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Abstract  

The SiDroForest data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by 

providing adjusted and labelled tree level and vegetation plot level data for machine learning and upscaling purposes. We 30 
present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones 

in Siberia, Russia; the summergreen–evergreen transition zone in Central Yakutia and the tundra–taiga transition zone in 

Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data 

types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose 

applications.  35 
i) The first dataset provides Unmanned Arial Vehicle (UAV)-borne data products covering the vegetation plots surveyed during 

fieldwork (Kruse et al., 2021, https://doi.pangaea.de/10.1594/PANGAEA.933263). The dataset includes structure from motion 

(SfM) point clouds and Red Green Blue (RGB) and Red Green Near Infrared (RGN) orthomosaics. From the orthomosaics, 

point-cloud products were created such as the Digital Elevation Model (DEM), Canopy Height Model (CHM), Digital Surface 

Model (DSM) and the Digital Terrain Model (DTM). The point cloud products provide information on the three-dimensional 40 
(3D) structure of the forest at each plot.  

ii) The second dataset contains spatial data in the form of point and polygon shape files of 872 labelled individual trees and 

shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, 

https://doi.pangaea.de/10.1594/PANGAEA.932821). The dataset contains information on tree height, crown diameter, and 

species type. These tree- and shrub-individual labelled point and polygon shape files were generated on top of the UAV RGB 45 
orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter and vitality 

are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree 

in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The 

dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of 

climate change on these individuals in the future.  50 
iii) The third dataset contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of 

larch (Larix gmelinii and Larix cajanderi) automatically extracted from the RGB UAV images in the common objects in 

context (COCO) format (van Geffen et al., 2021a, https://doi.pangaea.de/10.1594/PANGAEA.932795). As machine learning 

algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine learning 

algorithms to detect Siberian larch species. 55 
iv) The fourth dataset contains Sentinel-2 Level-2 bottom of atmosphere processed labelled image patches with seasonal 

information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, 

https://doi.pangaea.de/10.1594/PANGAEA.933268). The dataset is created with the aim of providing a small ready-to use 

validation and training data set to be used in various vegetation-related machine-learning tasks. It enhances the data collection 

as it allows classification of a larger area with the provided vegetation classes.  60 

https://doi.pangaea.de/10.1594/PANGAEA.933263
https://doi.pangaea.de/10.1594/PANGAEA.932821
https://doi.pangaea.de/10.1594/PANGAEA.932795
https://doi.pangaea.de/10.1594/PANGAEA.933268
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The SiDroForest data collection serves a variety of user communities. The detailed vegetation cover and structure information 

in the first two data sets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests 

and also for tundra–taiga ecotones. The first two data sets further support the generation and validation of land cover remote 

sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation 

composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine 65 
learning purposes. For example, the synthetic tree crown dataset is generated from the raw UAV images and optimized to be 

used in neural networks. Furthermore, the fourth SiDroForest data set contains Sentinel-2 labelled image patches processed to 

a high standard that provide training data on vegetation class categories for machine learning classification with JavaScript 

Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard to reach 

circumboreal forest regions. 70 

1 Introduction 

Circumpolar boreal forests represent close to 30% of all forested areas and are changing in response to climate, with potentially 

important feedback mechanisms to regional and global climate through altered carbon cycles and albedo dynamics (e.g., 

Loranty et al., 2018). These forests are located primarily in Alaska, Canada, and Russia. Forest structure is a crucial component 

in the assessment of whether a forest is likely to act as a carbon sink or source under changing climate (e.g., Schepaschenko 75 
et al., 2021). Publicly available comprehensive datasets on forest structure are rare, due to the involvement of governmental 

agencies, public sectors, and private actors who all influence the availability of these datasets. That said, the Arctic-Boreal 

Vulnerability Experiment (ABoVE) run by the NASA Terrestrial Ecology Program provides open-source data collections from 

boreal and arctic regions in Alaska and Canada (ABoVE Science Definition Team, 2014). Globally, the Forest Observation 

System (FOS, http://forest-observation-system.net/) provides publicly available forest data for Earth Observation (validation 80 
and algorithm development) such as described in Chave et al. (2019) and a global Above Ground Biomass (AGB) database 

(Schepaschenko et al., 2019) containing a high number of plot level datasets from the boreal forest domain. Schepaschenko et 

al. (2017) used inventories from the old Soviet Forest Inventory and Planning System (FIP) and the new Russian National 

Forest Inventory (NFI) to compile and publish a highly comprehensive forest AGB data collection at plot level specifically for 

Eurasia. This data collection (Schepaschenko et al., 2017) and FOS (Schepaschenko et al. 2019) both distribute aggregated 85 
plot level information.  

However, there is still a lack of usable data for satellite and UAV imagery classification tasks for the boreal zone as a whole. 

Also, there is a lack of usable training data for automatic needle-leaf tree crown detection. The central and eastern Siberian 

boreal zones with their forest types are especially underserved as there are no open-source UAV forest data available. Also, 

for the circum-boreal, still, few data are publicly available at tree level or plot level that are ready-to use for machine learning 90 
applications in the field of remote sensing, for example optimised data containing annotated vegetation categories. 



4 
 

The SiDroForest data collection provides open-source forest structure-related data at tree, plot and upscaling levels for boreal 

forests in central and North Eastern Siberia, Russia. At individual tree level, the data consists of conventional forest inventory 

data such as tree height, tree crown diameter and species labels. The individual tree-level data labelling per plot provides 

opportunities for further machine learning applications in the form of validation data. At plot level, the data collection contains 95 
UAV structure from motion (SfM) point clouds, georeferenced orthoimages and products derived from point clouds providing 

structural forest information. On top of these state-of-the art forest inventory data and SiDroForest UAV products that are 

enriched by labelling, we prepared two data set that can be directly used for machine learning in remote sensing applications. 

One data set is a synthetically generated image data set on tree crowns in the common objects in context (COCO) format (Lin 

et al., 2013) that we constructed from selected UAV Red Green Blue (RGB) imagery from plot data. The other data set fit for 100 
machine learning contains labelled Sentinel-2 (S-2) image patches covering the vegetation plots related to the vegetation 

composition. These labelled S-2 image patches can, e.g., be used for machine learning training for a boreal forest land cover 

classification using S-2 satellite images. In its current stage, the SiDroForest S-2 data collection is not published with 

performance testing, and is by us not considered as a benchmark data set for Remote Sensing image interpretation (e.g. as 

defined in Long et al., 2020). The SiDroForest labelled S-2 image patches collection is available as a small training and 105 
validation data set providing so far underrepresented vegetation categories, that will save future users time when attempting 

to classify vegetation  cover. 

By making SiDroForest public, we aim to remedy public data scarcity on UAV data of boreal forest plots, on tree level forest 

data, and specifically for annotated data for the boreal forests in Central and North-Eastern Siberia and encourage the use of 

the data presented here for further analyses and machine-learning tasks.  110 

1.1. Study Region 

The data collection we provide contains tree level, plot level, and upscaling level forest-structure data from important boreal 

transition zones located in central and eastern Siberia that are specifically vulnerable to climate change: these are the tundra–

taiga (in Chukotka) and the summergreen–evergreen (in Central Yakutia) transition zones (Fig. 1).  
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 115 
Figure 1: Overview of the Siberian transition zones: the tundra–taiga transition in Chukotka and the summergreen–evergreen 
transition in Central Yakutia that were covered by the 2018 Chukotka expedition (orange points represent 2018 field sites with 
vegetation plots). The overview map (background OpenStreetMap©) shows forest coverage by green colour-coded NASA forest 
height (Simard et al. (2011) and the Northern treeline (CAVM Team 2003, for Arctic Climate Impact Assessment (ACIA)).  
  120 
 
The tundra–taiga transition zone occurs where boreal forests reach their maximum northwards position and form a treeline 

ecotone (MacDonald et al., 2007). Here, the transition from open forest stands with decreasing stand densities towards treeless 

tundra in the north takes place. A warming climate drives the transition from tundra in the tundra–taiga transition zone to open 

taiga forests (Rees et al., 2020). During the snow-covered season, the taiga has a lower albedo than tundra due to the trees that 125 
emerge above the snow. A change from tundra to taiga albedo can result in a positive feedback loop of vegetation change 

which, in combination with the warming climate, may lead to dramatic environmental changes in the Arctic (Bonan, 2008). 

Remote-sensing data have been previously used to assess vegetation dynamics in Chukotka. Through vegetation monitoring 

using Landsat satellite data, Shevtsova et al. (2020) report that shrubification has expanded by 20% in area in the tundra–taiga 

zone and by 40% in the northern taiga as well as tree infilling occurring in the northern taiga. Extensive satellite remote-130 
sensing work was done by Montesano et al. to assess the vegetation dynamics in Siberia using LiDAR and synthetic aperture 

radar data (2014) and Landsat satellite data (2016). To be able to expand on these satellite-derived remote-sensing findings, 

in-depth monitoring at a vegetation plot level in this region is important. Clear overviews of species distribution over the 

varying types of land cover are useful to study the impacts of climate change on the eastern Siberian treeline that is not yet 

well enough studied, in part due to sparse data being available for the region (Shevtsova et al., 2021). Our open-access data 135 
collection will considerably improve insights into the tundra–taiga transition zone. 

The second relevant forest transition zone included in the SiDroForest data collection is the summergreen–evergreen transition 

zone in Central Yakutia. Summergreen needle-leaf tree species covered in the SiDroForest data collection consist of two 

species of larch trees: Larix gmelinii and Larix cajanderi. The evergreen species present are pine and spruce: Pinus sibirica, 

/Pinus sylvestris and Picea obovata. In forests, the light-demanding summergreen Larix trees are outcompeted by evergreen 140 
tree taxa (Troeva et al., 2010). Yet it is an open question as to how Larix forests, once established, hinder their replacement by 
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evergreen forests and thus maintain a vegetation–climate equilibrium (Mamet et al., 2019). This self-stabilisation that takes 

place in the Larix-dominated forests in central and eastern Siberia most likely results from a combination of unique climate 

drivers for the region, such as vegetation, climate, fire, and permafrost (Herzschuh et al., 2020). Datasets such as the one 

presented here are a snapshot of the current state that can be used to monitor individual trees over time to gain insight into the 145 
vegetation dynamics of the region.  

2 SiDroForest data and methods 

The SiDroForest data collection contains a variety of data types that were selected to create the most comprehensive insights 

into the boreal forest in Siberia.  

The SiDroForest data collection is divided into four datasets (Fig. 2): 150 
1. UAV based SfM point clouds, point-cloud products, and orthomosaics from UAV image data (orange hexagon symbols) of 

expedition vegetation plots in Chukotka and Central Yakutia in summer 2018 (mint green rectangle).  

2. Individual labelled trees surveyed during the fieldwork, including information on height, tree crown, and species. These 

tree-individual labelled point and polygon shape files (light green symbols) were generated and are linked to the UAV RGB 

orthoimages of the expedition vegetation plots.  155 
3. Synthetically created Siberian larch tree crown dataset of 10,000 instances in Microsoft's COCO format (purple triangle 

symbols). The images and masks contain the tree crowns of two species of larch (Larix gmelinii and Larix cajanderi), manually 

extracted from selected RGB UAV images. 

4. Sentinel-2 Level-2 bottom of atmosphere labelled image patches with seasonal information (red shape symbol) covering the 

expedition vegetation plots.  160 
Each data type has been enhanced to best use the data for vegetation-related analyses. Dataset three and four have additionally 

been optimized and annotated for machine-learning tasks. Machine learning tasks often require validation data and also the 

annotated datasets one and two contain data for such an application. The combined data types aim to provide a multi-purpose 

application data set on the current state of the vegetation cover in Central Yakutia and Chukotka.  

The SiDroForest products are in common software formats: there are point and polygonal shape files (shp), raster files are in 165 
the georeferenced tagged image format (tif), Geotiff, shapefile formats and JavaScript Object Notation (JSON) can be read 

and visualized in any open source and commercial GIS and Remote Sensing software tools and a wide range of libraries in R, 

python and other programming languages. The point clouds are provided in the standard LASer (LAS) binary file format that 

can be handled in any software that supports this format such as CloudCompare (CloudCompare, 2021) or R (R, 2020) or 

Python libraries specifically developed for this datatype. 170 
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Figure 2: Overview of the four datasets all related to the 2018 expedition plots (UAV derived products, individual labelled shape 175 
files, synthetically created Siberian larch tree crown dataset, Sentinel-2 labelled image patches) and their content and 
interconnections in SiDroForest (see text for details on the labels).  

2.1 SiDroForest field data 

Extensive expeditions from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) from 

Germany in cooperation with the North-Eastern Federal University of Yakutsk (NEFU), Yakutia, in summer 2018 covered a 180 
bioclimatic gradient ranging from treeless tundra via extremely open larch forest with mean tree heights around 5 m close to 

Lake Ilirney in central Chukotka (tundra–taiga transition zone) in north-eastern Siberia to dense mixed tree species stands near 

Lake Khamra in south-western Central Yakutia (summergreen–evergreen transition zone) (Fig. 1). The larger regions were 

subdivided into 12 subregions that were named based on the nearest city or lake to the plots: in Chukotka, we defined three 

subregions encompassing 41 vegetation plots (Fig. 3a) and nine subregions encompassing 23 vegetation plots for Central 185 
Yakutia (Fig. 3b). The vegetation plots have different tree cover: from treeless tundra to open larch forests on slopes and in 

lowlands, with tree density depending on slope and slope aspect. All data types included in this dataset are linked to each other 

using a two-letter code signifying the subregion (Table 1) and the vegetation plot numbers. 
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Table 1: Overview of vegetation plots per transition zone, region, and subregion along with the subregion codes. 190 

Transition zone Geographical 
region 

Subregions Subregion 
codes 

Plot names 

Taiga to tundra transition zone Central 
Chukotka  

Bilibino 
Lake Ilirney  
Lake 
Rauchuagytgyn 
 

BI 
LI 
LR 

EN18000; 18028-35 (n = 9) 
EN18001-18027 (n = 27) 
EN18051-18055 (n = 5) 

Summergreen to evergreen 
transition zone 

Central 
Yakutia  
 

Yakutsk 
Magaras 
Vilnuyi 
Nyurba 
Suntar West 
Suntar  
Mirny 
Mirny-Lensk 
Lake Khamra 
 

YA 
MA 
VI 
NY 
SW 
SU 
MI 
ML 
LK 

EN18061 (n = 1) 
EN18062 (n = 1) 
EN18063-66 (n = 4) 
EN18067-70 (n = 4) 
EN18071 (n = 1) 
EN18072-74 (n = 3) 
EN18075-76 (n = 2) 
EN18077-78 (n = 2) 
EN18079-83 (n = 5) 

 

  
Figure 3a. Subregions and plots (red points) for Chukotka: 
Bilibino (BI) (EN18000, 18028–35), Lake Ilirney (LI) 
(EN18001–27), and Rauchuagytgyn (RA) (EN18051–55). See 
also Table 1. 
The overview map (background OpenStreetMap©) shows 
forest coverage by green colour-coded NASA forest height 
(Simard et al. (2011) and the Northern treeline (CAVM Team, 
for Arctic Climate Impact Assessment (ACIA)). 

Figure 3b. Subregions and plots (red points) for Central 
Yakutia: Yakutsk (YA) (EN18061), Magaras (MA) (EN18062), 
Vilnuyi (VI) (EN18063-66), Nyurba (NY) (EN18067–70), 
Suntar West (SW) (EN18071), Suntar (SU) (EN18072–74), 
Mirny (MI) (EN18075–76), Mirny-Lensk (ML) (EN18077–78) 
and Lake Khamra (LK) (EN18079–83). See also Table 1. 
The overview map (background OpenStreetMap©) shows 
forest coverage by green colour-coded NASA forest height 
(Simard et al. (2011). 

A detailed vegetation inventory was conducted for each of the plots visited during fieldwork. Fifteen-metre radius circular 

plots for the projected cover of trees and tall shrubs (Fig. A1) were set within 30 m x 30 m rectangular vegetation plots for 

ground projective cover of vegetation taxa. The plots and the field data collection are described in further detail in Shevtsova 

et al. (2019, 2020a,b,c, 2021). In the field, two 30-m-long tape measures were laid out along the main cardinal directions, 195 
intersecting in the plot centre, marking the main axes of a circular area with a radius of 15 m. A minimum of ten individuals 

of each tree and shrub species present were selected per plot if present on the plot. For each individual tree we measured the 



9 
 

stem diameter at breast height and at the base. The tree crown diameter, tree height, and vitality were estimated as described 

in Brieger et al. (2019). There were three deviations from the standard method of vegetation inventory. On plot EN18014 and 

EN18065, all trees were recorded, and plot EN18070 was recorded by a transect with three segments: edge, transition, and 200 
centre.  

We post-fieldwork assigned 11 vegetation classes to the 64 plots (table A1). The class assignment was based on the previous 

classes determined by Shevtsova et al. (2020a) for Chukotka. For plots in Central Yakutia, we applied a similar method 

incorporating principal component analysis (PCA), tree density information from the UAV data, and recorded tree species 

information per plot (Fig. A2, A3 show the field data information). 205 
In addition to the fieldwork forest inventories that were obtained, 60 of the 64 vegetation plots were overflown with a consumer 

grade DJI Phantom4 quadcopter carrying MAPIR Survey-3W Red Green Blue RGB and Red Green Near-infrared (RGN) 

cameras to obtain spatially mapped detailed forest structure information in 2 and 3 dimensions (2D, 3D). The UAV imagery 

covered a minimum areal extent of 50 m x 50 m over the 15 m radius plots with a standardised flight plan following a double-

grid in near-nadir position and a circular flight facing the plot centre at take-off elevation (Fig. A4). Further details are 210 
described in Brieger et al. (2019).  

2.2 SiDroForest dataset 1: Structure from motion (SfM) point-cloud products and orthomosaics 

2.2.1 SfM point cloud products of the plots 

Due to the availability of multiple overlapping images from different camera viewpoints, point-cloud processing and the 

generation of 3D products and successive generation of orthoimages were possible. We manually rejected images that had 215 
been taken during take-off and landing, as well as under- or over-exposed images, from further processing (see also Brieger et 

al., 2019). The remaining images were used to generate the 3D SfM point clouds and related products directly from the point-

cloud data.  

The SfM point clouds were constructed with Agisoft PhotoScan Professional (Agisoft, 2018) according to methods described 

in Brieger et al. (2019). Tracked Global Positioning System (GPS) information was automatically integrated into the images 220 
during this process. The parameters were tuned with the highest resolution settings to capture as much detail of the complex 

tree structures as possible. The depth filtering in the dense cloud generation was changed from the default to a mild filtering 

to preserve more detail especially in tree crowns (details in Brieger et al., 2019). The RGB point clouds have been further 

segmented into two separate point clouds with a cloth simulation filter (CSF) (Zhang et al., 2016) as described in Brieger et 

al. (2019) to produce two RGB point clouds. One of the point clouds contains the points of the ground and low vegetation 225 
(named here ‘groundonly’) and the other contains the points of the higher vegetation (named here ‘treesonly’) (Fig. 4).  



10 
 

Figure 4: Left: example of a full Red Green Blue (RGB) structure from motion (SfM) point cloud for plot EN18074. Centre: 
segmented RGB point cloud containing only the points of the ground layer named groundonly. Right: segmented RGB point cloud 
with the above-ground vegetation named treesonly.  230 

We chose to segment the RGB point clouds into ‘groundonly’ and ‘treesonly’, because it reduces the size of the individual 

point clouds and at the same time it remains easy for users to merge them together. It can also be interesting to have the two 

segmented when attempting to analyse the below-canopy vegetation or ground-cover classes. Plots with dense vegetation such 

as EN18077 and EN18063 could not be segmented into ‘groundonly’ and ‘treesonly’ due to the ground not being visible in 

the images. The final SiDroForest dataset includes three point-cloud types per plot: ‘treesonly’ and ‘groundonly’ in RGB and 235 
the full point cloud in RGN. The created point cloud products include: a digital terrain model (DTM), a digital surface model 

(DSM), a canopy height model (CHM), and a digital elevation model (DEM). The point-cloud products were produced in R 

(R Core Team, 2020) and exported as georeferenced geotiff raster files at 3 cm x 3 cm pixel resolution in the respective 

Universal Transverse Mercator (UTM) projection of the field site location. The DEM products were cropped to a defined area 

in the form of a polygon (called here the outer polygon) due to the better quality of the points within this region. The outer 240 
polygon is the area covering the camera positions plus a buffer of 5 m. In addition to the clipped product versions and the 

shapefiles of the outer polygon, the fully covered area that was not clipped to the outer polygon is also supplied for the 

orthomosaics and the point clouds to give the user a dynamic dataset to work with.  

DTM: The definition of a DTM is that the surface represents the ground level with all natural and built features above the 

ground removed. The DTM is created from the RGB ground cover and lower vegetation (groundonly) point cloud, therefore, 245 
the SiDroForest DTM represents the top of the canopy of the lowest vegetation canopy layer in case of low-structure 

vegetation.  

DSM: The definition of a DSM is that the surface represents the highest-level elevation including natural and built features. 

The DSM is produced from the full point cloud, and interpolated between the highest points in each grid cell representing in 

case of a forest plot the top of the highest tree canopy layer.  250 
CHM: The definition of a CHM is that it represents the difference between the DSM and the DTM (CHM = DSM – DTM), 

and thus normalises the DSM to the ground. Because the CHM is derived from a subtraction of the DSM and the DTM, it may 

contain no data values where the tree crown covers a large amount of ground and the ground data are missing due to this 

coverage. The SiDroForest CHM represents the vegetation height above the ground.  
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DEM: The DEM is a quantitative representation of the elevation of Earth’s surface. The SiDroForest DEM provides the terrain 255 
relief referenced to the vertical datum of the World Geodetic System 1984 (WGS84) without the lowest canopy layer in contrast 

to the SiDroForest DTM that contains the lowest ground vegetation layer.  

2.2.2 Orthomosaics of the plots 

UAV-derived orthomosaics are geometrically corrected images that are by standard georeferenced by topography (the relief) 

and vegetation (the top-of-canopy elevation). The orthomosaics were constructed from the multiple RGB and RGN overhead 260 
photo images that were corrected for perspective and scale with Agisoft PhotoScan Professional (Agisoft, 2018) using structure 

from motion/multi-view stereo (SfM-MVS) techniques as described in detail in Brieger et al. (2019). The RGN orthomosaics 

have been co-registered to the RGB point clouds using the ground control points (GCPs) distributed in the field to make the 

RGN and RGB point clouds align. The orthomosaics were exported as georeferenced geotiff files at 3 cm x 3 cm pixel 

resolution in the respective Universal Transverse Mercator (UTM) zone projections.  265 

 
Figure 5: Example of Red Green Blue (RGB displayed with Red on Red, Green on Green and Blue on Blue as true colour) (left) and 
Red Green Near-infrared (RGN, displayed with Green on Red, NIR on Green, and Red on Blue) (right) orthomosaics for plot 
EN18000. 

Not all RGB orthomosaics have the same high quality, as varying flight or weather conditions affected the construction of 270 
the final products. The canopy moved due to wind that cannot be avoided in the acquisition process at high latitudes in the 

field, where there are nearly never wind free time slots. This resulted in ‘blurry’ parts in some of the orthomosaics 

(EN18030, EN18078, and EN18079). These blurry regions affect less than 20% of the image, therefore the orthomosaics of 

these plots are included in the data publication. Figure 5 shows an example of the high-quality type of an RGB and RGN 

orthoimage product. 275 

2.2.3 Automated extracted tree crown polygons  

The SiDroForest data collection also contains 19 342 automatically detected tree-crown polygons (Kruse et al. 2021b). The 

tree crowns were captured in the CHM by watershed segmentation analysis using the R package ForestTools (Plowright, 2019) 

and successive automatic generation of a polygon around them following Brieger et al. (2019). This automated tree-crown 
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detection algorithm was run for all plots and the resulting shapefiles are provided for each plot that contained trees. Quality 280 
assurance was performed for each plot by carefully examining each plot based on expert knowledge and assigning a quality 

score of Q1 (good quality), Q2 (medium quality), or Q3 (poor quality) to the shapefile products.  

2.3 SiDroForest dataset 2: Individual labelled trees 

The individuals from within the 15-m-radius vegetation survey plots that could be located in the orthoimages were marked in 

a point and polygon shapefile that outlines the tree crown of the individual tree, containing the individual number of the tree, 285 
the species, and its form (tree or shrub). The form attribute was added because in the Chukotka plots there are Pinus species 

that are not the Pinus tree but the Pinus shrub form. The tree ID, exemplified in Figure 6, is the first letter of the genus of tree 

and the total number of individuals recorded (e.g., L259 is the 259th Larix specimen). The total number of Larix recorded is a 

cumulative number over all the plots recorded. The individual number was recorded during fieldwork and corresponds to 

information stored in the extensive database of Kruse et al. (2020) containing measurements concerning the individual tree, 290 
which are now also accessed via the SiDroForest dataset in form of attributed shape files.  

 
Figure 6: examples of the individual point labels and examples of species polygons. Where possible the species polygon overlaps the 
individuals labelled in the field, e.g., the larch at L34, L35 and L36. Additionally, the Pinus pumila were not recorded in the field but 
is added in the species shapefile. Both shapefiles are visualized on the Red Green Blue (RGB) orthoimage of plot EN18004. 295 
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The point shapefiles also include the geographical x and y coordinates of the point in decimal degrees. The individual number 

can be used to link the tree or shrub to the rest of the information collected during the expedition such as tree height, crown 

diameter, and vitality. This information is provided in form of a csv file in Kruse et al. (2021a). 

In addition to the two shapefiles that are linked to the individually recorded trees, another shapefile is provided per plot with 

species-level information (Fig. 6). It contains a minimum of ten labelled polygon shapefiles that cover trees or large shrubs 300 
(>1.3 m height). These labelled polygons only cover the inside of the tree or shrub to minimize noise from the ground layer 

for classification purposes. For the species polygon, trees and shrubs that were seen in the rest of the orthoimages were also 

included, not only the individuals from the fieldwork records.  

2.4 SiDroForest dataset 3: Synthetic larch tree crowns 

The synthetic dataset contains larch (Larix gmelinii (Rupr.) and Larix cajanderi (Mayr.)) tree crowns extracted from the 305 
onboard camera RGB images of five selected vegetation plots from fieldwork, placed on top of fully-resized images from the 

same UAV flights.  

To create the dataset, backgrounds and foregrounds were needed. The RGB images included for the backgrounds were from 

the field plots: EN18062 (62.17° N 127.81° E), EN18068 (63.07° N 117.98° E), EN18074 (62.22° N 117.02° E), EN18078 

(61.57° N 114.29° E), and EN18083 (59.97° N 113° E), located in Central Yakutia, Siberia (Fig. 7).  310 
 

 

Figure 7: Examples of Red Green Blue (RGB) images of plots from the selected unmanned aerial vehicle (UAV) flights in the 
following order: EN18063, EN18068, EN18074, EN18078 and EN18083. 

 315 
Figure 8: Example of a Red Green Blue (RGB) image that was excluded from the 35 images for plot EN18068. 
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The plots were selected based on their vegetation content and their spectral differences, as well as UAV flight angles and the 

clarity of the UAV RGB images. For each plot, 35 images were selected in order of acquisition, starting at the fifteenth image 

in the flight to establish the backgrounds for the dataset. The first fifteen images were excluded because they often contain a 

visual representation of the research team (for example, Fig. 8). Excluding these images reduces noise in the dataset as we 320 
aimed to include only forest and natural terrain in the images.  

The raw UAV RGB images were cropped to 640 by 480 pixels at a resolution of 72 dots per inch (dpi). These are later rescaled 

to 448 by 448 pixels in the process of the dataset creation. In total there are 175 cropped backgrounds.  

The foregrounds used in the dataset consist of 117 tree crowns and were manually cut out using Gimp V2.10 software (Gimp, 

2019) to ensure that they were all Larix trees (see Fig. 9). Of the tree crowns, 15% from the margins of the image were included 325 
to make sure that the algorithm does not rely on a full tree crown in order to detect a tree.  

The COCO format for the SiDroForest synthetic dataset is stored in a JavaScript Object Notation (JSON) file that contains the 

mask and image name, the colour category that was used to create the mask the category the image falls under, which in this 

case is ‘larch’ and the super category which is ‘tree’ (an example is shown in Table A2). This way the created masks are 

connected to the created images.  330 
 

 

Figure 9: Examples of cut out tree crowns. 

The extracted tree crowns were rotated, rescaled, and repositioned across the images using the cocosynth algorithm developed 

by Kelley (2009) resulting in a diverse synthetic dataset that contains 10,000 images for training purposes and 2,000 images 335 
for validation purposes for complex machine-learning neural networks. In addition, the data are saved in the Microsoft COCO 

format (Lin et al., 2014) and can be easily loaded as a dataset for networks such as the Mask R-CNN, U-Nets, or the Faster R-

NN. These are neural networks for instance-segmentation tasks that have become more frequently used over the years for 

forest monitoring purposes. The Synthetic dataset contains images and labels in the COCO format and can be loaded into most 

programming languages such as R (R Development Team, 2020) and Python.  340 

2.5 SiDroForest dataset 4: Sentinel-2 satellite image patches 

Sentinel-2 (S-2) is an ESA optical satellite mission providing satellite imagery globally and freely available, which facilitates 

low-cost broad-scale analyses of circumpolar boreal forests. The S-2 mission is composed of two identical satellites that were 
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launched in 2015 and 2017 (ESA, 2015). The S-2 imagery has 13 multispectral bands, where in the native spatial resolution 

four bands have the highest (i.e., 10 m) spatial pixel resolution covering the visible wavelength region with three spectral bands 345 
(blue, green, red), and one spectral band in the near infrared (NIR). An overview of the S-2 spectral bands can be seen in 

Appendix Table A3.  

The best possible acquisitions of S-2 data, that is, cloudless and without smoke from forest fires, were retrieved from the ESA 

archive from the years 2016 to 2020 for three distinct time stamps: early summer (May to June, depending on latitude), peak 

summer (mid-July to early August), and late summer (late August to September). The S-2 Level-1C (top of atmosphere) image 350 
data were processed to Level-2A (bottom of atmosphere) surface reflectance using the newest version of the atmospheric 

correction processor Sen2Cor (ESA Sen2Cor, 2020). Atmospheric correction processing was performed mainly with the 

default configuration which uses a rural aerosol model with a start visibility parameter of 40 km corresponding to aerosol 

optical thickness of 0.20 at 550 nm. Actual aerosol optical thickness is determined during the atmospheric correction 

processing. The two non-default settings were further enhancements such as the use of the Copernicus DEM for terrain 355 
correction (Copernicus, 2021) and the use of vertical column ozone content from L1C-metadata instead of a fixed value of 331 

Dobson units.  

The data provided in SiDroForest are optimised for vegetation-related analyses, such as resampling all bands to 10 m spatial 

resolution to make them comparable at the same resolution and removing the 60 m bands that support atmospheric correction 

but are not optimal for land surface classification. The NDVI was calculated using (B8 – B4) / (B8 + B4) and masked for 360 
surface waters using the water-mask provided with the L2A-product. Areas of snow and lake and river ice in early season 

acquisition NIR bands were masked using an adaptable optimised threshold. The dataset presented here contains 12 subregions 

(sites) of S-2 acquisitions that cover all the 64 locations where fieldwork was performed in Siberia in 2018 (Table A1) with 

the three seasonal time-stamps included and the water-masked NDVI band added (Fig. 10 shows an example of the Bilibino 

subregion NDVI product in Early, Peak and Late Summer).  365 

 
Figure 10: Sentinel-2 NDVI in greyscale of the three periods for the Bilibino subregion in Chukotka. Left: early summer, centre: 
peak summer, and right: late summer. 
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In a further step, the pre-processed S-2 imagery with the spectral bands 2,3,4 (visible), 5,6,7,8A (NIR), 11,12 (SWIR; short-

wave infrared) at 10 m resampled spatial resolution and the additional water-masked NDVI band are cropped to 30 m x 30 m 370 
image patches around the centre coordinate of the vegetation plot using UTM oriented shapefiles. These shapefiles and the 

JSON-annotated image patches receive the annotation of one of the 11 vegetation classes derived from fieldwork and analysis 

of the UAV data, described in section 2. 2. 1, as attributions (Table A1). The labels are also stored in the JSON file for each 

plot in accordance with the patch labelling in BigEarthNet-S2 (Sumbul et al., 2019). JSON is an open standard file format and 

data interchange format that uses human-readable text to store and transmit data objects consisting of attribute–value pairs and 375 
arrays. It is often used in machine learning as the standard for stored labels.  

3. Results 

3.1 Dataset 1: SfM point clouds and point-cloud products 

For most of the plots, especially for the Chukotka plots, the total number of RGB and RGN point-cloud points (with ‘treesonly’ 

and ‘groundonly’ segmented points added together) were of a similar magnitude (Fig. 11). With higher vegetation structure, 380 
the NIR reflectance enables more data points in RGN than the RGB point clouds over the high and dense Central Yakutian 

forest plots. 

 
Figure 11: Comparison of the number of points in Red Green Near infrared (RGN; orange bars) and the combination of the two 
Red Green Blue (RGB) ‘groundonly’ and ‘treesonly’ point clouds (RGB; blue bars). 385 
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Figure 12: Ground and above-ground points per segmented point cloud per m2. 

 

 
Figure 13: Digital terrain model (DTM), canopy height model (CHM), digital surface model (DSM), and digital elevation model 390 
(DEM) for plot EN18077. The DEM products are cropped, the DTM, CHM and DSM are not cropped. 
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For the segmented RGB point clouds, the ground to above-ground ratio confirms that the plots that have substantially more 

points in the above ground (treesonly) part, i.e., a large proportion the point cloud is concentrated the forest canopy if the plots 

also have more vegetation cover in the higher vegetation layer (Fig. 12). The SiDroForest point cloud products provide high-

quality 2D and 3D data on the forest stand structure, the tree height and density and the ground surface elevation of the plots 395 
(see example for EN18077 in Fig. 13).  

The SiDroForest data collection contains 19,342 automatically detected tree-crown polygon. In contrast to the high quality 

2D, 3D point cloud products, the automatic tree-crown detection algorithm was not equally successful for each plot. For this 

reason, the quality control label (Q1, Q2, Q3) included with every shapefile in the name is already a useful indicator for the 

possible applications of this product. Fig. 14 shows an example of the different quality scores. Each generated tree crown also 400 
has an attribute table assigned that contains information on tree height, vitality, and crown diameter among others. (Table A4) 

providing useful metadata information. 

  

 

 

Figure 14: Top left: Crown polygons for plot EN18014 with Q1 quality score. Top right: Crown polygons for plot EN18014 with Q2 
quality score. Bottom: Crown polygons for plot EN18014 with Q3 quality score. The scale bar represents 10 meters. 

Each plot has a different number of automatic tree crowns detected, depending on the density and the quality of the detected 405 
crowns in the plot. The percentage of crowns covering each plot was calculated to show the coverage of trees per plot (Fig. 

15). Low tree crown cover staying below 50% coverage characterize the vegetation plots in the tundra-taiga transition zone in 
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Chukotka, whereas reach crown coverage of higher then 50% up to ~90% in some of the plots in the summergreen-evergreen 

transition zone in Central Yakutia. However, also in the Central Yakutian boreal zone a tree crown coverage between 30 to 

60% only characterise most of the field forest plots. 410 

 
Figure 15: The percentage of the crown coverage in the orthomosaics per plot. A high percentage reflects a denser forest. 

3.2 Dataset 2: Individual labelled trees 

In order to make assumptions and predictions about the content of the vegetation plots it is important to link the labelled 

individual trees from the fieldwork to the processed orthoimages. We located 872 trees and large shrubs in the orthoimages 415 
that were surveyed in Siberia during the two-month fieldwork expedition in 2018 (Kruse et al., 2019) (Fig. 16).  

 
Figure 16: Number of individual trees recorded in the field (orange colour) and visually identified and relocated (blue colour) in the 
Red Green Blue (RGB) orthomosaics per plot. For plots EN18014 and EN18065 all trees were recorded that were present on the 
plot. 420 
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For each tree or shrub from fieldwork visually identified in the orthoimages, the created point and polygon shapefiles contain 

information about the tree or shrub species visible in the orthoimages. The field data on species distribution (trees and tall 

shrubs) and on mean tree height and mean crown diameter per plot can be seen in the Appendix (Fig. A2, A3, A6, A7). For 

each located individual, the three shapefiles pinpoint the location, provide a unique identifier, and record the species 

information and can be overlain by users on the RGB or RGN orthoimages of the plots as a useful visualisation (example in 425 
Fig. 17). The individual number links to the information collected during the expedition such as tree height, crown diameter 

and vitality. This dataset can be used to link individual trees in the SfM point clouds, providing unique insights into the 

vegetation composition and also allows future monitoring of the individual trees and the contents of the recorded vegetation 

plots. 

 430 
Figure 17: Overview of the three types of shapefiles included in the individual labelled trees dataset visualized on top of a red–green–
blue (RGB) orthoimage. 

3.3 Dataset 3: Synthetic dataset results 

This synthetic larch tree crown dataset was created to enhance the data collective for upscaling and machine-learning purposes. 

The synthetic larch tree crown RGB image database has many different larch-dominated forest structures and contains 10,000 435 
synthetically produced images. This creates a large diversity of spatial and spectral features for machine-learning tasks. 

Examples of the results for the synthetic larch tree crowns include the RGB images that were generated and the accompanying 

masks that are used for the instance segmentation and object detection tasks as shown in Figure 18. 
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 440 
Figure 18: Examples of synthetic images and corresponding masks generated. The images show three drone flight images with a cut 
out larch tree overlay. The masks below show the location of the placed trees in the form of masks. Each mask is assigned a different 
colour to distinguish the masks. 

3.2 Dataset 4: Sentinel-2 labelled image patches 

The labelled S-2 image patch dataset comprises 30 m × 30 m labelled multi-band (10 multispectral bands + NDVI) image 445 
patches with vegetation labels (table A1) assigned and three seasonal representations (early summer, peak summer, and late 

summer) for 63 plots and 12 subregions (sites) (table A1) with the same multi-band format. As each 30 m x 30 m S-2 image 

patch consists of nine units (pixels) of 100 m2 extent each, it amounts to around 550 annotated validation and training units. 

Figure 19 provides a schematic overview of the contents of the dataset, a visual representation of the 11 vegetation classes can 

be seen in Figure 20. For easy re-use and machine learning purposes the vegetation classes are in the file name for each patch 450 
as well as in the JSON file. The classes and their representation in the labelled S-2 image patches are shown in table 2.  
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Figure 19: Overview of the products in the Sentinel-2 labelled image data set, exemplified for plot EN18028. 

 

Figure 20: Visual representation of the 11 vegetation classes from the orthomosaics (see also Appendix Table A1). The varying 455 
quality of the orthomosaics is described in 2.2.2. 

 

  



23 
 

Table 2: Vegetation class labels per plot and percentage of plots for each classification. 

Vegetation label Fraction of plots with this label 
Graminoid tundra 39% 
Forest tundra and shrub tundra 4% 
Prostrate herb tundra 21% 
Open canopy pine with lichen 2% 
Open canopy pine 2% 
Closed canopy pine 2% 
Open canopy mixed forest 10% 
Closed canopy mixed forest 4% 
Open canopy larch 4% 
Closed canopy larch 10% 
Closed canopy spruce 2% 

4. Discussion  460 

4.1 Uniqueness of the SiDroForest comprehensive data collection on Siberian boreal forests 

To date, the most relevant open-source datasets available on boreal and arctic vegetation data are from the long-term ABoVE 

NASA Terrestrial Ecology Program, focusing on boreal and arctic regions in Alaska and Canada. The ABoVE data collections 

contain field-based, airborne, and satellite sensor-derived data, providing a foundation for improving the analysis and 

modelling capabilities needed to understand and predict climate change in the arctic and boreal regions. In 2021, there were 465 
fifty vegetation-related datasets published so far in the ABoVE Science Cloud (ASC): eleven thematic maps, mostly derived 

from remote sensing and focused on Alaska, nine vegetation-variable related mapped remote-sensing products, mostly 

covering large regions, one time series product extracted for the footprint of a flux tower, and six ground-based vegetation 

related data collections, including data from ten terrestrial LiDAR vegetation plots (Maguire et al., 2020) and 24 vegetation 

plot surveys. The circumarctic vegetation map north of the treeline (CAVM Team, 2003) is one circumarctic product, the other 470 
forty-nine datasets are all located in Alaska.  

SiDroForest provides a new comprehensive data collection with a variety of data types that were selected to create the most 

useful insights into specifically the larch-dominated forests representative of eastern Siberia. The focus of the SiDroForest 

data collection is, at this stage, not to provide thematic maps or upscaled remote-sensing products but to provide a rich, open 

data source on ground-based and UAV-derived information and labelled data types enhanced to best use the data for 475 
vegetation-related analyses and machine-learning tasks.  

For Eastern Siberia, we had already published in Shevtsova et al. (2019, 2020b) 2016 and 2018 vegetation inventories on the 

projective vegetation cover, and 2018 biomass data (Shevtsova et al. 2020c) of vegetation plots for the tundra–taiga transition 

zone in Chukotka. Tree level forest inventory data from Eastern Siberian forest plots were published in Kruse et al. (2020a) 

and Miesner et al. (2022). As well, we published in Brieger et al. (2019a,b) a first version of ten ultra-high resolution 480 
photogrammetric point clouds from the UAV overflights in 2018 over forest vegetation plots in Central Yakutia. For these ten 
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plots, the construction of RGB SfM point clouds was evaluated and optimised and was then used to process all RGB and RGN 

SiDroForest point clouds. In the SiDroForest data collection, we provide the complete and comprehensive dataset of the full 

range of standardized SfM-derived products of the 2018 UAV acquisitions in Central Yakutia and Chukotka (Kruse et al. 

2021b). In the SiDroForest data collection in addition to all RGN and RGB point clouds from all 63 overflown vegetation 485 
plots, we provide enhanced field data information such as the individually labelled tree dataset (van Geffen et al., 2021b). 

These existing field inventories (Shevtsova et al. 2019, 2020b,c; Kruse et al. 2020a, Miesner et al., 2022) are data publications 

optimized for ecological applications and not for machine learning, and upscaling applications. In the PANGAEA data 

repository, the individual data sets for ecological applications and the SiDroForest data sets can all be linked to each other by 

the vegetation plot codes. With these interlinked data types, multi-purpose applications, and a more in-depth understanding of 490 
the Siberian boreal forests can be fostered.  

4.2 High spatial resolution UAV domain in forest data collections  

The SiDroForest data collection is based on a large part on photogrammetric UAV-borne products (i.e., SfM point clouds, 

digital elevation products, RGB orthomosaics) following a long application history in forestry and well-defined 

methodological standards (e.g., Jensen et al., 2016; Panagiotidis et al., 2017). Currently, the use of UAVs in environmental 495 
applications is undergoing an ever faster growing use in forestry and environmental science due to the landscape-level 

potential, the flexibility of the data generation and low costs (Fraser et al., 2017). The SiDroForest data collection extends our 

standard ground-based inventories. In addition to the photogrammetric UAV products, we undertook an automated tree-crown 

detection that has become more frequent due to the availability of state-of-the-art instance segmentation algorithms from the 

world of computer vision (Neuville, 2021). An example of previous work using a neural network tree-crown detection is Braga 500 
et al. (2020), where the Mask R-CNN (He, 2017) was used to perform the tree-crown detection and delineation. In another 

example, the Mask R-CNN was used by Hao et al. (2021) to detect tree crown and canopy height of Chinese fir in a plantation 

in China. Tree crown width and tree height of Chinese fir were manually extracted from this UAV imagery using a combination 

of labelled ground-truth data and canopy height model (CHM) information and served as validation data. This exemplifies 

how the synthetic dataset in SiDroForest (van Geffen et al. 2021a) could be used for analysis as the Mask R-CNN is trained 505 
with a COCO format dataset.  

For the United States, the National Ecological Observatory Network (NEON) provides a 100-million individual tree crowns 

dataset covering a large area and standardised LiDAR remote-sensing data (Weinstein et al., 2021) created using machine 

learning tools such as DeepForest (Weinstein et al., 2019). Here a CHM was used to filter out all canopy tops over 3 metres in 

height from 37 different NEON sites. The individual tree crowns in Weinstein et al. (2021) are represented by a bounding box 510 
shapefile that approximates the crown area and links to the tree attributes. The SiDroForest tree-crown dataset cannot cover a 

comparably large area as the NEON airborne LiDAR data collection extending over 1 km x 1 km tiles, and used RGB point 

cloud products and not lidar-derived CHMs. However, the SiDroForest tree-crown dataset provides 19,342 automatically 

detected tree-crown polygons in the form of a crown-delineating polygonal shape enriched with attributes offering plot-size 

coverage of tree crowns with useful data for machine learning and computer vision applications. The tree crown extraction 515 
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with 19,342 tree crowns is not complete, what we addressed assigning quality scores to the products. Brieger et al. (2019) also 

report a weak correlation between observed and detected crown diameters (mean R2 = 0.46, mean RMSE = 0.673 m, mean 

RMSE% = 24.9%). We assume that is due to the reduced quality of the available field data, which are subjective estimations 

instead of absolute measurements and therefore could have decreasing precision with increasing tree heights. The SiDroForest 

tree-crown data are specifically made to detect Siberian larches in different mixtures of mixed summergreen needle-leaf and 520 
evergreen needle-leaf forest.  

4.3 Upscaling using SiDroForest data types  

It is increasingly common in data science and environmental science to use multiple data types within one analysis. For 

example, S-2 images and metadata, topography data, CHM, as well as their combinations, were used to predict growing stock 

volume using deep neural networks in four forestry districts in central Finland (Astola et al., 2021). Another example of the 525 
use of multiple data types in non-machine learning remote sensing is the work by Wang et al. (2020) where above-ground 

biomass estimation was performed using field plots, UAV-LiDAR strip data, and S-2 imagery. In Wang et al. (2020), the 

partial-coverage UAV-LiDAR data were used to link ground measurements to S-2 data. These recent studies show the need 

for well-labelled publicly available data to link the data types together and for performance testing of remote sensing 

algorithms. In these studies, the testing data preparation was undertaken within the project: For example, Thanh Noi and 530 
Kappas (2018) compared the performance of three common machine learning algorithms; a support vector machine (SVM), a 

random forest (RF) and k nearest neighbours (K-NN) on S-2 data from Vietnam. In order to validate the performance of these 

algorithms, the training data (training and testing samples) were collected based on the manual interpretation of the original S-

2 data and high-resolution imagery obtained from Google Earth and 135 labelled land cover polygons were produced. Thanh 

Noi and Kappas (2018) is a good example of manually labelled data creation for a specific task and specific research area to 535 
be able to use supervised classification tools. The work done by Abdi (2020) shows a similar study that assesses the 

performance of four machine learning algorithms for land cover classification of boreal forests. Here too, the validation and 

training data is manually created to assess the performance of the algorithms.  

However, despite the increased availability of satellite missions and open-source remote-sensing data and products, challenges 

remain that are particular to terrestrial high-latitude ecosystems. Seasonal challenges such as the combination of snow cover 540 
over a long time of the year, a short and rapidly progressing growing season, high cloud frequency, and low sun angles pose a 

problem for comprehensive remote-sensing applications in the high latitude regions (Beamish et al., 2020). SiDroForest aims 

to remedy this scarcity by providing this multi-source data set, for example the high-quality dataset of S-2 data linked to 

published field inventories (van Geffen et al., 2021b). The final labels for the S-2 labelled image patches are assigned from the 

in situ information of multiple data sets the first two data sets i) and ii) information that can now be upscaled to larger areas 545 
by satellite image classification. By this, we assigned the labels with expert knowledge from the field data, still keeping all 

transparent, so that future users of these data sets can adapt the labelling to their applications, based for example on the detailed 
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information in the tree level and plot level labelled data sets i) and ii) that we provide in this data collection together with the 

S-2 labelled image patches for training.  

 550 
Figure 21: Classification of the Sentinel-2 Vilnuyi subregion based on the vegetation labels in SiDroForest. This is an initial 
classification using a Naïve Bayes algorithm with additional classes water and barren areas.  

The Yakutia field data collection covered diverse plots as seen in the vegetation classes assigned (Table 2) which may pose a 

problem for classification as the classes are unevenly distributed. When the fieldwork was undertaken, multiple plot sites 

covering different classes were preferentially recorded in close proximity to each other for time-related reasons. The time spent 555 
in fieldwork is limited and expensive and a variety of different data can be collected close to each other. The diversity of the 

collected fieldwork data has advantages and disadvantages for machine learning. On the one hand it is good to have many 

different vegetation types covered in the field plots to log the diversity of the vegetation cover for the region. On the other 

hand, more ground-truth data plots in the same category will greatly improve classification of satellite data and too much 

diversity in the classes hinders a balanced classification. For example, label 4: Open Canopy Pine with Lichen, only occurs in 560 
one plot. Spectrally, this plot is different from the others due to the presence of the almost white coloured lichen. It was 

therefore important to label this plot differently from the others, even if this creates uneven and unbalanced labels.  
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The classes assigned to the S-2 image patches were tested with simple machine-learning algorithms. The patches were 

extracted for both Yakutia and Chukotka and used together to classify all sites. A Gaussian Naive Bayes performed best with 

82% overall average accuracy per class for the Yakutia sites. The preliminary results for one of the Yakutia sites are shown in 565 
Figure 21, chosen due to the diverse vegetation at the site, to show the classification potential.  
 

4.4 SiDroForest Labelling and Data Quality  

Labelling accurately is one of the most important aspects for a usable dataset for machine-learning purposes. If the labels are 

inconsistent or very uneven the classification tools will have trouble correctly identifying the classes. The SiDroForest data 570 
collection contains a variety of labels per dataset.  

The labels for the Individual Labelled Tree dataset (van Geffen et al. 2021c) contain information on species and location of 

the individual tree or shrub. These data have been verified and checked, yet in some instances two trees are located very close 

to each other or the location was not recorded correctly in the field and an individual tree or shrub could not be found in that 

case. The difference between the number of trees recorded in the field and located in the orthomosaics can be seen in Figure 575 
15. The UAV images were inspected based on expert knowledge to locate the trees as accurately as possible. However, dense 

forest plots in Yakutia posed a problem for locating all the individuals correctly and not all individuals recorded in the field 

could be located in the orthoimages for those plots. Figure 22 shows an example of dense forest plots. 

 

 580 
Figure 22: Dense forest Red Green Blue (RGB) orthomosaics for plots EN18077 and EN18063. 

The SiDroForest synthetic dataset (van Geffen et al., 2021a) has written labels in the JSON format (table A2) that contain the 

higher category, or ‘super category’, ‘Tree’ and subcategory ‘Larch’. The two categories exist in case there are more species 

added under the higher-level label ‘Tree’. The current set identifies all larch trees, regardless of which species, since the sites 

covered contain two larch species: Larix cajanderi and Larix gmelinii. The two species of larch here have only the one label 585 
larch because the aim was to identify all larch trees in both Chukotka (solely Larix cajanderi) and Yakutia (predominantly 

Larix gemelinii). It would be an enhancement of the dataset in the future to distinguish between the two species of Larix in the 

labels as well. The dataset can be further enhanced by adding the other dominant tree species for the region: spruce and pine.  
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The backgrounds were carefully selected for the synthetic dataset to create diverse scenes and forest information for the 

algorithm to learn from. This can help the algorithm detect larch trees on multiple backgrounds. However, it may also introduce 590 
noise into the dataset. As investigated by Xiao (2020), on one hand, there is evidence that models succeed by using background 

correlations but on the other hand, advances in classifiers have given rise to models that use foregrounds more effectively and 

are more robust to changes in the background. These findings suggest that the performance of the algorithm is more important 

than the consistency of the backgrounds in a dataset. However, it is still important to be aware of such interference, and 

extensive benchmarking is needed to evaluate the performance of an instance segmentation or object detection algorithm for 595 
the dataset, which we are planning to undertake.  

The dataset also contains generated RGB images that should contain natural looking scenes. In practice, not all the RGB images 

look as natural as others (for example, parts of images in Fig. 23). The unnatural image construction is mostly due to variation 

in size compared to the images placed on them. Since there are 10,000 images in the dataset these unnatural images do not 

strongly undermine the natural ones and make up less than 10% of the total images.  600 

 
Figure 23. Examples of unnatural looking generated images in the synthetic image dataset, the red arrows show the cut-out larch 
trees that were placed over the UAV images. 

The SiDroForest data collection also provides labelled S-2 satellite image patches per vegetation plot (van Geffen et al. 2021b) 

that can be used as ground-truth data for machine-learning classifications. Though freely available and operationally 605 
downloadable, S-2 data are not ready-to-use. Despite a frequent acquisition rate at higher latitudes, S-2 data often contain 

clouds and finding a cloud- and haze-free acquisition can take time, even with cloud filtering. It is common practice that users 

produce labelled patches of satellite data that function as parameterisation for classification and upscaling purposes. For 

example, BigEarthNet (Sumbul et al., 2019) is a large-scale open-source dataset that provides labelled S-2 image patches (now 

called BigEarthNet-S2, previously BigEarthNet) acquired between June 2017 and May 2018 over ten countries. Each patch 610 
includes a JSON file with the ground cover labels for the patch. In accordance with the structure of BigEarthNet-S2, the 

SiDroForest image patches are also accompanied by a JSON file that contains the class labels per image patch. BigEarthNet-
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S2 provides patches of larger area coverage to represent ‘landscapes’ such as estuaries. The purpose of the SiDroForest S-2 

image patches and labels lies in the true representation of vegetation classes and evergreen needle-leaf mixed forest and the 

seasonal time stamps of early summer, peak summer, and late summer.  615 
In its current stage, the SiDroForest S-2 data collection is not published with performance testing, and is by us not considered 

as a benchmark data set for Remote Sensing image interpretation (e.g., Long et al., 2020). The SiDroForest labelled S-2 image 

patches collection is available as a small training and validation data set providing so far underrepresented vegetation 

categories, that will save future users time when attempting to classify vegetation of Central Siberian and Eastern Siberian 

boreal forests.  620 

5. Conclusions 

The circum-boreal forests are covering large areas on the globe. Every new forest data set collected, processed further and 

published in a ready-to be used format for a wide range of biological and ecological applications is therefore quite rare and an 

important addition for scientific studies that aim to better understand global forest dynamics.  

The datasets presented here provide a comprehensive overview of the vegetation structure of boreal forest using a variety of 625 
data types. The fieldwork locations are the anchors that bind all the data types in this data collection together. The datasets 

include fieldwork information from vegetation plots and UAV acquisitions from extensive field expeditions in summer 2018 

covering the tundra–taiga and summergreen–evergreen forest transition zones in Chukotka and Central Yakutia in Eastern 

Siberia. The data collection spans from forest inventories at the species level, tree height information and density for each 

vegetation plot, UAV-derived SfM point clouds that provide structural forest information, RGB and RGN orthoimages from 630 
the plots, to S-2 image patches of seasonal information annotated with vegetation categories that can be used for upscaling 

purposes to a larger region.  

Combining the data types within SiDroForest can lead to a better understanding of forest structures and vegetation composition. 

The future states of boreal forest are still largely unpredictable: labelled field data and remote-sensing data provide the tools 

for machine-learning based applications to help forecast likely scenarios.  635 
The increased use of machine-learning techniques in the field of remote sensing and forest analyses calls for more and better 

labelled data. If forest structure data are rarely available for the tundra–taiga and summergreen–evergreen transition zones, 

even less is available that can be used for machine learning, such as optimised data containing labelled vegetation. In addition, 

due to the remote nature of the dataset locations, obtaining ground-truth data is difficult and expensive. The current data 

collection provides rare data on the Central Yakutian and North Eastern Siberian land cover, optimized on larch forest across 640 
the evergreen-summergreen transition zone and the northern tree line. Adding in future similar datasets derived from the 

Northern American boreal domain will consistently enlarge and will encompass more tree species and forest types in the 

upcoming years. By making this data collection open source, we aim to remedy data scarcity on tree level forest data for the 
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region and we encourage the use of the labelled tree level and plot level forest data sets presented here for further analyses and 

machine-learning tasks.  645 

6. Data availability 

All four data sets of the SiDroForest Data collection are published in the PANGAEA data repository and are available for 

download:  

i) UAV-SfM point clouds, point-cloud products, and orthoimages: https://doi.pangaea.de/10.1594/PANGAEA.933263,  

ii) Individual labelled trees: https://doi.pangaea.de/10.1594/PANGAEA.932821,  650 
iii) Synthetically created tree crowns dataset: https://doi.pangaea.de/10.1594/PANGAEA.932795  

iv) Sentinel-2 labelled image patches: https://doi.pangaea.de/10.1594/PANGAEA.933268 
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7. Appendix 

 655 
Figure A1: Sampling scheme of the 2018 expedition vegetation survey. Projective cover of tall shrubs and trees was estimated on a 
circular sample plot with a radius of 15 m (after Shevtsova et al. 2020). 

 
Figure A2: Percentage vegetation cover per plot in Chukotka for all recorded vegetation in the plots.  

 660 
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Figure A3: Percentage vegetation cover per plot in Yakutia for only large shrubs and trees (>1.3m). 

 

 
Figure A4: SiDroForest unmanned aerial vehicle (UAV) data acquisition and flight pattern consisting of a double grid (blue) and a 665 
circular mission (orange). The two 15 m long grid lines (red) divide the plot area into four quadrants of similar size (yellow). From 
Brieger et al. (2019). 
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Figure A5: Mean tree height (m) per plot from fieldwork measurements 

 670 
Figure A6: Mean tree crown diameter (m) per plot from fieldwork measurements. 
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Figure A7: Mean heights for trees and shrubs below 1.3 m for unmanned aerial vehicle (UAV)-derived heights (blue) and fieldwork-675 
derived heights (orange). 

 

Table A1: An overview of the plots, the latitude and longitude of the central coordinates, the site name, the region (Chukotka or 
Yakutia), the visiting date of the vegetation plot in the field in 2018, and the vegetation class (used as labels for the 30 × 30 m S2-
patches, table 2).  680 

Plot Code Latitude Longitude 
 

Site Region Field Work 
Date 

Vegetation 
Class 

EN18000 
EN18001 

68.09714 
67.39273 

166.37544 
168.34662 

Bilibino 
Lake Ilirney 

          Chukotka 
Chukotka 

2018-07-03 
2018-07-04 

2 
2 

EN18002 67.38677 168.33673 Lake Ilirney Chukotka 2018-07-05 1 
EN18003 67.39273 168.34702 Lake Ilirney Chukotka 2018-07-05 2 
EN18004 67.39748 168.35122 Lake Ilirney Chukotka 2018-07-05 2 
EN18005 
EN18006 

67.41965 
67.41496 

     168.38751 
     168.40287 

Lake Ilirney 
Lake Ilirney 

Chukotka 
Chukotka 

2018-07-06 
2018-07-06 

1 
2 

EN18007 67.40327 168.37196 Lake Ilirney Chukotka 2018-07-07 1 
EN18008 67.40213 168.37528 Lake Ilirney Chukotka 2018-07-07 2 
EN18009 
EN18010 

67.40072 
67.40237 

168.37968 
168.36619 

Lake Ilirney 
Lake Ilirney 

Chukotka 
Chukotka 

2018-07-07 
2018-07-08 

2 
3 

EN18011 67.40404 168.36425 Lake Ilirney Chukotka 2018-07-08 1 
EN18012 67.40214 168.37807 Lake Ilirney Chukotka 2018-07-09 2 
EN18013 67.40517 168.35530 Lake Ilirney Chukotka 2018-07-09 1 
EN18014 67.39530 168.34910 Lake Ilirney Chukotka 2018-07-11 2 
EN18015 67.42037 168.33061 Lake Ilirney Chukotka 2018-07-12 1 
EN18016 67.42672 168.39004 Lake Ilirney Chukotka 2018-07-12 1 
EN18017 67.43229 168.38337 Lake Ilirney Chukotka 2018-07-12 3 
EN18018 67.45629 168.40596 Lake Ilirney Chukotka 2018-07-13 2 
EN18019 67.45707 168.40896 Lake Ilirney Chukotka 2018-07-13 1 
EN18020 67.45915 168.41193 Lake Ilirney Chukotka 2018-07-13 2 
EN18021 67.39212 168.32881 Lake Ilirney Chukotka 2018-07-14 1 
EN18022 67.40102 168.34800 Lake Ilirney Chukotka 2018-07-14 2 
EN18023 67.39923 168.35128 Lake Ilirney Chukotka 2018-07-14 1 
EN18024 67.37096 168.42636 Lake Ilirney Chukotka 2018-07-15 2 
EN18025 67.36702 168.42381 Lake Ilirney Chukotka 2018-07-15 2 
EN18026 67.39608 168.35429 Lake Ilirney Chukotka 2018-07-16 2 
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EN18027 67.39340 168.35905 Lake Ilirney Chukotka 2018-07-16 2 
  
 
 

Plot Code Latitude Longitude 
  

Site Region Field Work 
Date  

Vegetation 
Class 

EN18028 68.46781 163.35762 Bilibino Chukotka 2018-07-20 1 
EN18029 68.46560 163.35226 Bilibino Chukotka 2018-07-20 1 
EN18030 68.40553 164.53273 Bilibino Chukotka 2018-07-21 2 
EN18031 68.40491 164.54535 Bilibino Chukotka 2018-07-21 1 
EN18032 68.40486 164.55118 Bilibino Chukotka 2018-07-21 2 
EN18033 68.40321 164.55180 Bilibino Chukotka 2018-07-21 2 
EN18034 68.40348 164.54804 Bilibino Chukotka 2018-07-22 1 
EN18035 68.40316 164.59093 Bilibino Chukotka 2018-07-22 2 
EN18051 67.80261 168.70471 Lake 

Rauchuagytgyn 
Chukotka 2018-07-18 1 

EN18052 67.79941 168.7083 Lake 
Rauchuagytgyn 

Chukotka 2018-07-18 1 

EN18053 67.79729 168.7107 Lake 
Rauchuagytgyn 

Chukotka 2018-07-19 1 

EN18054 67.79766 168.6904 Lake 
Rauchuagytgyn 

Chukotka 2018-07-20 1 

EN18055 67.79103 168.682500 Lake 
Rauchuagytgyn 

Chukotka 2018-07-21 3 

 
Plot Code Latitude Longitude 

  
Site Region Field Work 

Date 
Vegetation 

Class 
EN18061 62.07637 129.61858 Yakutsk Central Yakutia 2018-07-28 6 
EN18062 62.17906 127.80579 Magaras Central Yakutia 2018-07-30 10 
EN18063 63.77663 122.50100 Vilnuyi Central Yakutia 2018-07-31 10 
EN18064 63.81459 122.20968 Vilnuyi Central Yakutia 2018-08-01 4 
EN18065 63.79522 122.44371 Vilnuyi Central Yakutia 2018-08-01 9 
EN18066 63.79711 122.43807 Vilnuyi Central Yakutia 2018-08-02 9 
EN18067 63.07636 117.97534 Nyurba Central Yakutia 2018-08-04 8 
EN18068 63.07423 117.98207 Nyurba Central Yakutia 2018-08-04 7 
EN18069 63.17328 118.13250 Nyurba Central Yakutia 2018-08-05 11 
EN18070 63.08291 117.98490 Nyurba Central Yakutia 2018-08-06 11 
EN18071 62.22509 116.27560 Suntar West Central Yakutia 2018-08-07 8 
EN18072 62.19957 117.37912 Suntar Central Yakutia 2018-08-08 10 
EN18073 62.18871 117.40991 Suntar Central Yakutia 2018-08-08 9 
EN18074 62.21519 117.02159 Suntar Central Yakutia 2018-08-09 11 
EN18075 62.69699 113.67653 Mirny Central Yakutia 2018-08-10 7 
EN18076 62.70089 113.67341 Mirny Central Yakutia 2018-08-11 10 
EN18077 61.89256 114.28862 Mirny-Lensk Central Yakutia 2018-08-12 5 
EN18078 61.57505 114.29995 Mirny-Lensk Central Yakutia 2018-08-12 10 
EN18079 59.97491 112.95898 Lake Khamra Central Yakutia 2018-08-14 8 
EN18080 59.97710 112.96137 Lake Khamra Central Yakutia 2018-08-14 7 
EN18081 59.97058 112.98709 Lake Khamra Central Yakutia 2018-08-15 8 
EN18082 59.97764 112.98218 Lake Khamra Central Yakutia 2018-08-15 7 
EN18083 59.97471 113.00287 Lake Khamra Central Yakutia 2018-08-16 7 

1 = Graminoid tundra; 2= Forest tundra and shrub tundra; 3= Prostrate herb tundra; 4= Open canopy pine with lichen; 5= Open canopy 685 
pine;6= Closed canopy pine; 7= Open canopy mixed forest; 8= Closed canopy mixed forest; 9 = Open canopy Larch; 10= Closed canopy 
Larch; 11= Closed canopy spruce 
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 690 

 

Table A2: Example of common objects in context (COCO) style annotation labels for the masks (1) and images (2). 

1: "masks": {"images/00000000.jpg": {"mask": "masks/00000000.png", "color_categories": {"(255, 0, 0)": {"category": 
"larch", "super_category": "tree"} 
2: {"info": {"description": "SiDroForest: Synthetic Tree Crowns", "url": "http://immersivelimit.com/datasets/test", "version": 695 
"1", "year": 2021, "contributor": "Femke van Geffen", "date_created": "12/04/2021"}"00000000.jpg", "width": 448, 
"height": 448, "id": 0} 
 

Table A3: Overview of Sentinel-2 spectral bands, spatial resolution, and the central wavelength. 

Sentinel-2 Bands Central Wavelength (nm) Pixel Length (m) 
Band 1- Coastal aerosol 443 60 
Band 2- Blue 490 10 
Band 3- Green 560 10 
Band 4- Red 665 10 
Band 5- Vegetation Red Edge 705 20 
Band 6- Vegetation Red Edge 740 20 
Band 7- Vegetation Red Edge 783 20 
Band 8- NIR 842 10 
Band 8A- Vegetation Red Edge 865 20 
Band 9- Water vapour 945 60 
Band 10- SWIR-Cirrus 1,375 60 
Band 11- SWIR-1 1,610 20 
Band 12- SWIR-2 2,190 20 

 700 
Table A4: Screenshot of the crowns_polygon shapefile attribute table for plot EN18077 as an example. Height: tree height in metres 
as identified with the tree top finding algorithm, crownAr: area of the tree crown in square metres, CrwnDmt: simplification of the 
crown diameter in metres assuming a circular crown, orgHght: maximum height value in metres recorded in the canopy height 
model (CHM) under the total crown polygon. 

 705 
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