces from in 

2020 to other periods, the seasonal composites in 2020 were the dependent variables (𝜌𝑅,𝑆𝑗
(𝜆𝑖)): 

𝜌𝑅𝜆𝑖=𝛼𝑖×𝜌𝑡𝜆𝑖+𝛽𝑖𝜌𝑅,𝑆𝑗
(𝜆𝑖) = 𝛼𝑖 × 𝜌𝑡,𝑆𝑗

(𝜆𝑖) + 𝛽𝑖  (4) 

where 𝜌𝑡(𝜆𝑖) is was the surface reflectance in band 𝜆𝑖 𝜆𝑖 in the period 𝑡 (𝑡 = 1985, 1990, … , 2015), 𝑆𝑗 

represented the seasonal composites in different seasons, and 𝛼𝑖 and 𝛽𝑖𝛽𝑖 are denoted the slope and intercept 395 

of the linear regression model.  

3.1.2 Deriving training samples and maximum impervious surface extent 
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compared two sample allocation processes (proportional to area and equal allocation), and found that 

proportional allocation achieved a better performance than equal allocation; however, the impervious surface 

comprised more sparse land-cover types compared to the pervious surfaces in this study. Therefore, similar to 400 

our previous work on global impervious surface mapping, training samples with equal allocation were used here 

to guarantee training sample balance and to capture as effectively as possible the spectral heterogeneity of 

impervious surfaces. Meanwhile, as the spatial distribution of impervious surfaces varies in different regions, 

and we derived training samples on a global scale, the continents with more sparse impervious surfaces (South 

America, Africa and Oceania) would lack sufficient samples to characterize their impervious surfaces. In order 405 

to further ensure that the training samples were locally adaptive, we adopted the tiled solution used in, splitting 

the global land-area into approximately 961 5°×5° geographical tiles (Figure 4), and independently deriving 

training samples for each geographical tile. Furthermore, the impervious layer in the GLC_FCS30 was shown 

to have a user’s accuracy of 93.2% and a producer’s accuracy of 94.8%, which guarantees the reliability of the 

impervious training samples. To further improve the accuracy of the training samples, corrosion morphological 410 

filtering with 3 × 3 pixels window was applied to the previous impervious layer, because a large number of 

mixed pixels and misclassifications usually occur at the boundaries of impervious objects. Further, as for the 

collection of pervious samples, corrosion morphological filtering with a 3 × 3 pixels window was also used on 

the GLC_FCS30-2020 land-cover products; then, the three sub-classes of pervious samples (cropland, bare land 

and other pervious surfaces) were automatically sampled from the filtered GLC_FCS30 products. 415 

Lastly, although the impervious layer in GLC_FCS30-2020 had an omission error of only 5.2%, we still 

combined multiple global 30 m impervious surface products (GAIA-2018, GHSL-2014, GlobeLand30-2020 

and impervious layer in GLC_FCS30-2020) to capture all the impervious surfaces as effectively as possible. 

Therefore, the maximum area of impervious surface, derived via the union of these four global impervious 

surface products, was used as the boundary of subsequent time-series-independent classifications. 420 

3.2 Spectral generalization classification and temporal consistency checking 

Based on the assumption that the land-cover transition from impervious surface to pervious surface was 

irreversible, the derived pervious samples in 2020 (Section 3.1.1) would be directly transferred to other periods, 

but the impervious surface samples in 2020 cannot be transferred. To solve the lack of impervious surface 

samples before 2020, we normalized the reflectance spectra of impervious surfaces in other epochs to those in 425 

2020 using the relative radiometric normalization method (Section 3.1.2). Specifically, we independently 

trained the classification models at each period using the generalized impervious reflectance spectra 

(𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020) and the pervious samples (𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡) as: 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡 = [∑ (𝜌𝑏
𝑠𝑖,𝑡

, 𝜌𝑔
𝑠𝑖,𝑡

, 𝜌𝑟
𝑠𝑖,𝑡

, 𝜌𝑛𝑖𝑟
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖,𝑡

, 𝜌𝑠𝑤𝑖𝑟2
𝑠𝑖,𝑡

, 𝑛𝑑𝑏𝑖𝑠𝑖,𝑡, 𝑛𝑑𝑣𝑖𝑠𝑖,𝑡 , 𝑛𝑑𝑤𝑖𝑠𝑖,𝑡)𝑠𝑖
]  

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝐼𝑆2020 = [∑ (𝜌𝑏
𝑠𝑖 , 𝜌𝑔

𝑠𝑖 , 𝜌𝑟
𝑠𝑖 , 𝜌𝑛𝑖𝑟

𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟1
𝑠𝑖 , 𝜌𝑠𝑤𝑖𝑟2

𝑠𝑖 , 𝑛𝑑𝑏𝑖𝑠𝑖 , 𝑛𝑑𝑣𝑖𝑠𝑖 , 𝑛𝑑𝑤𝑖𝑠𝑖)𝑠𝑖
]  

(5) 

where 𝑠𝑖  denotes various seasonal composites and 𝑡  is the monitored period. It can be found that the 

𝑇𝑟𝑎𝑖𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑃𝑆𝑡 varies with the 𝑡, namely, the training spectra of pervious surfaces directly came from 430 

the unclassified imagery. It should be noted that there may not be cloud-free imagery available especially for 

the rainy season before 2000 in the tropical rainforest areas. In this case, we discarded this missed seasonal 

features when training the classification models, namely, the number of training features varied with the 

availability of Landsat observations.  
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Afterwards, as the spatial distributions of impervious surfaces varied in different regions, we used the local 435 

adaptive resampling strategy to comprehensively capture the impervious surface characteristics at various 

regions (Section 3.1.1). However, if we used all training samples to build a global classification model for 

mapping global impervious surfaces, the global model still sacrifice the performance in these sparse impervious 

surface regions to achieve high overall accuracy. In this study, the local adaptive modeling strategy, spited the 

globe into multiple local regions and then independently trained the classification models in each local region 440 

using corresponding regional samples, was adopted to increase the sensitivity and fitting ability of the 

classification model at different regions. Zhang and Roy (2017) also quantitatively compared the performance 

of global classification modelling and local adaptive modelling strategies and found the latter had greater 

performance than the former. Therefore, we adopted the tiled solution used in the Zhang et al. (2021b), splitting 

the global land-area into approximately 961 5°×5° geographical tiles (Figure 4), and then trained independent 445 

classification model in each geographical tiles. As mentioned before, the reflectance spectra of impervious 

surfaces in 2020 were migrated to other periods, while the pervious samples in 2020 could be directly transferred 

to other periods because of the irreversibility assumption. As opposed to traditional spectral generalization 

classification methods, which temporally migrate the reflectance spectra of all land-cover types, in this study, 

we needed to independently train the classification models at each period because the reflectance spectra of the 450 

pervious surfaces varied with the period. In addition, our previous work concluded that there are two options 

for large-area or global-scale classification, including global classification modeling and local adaptive 

modeling. The global modeling strategy, using all training samples to build a single classification model and 

then applying the model for the whole world, usually had greater classification efficiency and lower sample size 

requirements than local adaptive modeling. Local adaptive modeling firstly splits the large area into multiple 455 

local regions, and then independently trains the classification models in each region using corresponding 

regional samples.  quantitatively compared these two modeling strategies, and found that local adaptive 

modeling performed better than global modeling, because the former increased the sensitivity and fitting ability 

of the model for the region. Therefore, similar to in our previous work on global land-cover mapping, the global 

land-area was divided into 961 5°×5° geographical tiles (Figure 4) for local adaptive modeling. 460 
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Figure 4. The spatial distribution of 961 5°×5° geographical tiles for local adaptive modeling. The background 

imagery comes from the National Aeronautics and Space Administration (https://visibleearth.nasa.gov). 

Furthermore, the random forest (RF) classification model has significant advantages over other 

classification models (such as decision tree, support vector machine and neural network), including: 1) higher 465 

computation efficiency and classification accuracy; 2) a stronger ability to process high-dimensional data and 

resist training sample errors; 3) simpler parameter settings (Belgiu and Drăguţ, 2016; Du et al., 2015; Gislason 

et al., 2006). Therefore, the RF classifier was selected to produce our impervious surface dynamic time-series 

products. The RF classifier only contains two adjustable parameters (the number of decision trees (Ntree) and 

the number of selected prediction variables (Mtry)), and Belgiu and Drăguţ (2016) quantitatively analyzed the 470 

relationship between the classification accuracy and these two parameters, finding that the Ntree had a greater 

impact on classification accuracy than Mtry and suggesting that these two parameters should take default values. 

As such, we defined the Ntree as 500 and Mtry as the square root of the total number of input features. 

Lastly, as the time-series impervious surface time-series products were produced by independent 

classifications, it was necessary to use the post-processing method to optimize the time-series impervious time-475 

series products from 1985 to 2020 and minimize the influence of classification error. Over the past few years, 

many post-processing methods have been proposed, including maximum a posteriori Markov random fields 

(Cai et al., 2014) and temporal consistency checks (Li et al., 2015), both of which use contextual spatiotemporal 

information and prior knowledge to reduce the illogical land-cover transitions caused by classification error. In 

this study, the “temporal consistency correction” proposed by (Li et al., 2015) was applied to optimize our 480 

impervious time-series products. This It mainly comprised procedures of spatiotemporal filtering and illogical 

transition checking, the former of which iteratively calculates the probability of the same land-cover pixels 

occurring in the neighborhoods within a 3×3×3 spatiotemporal window as: 

𝑃𝑥,𝑦,𝑡 =
1

𝑁
[∑ ∑ ∑ 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡)𝑡′=𝑡+1

𝑡′=𝑡−1
𝑦′=𝑦+1
𝑦′=𝑦−1

𝑥′=𝑥+1
𝑥′=𝑥−1 ]   (6) 

where 𝐿𝑥′,𝑦′,𝑡′ denotes the adjacent pixels in the spatiotemporal window, 𝐿𝑥,𝑦,𝑡  reprensents the label of the 485 

target pixel (𝑥, 𝑦) in the period of 𝑡, and 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡) is the indicator function. Usually, the value of 

𝑃𝑥,𝑦,𝑡 could reflect the accuracy of 𝐿𝑥,𝑦,𝑡, namely, a higher value of 𝑃𝑥,𝑦,𝑡 means the high confidence of 𝐿𝑥,𝑦,𝑡. 

In this study, the threshold of 0.5 for the 𝑃𝑥,𝑦,𝑡 (suggested by the Li et al., 2015) was applied so as to reduce 

the influence of classification error caused by individual classifications. If the 𝑃𝑥,𝑦,𝑡  for each impervious 

surface pixel was lower than 0.5, the corresponding label was adjusted as the opposite. Afterwards, and the 490 

illogical transition checking latter mainly employed the irreversibility assumption to remove illogical transitions 

from impervious surface to pervious surface.  

3.3 Accuracy assessment 

To comprehensively assess the performance of our global 30 m impervious surface dynamic dataset, 

sample-based and comparison-based methods were applied. Specifically, the sample-based validation method 495 

used the multitemporal impervious surface validation samples to calculate four accuracy metrics, including the 

overall accuracy and kappa coefficient, the producer’s accuracy (measuring the commission error) and the user’s 

accuracy (measuring the omission error) (Olofsson et al., 2014). Meanwhile, as opposed to traditional period-

by-period accuracy assessments, we categorized the time-series impervious surface dynamic into 9 independent 

strata, including: pervious surfaces, impervious surfaces before 1985, and expanded impervious surfaces during 500 

https://visibleearth.nasa.gov/
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1985-1990, 1990-1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015 and 2015-2020. We then calculated a 

comprehensive confusion matrix for these nine strata.  

In addition, the comparison-based method used four five global 30 m impervious surface products (GAIA, 

GHSL, NUACI, GAUD and GlobeLand30) with multiple epochs as the comparative dataset for analyzing the 

performance of our GISD30 products. Specifically, we compared the time-series impervious areas of five 505 

products in six continents, and further analyzed the spatial consistency between GISD30 and four five 

comparative datasets at the global scale. Further, we selected three types of cities (mega-cities, tropical cities 

and arid cities) and one rural area to illustrate the performance of five global 30 m impervious surface products 

used for capturing the spatiotemporal dynamic, we selected three types of cities including: mega-cities, tropical 

cities and arid cities., The reasons why we chose these types of cities and rural areas were that (1) the mega-510 

cities usually experienced more intense urbanization, we could more intuitively understanding of whether there 

were commission error and omission error in each product; (2) the tropical cities usually mean sparser 

observations caused by the cloud and shadowcoverage, so we could analyze the stability and robustness of each 

product in the tropical cities; (3) the arid cities were selected to analyze the ability of each product to distinguish 

between impervious surfaces and similar land types (arid soils); (4) the rural area contained sparse impervious 515 

surfaces and were prone to suffer the underestimation problem. 

4 Results  

4.1 The spatiotemporal dynamics of impervious surfaces from 1985 to 2020 

Figure 5 illustrates the spatial distributions of time-series global 30 m impervious surface time-series maps 

and two local enlargements in China and India for during 1985-2020, with intervals of 5 years. Intuitively, as 520 

the world’s main impervious surfaces and economic activities are mainly concentrated in the northern 

hemisphere, the intensity of impervious surface expansion in the northern hemisphere was is more significant 

than that in the southern hemisphere. FurthermoreSpecifically, the impervious surfaces have undergone rapid 

urbanization in past 35 years, especially in Asiadeveloping countries such as China and India in Figure 5a and 

b. . For example, the impervious surface areas in India and China in 1985 were mostly low, It can be found that 525 

but many low-density areas in 1985(including southeast China, central India, etc.) were transformed into 

medium/ high-density regions areas by in 2020, the cities were obviously connected by the new impervious 

surfaces especially in the mega-cities such as Shanghai and Guangzhou in China, and mega-cities (Bangkok, 

New Delhi and Beijing in Figure 5a and b) experienced faster impervious surface expansion than the 

surrounding villages and small cities, etc. .  530 
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Figure 5. The spatial distributions of time-series global 30 m impervious surface time-series results and two 535 

local enlargements in China and India from 1985 to 2020 with intervals of 5 years. Each pixel represents the 

fraction of impervious surface within each 0.05°×0.05° spatial unitgrid. 

Figure 6 quantitatively summarizes the impervious surface areas and their changes on six continents from 

1985 to 2020. Overall, the global impervious surface area has doubled in the past 35 years, from 5.116×105 km2 
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in 1985 to 10.871×105 km2 in 2020. Specifically, Asia experienced the largest increase in impervious surface 540 

area compared to other continents, with a total increase of 2.946×105 km2 (from 1.908×105 km2 in 1985 to 

4.854×105 km2 in 2020), followed by North America (from 1.202×105 km2 to 2.188×105 km2), Europe (from 

1.330×105 km2 to 2.168×105 km2), Africa (from 0.264×105 km2 to 0.725×105 km2), and South America (from 

0.298×105 km2 to 0.735×105 km2), and Oceania experienced lowest urbanization, with an increase of 0.088×105  

km2 over the past 35 years. In addition, the proportion of impervious area on three continents, namely, Asia, 545 

Africa and South America, obviously increased, and the proportions of the remaining three continents (Europe, 

North America and Oceania) declined (Figure 6b). Specifically, the proportion of impervious area in Asia 

increased the most, from 37.3% to 44.7%, while the proportion in Europe clearly decreased, from 26.0% to 

20.1%. Lastly, Figure 6d illustrates the impervious surface expansion ratio of six continents in 1985-2020. 

Africa displayed the fastest expansion ratio compared to other continents—the impervious area in Africa was 550 

1.74 times greater than that in 1985, followed by Asia and South America, with expansion ratios of 154.4% and 

146.4% over the period, respectively. Comparatively, as Europe and North America had large impervious 

surface areas in 1985, their impervious area expansion ratios were relatively low. Meanwhile, the expansion 

rate of impervious surface area on six continents after 2000 was significantly faster than before 2000. 

 555 

Figure 6. The expansion of impervious surfaces on each continent over the period of 1985-2020. (a) The 

impervious areas of six continents in each period. (b) The proportion of impervious areas on six continents from 

1985 to 2020. (c-d) The increased impervious area and corresponding expansion ratio on each continent. 

Figure 7 quantitatively measures the growth of impervious surfaces in various countries around the world 

over the period of 1985-2020. China underwent the largest increase in impervious area in the last 35 years, with 560 

an increase of 1.31×105 km2, followed by America and India both exceeding 4.0×104 km2, and Russia and Brazil 

exceeding 2.0×104 km2. Meanwhile, from the perspective of spatial distribution, countries in Asia and North 

America displayed a higher increase in impervious area than those in other continents, especially East Asian 

and South Asian countries. In comparison, most countries in Africa underwent relatively little impervious 
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surface growth, with an increase of less than 4000 km2 over the past 35 years. Although Europe is a center of 565 

global economic activity, the increased impervious area in European countries was not significant compared 

with North America and Southeast Asia, and the average increase in area was less than 8000 km2. In addition, 

Figure 7 shows the sum of the impervious surface area in the meridional and zonal directions in 1985 (blue) and 

2020 (red), with a step of 0.05°, respectively. Firstly, the meridional statistics indicate that the impervious 

surface in 1985 was more evenly distributed in the meridional direction than that in 2020. In 2020, there were 570 

four distinct peak intervals: 100°W~70°W (covering eastern United States), 0°~50°E (containing most 

European countries), 70°E~90°E (covering the whole of India) and 100°E~120°E (containing many Southeast 

Asia countries and China). Meanwhile, the increase in impervious area in the Eastern Hemisphere was 

significantly larger than that in the Western Hemisphere, and the maximum increase in impervious area was 

located near 120°E, containing China’s three major economic deltas (Yangtze River Delta, Pearl River Delta 575 

and Jing-Jin-Ji metropolitan region). Next, the zonal statistics indicate that the vast majority of impervious 

surfaces in the world are distributed between approximately 20°N and 60°N, the area of which contains most of 

the world’s economically developed and high-density countries. Similarly, the increase in impervious area over 

the past 35 years was also concentrated in the Northern Hemisphere, and the increase between 20°N~60°N 

accounted for 70.75% of the total increase in the world. 580 

 

Figure 7. The expansion of impervious area in each country over the period 1985-2020, and meridional and 

zonal impervious area statistics for 1985 (blue) and 2020 (red), with a step of 0.05°. 

4.2 Accuracy assessment using validation samples 

Table 1 quantitatively assesses the performance of our time-series global impervious surface dynamic 585 

products using 1823,322540  multitemporal validation samples. The global impervious dynamic products 

achieved the overall accuracy of 9190.51% and a kappa coefficient of 0.866 865 in the nine-strata validation 

system. Specifically, from the perspective of user’s accuracy, the pervious surface had the highest accuracy of 

98.5% because we used the maximum impervious boundary in 2020 to monitor the impervious surface dynamics, 
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and the prior impervious layer in GLC_FCS30-2020 also had the high user’s accuracy of 93.2% (Zhang et al., 590 

2020). The impervious surface before 1985 achieved an accuracy of 9292.43%, mainly because the stable 

impervious area in 1985 was obviously larger than the expanded area over each 5-year period, and capturing 

the expansion impervious surface was also more difficult. Furthermore, the measurements of expansion in 

impervious surfaces in seven 5-year periods had similar performances, with an accuracy of approximately 

7270%. Confusion mainly occurred in temporally adjacent periods because the transition from a pervious 595 

surface to impervious surface is a slow process and spans a long period of time, which directly increases the 

difficulty of monitoring it. In addition, the producer’s accuracy had a similar distribution law to the user’s 

accuracy for each strata in Table 1. However, the user’s accuracy for the expansion of impervious surface after 

2000 was higher than that before 2000, which was mainly affected by the sparser available Landsat observations 

before 2000 in Figure 1. Similarly, Gong et al. (2020) also found that the monitoring uncertainty before 2000 600 

was greater than after 2000. 

Table 1. The confusion matrix of our global 30 m impervious surface dynamic products using 18,54023,322 

validation samples. 

 P.S.  1985 85~90 90~95 95~00 00~05 05~10 10~15 15~20 Total P.A. 

P.S. 9840 11 20 14 22 21 14 24 20 9986 0.985  

1985 247 5408 61 49 41 17 20 8 5 5856 0.923  

85~90 28 74 555 27 11 14 19 16 9 753 0.737  

90~95 43 58 20 556 19 19 10 13 5 743 0.748  

95~00 70 72 13 31 902 35 31 16 19 1189 0.759  

00~05 76 62 12 36 42 1383 49 29 5 1694 0.816  

05~10 52 37 13 14 14 42 1201 18 21 1412 0.851  

10~15 47 52 11 21 23 36 69 566 19 844 0.671  

15~20 55 59 8 7 14 21 30 43 608 845 0.720  

Total 10268 5786 686 714 1064 1602 1435 662 689 23322  

U.A. 0.958  0.935  0.809  0.779  0.848  0.863  0.837  0.855  0.882   

O.A. 0.901 

Kappa 0.865 

Note: P.S.: pervious surface; 1985: impervious surface before 1985; 85~90: expansion of impervious surface 

during 1985~1990; …, 15~20: expansion of impervious surface during 2015~2020; U.A.: user’s accuracy; P.A.: 605 

producer’s accuracy; O.A.: overall accuracy. 

Figure 8 illustrates the confusion proportions of the pervious surface, the stable impervious surface and the 

expanded impervious surface over each 5-year period, according to the confusion matrix in Table 1. Obviously, 

the pervious surface and stable impervious surface before 1985 had the lowest confusion proportions, because 

we already knew the maximum impervious surface area for 2020. Next, the confusion proportion between the 610 

expansion of impervious surface before 2000 and the stable impervious surface in 1985 was approximately 

10~20%, mainly because the Landsat imagery before 2000 was sparse, and we assumed that the land-cover in 

areas missing Landsat data would remain stable. Furthermore, there was also a certain degree of confusion 

between the expanded impervious surface and the pervious surface (approximately 5%), because urbanization 

generally occurred on the peripheries of cities, and thus was more likely to be confused with pervious surfaces. 615 

Lastly, there was also much confusion between seven periods of impervious surface expansion, especially for 
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the three temporally adjacent periods, because the transition from pervious surface to impervious surface is a 

long and slow process. Similarly, Liu et al. (2019) used the continuous change detection method to capture 

impervious surface dynamics and found a temporal bias between the detected change time and the actual change 

time. 620 

 

Figure 8. The confusion proportions of pervious surfaces, impervious surfaces in 1985, and increased 

impervious surfaces from 1985 to 2020. 

4.3 Cross-comparisons with other global 30 m impervious surface products 

4.3.1 Cross-comparison at global scale 625 

To comprehensively analyze the performances of our impervious surface dynamic time-series products, 

five global 30 m multitemporal impervious surface products (GAIA, NUACI, GHSL, GAUD and GlobeLand30) 

were selected as the comparative datasets. Figure 9 illustrates the total impervious area of five global impervious 

surface products on six continents over the period of 1985-2020. Overall, all six global impervious surface 

products accurately captured the rational spatiotemporal trend over the past 35 years—the impervious surface 630 

area of all continents had steadily increased over time, and the increased impervious area in the Northern 

Hemisphere was obviously greater than that in the Southern Hemisphere.  

Specifically, GISD30, GAIA, NUACI, GAUD and GHSL showed great area-consistency in North America, 

while GlobeLand30 displayed a degree of overestimation, and its estimated area was almost 0.5×105 km2 higher 

than that for other products. FurthermoreThen, on the remaining five continents, GAIA showed the lowest total 635 

impervious area compared with the other global 30 m impervious products. Similarly, the comparison in Gong 

et al. (2020) also indicated that GAIA showed the lowest impervious area among several global 30 m impervious 

surface products (NUACI, GHSL and GlobeLand30). As the NUACI only monitored the global urban dynamics 

and excluded the rural areas (Liu et al., 2018), it was expected that the total impervious areas given by NUACI 

would be lower than those given by GISD30, GHSL and GlobeLand30. As for GHSL, its impervious area varied 640 

greatly on different continents; for example, the total impervious area was close to that of GISD30 in North 

America and Europe, of NUACI in Asia, South America and Oceania, and of GlobeLand30 in Africa. However, 

the impervious surface areas assessed by GHSL were generally lower than those ofcompared with the GISD30 
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and GlobeLand30, the GHSL still underestimated the impervious surfaces in most continents. LastlyNext, the 

GlobeLand30 gave the largest total impervious area for each continent, mainly because some vegetation surfaces 645 

around buildings were regarded as artificial surfaces in GlobeLand30it also defined the vegetation in cities as 

artificial surfaces (Chen et al., 2015). Lastly, the GAUD dataset showed the second lowest total impervious 

areas among the 6 products in Asia, South America, Africa and Oceania continents, and had the slowest 

impervious surface growth rates among six impervious surface products.  

 650 

Figure 9. The impervious area of five six global 30 m impervious surface products on six continents over the 

period of 1985-2020.  

As the five six global 30 m impervious surface products displayed large differences in estimated global 

total impervious area in Figure 9, it was necessary to further assess the performances of these products. Figure 

10 illustrates the spatial patterns of these products at globe and two local enlargements in China and Europe 655 

(Figure 10a and b) after aggregation aggregating to the resolution of 0.05°. ClearlyOverall, there was great 

spatial consistency between the GISD30, GHSL, GAUD and GlobeLand30 products—all of them accurately 

captured the actual patterns of global impervious surfaces, mainly those concentrated between approximately 

20°N and 60°N. Detailedly, the local enlargement in Figure 10a illustrated that GHSL showed smaller 

impervious areas and a lower intensity than GISD30, GAUD and GlobeLand30 in China, which meant a lot of 660 

small impervious surface pixels were underestimated by the GHSL-2015 dataset. Next, the impervious area 

given by GlobeLand30 in the America was greater than that given by GISD30, GAUD and GHSL, because 

many cities in America display a serious mix of houses and vegetation while some vegetation surfaces around 

buildings were regarded as artificial surfaces in GlobeLand30. It should be noted that there was highest 

consistency between GISD30 and GlobeLand30 in these two local enlargements. Further, the GAUD, optimized 665 

from the NUACI dataset (Liu et al., 2020b), simultaneously captured the urbans and rural areas at globe and 

achieved the higher performance than the NUACI dataset in two local enlargements, but it still showed lower 

impervious area and intensity than GISD30 and GlobeLand30 in the local regions (red rectangle regions in 

Figure 10a and b). Comparatively, tThe NUACI products dataset displayed showed the smallest impervious 

surface areas and the lowest intensity compared to the other products, especially in Europe (Figure 10b), India 670 

and China (Figure 10a), because it only identified urban pixels and excluded rural areas (Liu et al., 2018). 

Although As for the GAIA dataset, although itthe GAIA simultaneously identified urban and rural pixels, their 

impervious surface areas in Europe and Asia were still significantly smaller than in the GISD30, GHSL, GAUD 
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and GlobeLand30 products especially in Europe (Figure 10b), which indicated that the GAIA suffered the 

underestimation problem in these rural areas..  675 

 

 

 

Figure 10. The spatial patterns of five six global 30 m impervious surface products and two local enlargements 

in China (a) and Europe (b) after aggregation aggregating to the spatial resolution of 0.05°×0.05°. 680 
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Furthermore, GHSL showed smaller impervious areas and a lower intensity than GISD30 and GlobeLand30 in 

India and China, the two most populous countries in the world. Lastly, as GlobeLand30 defined vegetation in 

cities as artificial surfaces, the impervious area given by GlobeLand30 for America was greater than that given 

by GISD30 and GHSL, because many cities in America display a serious mix of houses and vegetation. To 

quantitatively analyze the consistency of five global 30 m impervious surface products, the scatterplots of four 685 

products against GISD30 are illustrated in Figure 11. Firstly, the consistency between GAIA and GISD30 

increased with time, and the regression slope also approached 1. In 1985, most of the points were concentrated 

below the 1:1 line, and the slope was much less than 1. However, by 2020, the scatter plots were distributed on 

both sides of the 1:1 line, and showed great consistency, with an R2 of 0.823 and an RMSE of 0.031. Secondly, 

as NUACI did not contain rural pixels, many scatter points were below the 1:1 line, and the consistency between 690 

NUACI and GISD30 was lower than that of the GAIA and GISD30 products (the maximum R2 was 0.727). 

Further, as GlobeLand30 defined the vegetation in cities as artificial surfaces, many scatter points were 

distributed above the 1:1 line, and the regression slopes of the three periods were also close to 1. Lastly, there 

was greater agreement between GISD30 and GHSL than between other products, especially for 2000, with the 

highest R2 of 0.837, an RMSE of 0.025 and a regression slope of 0.985.To quantitatively assess the consistency 695 

of the GISD30 dataset with five previous impervious surface products, the scatter plots and the corresponding 

regression functions were illustrated in the Figure 11. It should be noted that the scatter points in the Figure 11 

represented the proportions of impervious area in each 0.05°×0.05° grid. Overall, the consistency between 

GISD30 and other products increased with time and the regression slope also increasingly approached 1.0 (the 

solid regression lines were getting closer and closer to the dotted 1:1 reference line). Specifically, as for the 700 

scatter plots between GAIA and GISD30 dataset, most scatter points were obviously concentrated below the 

1:1 line at early stage and then slowly distributed on both sides of the 1:1 line, and the regression slope and 

correlation coefficient also increased from 0.498 to 0.871 and 0.789 to 0.907, respectively. Next, as the NUACI 

dataset only identified the urban pixels and excluded rural areas (Liu et al., 2018), we could find that most 

scatter points were located below the 1:1 line especially in the ‘low fraction’ interval and the regression slopes 705 

were less than 1.0. Then, the scatter plots between GISD30 and GAUD datasets indicated that the impervious 

surfaces captured by the GISD30 was larger than that of GAUD, and the correlation coefficients and slopes 

between these two datasets increased with time especially in 2015 with the highest correlation coefficient of 

0.931. Further, as the GlobeLand30 defined the vegetation in cities as artificial surfaces (Chen et al., 2015), we 

could find a lot of scatter points located above the 1:1 line. Meanwhile, as the GlobeLand30 used the minimum 710 

mapping unit of 4×4 for impervious surface (Chen et al., 2015), which meant that a large number of fragmented 

and small impervious surfaces were missed, the regression slopes between GlobeLand30 and GISD30 were still 

less than 1.0. Lastly, there was greater agreement between GISD30 and GHSL dataset than between other 

products in term of the spatial distributions of scatter points and the regression slope.  
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 715 

Figure 11. The scatter plots of the GISD30 dataset (x axis) against four five previous global 30 m impervious 

surface products (y axis, GAIA, NUACI, GAUD, GlobeLand30 and GHSL datasets) compared to our GISD30 

at the spatial resolution of 0.05°×0.05°. It should be noted that the label of x and y axis was the proportion of 

impervious surfaces in each 0.05°×0.05° spatial grid.  

Except for the consistency analysis, the quantitative accuracy assessments for four global impervious 720 

surface products were calculated using the same validation dataset, as listed in the Table 2. The GHSL and 

GlobeLand30 datasets were excluded because both of them cannot cover the whole period with 5-years interval. 

Overall, the GISD30 achieved the highest performance with the overall accuracy of 0.901 and kappa coefficient 

of 0.865, compared with 0.797 and 0.702 for GAIA, 0.843 and 0.748 for GAUD, as well as 0.745 and 0.702 for 

NUACI. Specifically, in terms of the pervious surfaces, it can be found that all four products achieved similar 725 

and great producer’s accuracy exceeding 0.94. As the previous comparisons have illustrated that GAIA, NUACI 

and GAUD datasets underestimated the impervious surfaces, the user’s accuracy of them was lower than the 

GISD30 dataset. Afterwards, as for the performances of impervious surfaces, the NUACI suffered the lowest 

user’s accuracy and producer’s accuracy in 1985 because it only identified the urban areas (Liu et al., 2018) and 

overestimated some increased impervious surfaces as the early impervious surfaces before 2000 (see Figure 13). 730 

Similarly, the GAIA and GAUD also missed some fragmented and small impervious surfaces, so the producer’s 

accuracy of them in 1985 was also greatly lower than that of the GISD30. Then, the accuracy metrics of these 
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increased impervious surfaces were similar to the overall accuracies, namely, the GISD30 could accurate 

capture the spatiotemporal dynamics of impervious surfaces, followed by the GAUD, GAIA and NUACI 

datasets. 735 

Table 2. The accuracy metrics of four global 30 m impervious surface dynamic products using the same 

validation datasets. 

  P.S. 1985 85~90 90~95 95~00 00~05 05~10 10~15 15~20 O.A. Kappa 

GISD30 
P.A. 0.985  0.923  0.737  0.748  0.759  0.816  0.851  0.671  0.720  

0.901 0.865 
U.A. 0.958  0.935  0.809  0.779  0.848  0.863  0.837  0.855  0.882  

GAIA 
P.A. 0.969 0.755 0.552 0.510 0.494 0.489 0.474 0.663 0.531 

0.797 0.702 
U.A. 0.873 0.932 0.445 0.469 0.532 0.627 0.621 0.488 0.608 

NUACI 
P.A. 0.940 0.660 0.459 0.348 0.317 0.422 0.395 0.482  

0.745 0.609 
U.A. 0.839 0.796 0.160 0.348 0.398 0.624 0.626 0.608  

GAUD 
P.A. 0.978 0.855 0.516 0.554 0.528 0.551 0.520 0.571  

0.843 0.748 
U.A. 0.896 0.901 0.535 0.620 0.642 0.693 0.637 0.614  

Note: P.S.: pervious surface; 1985: impervious surface before 1985; 85~90: expansion of impervious surface 

during 1985~1990; …, 15~20: expansion of impervious surface during 2015~2020; U.A.: user’s accuracy; P.A.: 

producer’s accuracy; O.A.: overall accuracy. 740 

4.3.2 Cross-comparison at regional scale 

To understand the performance of five global 30 m impervious surface products used for monitoring 

spatiotemporal dynamics, we randomly selected six cities after considering city size, spatial distribution and 

urban landscapes.  Moscow and Shanghai were the representative mega cities, Bangkok and Jakarta were the 

cities in tropical regions (heavily affected by cloud and shadows), and Phoenix and Johannesburg were the 745 

representative cities for arid regions. It should be noted that we excluded GlobeLand30 in regional comparisons 

because it only covered the period of 2000-2020 while remaining products can monitor the impervious surfaces 

before 2000. Specifically, Figure 12 illustrates the comparison between our GISD30 dynamic products and four 

comparative datasets for Moscow and Shanghai. Intuitively, NUACI suffered from overestimation for two cities, 

misclassifying much vegetation as an the impervious surfaces. It also failed to capture the expansion of 750 

impervious surfaces in Shanghai—many cropland pixels before 2000 were identified as impervious surfaces. 

The GAIA products misidentified some old urban pixels (green color) as newly expanded impervious surfaces 

(red color) in Moscow, and it overestimated the expansion of impervious surfaces from 2010 toduring 2010- 

2020 in Shanghai. Specifically, aAccording to the Landsat imagery, Shanghai’s fastest urban expansion 

occurred in 2000-2010, but the GAIA obviously lagged in this measurement. Furthermore, GHSL also could 755 

not accurately capture the spatiotemporal dynamics of impervious surfaces in detail. For example, it gave a low 

proportion of expanded impervious surfaces after 2000 in Shanghai, whereas in actuality, Shanghai experienced 

rapid urbanization after 2000. Lastly,  there was greatest spatial consistency between GAUD and GISD30 

datasets in these two cities, both of them accurately captured the expansion pattern of “center-to-

periphery”although GlobeLand30 only measured the three epochs of 2000, 2010 and 2020 (its color scheme 760 

was different from other products), it showed a great ability to capture the spatiotemporal expansion of 

impervious surfaces in two cities, and showed higher consistency with our GISD30 products. However, it still 
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can be found that a lot of rural impervious surfaces in the GAUD were wrongly labeled (red rectangle) in 

Shanghai.  

 765 

Figure 12. Comparisons between the GISD30 dynamic products and four other datasets (the GAIA products 

developed by Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk 

et al. (2019), and the GAUD developed by Liu et al. (2020b)) in the two representative megacities of Moscow 

and Shanghai. In each case, the multi-epoch Landsat imagery, comprised by red, green and blue bands, came 

from the United States Geological Survey (https://earthexplorer.usgs.gov/). 770 

Figure 13 illustrates the performances of five impervious surface products in two cloud-contaminated cities 

(Bangkok and Jakarta). Clearly, GISD30 performed the best in monitoring the spatiotemporal dynamics of the 

impervious surfaces in these two cities. Comparatively, GAIA clearly underestimated the impervious surfaces 

in Bangkok, and many small impervious surface objects in the peripheral cities (rural buildings) were missed. 

As regards impervious dynamics, GAIA underestimated the expansion after 2010 in Bangkok, and also failed 775 

to capture the expansion pattern from the city center to the outskirts in Jakarta. On the contrary, NUACI suffered 

from serious overestimation in two cities, and misidentified some croplands on the peripheries as impervious 

surfaces, especially in Jakarta. Meanwhile, it also failed to monitor the spatiotemporal dynamics of impervious 

surfaces in two cities, while the expansion area from 1985 to 2020 was severely underestimated and the 

impervious area before 2000 was overestimated. GHSL captured the distribution of impervious surfaces before 780 

1985; however, the expansion of impervious surfaces over the past 35 years was seriously underestimated in 

two cities. Lastly, the GAUD dataset performed well in early stage in Bangkok, but it failed to capture the 

increased impervious surfaces after 2000 and missed a lot of rural impervious surfaces (red rectangle) in 

Bangkok. As for the second region, it still cannot accurately capture the increased impervious surfaces after 

2000. GlobeLand30 performed well in the city center, but it also missed many small impervious surface objects 785 

in the peripheral cities as a result of the minimum mapping unit of 4 × 4 pixels for each impervious object. In 

https://earthexplorer.usgs.gov/
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addition, GlobeLand30 performed better in Bangkok than in Jakarta when monitoring impervious surface 

expansion, because it overestimated the expansion from 2010 to 2020 in Jakarta. 

 

Figure 13. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 790 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. (2019), 

and the GAUD developed by Liu et al. (2020b)) in the two cloud-contaminated cities of Bangkok and Jakarta. 

In each case, the multi-epoch Landsat imagery, comprised by red, green and blue bands, came from the United 

States Geological Survey (https://earthexplorer.usgs.gov/). 

Lastly, Figure 14 compares compared between the performances of our GISD30 and four reference 795 

products in two arid cities (Phoenix and Johannesburg). Overall, the highest consistency was found between 

GISD30 and GlobeLand30GHSL, because both accurately captured the spatial patterns of impervious surfaces 

and the expansion of impervious surfaces on the peripheries of cities. NUACI showed larger impervious areas 

than the other four products, but the corresponding Landsat imagery indicates that NUACI misidentified many 

pervious surfaces (bare land) as impervious surfaces, especially in Johannesburg. Meanwhile, NUACI suffered 800 

an obvious stamping effect mainly caused by temporal differences among adjacent Landsat image sets, and also 

failed to capture the time of the expansion of impervious surfaces, especially in Johannesburg. GAIA performed 

well in identifying the impervious surface area and capturing the time of expansion in Phoenix, but it suffered 

from overestimation in the Johannesburg, where much arid bare land was wrongly identified as an impervious 

surface in the early stages. Furthermore, as GHSL only covered the period of 1975-2014, it makes made sense 805 

that it registered less expanded impervious surface than GISD30 and GlobeLand30. There was also great 

consistency between GHSL, GISD30 and GlobeLand30 for these two cities. Lastly, the GAUD shared similar 

impervious surface distributions with GISD30 at early stage in Phoenix, but its increased impervious surfaces 

after 2000 were significantly less than GISD30, GAIA and GHSL. As for the Johannesburg city, it suffered the 
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overestimation problem, identifying some pervious surfaces in the cities as the impervious surfaces, and also 810 

underestimated the increased impervious surfaces after 2000.  

 

Figure 14. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. (2019), 

and the GAUD developed by Liu et al. (2020b)) in the two representative arid cities of Phoenix and 815 

Johannesburg. In each case, the multi-epoch Landsat imagery, comprised by red, green and blue bands, came 

from the United States Geological Survey (https://earthexplorer.usgs.gov/). 

Lastly, the cross-comparison between GISD30 and four previous datasets in the rural villages (containing 

sparse impervious surfaces) was illustrated in the Figure 15. Overall, except for our GISD30, the remaining 

impervious surface datasets failed to identify these small rural buildings around the central villages. In terms of 820 

the spatial pattern of villages, the NUACI dataset obviously misclassified a lot of croplands as the increased 

impervious surfaces and also missed those stable impervious surfaces in the central villages. The GAUD dataset 

performed well in the early stage and accurately captured these old impervious surfaces, but these increased 

impervious surfaces after 2000 were missed. In fact, the village experienced significant impervious expansions 

after 2000 by visually interpreting the multitemporal Landsat imagery. The GAIA partly captured the 825 

spatiotemporal expansion in the village, but the impervious areas in the GAIA was obviously smaller than the 

actual situation, which indicated that the GAIA dataset suffered the underestimation problem in this rural village. 

Further, it can be found that there was highest consistency between GISD30 and GHSL, both of them captured 

the expansion pattern of “center-to-periphery”, however, the increased impervious surfaces in the GHSL were 

still less than the actual increases.  830 

https://earthexplorer.usgs.gov/
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Figure 15. The comparisons between GISD30 and four reference datasets (the GAIA products developed by 

Gong et al. (2020), the NUACI developed by Liu et al. (2018), the GHSL developed by Florczyk et al. (2019), 

and the GAUD developed by Liu et al. (2020b)) in the rural village. The multi-epoch Landsat imagery, 

comprised by SWIR1, NIR and red bands, came from the United States Geological Survey 835 

(https://earthexplorer.usgs.gov/). 

5 Discussion 

5.1 Advantages The feasibility and advantages of the proposed method for monitoring 

impervious surface dynamics 

In contrast to traditional independentsupervised classification monitoring methods using independent 840 

samples for different periods, which require expensive resources to collect multitemporal training samples (Gao 

et al., 2012; Zhang and Weng, 2016), we used prior global land-cover products and the spectral generalization 

strategy to automatically monitor the impervious surface dynamics. Firstly,Specifically, a as for the reliability 

of the training samples was demonstrated to directly affect the final classification accuracy, we combined the 

impervious layers in the GLC_FCS30-2020 and GlobeLand30-2020 land-cover products to derive candidate 845 

impervious training samples achieved a user’s accuracy of 93.2% and a producer’s accuracy of 94.8%, and then 

adopted the spatial homogeneity morphological filtering was also applied to further ensure the reliability of each 

sample in 2020. As it was difficult to In order to assess the accuracy of all the training samples, we randomly 

selected 10,000 impervious surface samples from the global sample pool, and the 10,000 random samples were 

interpreted by visual interpretation. The validation result showed found that these impervious training samples 850 

achieved an overall accuracy of 95.52% in 2020. To demonstrate whether the erroneous training samples can 

affect the performance of the classifiers, we gradually increased the percentage of erroneous training samples 

with the step of 1 % and then repeated 100 times, illustrated in the Figure 16, it can be found that the local 

adaptive random forest models had great performance to be resistant to noise and erroneous training samples, 

and the overall accuracy and impervious surface producer’s accuracy kelp stable when the percentage of 855 

erroneous training samples were controlled within 40% and then decreased after exceeding the threshold. 

Similarly, Gong et al. (2019b) also found that the overall accuracy kept stable when the percentage of erroneous 

training samples was within 20%. Therefore, the training samples derived in Section 3.1 were accurate enough 

https://earthexplorer.usgs.gov/
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for monitoring impervious surface dynamics. Therefore, the training samples derived in Section 3.2 were 

accurate enough for monitoring impervious surface dynamics.  860 

 

Figure 16. The relationship between overall accuracy and impervious producer’s accuracy with the percentage 

of erroneous training samples using the random forest classification model.  

In addition, contrary to other spectral generalization classification methods, which migrated the reflectance 

spectra of all land-cover types (Dannenberg et al., 2016; Phalke and Özdoğan, 2018; Zhang et al., 2019), we 865 

only migrated the reflectance spectra of impervious surfaces measured in 2020 to other periods, and 

simultaneously transferred the pervious samples to other periods based on the assumption of irreversibility. 

Therefore, we needed to independently train the classification models in each period using the migrated 

reflectance spectra of impervious and pervious surface samples. Correspondingly, our temporal adaptive models 

achieve better performances than traditional generalized models used for monitoring impervious surface 870 

dynamics. Furthermore, many studies have demonstrated that the spectral inconsistency between migrated 

spectra and classified imagery directly affects classification accuracy (Woodcock et al., 2001; Zhang et al., 

2018). In this study, we used continuous Landsat imagery to preclude the effects of different sensors, and 

adopted a seasonally composited method with relative radiometric normalization to minimize the influence of 

temporal difference. We toke the Yangtze River Delta as an example to draw scatterplots for NIR reflectance 875 

of impervious surfaces in 2020 against other periods at the growing season after relative radiometric 

normalization illustrated in Figure 17. There were significant consistency in NIR band between reference period 

and other periods and most scatters were distributed on both sides of the regression line. In terms of the 

regression slope, the slope got closer and closer to 1.0 as time increased, which mainly caused by the shorter 

temporal difference and denser Landsat imagery at later periods. According to the distribution of scatter points 880 

and the regression lines, there was no systematic bias between reference data and other data, which also 

demonstrated thatTherefore,  it was feasible to generalize the reflectance spectra of impervious surfaces in the 

2020 to other periodsour temporally adaptive spectral generalization method was suitable for the impervious 

surface monitoring of long time-series. 
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 885 

Figure 17. The scatterplots for NIR reflectance of impervious surface in 2020 (y-axis) against other periods (x-

axis) after relative radiometric normalization in the Yangtze River Delta region. 

Lastly, to optimize the time-series impervious maps and minimize the influence of classification error, the 

temporal consistency checking post-processing method proposed by the Li et al. (2015) was adopted. It mainly 

used the spatiotemporal correlation information to eliminate the “salt-pepper” noisy in the multi-epoch 890 

impervious surface maps, and used the irreversible assumption to remove the illogical transitions. Li et al. (2015) 

quantitatively demonstrated that the post-processing method improved the overall accuracy by about 6% for 

monitoring impervious dynamics in Beijing, China. Recently, this post-processing method was involved for 

producing GAIA dataset (Gong et al., 2020) and optimizing time-series land-cover maps in China (Yang and 

Huang, 2021), both of them demonstrated that temporal consistency checking improved the reliability and 895 

consistency of the classification results by integrating the spatio-temporal context information.  

5.2 Limitations and prospects of the global impervious surface dynamic dataset 

In this study, we have proposed a novel automatic method to successfully produce a global 30 m impervious 

surface dynamic dataset over the period of 1985-2020, and quantitatively and qualitatively demonstrated that 

our dataset performed well in capturing the spatial distributions and spatiotemporal dynamics of impervious 900 

surfaces; however, there were still some weaknesses in our impervious surface dynamic products. Firstly, we 

assumed that the transition from pervious surface to impervious surface was irreversible over the monitoring 

period, which caused our method or product to fail to capture the transition from impervious to pervious surface 

(such as demolition caused by urban greening), as well as many changes that took place in impervious surfaces 

(such as urban demolition and reconstruction). Recently, Liu et al. (2019) used continuous change detection to 905 

successfully capture these reversible and multiple changes in Nanchang, China; however, the implementation 

efficiency of the method was low, and whether it can support the monitoring of global impervious surface 

dynamics remains to be verified. Therefore, our future work must exploit the advantages of a continuous change 

detection model to improve the effectivity of monitoring the spatiotemporal dynamics of impervious surfaces. 

Our previous study (Zhang et al., 2020) quantitatively demonstrated that a combination of multisource 910 

remote sensing datasets could significantly improve the ability to recognize impervious surfaces, especially in 
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semi-arid or arid regions, where bare land generally shares spectral characteristics with impervious surfaces. In 

addition, the Landsat imagery available before 2000 was relatively sparse (illustrated in the Figure 1), which 

directly affects the monitoring accuracy of impervious surfaces, and this explains why the user’s accuracy of 

the expansion of impervious surfaces before 2000 was significantly lower than after 2000 (Table 1). Similarly, 915 

Gong et al. (2020) also found that the availability of Landsat imagery had a positive relationship with impervious 

surface monitoring accuracy when creating GAIA global impervious surface products. Therefore, our future 

work should combine multisource remote sensing imagery (such as synthetic aperture radar (SAR), nighttime 

light (NTL) and AVHRR data) as auxiliary data to further improve impervious surface monitoring accuracy. 

6 Data availability 920 

The global 30 m impervious surface dynamic dataset from 1985 to 2020 is free to access at 

http://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b). The global dynamic dataset was used to label the 

expansion information in a single band; specifically, the pervious surface and the impervious surface before 

1985 were respectively labeled 0 and l, and the expanded impervious surfaces in the periods 1985-1990, 1990-

1995, 1995-2000, 2000-2005, 2005-2010, 2010-2015 and 2015-2020 were labeled 2,3,4,5,6,7 and 8. 925 

Furthermore, in order to facilitate the use of these data, the global dynamic products were split into 961 5°×5° 

tiles in the GeoTIFF format, named “GISD30_1985-2020_E/W**N/S**.tif”, where ‘E/W**N/S**’ is the 

latitude and longitude coordinates found in the upper left corner of the tile data. 

7 Conclusion 

In this study, a novel and automatic method by combining the advantages of spectral generalization and 930 

automatic sample extraction strategy was proposed and then an a novelaccurate global 30 m impervious surface 

dynamic dataset for 1985 to 2020 was produced by combining using time-series Landsat imagery and the 

spectral generalization method. Specifically, we first migrated the reflectance spectra of impervious surfaces, 

and simultaneously transferred the training samples of pervious surfaces to other periods, to automatically 

monitor the spatiotemporal dynamics of impervious surfaces from 1985 to 2020. Then, we combined the local 935 

adaptive modeling and time-series Landsat imagery to independently produce impervious surface time-series 

products. Lastly, the spatiotemporal consistency checking method was applied to independent impervious 

surface products in order to minimize the effects of classification errors and ensure the reliability and 

spatiotemporal consistency of the final impervious surface dynamic dataset. 

Overall, the global 30 m impervious surface dynamic dataset we produced accurately captured the 940 

expansion pattern of impervious surfaces over the past 35 years. The quantitative results indicate that the global 

impervious surface area doubled in the past 35 years, from 5.116×105 km2 in 1985 to 10.871×105 km2 in 2020, 

and Asia underwent the greatest increase in impervious surface area compared to other continents, with a total 

increase of 2.946×105 km2. Meanwhile, we also found that the expansion rate of impervious surface on six 

continents after 2000 was significantly faster than before 2000. In addition, the global 30 m impervious surface 945 

dynamic dataset was validated by 18,54023,322 multitemporal validation samples, and our dataset achieved the 

overall accuracy of 91.50.1% and a kappa coefficient of 0.866865. Lastly, quantitative and qualitative 

comparisons between our GISD30 and four five comparative impervious surface products (GAIA, GHSL, 

NUACI, GAUD and GlobeLand30) indicate that our GISD30 products performed the best in capturing the 

spatial distributions and spatiotemporal dynamics of impervious surfaces. Therefore, it was concluded that our 950 

http://doi.org/10.5281/zenodo.5220816
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global 30 m impervious surface dynamic dataset was an accurate product, and could provide vital support for 

monitoring regional or global urbanization or carrying out related tasks. 
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