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Abstract. Inland surface waters are abundant in the tundra and boreal forests in North America, essential to environments9
and human societies but vulnerable to climate changes. These high-latitude water bodies differ greatly in their morphological10
and topological characteristics related to the formation, type, and vulnerability. In this paper we present an inland surface11
water body inventory (SWBI) dataset for the tundra and boreal forests of North America. Nearly 6.7 million water bodies12
were identified, with approximately 6 million (~90%) of them smaller than 0.1 km2. The dataset provides geometry coverage13
and morphological attributes for every water body. During this study we developed an automated approach for detecting14
surface water extent and identifying water bodies in the 10 m resolution Sentinel-2 multispectral satellite data to enhance the15
capability for delineating small water bodies and their morphological attributes. The approach was applied to the Sentinel-216
data acquired in 2019 to produce the water body dataset for the entire tundra and boreal forests in North America, providing17
a more complete representation of the region than existing regional datasets, e.g., Permafrost Region Pond and Lake (PeRL).18
Total accuracy of the detected water extent by SWBI dataset was 96.36% by comparing to interpreted data for locations19
randomly sampled across the region. Compared to the 30 m or coarser resolution water datasets, e.g., JRC GSW yearly water20
history, HydroLakes, and Global Lakes and Wetlands Database (GLWD), the SWBI provided an improved ability on21
delineating water bodies, and reported higher accuracies in the size, number, and perimeter attributes of water body by22
comparing to PeRL and interpreted regional dataset. This dataset is available on the National Tibetan Plateau/Third Pole23
Environment Data Center (TPDC, http://data.tpdc.ac.cn): DOI: 10.11888/Hydro.tpdc.271021 (Feng et al., 2020).24

1 Introduction25

Inland surface waters include various types of water bodies, including rivers and streams; large and small lakes; reservoirs;26
and ephemeral ponds. Inland surface water occupies only 2% of the global land surface (Pekel et al., 2016), but it plays a27
critical role in terrestrial ecosystems. Surface water distribution varies across the landscape. More than 55% of global surface28
waters are located in high latitudes in the Northern Hemisphere (> 44°N), and these northern high-latitude waters are29
generally small and densely clustered. The high latitudes have warmed faster than other regions, with annual surface30
temperatures increasing > 1.4° C over the past century (IPCC 2014). The temperature of the Arctic, in particular, has risen31
twice as fast as the average global temperature (Graversen et al., 2008; Johannessen et al., 2004; Pachauri and Reisinger,32
2007; Serreze and Francis, 2006;Li et al., 2020). This change in climate is driving changes in terrestrial ecosystems in the33
Arctic as well. For example, increases in vegetation productivity have been observed across the northern high latitudes34
(Forkel et al., 2016). Meanwhile, high-latitude water bodies have started changing since the early 1970s (Carroll et al., 2011;35
Carroll and Loboda, 2017; Cooley et al., 2019; Smith et al., 2005; Fayne et al., 2020; Nitze et al., 2020). Although some36
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changes are seasonal, and therefore temporary, permanent changes have been reported, and small lakes in permafrost regions37
are found to be more vulnerable to permanent changes in water extent (Carroll and Loboda, 2017; Karlsson et al., 2014).38

As rising temperatures have been reported in permafrost (Biskaborn et al., 2019), its thawing poses a threat to the stability of39
inland surface waters, especially in the high latitudes, where half of the lakes are thermokarst lakes and have strong40
interactions with permafrost in the regions. Thawing permafrost not only leads to the formation of lakes and ponds of various41
sizes, but also leads to the release of organic carbon in the form of carbon dioxide (CO2) and methane (CH4) (Serikova et al.,42
2019). Changes in thermokarst formation may result in concomitant changes to the extent and connectivity of surface water43
bodies, which can greatly impact the sustainability of aquatic ecosystems. The shapes of the water bodies correlate to44
suitability of surrounding ecosystems(Grosse et al., 2013; Laird et al., 2003; Schilder et al., 2013; Sharma et al., 2019;45
Carpenter, 1983; Higgins et al., 2021). Shoreline complexity affects lake ice formation (Sharma et al., 2019). Lake46
connectivity affects fish migration (Laske et al., 2019; McCullough et al., 2019), fish habitats, and aquatic assemblages47
(Napiórkowski et al., 2019; Jiang et al., 2021); improves water self-purification and accelerates water cycling (Glińska-48
Lewczuk, 2009). Water density impacts fish density and biomass (Sandlund et al., 2016; van Zyll de Jong et al., 2017; King49
et al., 2021). The shape and distribution of water bodies reflect the reasons the water body formed (Laurence C. Smith et al.,50
2007). Furthermore, information about lake area extent can improve arctic land surface modeling (Langer et al., 2016; van51
Huissteden et al., 2011). For these reasons, it is critical to discern the high latitude surface water extent, as well as related52
morphological and topological features, including size and shape.53

In the past, inland surface water was mapped at sub-hectare (i.e., 30-m) resolution using satellite data (Feng et al., 2015;54
Pekel et al., 2016), and these data provide unprecedented information about inland waters in the global extent, including the55
spatial distribution and changes of inland waters. These datasets provide data that delineates the extent of large and moderate56
sizes of water bodies but underrepresent or fail to include the large number of small water bodies. Coarse-resolution datasets57
also lead to underrepresentation in delineating complex shorelines and the shapes of surface water bodies, making it difficult58
to derive their morphological and topological attributes. Existing datasets containing information that describe water body59
shapes, such as the Global Lakes and Wetlands Database (GLWD) (Lehner and Döll, 2004) and HydroLAKES (Messager et60
al., 2016) are limited to water bodies larger than 0.1 km2. In spite of these limitations, these datasets provide valuable61
information for improving the precision of mapping inland waters. Detecting the extent of inland surface water at finer62
spatial scale boosts our ability for mapping the small waters and improves the precision on delineating the shorelines of63
water bodies. This analysis then allows us to derive an inventory dataset of water bodies along with their morphological and64
topological attributes. The information allows scientists to analyze a water body as an object instead of a cluster of pixels,65
advancing our analysis and understanding of the water bodies’ size, shoreline complexity, ecological effects, hydrological66
function, and vulnerability to natural and anthropogenic changes.67

In this paper we present a higher resolution inland surface water body inventory (SWBI) for the tundra and boreal forests of68
North America. It was derived from identifying the extent of inland waters using 10-m resolution Sentinel-2 multispectral69
data. The dataset provides the spatial extent and morphological attributes for each identified water body. It is the first inland70
water inventory dataset derived at this landscape scale with the capability of delineating inland surface waters as small as71
0.001 km2.72

2 Spatial extent73

The SWBI dataset covers all tundra and boreal forest biomes in North America (Figure 1), with the exception of the Arctic74
Archipelago and Baffin Island due to their long time of snow or ice covering over water bodies. Topography of the tundra75
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and boreal forest in North America is extremely diverse, varying from mountains and rolling hills to plateaus and flat coastal76
plains. The eastern mountains of the Canadian Codillera are covered by numerous mountain glaciers and divide the region77
into east coastal plains and west plateaus. The long and narrow eastern coastal plain of this cordillera located near the Pacific78
Ocean is dominated by thermokarst landform and glacier lakes. The vast western plateaus belong to the stable Canadian79
Shield and are the result of glacial erosion. The climate of this region is characterized by long, cold winters and short, cool80
summers. The summer season typically lasts from June to September. The plants in the northern tundra include lichen, moss,81
grass, sedge, and shrub. The southern boreal forest is dominated by evergreen forests (Ritter, 2006). Lakes and ponds82
dominate the landscape and approximately 36% of land surface is covered with lakes. There are about 50% of the lakes and83
30% of lakes by area in the total region (counted by HydroLAKES). The lakes and ponds formed by glacial erosion are84
abundant in the western-wide flat Canadian Shield. where the shapes of water bodies usually are thin and complex. The85
nearly circular water bodies distributed on the east and north coast of which are formed by freezing and thawing (Dranga et86
al., 2017).87

88

Figure 1: The extent of the study area including the tundra and boreal biomes in the North America continent excluding the Arctic89
Archipelago and Baffin Island.90

3 Data91

3.1 Sentinel-2 A/B multi-spectral images92

Sentinel-2 multi-spectral images were used to delineate surface water bodies in this study. The Sentinel-2 A/B provides a93
short revisit cycle (2-3 days) in the high latitudes, which is critical for detecting surface water during the short, snow-free94
season in the region. Sentinel-2 images were obtained using the United States Geological Survey (USGS) EarthExplorer95
client/server interface (https://earthexplorer.usgs.gov/, last access: 7 April 2021).96

Each Sentinel-2 image consists of 12 multispectral bands, including four bands at 10-m resolution, and eight others at 20-m97
resolution. Sentinel-2 data are distributed as collections representing different processing levels. We selected the Sentinel-298
Collection 2 data, which provides spectral bands of surface reflectance after atmospheric corrections. The 10-m Sentinel-299
bands were used for water detection to maximize spatial precision for delineating small water bodies. The “s2cloudless”100
(https://github.com/sentinel-hub/sentinel2-cloud-detector, last access: 7 April 2021) was applied to identify cloud-101
contaminated pixels, generating a probability of cloud and cirrus detection. This module includes a model generated by a102
Convolutional Neural Networks (CNN) trained with 6.4 million manually labeled samples. This model was validated to have103
99% accuracy for identifying clouds and 84% accuracy for identifying cirrus in Sentinel-2 images (Zupanc, 2020).104
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3.2 JRC yearly water dataset105

The JRC yearly water dataset (JRC GSW Yearly Water Classification History, v1.2, https://global-surface-106
water.appspot.com/) (Pekel et al., 2016) provides a delineation of permanent water, non-water, and seasonal water for global107
inland surface waters. The dataset was produced using long-term Landsat images, including Landsat TM, ETM+, and OLI108
images acquired from 1984 to 2019. Permanent water in the dataset was identified as water cover through the entire year,109
and seasonal water is identified based on occurrence during a single year.110

The JRC yearly water dataset provides a reasonably accurate delineation of water distribution for 1984-2019, but its111
precision is limited by the 30-m spatial resolution of Landsat data. The dataset’s accuracy at high latitudes is affected by the112
relatively poor return cycle of Landsat (16 days), cloudiness, and long periods of snow and ice in the region each year. The113
JRC dataset was used as a reference to overcome these limitations and improve our ability to identify and monitor inland114
surface water bodies, particularly small water bodies. The permanent water class in the JRC dataset was used in this analysis,115
while the seasonal water was excluded due to its reportedly low accuracy (Meyer et al., 2020). The maximum extent of116
permanent water bodies for the time period 1984-2019 were processed to fill gaps in individual years, which were then used117
as the reference in this study.118

3.3 Permafrost Region Pond and Lake (PeRL)119

The Permafrost Region Pond and Lake (PeRL) dataset was produced through a circum-Arctic effort to map ponds and lakes120
from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5-m or finer, including imagery121
from GeoEye, QuickBird, WorldView-1/2, the KOMPSAT-2, and TerraSAR-X. The PeRL dataset includes 69 small maps122
representing a wide range of environmental conditions in tundra and boreal biomes. There are 14 maps mainly distributed in123
five regions of North America. (Figure 2) Because of the high-resolution data, the PeRL dataset is able to delineate water124
bodies as small as 10-7 km2, which is valuable for validating satellite-derived water datasets for regions dominated by small125
water bodies.126

127

Figure 2: Water bodies identified in the SWBI and PeRL datasets, and the locations (blue dots) of the PeRL maps for the study128
region.129
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4 Methods130

The 10-m resolution Sentinel-2 A/B multispectral data are the primary source used to identify small water bodies. Machine131
learning models were built to detect surface water pixels in each Sentinel-2 image. The results were combined to produce a132
final 10-m resolution dataset of water extent for 2019 (see section 4.1). Water bodies were identified from the detected water133
extent using an object-based algorithm to produce the final water body inventory (see section 4.2).134

4.1 Detect water extent135

To reduce effects from snow cover, Sentinel-2 A/B images acquired between June and September 2019 were selected to136
represent the relatively snow-free season in North American tundra and boreal biomes. The pixels in each Sentinel-2 image137
with an estimated cloud probability higher than 65% were excluded to avoid the effects of cloud contamination. During pre-138
processing, water sensitive indexes were derived from each Sentinel-2 image to enhance the ability on detecting water139
(Figure 3). To maximize the ability to separate water from non-water, especially vegetated land, three indexes were140
calculated to represent water and vegetation in each image: Normalized-Difference Water Index (NDWI) (Han-Qiu, 2005),141
Normalized Difference Vegetation Index (NDVI) (Carlson and Ripley, 1997), and Modified Normalized-Difference Water142
Index (MNDWI) (McFeeters, 1996). The three indexes were calculated as follows.143

���� = （������ − ����）/(������ + ����), (1)144

���� = (���� − ����)/(���� + ����), (2)145

����� = (���� − �����)/(���� + �����), (3)146

An HSV color space conversion was used to combine the three indexes and produce a final index for identifying water. The147
HSV (hue-saturation-value) color space conversion is a non-trigonometric pair of transformations from a linear red-green-148
blue (RGB) color space to a perceived color space (Danielson and Gesch, 2011). This method converts the three input bands149
into hue (color), saturation, and value components. The three indexes (NDWI, MNDWI, and NDVI) were scaled by 255,150
converted to a byte value type, combined into RGB color space, and then converted to HSV color space to derive a151
comprehensive index for identifying water.152
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153

Figure 3: The flowchart of processing water extent and identifying water bodies.154

Once the hue has been identified, an experimental threshold of <0.45 was applied to separate water pixels from others. The155
same procedure was applied to all selected Sentinel-2 images to derive temporal water extents, which were then combined to156
calculate the water frequency for the year. Potential water extent was then derived from the calculated water frequency data.157
The existing JRC water dataset provided complementary information for estimating possible water extent. The JRC158
permanent water records were combined with the Sentinel-2 derived water frequency dataset using a weighted linear159
combination.160

� = �� ⋅ �� + (1 − ��) ⋅ ��, (4)161

where, A is the updated water frequency, Ws is the weight for the Sentinel-2-derived water frequency (As) and was 0.85 for162
locations with elevation < 1 km and 0.65 for higher elevations. Aj is the JRC permanent water record, which was 1.0 for163
permanent water and 0.0 for others. The final, combined potential water extent was identified when A > 0.5.164

To produce training data for building a water body identification machine learning model, individual points were collected165
from the identified possible water extents. At this time, 250 points were randomly selected in each stratum, and a total of166
1,250 points were collected. (Figure 4a) To enhance the model’s ability to separate water from other land cover types in the167
region, the potential water extent was divided into five strata representing water, glacier, mountain, vegetation, and cloud.168
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169

Figure 4: The training samples for random forest model building (a) and points identified for validating the accuracy of the170
detected water extent (b).171

The five strata were established using reference datasets or customized rules. The glacier stratum was identified using the172
Global Land Ice Measurements from Space (GLIMS) dataset of 2017 (http://www.glims.org/, last access: 7 April 2021),173
which was a dataset of global glacier outlines including glacier area, geometry, surface velocity, and snow line elevation and174
was produced from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat175
Enhanced Thematic Mapper Plus (ETM+), as well as historical information derived from maps and aerial photographs.176
Vegetation was identified as areas with a positive mean NDVI value calculated from the June-September Sentinel-2 images.177
The cloud stratum was identified as having at least 20% of mean cloud probability calculated from the selected Sentinel-2178
images. The mountain stratum was identified as any elevation higher than 1-km.179

The selected points were interpreted by the team to provide training data. Although we only used Sentinel-2 images during180
June to September 2019, points were matched with a randomly selected image at the location during the time period,181
providing representation for possible temporal variation. Each point was visually labeled by an interpreter after examining182
the image. Metrics for visible bands (red, green, and blue), NDWI, MDWI, NDVI, and hue were derived from each image to183
provide attributes for the point. These attributes were pooled to produce training data for building the machine learning184
model.185

The scikit-learn Random Forest algorithm (Breiman, 2001) was adopted to build the model for surface water identification.186
This model was applied to the selected Sentinel-2 images to detect surface water pixels. The results were compiled187
temporally to produce a water frequency layer.188

In this study, terrain shadows in the water frequency layer were removed with a terrain mask derived from the Global Multi-189
resolution Terrain Elevation Data (GMTED) (Danielson and Gesch, 2011). The mask was where the slope was greater than190
or equal to 7° and the elevation was over 1500 m. The elevation threshold was used to minimize the impact of the slope191
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threshold on rivers in lowlands. The method using slope to identify terrain shadows was verified to be more effective than192
using hill-shade (Carroll and Loboda, 2017).193

Permanent water pixels were identified from the resulting water frequency layer as being those pixels with at least 50%194
occurrence between June and September. The resulting water pixels were then converted to vector polygons using the195
“Raster to Polygon” tool in ESRI ArcMap 10.2. These water polygons provided the preliminary surface water body records.196

An array of geometry metrics was calculated for each water body polygon using ArcMap in the197
Canada_Lambert_Conformal_Conic projection (datum D_North_American_1983 and Spheroid GRS80). These metrics198
include area, perimeter, and a shape index (SI), which estimates the complexity of a water body polygon. The SI was199
calculated as:200

�� = �������/��������, (5)201

where Pwateri is the perimeter of the water body i, Pcirclei is the perimeter of a circle that has the same area as water body i. SI202
equals 1 when a polygon is a perfect circle and greater than 1 when the polygon has a complex irregular shape.203

At this point, the SI and area metrics were used to distinguish rivers and streams from lakes and ponds. Rivers and streams204
have long and linear feature, and we initially applied thresholds of area > 5 km2 and SI > 10 to preliminarily separate them205
from lake and ponds. Then, labeled polygons were visually checked to confirm and correct misclassified water bodies.206

4.2 Quality assessment207

The accuracy and uncertainty of the SWBI were assessed at two levels, i.e., pixel water extent and derived water bodies, to208
provide a comprehensive evaluation of the dataset. We randomly selected eight square blocks with size of 10 km by 10 km209
in the North America tundra and boreal region (Figure 5). The selected blocks were visually interpreted by the team to210
identify all the water bodies within each using a high-resolution Google Earth image as reference for interpretation. Water211
bodies records from the PeRL were compared to the SWBI water bodies to assess the number of water bodies and spatial212
area of each. The interpreted dataset was also compared to the JRC-derived water body records for 2019 to assess its213
accuracy in terms of representing water bodies. The JRC dataset provides water/nonwatery situation for the 30-m resolution214
pixels, representing the distribution of water extent, but no information of spatial relationship between pixels and water215
bodies were provided, and we derived water bodies records from the JRC dataset using the same algorithm described in216
section 4.1.217

218

Figure 5: Locations of the 5 regions selected and interpreted for assessing the accuracy of the indicators of water bodies.219

The 14 regional PeRL maps were compared to the SWBI water bodies. Although the PeRL maps were produced from high-220
resolution images acquired in 2002-2013, the maps show little temporal changes when comparing to the SWBI dataset in the221
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extents of the maps (Figure 2), and these maps were adopted as references for evaluating the SWBI water bodies. The PeRL222
maps were produced from images with 5 m resolution or finer, we excluded all water bodies in PeRL smaller than 0.0003223
km2 to ensure comparability to the scale of the SWBI.224

The water extent derived from the Sentinel-2 images were assessed by manually comparing specific points between the225
SWBI dataset and the JRC surface water dataset. The points were collected using a stratified random sampling across the226
entire study region. To achieve higher sampling performance, the outcomes were divided into four strata that represent pixels227
that were agreed as water, disagreed as water, agreed as non-water, and disagreed as non-water. In each of the strata, 400228
points were randomly selected from the dataset and manually assessed by examining the same point in the latest Google229
Earth image. (Figure 4b) The results from the 1600 points were compared to the derived water extent. The confusion matrix230
was calculated from the results.231

The sampling weights were included in the calculation of the metrics as following:232

�� = ��/����, (6)233

where As is the area of stratum s, and Aall is the total area of the region.234

Equations of the confusion metrics with weights:235

�� = �
4 �� ∗ ���� , (7)236

�� = �
4 �� ∗ ���� , (8)237

�� = �
4 �� ∗ ���� , (9)238

where OA, UA and PA are the overall accuracy, user’s accuracy and producer’s accuracy of the entire dataset, OAs, UAs and239
PAs are the concomitant accuracies in stratum s, and Ws is the sampling weight of stratums.240

5 Results241

5.1 Water bodies in tundra and boreal of North America242

More than 6.65 million (6,652,015) surface water bodies were identified in the tundra and boreal forests of North America,243
while 90.4% of these water bodies (6,015,484) were smaller than 0.1 km2. Those water bodies covered more than 0.8 million244
km2, ~10.3% of the study area (Figure 6). The average size and perimeter of the identified water bodies were 0.12 km2 and245
1.01 km, respectively, and their average SI was 1.42.246
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247

Figure 6: Percent of surface water (5 km × 5km grid) produced by aggregating the water extent for the tundra and boreal forests248
of North America as calculated using the SWBI.249

All of the morphological indicators, including area, perimeter, and SI, of the identified water bodies showed great250
heterogeneity across the region (Figure 7). In general, the tundra biome was dominated by densely packed small water251
bodies with regular shapes formed by melting frozen ground (Grosse et al., 2013). In contrast, the boreal forest biome was252
dominated by large water bodies with complex shapes formed by glaciation (Smith et al., 2007). The number of identified253
water bodies in the tundra (3.32 million) and boreal forests (3.33 million) were nearly identical. However, the water extent in254
the boreal forest (0.57 million km2; 70% of total water area) is more than twice that found in the tundra (0.23 million km2;255
30% of the total water area), suggesting again that the water bodies in the tundra are smaller than those in the boreal. This256
finding was confirmed by reviewing the water body perimeters for the two biomes. The average perimeter of water bodies in257
boreal forests was 1.2 km, compared to a much smaller 0.8 km average perimeter for water bodies in the tundra. The average258
SI for water bodies in the boreal was 1.46, longer than the 1.37 average SI for the tundra water bodies, suggesting the boreal259
water bodies have much more complex shorelines, while the tundra water bodies are more circular.260

261

Figure 7: The average area, perimeter, SI, and number of identified water bodies in the study area aggregated to 5 km × 5 km262
grids for visualization.263

264
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Inland water in the region is mainly concentrated in the Canadian Shield, i.e., about 0.79 million km2 of water (98% of water265
extent in the study region). In addition, most large water bodies were located in the Canadian Shield, including 75% of the266

identified large water bodies (sizes ≤ 1km2). The shorelines of the water bodies in the Canadian Shield were also more267

complex than those in other areas, especially south of the Laurentian Plateau near the Great Lakes.268

5.2 Accuracy assessment269

The overall accuracy of the SWBI’s water extent was 96.36%, while the producer's accuracy was 99.9%, and the user’s270
accuracy was 96.36%. Misclassifications were primarily found in shadows of the Mackenzie Mountains, where the east-west271
high-elevation mountain range cast constant shadows on the northern slopes.272

Both the JRC and SWBI accurately identified the size of larger water bodies. However, the SWBI performed better than the273
JRC, and the advantage of the SWBI was demonstrated for smaller water bodies (Figure 8). For small water bodies (size ≤274
0.02 km 2), the average area of the SWBI water bodies was 72% of those manually digitized over high-resolution Google275
Earth images, compared to only 45% with the water area detected by the JRC (Figure 8a). For medium water bodies276
(between 0.02 km2 and 0.05 km2), the average area of SWBI water bodies was about 85% times that of manually digitized277
water bodies, compared to 67% with the water area detected by the JRC (Figure 8b). For water bodies larger than 0.05 km2,278
the water areas of SWBI were highly consistent (98%) with that of manually digitized. While the water area of JRC was279
slightly lower (about 87%) for water bodies in the category (Figure 8c).280

281

Figure 8: Comparisons of the water body area identified by the JRC, SWBI, and interpreted water maps. The 1:1 lines are in282
black. The red crosses represent the JRC water bodies, and the blue pluses represent the SWBI water bodies, in comparison with283
the manually interpreted water bodies. The water bodies are compared in groups of sizes, i.e., (a) small water bodies with sizes <284
0.02 km2; (b) medium water bodies with sizes between 0.02 km2 and 0.05 km2; (c) large water bodies with sizes > 0.05 km2. The R2285
for the SWBI and JRC identified water bodies were similar, i.e., 0.6 for small water bodies, 0.5 for medium water bodies, and 0.9286
for large water bodies.287
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288

The comparison between the water bodies identified by SWBI and the PeRL were largely consistent for the derived289
indicators of water area, perimeter, and number (Figure 9). Linear correlations between the water bodies identified by SWBI290
and the PeRL water bodies reported R2 higher than 0.99 for all the three indicators. The slopes of the linear regressions291
reported that the water area showed the least bias when compared to the PeRL (slope=0.98), followed by the number of292
water bodies (slope=0.78), and finally the perimeter of the water bodies (slope=0.62).293

294

Figure 9: The area, perimeter, and number of the water bodies identified by the PeRL and SWBI dataset.295

6 Discussion296

6.1 A high-resolution water body dataset for the continental tundra and boreal297

The SWBI dataset provides the first known delineation of water bodies at 10-m resolution for the continental tundra and298
boreal forest of North America, which is one of the highest concentrations of the global inland water especially the small299
sized water bodies. The dataset not only maps the extent of inland water during 2019 but also identifies the water bodies and300
their morphological metrics, which are critical for understanding and modeling freshwater lentic ecosystems (Downing, 2009;301
Heathcote et al., 2015; Kuhn and Butman, 2021; MacIntyre et al., 2009; Muster et al., 2013). The SWBI was produced using302
Sentinel-2 satellite data to take advantage of the high resolution and 2-3-day revisit time of Sentinel-2 satellites. Sentinel-2’s303
revisit time allows the SWBI to have sufficient observations during the snow-free season, which is critical for mapping304
inland surface water in this high latitude region with long periods of snow coverage.305

The SWBI’s 10-m resolution provided the capability for detecting water bodies as small as 0.001 km2. The validation306
showed that the WBI dataset had a high overall accuracy and significantly improved upon the ability of the existing global307
JRC water maps for detecting small water (e.g., smaller than 0.006 km2) than the existing global JRC water maps. These308
small water bodies consist of nearly half the total water bodies in the tundra and boreal forest regions of North America, and309
generally experience faster cycling of water, material, and energy than larger water bodies (Winslow et al., 2014; Carroll et310
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al., 2011; Messager et al., 2016). The improved SWBI dataset may provide more accurate inputs for hydrological estimates,311
which are vital components for understanding and modeling the pan-Arctic hydrological, biochemical, and energy cycling.312

The higher resolution of SWBI also provides the ability to delineate the number, area, shoreline complexity of water bodies.313
Our comparison confirmed that SWBI-derived water areas and shorelines were similar to those from the regional 5-m or314
finer resolution PeRL dataset. Meanwhile, the number of water bodies identified in the SWBI was consistent with those of315
other datasets, including HydroLAKES and GLWD (Figure 10). The numbers of water bodies were roughly identical for the316
SWBI, HydroLAKES, and GLWD for water bodies larger than 1 km2. For the water bodies between 0.1 and 1 km2, the317
SWBI and HydroLAKES reported similar numbers (Figure 10), but the number reported by GLWD was considerably lower,318
suggesting that the omission error of GLWD was higher for water bodies smaller than 1 km2, as noted by Lehner and Döll319
(2004). Unfortunately, both the HydroLAKES and GLWD datasets only provide records of water bodies larger than 0.1 km2320
(Messager et al., 2016; Lehner and Döll, 2004), and are thus missing records for what we estimate to be 90% of the total321
number of water bodies in the region. The SWBI is able to extend these indicators to much smaller water bodies than322
HydroLAKES and GLWD, providing a much more complete record of water bodies in the region. This estimate of the323
number and extent for small water bodies can improve our understanding of continental freshwater sources stressing the324
importance of small water bodies in continental biochemical and energy cycling, potentially correcting a misconception that325
large lakes are most important (Downing, 2010).326

327

Figure 10: Comparing the number of water bodies identified by the SWBI and by other datasets based on size class.328

6.2 Distribution of the water bodies329

The largest and most complex water bodies are distributed primarily in the Canadian Shield. These lakes in the Canadian330
Shield formed through processes such as erosion and glaciation (Smith et al., 2007). Erosion and glaciation formed water331
bodies with complex shapes, which may contribute to the higher SI (1.48) reported by the SWBI for the region. During the332
most recent Wisconsin glaciation, the Canadian Shield was covered by the Laurentide Ice Sheet, a giant, 3-km thick expanse333
of ice. When the ice sheet retreated north, it carved out the five Great Lakes as well as thousands of small lakes throughout334
the Canadian Shield (Dyke and Prest, 1987). Currently, 98% of the water extent in the tundra and boreal forests are335
distributed in this particular region. For example, the largest lake in the region - Great Bear Lake - has a surface area of336
30,227 km2 with a long, complex shoreline (the perimeter is 5,705 km and the SI of the lake is 9.3). It was formed by ice337
erosion during the Pleistocene (Johnson, 1975).338
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The tundra, on the other hand, is dominated by small, regular shaped water bodies, which is related to the thawing and339
freezing of permafrost (Grosse et al., 2013). During the winter, water in the soil can freeze into ice. The freezing soil340
becomes puffy, forming a hilly structure. In the summer, this hilly structure melts and settles, forming a thermokarst lake.341
This hilly structure is small and regular, resulting in small, circular thermokarst lakes (Grosse et al., 2013). Numerous342
thermokarst lakes are experiencing dramatic changes, which is considered as an indicator for permafrost degradation (Smith343
et al., 2005; Karlsson et al., 2012, 2014). The small thermokarst lakes were also found experiencing stronger changes344
comparing to the large lakes (Karlsson et al., 2014; Carroll and Loboda, 2017). Monitoring water extent without345
discriminating lake sizes could not precisely reflect those strong changes in the small lakes due to the area dominance of346
large lakes. Additionally, the small thermokarst lakes are the primary source of permafrost carbon emissions (Kuhn et al.,347
2018; Walter Anthony et al., 2016; Yvon-Durocher et al., 2017), and the small water bodies were found to be a major348
uncertainty in estimating greenhouse gas emissions (Holgerson and Raymond, 2016). The SWBI could provide critical349
information for investigating thermokarst lakes, especially the small thermokarst lakes and ponds, and estimating their350
effects on carbon emission and permafrost sustainability in the tundra and boreal forests in North America. As reported by351
the analysis of the SWBI, 3.32 million small water bodies were found in the tundra in 2019 with an average size of 0.07 km2352
and average SI of 1.37, much smaller than the SI of the lakes in the boreal. Teshekpuk Lake is the largest thermokarst lake in353
the world with a relatively smooth shoreline (SI = 5.4), considerably smaller than the SI of the Great Bear Lake in the boreal354
(Markon and Derksen, 1994).355

6.3 Limitations356

The data and methods used to derive the10-m resolution SWBI dataset are able to detect water bodies smaller than the 30-m357
or coarser resolution satellite derived datasets, but have difficulty identifying water bodies smaller than 0.001 km2, and the358
capability can be further improved by incorporating higher resolution satellite data, such as from Planet, WorldView,359
QuickBird, and Gaofen (Veremeeva and Günther, 2017; Sun et al., 2020; Watson et al., 2016; Andresen and Lougheed,360
2015). Errors in the satellite data provide substantial sources of uncertainty, including an inability to separate rivers and361
streams because the resolution is too coarse, bias in estimates of water extent resulting from temporal gaps in data, and362
misclassifications resulting from spectral resolution. The misclassifications impacted by terrain (e.g., mountain shadows)363
still exist even though they have been substantially reduced during data processing. Further processing may be possible to364
further reduce these errors. This dataset was produced using satellite data acquired in 2019, and it does not reflect changes of365
the water bodies in the region. Further efforts can be carried out to produce an inland water dataset for multiple time periods366
using these methods to capture the seasonal and multi-year dynamics of inland water in the region.367

7 Data availability368

This dataset can be accessed via the website of the National Tibetan Plateau/Third Pole Environment Data Center (TPDC,369
http://data.tpdc.ac.cn): DOI: 10.11888/Hydro.tpdc.271021 (Feng et al., 2020). The dataset is provided in ESRI Geodatabase370
format. The volume of this dataset is about 1.5 GB.371

8 Conclusions372

This study presents an inland surface water body dataset of tundra and boreal forest biomes of the northern latitudes of North373
America. The SWBI dataset was generated using Sentinel-2 data with machine learning methods and an object-based374
algorithm. Three morphological metrics (area, perimeter, and SI) were calculated for each water body. Accuracy of the375
dataset was carefully assessed with respect to detecting inland surface water extent (or pixel level) and identifying water376
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bodies. The dataset's overall accuracy for water extent reached 96.36%. In addition, the WBI showed a high consistency with377
high resolution images in terms of water area, perimeter, and quantity.378

To our knowledge, the SWBI dataset provided the most complete inventory of inland surface water bodies for the tundra and379
boreal forest of North America. Overall, 6.65 million water bodies were identified, covering 10.3% of the region. Small380
water bodies were dominance in the region with ~90.4% were smaller than 0.1 km2. Results from an analysis of the SWBI381
indicate that the tundra biome is dominated by densely small water bodies with regular shapes (the average SI was 1.37)382
while the boreal forest biome is dominated by large water bodies with complex shapes (the average SI was 1.46). The WBI is383
expected to be able to provide supporting data for modeling hydrologic, biochemical, and energy cycling in these areas.384
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