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Abstract. Inland surface waters are abundant in the tundra and boreal forests of North America, essential to environments and 9 

human societies but vulnerable to climate changes. These high-latitude water bodies differ greatly in their morphological and 10 

topological characteristics related to the formation, type, and vulnerability. In this paper, we present a water body dataset for 11 

the North American high latitudes (WBD-NAHL). Nearly 6.5 million water bodies were identified, with approximately 6 12 

million (~90%) of them smaller than 0.1 km2. The dataset provides area and morphological attributes for every water body. 13 

During this study, we developed an automated approach for detecting surface water extent and identifying water bodies in the 14 

10-m resolution Sentinel-2 multispectral satellite data to enhance the capability for delineating small water bodies and their 15 

morphological attributes. The approach was applied to the Sentinel-2 data acquired in 2019 to produce the water body dataset 16 

for the entire tundra and boreal forests in North America. The dataset provided a more complete representation of the region 17 

than existing regional datasets for North America, e.g., Permafrost Region Pond and Lake (PeRL). The total accuracy of the 18 

detected water extent by the WBD-NAHL dataset was 96.36% by comparing to interpreted data for locations randomly 19 

sampled across the region. Compared to the 30-m or coarser resolution water datasets, e.g., JRC GSW yearly water history, 20 

HydroLakes, and Global Lakes and Wetlands Database (GLWD), the WBD-NAHL provided an improved ability on 21 

delineating water bodies, and reported higher accuracies in the size, number, and perimeter attributes of water body by 22 

comparing to PeRL and interpreted regional dataset. This dataset is available from the National Tibetan Plateau/Third Pole 23 

Environment Data Center (TPDC, http://data.tpdc.ac.cn): DOI: 10.11888/Hydro.tpdc.271021 (Feng et al., 2020). 24 

1 Introduction 25 

Inland surface waters include various types of water bodies, including rivers and streams; large and small lakes; reservoirs; 26 

and ephemeral ponds. Inland surface water occupies only 2% of the global land surface (Pekel et al., 2016), but it plays a 27 

critical role in terrestrial ecosystems. Surface water distribution varies across the landscape. More than 55% of global surface 28 

waters are located in high latitudes in the Northern Hemisphere (> 44°N), and these northern high-latitude waters are generally 29 

small and densely clustered. The high latitudes have warmed faster than other regions, with annual surface temperatures 30 

increasing > 1.4° C over the past century (IPCC 2014). The temperature of the Arctic, in particular, has risen twice as fast as 31 

the average global temperature (Graversen et al., 2008; Johannessen et al., 2004; Pachauri and Reisinger, 2007; Serreze and 32 

Francis, 2006; Li et al., 2020). This change in climate is driving changes in terrestrial ecosystems in the Arctic as well. For 33 

example, increases in vegetation productivity have been observed across the northern high latitudes (Forkel et al., 2016). 34 

Meanwhile, high-latitude water bodies have started changing since the early 1970s (Carroll et al., 2011; Carroll and Loboda, 35 

2017; Cooley et al., 2019; Smith et al., 2005; Fayne et al., 2020; Nitze et al., 2020). Although some changes are seasonal, and 36 



 

 

therefore temporary, permanent changes have been reported, and small lakes in permafrost regions are found to be more 37 

vulnerable to permanent changes in water extent (Carroll and Loboda, 2017; Karlsson et al., 2014). 38 

With observed rising temperatures (Biskaborn et al., 2019), permafrost thawing poses a threat to the stability of inland surface 39 

waters, especially in arctic lowland surface areas, where most of the water bodies could be thermokarst lakes (Jones et al., 40 

2011; Olefeldt et al., 2016) and have strong interactions with permafrost in the regions. Thawing permafrost not only leads to 41 

the formation of lakes and ponds of various sizes, but also leads to the release of organic carbon in the form of carbon dioxide 42 

(CO2) and methane (CH4) (Serikova et al., 2019). Changes in lake formation may result in concomitant changes to the extent 43 

and connectivity of surface water bodies, which can greatly impact the sustainability of aquatic ecosystems.  44 

The morphology of the water bodies could be shaped by the surrounding environment (Grosse et al., 2013; Laird et al., 2003; 45 

Schilder et al., 2013; Sharma et al., 2019; Carpenter, 1983; Higgins et al., 2021). Shoreline complexity affects lake ice 46 

formation (Sharma et al., 2019). Lake connectivity affects fish migration (Laske et al., 2019; McCullough et al., 2019), fish 47 

habitats, and aquatic assemblages (Napiórkowski et al., 2019; Jiang et al., 2021), water self-purification and accelerates water 48 

cycling (Glińska - Lewczuk, 2009; Vaideliene & Michailov, 2008; Xiong et al., 2017). The density of water bodies impacts 49 

fish density and biomass (Sandlund et al., 2016; van Zyll de Jong et al., 2017; King et al., 2021). The shape and distribution 50 

of water bodies reflect what led to the water body formation (Laurence C. Smith et al., 2007). Furthermore, information about 51 

lake area extent can improve arctic land surface modeling (Langer et al., 2016; van Huissteden et al., 2011). For these reasons, 52 

it is critical to quantify high-latitude surface water extent, as well as characterize related morphological and topological features, 53 

including size and shape.  54 

In the past, inland surface water was mapped at sub-hectare (i.e., 30 m) resolution using satellite data (Feng et al., 2015; Pekel 55 

et al., 2016; Pickens et al., 2020), and these data provided unprecedented information about the global extent of inland waters, 56 

including their spatial distribution and temporal changes. These datasets provide data that delineates the extent of large and 57 

moderate sizes of water bodies but underrepresent or fail to include the large number of small water bodies. Coarse-resolution 58 

datasets also lead to underrepresentation in delineating complex shorelines and the shapes of surface water bodies, making it 59 

difficult to derive their morphological and topological attributes. Existing datasets containing information that describe water 60 

body shapes, such as the Global Lakes and Wetlands Database (GLWD) (Lehner and Döll, 2004) and HydroLAKES (Messager 61 

et al., 2016) are limited to water bodies larger than 0.1 km2. In spite of these limitations, these datasets provide valuable 62 

information for improving the precision of mapping inland waters. Detecting the extent of inland surface water at finer spatial 63 

scale boosts our ability to map small water bodies and improves the precision of delineating the shorelines of water bodies. 64 

This analysis then allows us to derive an inventory dataset of water bodies along with their morphological and topological 65 

attributes. The information allows scientists to analyze a water body as an object instead of a cluster of pixels, advancing our 66 

analysis and understanding of the water bodies’ size, shoreline complexity, ecological effects, hydrological function, and 67 

vulnerability to natural and anthropogenic changes.  68 

In this paper ,we present a higher resolution water body dataset for the North American high latitudes (WBD-NAHL). The 69 

dataset was derived by identifying the extent of inland waters using 10-m resolution Sentinel-2 multispectral data. The dataset 70 

provides the spatial extent and morphological attributes for each identified water body. It is the first inland water inventory 71 

dataset derived at this landscape scale with the capability of delineating inland surface waters as small as 0.001 km2.  72 

2 Spatial extent 73 

The WBD-NAHL dataset covers all tundra and boreal forest biomes in North America (Figure 1), with the exception of the 74 

Arctic Archipelago and Baffin Island due to their long time of snow or ice covering over water bodies. The topography of the 75 



 

 

tundra and boreal forest in North America is extremely diverse, varying from mountains and rolling hills to plateaus and flat 76 

coastal plains. The mountains of the North American Cordillera are covered by numerous mountain glaciers and also a large 77 

number of glacial lakes. A large number of thermokarst lakes were found in lowland tundra areas, e.g., the Yukon Delta and 78 

the Alaska North Slope (Olefeldt et al., 2016). The vast Canadian Shield also has a high density of lakes. The climate of this 79 

study region is characterized by long, cold winters and short, cool summers. The plants in the northern tundra include lichen, 80 

moss, grass, sedge, and shrub. The southern boreal forest is dominated by evergreen forests (Ritter, 2006). Lakes are widely 81 

distributed in the study region and approximately 36% of the land surface is covered by water (Messager et al., 2016). The 82 

number of lakes in this region accounts for 50% of the global lakes, and the area of lakes accounts for 30% of the global lakes 83 

in the region, indicating the region to be one of the richest areas of surface water bodies (Messager et al., 2016). Various types 84 

of lakes, including organic, fluvial, meteorite, volcanogenic, and anthropogenic lakes, are distribute in the study region and 85 

feature very different sizes and shapes (Dranga et al., 2017). 86 

 87 

Figure 1: The extent of the study area, including the tundra and boreal biomes, in the North Americas continent, excluding the 88 
Arctic Archipelago and Baffin Island.  89 

3 Data 90 

3.1 Sentinel-2 A/B multi-spectral images 91 

Sentinel-2 multi-spectral images were used to delineate surface water bodies in this study. Sentinel-2 A/B provides a short 92 

revisit cycle (2-3 days) in the high latitudes, which is critical for detecting surface water during the short, snow-free season in 93 

the region. Sentinel-2 images were obtained using the United States Geological Survey (USGS) EarthExplorer client/server 94 

interface (https://earthexplorer.usgs.gov/, last access: 7 April 2021).  95 

Each Sentinel-2 image consists of 13 multispectral bands, including four bands at 10-m resolution, six bands at 20-m resolution, 96 

and three others at 60-m resolution. Sentinel-2 data are distributed as collections representing different processing levels. We 97 

selected the Sentinel-2 Collection 2 data, which provides spectral bands of surface reflectance after atmospheric corrections. 98 

The 10-m Sentinel-2 bands were used for water detection to maximize spatial precision for delineating small water bodies. 99 

The 20-m Sentinel-2 bands were resampled to 10-m resolution to match the higher resolution bands. The “s2cloudless” 100 

(https://github.com/sentinel-hub/sentinel2-cloud-detector, last access: 7 April 2021) was applied to identify cloud-101 

contaminated pixels, generating a probability of cloud and cirrus detection. This module includes a model generated by a 102 



 

 

Convolutional Neural Networks (CNN) trained with 6.4 million manually labeled samples. This model was validated to have 103 

99% accuracy for identifying clouds and 84% accuracy for identifying cirrus in Sentinel-2 images (Zupanc, 2020).  104 

3.2 Joint Research Centre (JRC) yearly water dataset  105 

The JRC yearly water dataset (JRC GSW Yearly Water Classification History, v1.2, https://global-surface-water.appspot.com/) 106 

(Pekel et al., 2016) provides a delineation of permanent water, non-water, and seasonal water for global inland surface waters. 107 

The dataset was produced using long-term Landsat images, including Landsat TM, ETM+, and OLI images acquired from 108 

1984 to 2019. Permanent water in the dataset was identified as water cover throughout the entire year, and seasonal water is 109 

identified based on occurrence during a single year.  110 

The JRC yearly water dataset provides a reasonably accurate delineation of water distribution for the period 1984-2019, but 111 

its precision is limited by the 30-m spatial resolution of Landsat data. The dataset’s accuracy at high latitudes is affected by 112 

the relatively poor return cycle of Landsat (16 days), cloudiness, and long periods of snow and ice in the region each year. The 113 

JRC dataset was used as a reference to overcome these limitations and improve our ability to identify and monitor inland 114 

surface water bodies, particularly small water bodies. The permanent water class in the JRC dataset was used in this analysis, 115 

while the seasonal water was excluded due to its reportedly low accuracy (Meyer et al., 2020). The maximum extent of 116 

permanent water bodies for the time period 1984-2019 were processed to fill gaps in individual years, which were then used 117 

as the reference in this study. 118 

3.3 Permafrost Region Pond and Lake (PeRL) 119 

The Permafrost Region Pond and Lake (PeRL) dataset was produced through a circum-Arctic effort to map ponds and lakes 120 

from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or finer, including imagery 121 

from GeoEye, QuickBird, WorldView-1/2, the KOMPSAT-2, and TerraSAR-X. The PeRL dataset includes 69 small maps 122 

representing a wide range of environmental conditions in tundra and boreal biomes (Muster et al., 2017). There are 14 maps 123 

mainly distributed in five regions of North America (Figure 2). Because of the high-resolution data, the PeRL dataset is able 124 

to delineate water bodies as small as 10-7 km2, which is valuable for validating satellite-derived water datasets for regions 125 

dominated by small water bodies. 126 

 127 

Figure 2: Water bodies identified in the WBD-NAHL (this study) and PeRL datasets (Muster et al., 2017), and the locations (blue 128 
dots) of the PeRL maps for the study region. 129 



 

 

4 Methods 130 

The 10-m resolution Sentinel-2 A/B multispectral data are the primary source used to identify small water bodies. An approach 131 

was developed to produce a water probability layer for 2019 by combining the water-sensitive indexes derived from the 132 

Sentinel-2 bands and the 30-m resolution JRC water dataset (section 4.1). A machine learning model was trained to retrieve 133 

water extent from the Sentinel-2 images from possible water extent restricted by the water probability layer (section 4.2) 134 

(Figure 3). Water bodies were finally identified from the water extent using an object-based algorithm to produce the final 135 

water body inventory (section 4.3). 136 

 137 

Figure 3: Flowchart for processing water extent and identifying water bodies. 138 

4.1 Water probability layer  139 

A water probability layer was derived to represent the likelihood of a pixel to correspond to permanent water during the 140 

summer of 2019. The 10-m resolution water-sensitive indexes calculated from the Sentinel-2 multispectral bands were used 141 

as the main input. The other reference water dataset (e.g., the JRC water dataset) was adopted as a supplemental input and 142 

fused with the main input to produce the water probability estimate at each 10-m resolution pixel. 143 

To reduce effects of snow cover, Sentinel-2 A/B images acquired between June and September 2019 were selected to represent 144 

the relatively snow-free season in North American tundra and boreal biomes. The pixels in each Sentinel-2 image with an 145 

estimated cloud probability higher than 65% were excluded to avoid the effects of cloud contamination.  146 

During pre-processing, multiple water-sensitive indexes were derived from each Sentinel-2 image to enhance the ability to 147 

detect water (Figure 3). To maximize the ability to separate water from non-water, especially vegetated land, three indexes 148 

were calculated to represent water and vegetation in each image: Normalized-Difference Water Index (NDWI) (McFeeters, 149 



 

 

1996), Normalized Difference Vegetation Index (NDVI) (Carlson and Ripley, 1997), and Modified Normalized-Difference 150 

Water Index (MNDWI) (Xu, 2006). The three indexes were calculated as follows. 151 

𝑁𝐷𝑊𝐼 = (𝐵𝑔𝑟𝑒𝑒𝑛 − 𝐵𝑛𝑖𝑟)/(𝐵𝑔𝑟𝑒𝑒𝑛 + 𝐵𝑛𝑖𝑟),         (1) 152 

𝑁𝐷𝑉𝐼 = (𝐵𝑛𝑖𝑟 − 𝐵𝑟𝑒𝑑)/(𝐵𝑛𝑖𝑟 + 𝐵𝑟𝑒𝑑),         (2) 153 

𝑀𝑁𝐷𝑊𝐼 = (𝐵𝑔𝑟𝑒𝑒𝑛 − 𝐵𝑠𝑤𝑖𝑟)/(𝐵𝑔𝑟𝑒𝑒𝑛 + 𝐵𝑠𝑤𝑖𝑟),        (3) 154 

Where 𝐵𝑔𝑟𝑒𝑒𝑛, 𝐵𝑟𝑒𝑑, 𝐵𝑛𝑖𝑟, and 𝐵𝑠𝑤𝑖𝑟 are green (band #3), red (band #4), near-infrared (band #8), and short-ware infrared 155 

(band #11), respectively. These bands have 10-m resolution except 𝐵𝑠𝑤𝑖𝑟, which has 20-m resolution and was pan-sharpened 156 

using the À Trous Wavelet Transform (ATWT) algorithm as recommended by Du et al., (2016). An HSV color space 157 

conversion was used to combine the three indexes and produce a final index for identifying water. The HSV (hue-saturation-158 

value) color space conversion is a non-trigonometric pair of transformations from a linear red-green-blue (RGB) color space 159 

to a perceived color space (Danielson and Gesch, 2011). This method converts the three input bands into hue (color), saturation, 160 

and value components. The three indexes (NDWI, MNDWI, and NDVI) were scaled by 255, converted to a byte value type, 161 

combined into the RGB color space, and then converted to the HSV color space to derive a comprehensive index for identifying 162 

water. 163 

Once the hue has been identified, an experimental threshold of < 0.45 was applied to identify the water pixels. The same 164 

procedure was applied to derive temporal water extents from all selected Sentinel-2 images. All the water extents were then 165 

combined to calculate the water frequency (As) for the year. Potential water extent was then derived from the calculated water 166 

frequency data. The existing JRC water dataset provided complementary information for estimating possible water extent. The 167 

JRC permanent water records were resampled to 10-m resolution using the nearest neighbor algorithm and combined with the 168 

Sentinel-2-derived water frequency dataset using a weighted linear combination: 169 

𝐴 = 𝑊𝑠 ⋅ 𝐴𝑠  +  (1 − 𝑊𝑠) ⋅ 𝐴𝑗,          (4) 170 

where, A is the updated water frequency, Ws is the weight for the Sentinel-2-derived water frequency (As) and set to 0.85 to 171 

ensure that the 10-m measurements were the main input for the final water probability estimate. However, Ws was decreased 172 

to 0.65 in high elevations pixels (elevation > 1 km) to reduce the effect of snow and ice on the Sentinel-2-derived hue over 173 

mountains. Aj is the JRC permanent water record, which was set to 1.0 for permanent water and to 0.0 for others. The final, 174 

combined possible water extent was identified when A > 0.5. 175 

4.2 Water extent detection 176 

Although the possible water extent estimated the likelihood of a pixel to correspond to water, confusion with shadow, ice, or 177 

cloud contamination in area with complex environments is still possible due to the limitations of water indexes with similar 178 

spectra (Isikdogan et al., 2017). A random forest model was trained with points collected through visual interpretations to 179 

further detect water within the areas indicated as possible water. To ensure the representation of water and other land covers 180 

that can easily be confused as water, five strata were introduced, i.e., water, glacier, mountain, vegetation, and cloud. Then, 181 

250 points were randomly selected in each stratum, for a total of 1,250 points (Figure 4a).  182 



 

 

 183 

Figure 4: Training samples for random forest model building (a) and points identified for validating the accuracy of the detected 184 
water extent (b). 185 

The five strata were established using reference datasets or customized rules. The glacier stratum was identified using the 186 

Global Land Ice Measurements from Space (GLIMS) dataset of 2017 (http://www.glims.org/, last access: 7 April 2021), which 187 

was a dataset of global glacier outlines including glacier area, geometry, surface velocity, and snow line elevation and was 188 

produced from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced 189 

Thematic Mapper Plus (ETM+), as well as historical information derived from maps and aerial photographs. Vegetation was 190 

identified as areas with a positive mean NDVI value calculated from the June-September Sentinel-2 images. The cloud stratum 191 

was identified as having at least 20% of mean cloud probability calculated from the selected Sentinel-2 images. The mountain 192 

shadow stratum was identified as any elevation higher than 1-km and slope greater than or equal to 3°. The water stratum was 193 

identified as the remaining area of possible water extent. 194 

The selected points were interpreted by the team to provide training data. Although we only used Sentinel-2 images from June 195 

to September 2019, points were matched with a randomly selected image at the location during the time period, providing 196 

representation for possible temporal variation. Each point was visually labeled by an interpreter after examining the image. 197 

Metrics for visible bands (red, green, and blue), NDWI, MDWI, NDVI, and hue were derived from each image to provide 198 

attributes for the point. These attributes were pooled to produce training data for building the machine learning model.  199 

The scikit-learn Random Forest algorithm (Breiman, 2001) was adopted to build the model for surface water detection. This 200 

model was applied to the selected Sentinel-2 images to detect surface water pixels. The results were compiled temporally to 201 

produce a water frequency layer (f). 202 

In this study, terrain shadows in the water frequency layer were removed with a terrain mask derived from the Global Multi-203 

resolution Terrain Elevation Data (GMTED) (Danielson and Gesch, 2011). The mask was where the slope was greater than or 204 

equal to 7° and the elevation was over 1 km. The elevation threshold was used to minimize the impact of the slope threshold 205 



 

 

on rivers in lowlands. The method using slope to identify terrain shadows was verified to be more effective than using hill-206 

shade (Carroll and Loboda, 2017). 207 

4.3 Water bodies identification 208 

Permanent water pixels were identified from the resulting water frequency layer (f) as being those pixels with at least 50% 209 

occurrence between June and September. The resulting water pixels were then converted to vector polygons using the “Raster 210 

to Polygon” tool in ESRI ArcMap 10.2. These water polygons provided the preliminary surface water body records.   211 

An array of geometry metrics was calculated for each water body polygon using ArcMap in the 212 

Canada_Lambert_Conformal_Conic projection (datum D_North_American_1983 and Spheroid GRS80). These metrics 213 

include area, perimeter, and a shape index (SI), which estimates the complexity of a water body polygon. The SI was calculated 214 

as: 215 

𝑆𝐼 = 𝑃𝑤𝑎𝑡𝑒𝑟𝑖/𝑃𝑐𝑖𝑟𝑐𝑙𝑒𝑖,           (5) 216 

where Pwateri is the perimeter of the water body I, Pcirclei is the perimeter of a circle that has the same area as water body i. SI 217 

equals 1 when a polygon is a perfect circle and greater than 1 when the polygon has a complex irregular shape. 218 

The derived water body morphological metrics (i.e., the SI and area) and the HydroRIVERS were used to identify rivers and 219 

streams in the WBD-NAHL water bodies. Rivers and streams tend to have long, narrow, and linear shapes. We applied area 220 

thresholds > 5 km2 and SI > 10 in combination with visual examination to exclude large rivers and streams in WBD-NAHL. 221 

Considering the extreme difficulties in distinguishing small rivers and streams, water bodies that could possibly be rivers and 222 

streams were further identified by selecting long and linear water bodies (SI > 3) located close to the rivers and streams (< 100 223 

m), as indicated by HydroRIVERS. 224 

4.4 Quality assessment 225 

The accuracy and uncertainty of WBD-NAHL were assessed at two levels, i.e., pixel water extent and derived water bodies, 226 

to provide a comprehensive evaluation of the dataset. We randomly selected eight square blocks with a size of 10 km by 10 227 

km in the North American tundra and boreal region (Figure 5). The selected blocks were visually interpreted by the team to 228 

identify all the water bodies within each using a high-resolution Google Earth image as reference for interpretation. Water 229 

bodies records from the PeRL were compared to the WBD-NAHL water bodies to assess the number of water bodies and 230 

spatial area of each. The interpreted dataset was also compared to the JRC-derived water body records for 2019 to assess its 231 

accuracy in terms of representing water bodies. The JRC dataset provides water/nonwater map at the 30-m resolution pixels, 232 

representing the distribution of water extent, but no information in the spatial relationship between pixels and water bodies 233 

were provided, and we derived water bodies records from the JRC dataset using the same algorithm described in section 4.1. 234 

 235 



 

 

Figure 5: Locations of the five regions selected and interpreted for assessing the accuracy of the indicators of water bodies. 236 

The 14 regional PeRL maps were compared to the WBD-NAHL water bodies. Although the PeRL maps were produced from 237 

high-resolution images acquired in 2002-2013, the maps show little temporal changes when comparing to the WBD-NAHL 238 

dataset in the extents of the maps (Figure 2), and these maps were adopted as references for evaluating the WBD-NAHL water 239 

bodies. The PeRL maps were produced from images with 5 m resolution or finer, we excluded all water bodies in PeRL smaller 240 

than 0.0003 km2 to ensure comparability to the scale of the WBD-NAHL dataset. 241 

The water extent derived from the Sentinel-2 images were assessed by manually comparing specific points between the WBD-242 

NAHL dataset and the JRC surface water dataset. The points were collected using a stratified random sampling across the 243 

entire study region. To achieve higher sampling performance, the outcomes were divided into four strata that represent pixels 244 

that were agreed as water, disagreed as water, agreed as non-water, and disagreed as non-water. In each of the strata, 400 points 245 

were randomly selected from the dataset and manually assessed by examining the same point in the latest Google Earth image. 246 

(Figure 4b) The results from the 1600 points were compared to the derived water extent. The confusion matrix was calculated 247 

from the results. 248 

The sampling weights were included in the calculation of the metrics as following:  249 

𝑊𝑠 = 𝐴𝑠/𝐴𝑎𝑙𝑙,            (6) 250 

where As is the area of stratum s, and Aall is the total area of the region. 251 

Equations of the confusion metrics with weights: 252 

𝑂𝐴 = ∑ 𝑊𝑠 ∗ 𝑂𝐴𝑠
4
𝑠 ,           (7) 253 

𝑈𝐴 = ∑ 𝑊𝑠 ∗ 𝑈𝐴𝑠
4
𝑠 ,           (8) 254 

𝑃𝐴 = ∑ 𝑊𝑠 ∗ 𝑃𝐴𝑠
4
𝑠 ,           (9) 255 

where OA, UA, and PA are the overall accuracy, user’s accuracy and producer’s accuracy of the entire dataset, OAs, UAs and 256 

PAs are the concomitant accuracies in stratum s, and Ws is the sampling weight of strata. 257 

5 Results 258 

5.1 Water bodies in tundra and boreal forests of North America  259 

More than 6.47 million (6,474,051) surface water bodies were identified in the tundra and boreal forests of North America, 260 

while 90.3% of these water bodies (5,844,921) were smaller than 0.1 km2. Those water bodies covered more than 0.8 million 261 

km2, ~10.3% of the study area (Figure 6). The average size and perimeter of the identified water bodies were 0.12 km2 and 262 

1.01 km, respectively, and their average SI was 1.41. 263 



 

 

 264 

Figure 6: Percent of surface water (5 km × 5km grid) produced by aggregating the water extent for the tundra and boreal forests of 265 
North America as calculated using the WBD-NAHL dataset. 266 

All of the morphological indicators, including area, perimeter, and SI, of the identified water bodies showed great heterogeneity 267 

across the region (Figure 7). In general, the tundra biome consists of a large number of densely packed small water bodies with 268 

regular shapes. In contrast, the boreal forest biome consists of a large number of large water bodies with complex shapes. The 269 

number of identified water bodies in the tundra (3.24 million) and boreal forests (3.23 million) were nearly identical. However, 270 

the water extent in the boreal forest (0.57 million km2; 71% of total water area) is more than twice that found in the tundra 271 

(0.23 million km2; 29% of the total water area), indicating that the average size of water bodies in the boreal area are larger 272 

than those in the tundra. This finding was confirmed by reviewing the water body perimeters for the two biomes. The average 273 

perimeter of water bodies in boreal forests was 1.2 km, compared to a much smaller 0.8 km average perimeter for water bodies 274 

in the tundra. The average SI for water bodies in the boreal was 1.45, longer than the 1.37 average SI for the tundra water 275 

bodies, suggesting that the boreal water bodies generally have much more complex shorelines, while the tundra water bodies 276 

are more circular.  277 

 278 

Figure 7: The aggregated distribution of area (a), perimeter (b), and SI (c), and the number (d) of the identified water bodies in the 279 
study area. The values at each 5 km × 5 km pixel in the grid were calculated by selecting the intersecting water bodies and then 280 
either counting or calculating the mean of the targeted parameter (e.g., area, SI, and perimeter) of these selected water bodies. 281 

 282 

Inland water in the region is mainly concentrated in the Canadian Shield, i.e., about 0.73 million km2 of water (92% of water 283 

extent in the study region). In addition, most large water bodies were located in the Canadian Shield, including 90% of the 284 



 

 

identified large water bodies (sizes ≥ 1km2). The shorelines of the water bodies in the Canadian Shield were also more 285 

complex than those in other areas, especially south of the Laurentian Plateau near the Great Lakes.  286 

5.2 Accuracy assessment  287 

The overall accuracy of the WBD-NAHL’s water extent was 96.36%, while the producer's accuracy was 99.9%, and the user’s 288 

accuracy was 96.36%. Misclassifications were primarily found in shadows of the Mackenzie Mountains, where the east-west 289 

high-elevation mountain range cast constant shadows on the northern slopes. 290 

Both the JRC and WBD-NAHL datasets accurately identified the size of larger water bodies. For mixed water pixels, the area 291 

estimates of both datasets were more conservative than the reference data. However, the WBD-NAHL dataset performed better 292 

than the JRC. The advantage of the WBD-NAHL was demonstrated for smaller water bodies (Figure 8). For small water bodies 293 

(size ≤ 0.02 km2), the average area of the WBD-NAHL water bodies was 72% of those manually digitized over high-294 

resolution Google Earth images, compared to only 45% with the water area detected by the JRC (Figure 8a). For medium 295 

water bodies (between 0.02 km2 and 0.05 km2), the average area of WBD-NAHL water bodies was about 85% times that of 296 

manually digitized water bodies, compared to 67% with the water area detected by the JRC (Figure 8b). For water bodies 297 

larger than 0.05 km2, the water areas of WBD-NAHL were highly consistent (98%) with that of manually digitized, while the 298 

water area of JRC was slightly lower (about 87%) for water bodies in the category (Figure 8c).  299 

 300 

Figure 8: Comparisons of the water body area identified by the JRC, WBD-NAHL, and interpreted water maps. The 1:1 lines are 301 
in black. The red crosses represent the JRC water bodies, and the blue pluses represent the WBD-NAHL water bodies in comparison 302 
with the manually interpreted water bodies. The water bodies are compared in groups of sizes, i.e., (a) small water bodies with sizes 303 
< 0.02 km2; (b) medium water bodies with sizes between 0.02 km2 and 0.05 km2; (c) large water bodies with sizes > 0.05 km2. The R2 304 
for the WBD-NAHL and JRC identified water bodies were similar, i.e., 0.6 for small water bodies, 0.5 for medium water bodies, and 305 
0.9 for large water bodies.  306 

 307 



 

 

The comparison between the water bodies identified by WBD-NAHL and PeRL were largely consistent for the derived 308 

indicators of water area, perimeter, and number (Figure 9). Linear correlations between the water bodies identified by WBD-309 

NAHL and PeRL had R2 higher than 0.99 for all three indicators. The slopes of the linear regressions indicated that the water 310 

area showed the least bias when compared to PeRL (slope=0.98), followed by the number of water bodies (slope=0.78), and 311 

finally the perimeter of the water bodies (slope=0.62).  312 

 313 

Figure 9: Area, perimeter, and number of water bodies identified by the PeRL and WBD-NAHL datasets. 314 

6 Discussion 315 

6.1 A high-resolution water body dataset for the continental tundra and boreal 316 

The WBD-NAHL dataset provides the first known delineation of water bodies at 10-m resolution for the continental tundra 317 

and boreal forest of North America, which is one of the highest concentrations of the global inland water, especially the small 318 

sized water bodies. The dataset not only maps the extent of inland water during 2019 but also identifies the water bodies and 319 

their morphological metrics, which are critical for understanding and modeling freshwater lentic ecosystems (Downing, 2009; 320 

Heathcote et al., 2015; Kuhn and Butman, 2021; MacIntyre et al., 2009; Muster et al., 2013). The WBD-NAHL was produced 321 

using Sentinel-2 satellite data to take advantage of the high resolution and 2-3-day revisit time of Sentinel-2 satellites. Sentinel-322 

2’s revisit time allows the WBD-NAHL to have sufficient observations during the snow-free season, which is critical for 323 

mapping inland surface water in this high latitude region with long periods of snow coverage.  324 

The WBD-NAHL’s 10-m resolution enabled detecting water bodies as small as 0.001 km2. The validation showed that the 325 

WBD-NAHL dataset had high overall accuracy and significantly improved upon the ability of the existing global JRC water 326 

maps for detecting small water (e.g., smaller than 0.006 km2) than the existing global JRC water maps. These small water 327 

bodies consist of nearly half the total water bodies in the tundra and boreal forest regions of North America, and generally 328 

experience faster cycling of water, material, and energy than larger water bodies (Winslow et al., 2014; Carroll et al., 2011; 329 

Messager et al., 2016). The improved WBD-NAHL dataset may provide more accurate inputs for hydrological estimates, 330 

which are vital components for understanding and modeling the pan-Arctic hydrological, biochemical, and energy cycling. 331 



 

 

The higher resolution of WBD-NAHL also provides the ability to delineate the number, area, and shoreline complexity of 332 

water bodies. Our comparison confirmed that WBD-NAHL-derived water areas and shorelines were similar to those from the 333 

regional 5-m or finer resolution PeRL dataset. Meanwhile, the number of water bodies identified in WBD-NAHL was 334 

consistent with those of other datasets, including HydroLAKES and GLWD (Figure 10). The number of water bodies larger 335 

than 1 km2 was roughly identical for WBD-NAHL, HydroLAKES, and GLWD. For water bodies between 0.1 and 1 km2, 336 

WBD-NAHL and HydroLAKES reported similar numbers (Figure 10), but the number reported by GLWD was considerably 337 

lower, suggesting that the omission error of GLWD was higher for water bodies smaller than 1 km2, as noted by Lehner and 338 

Döll (2004). Unfortunately, both the HydroLAKES and GLWD datasets only provide records for water bodies larger than 0.1 339 

km2 (Messager et al., 2016; Lehner and Döll, 2004), and are thus missing records for what we estimate to be 90% of the total 340 

number of water bodies in the region. The WBD-NAHL is able to extend these indicators to much smaller water bodies than 341 

HydroLAKES and GLWD, providing a much more complete record of water bodies in the region. This estimate of the number 342 

and extent of small water bodies can improve our understanding of continental freshwater sources, stressing the importance of 343 

small water bodies in continental biochemical and energy cycling, potentially correcting a misconception that large lakes are 344 

most important (Downing, 2010). 345 

 346 

Figure 10: Comparing the number of water bodies identified by WBD-NAHL and other datasets based on size. 347 

6.2 Distribution of the water bodies 348 

An empirical power-law distribution was found between lake areas and lake numbers (Messager et al., 2016; Downing et al., 349 

2006), and the distribution was applied to estimate the number of small lakes, which were used for estimating greenhouse gas 350 

emissions (Holgersson et al., 2016). According to the power-law distribution and HydroLAKES, the number of water bodies 351 

larger than 0.1 km2 was estimated to be about 798,895, which was close to the 629,130 water bodies reported by WBD-NAHL 352 

(Figure 11). However, the number of water bodies sized between 0.1 and 0.01 km2 was estimated to be about 10.2 million, 4.8 353 

times higher than estimated by WBD-NAHL. Furthermore, the water bodies sized between 0.01-0.001 km2 were estimated to 354 

be about 126.1 million, 33.6 times higher than what was estimated by WBD-NAHL, suggesting that the power-law distribution 355 

significantly overestimates the number of small lakes. A similar finding was reported by Seekell et al. (2016). Estimating the 356 

number small water bodies using a power-law distribution could introduce considerable uncertainties in the estimation of the 357 

contribution of small water bodies to greenhouse gas emissions. Accurately identifying small water bodies could correct this 358 

overestimation and improve greenhouse gas emission estimates (Holgersson et al., 2016). 359 



 

 

 360 

Figure 11: Distribution of the total numbers of water bodies in relation to the area of North American tundra and boreal forests 361 
water bodies. The circles represent the number of water bodies provided by WBD-NAHL. The black line is the power-law 362 
distribution modeled using water bodies > 0.1 km2 from WBD-NAHL. The red line is the power-law distribution modeled using 363 
HydroLAKES in the study region. The red triangle and square represent, respectively, the extrapolated number of water bodies > 364 
0.01 km2 and > 0.001 km2 based on the power-law distribution modeled from HydroLAKES.  365 

 366 

The largest and most complex water bodies are distributed primarily in the Canadian Shield. These lakes in the Canadian 367 

Shield formed through processes such as erosion and glaciation (Smith et al., 2007). Erosion and glaciation formed water 368 

bodies with complex shapes, which may contribute to the higher SI (1.48) reported by the WBD-NAHL for the region. During 369 

the most recent Wisconsin glaciation, the Canadian Shield was covered by the Laurentide Ice Sheet, a giant, 3-km thick expanse 370 

of ice. When the ice sheet retreated north, it carved out the five Great Lakes as well as thousands of small lakes throughout the 371 

Canadian Shield (Dyke and Prest, 1987). Currently, 92% of the water extent in the tundra and boreal forests are distributed in 372 

this particular region. For example, the largest lake in the region - Great Bear Lake - has a surface area of 30,227 km2 with a 373 

long, complex shoreline (the perimeter is 5,705 km and the SI of the lake is 9.3). It was formed by ice erosion during the 374 

Pleistocene (Johnson, 1975).  375 

The tundra, on the other hand, has a large number of small, regularly-shaped water bodies, which could be related to the thick 376 

peatland and thermokarst landscape. Over the past few decades, numerous thermokarst lakes have been experiencing dramatic 377 

changes, which are considered an indicator of permafrost degradation (Smith et al., 2005; Karlsson et al., 2012, 2014). The 378 

small thermokarst lakes were also found to experience stronger changes than larger lakes (Karlsson et al., 2014; Carroll and 379 

Loboda, 2017). Monitoring water extent without discriminating by lake size does not accurately reflect these changes in small 380 

lakes due to the area dominance of large lakes. Additionally, the small thermokarst lakes are the primary source of permafrost 381 

carbon emissions (Kuhn et al., 2018; Walter Anthony et al., 2016; Yvon-Durocher et al., 2017) and small water bodies were 382 

found to be a major source of uncertainty greenhouse gas emission estimates (Holgerson and Raymond, 2016). The WBD-383 

NAHL dataset could provide critical information for investigating thermokarst lakes, especially small thermokarst lakes and 384 

ponds, and estimating their effects on carbon emission and permafrost sustainability in the tundra and boreal forests of North 385 

America. As reported by the analysis of WBD-NAHL, 3.24 million small water bodies were found in the tundra in 2019, with 386 

an average size of 0.07 km2 and average SI of 1.37, much smaller than the SI of boreal lakes. Teshekpuk Lake is the largest 387 

thermokarst lake in the world and a relatively smooth shoreline (SI = 5.4), considerably smaller than the SI of Great Bear Lake 388 

in the boreal region (Markon and Derksen, 1994). 389 



 

 

The biome-based analysis provided insights into the distribution of water body shapes across the study area; however, more 390 

complex relationships can be found between the shapes and the surface geology of the water bodies. For example, circular-391 

shaped lakes can be found in regions with thick overburden – possibly as a result from remaining unglaciated, from aeolian 392 

deposits or from rising from the sea bottom through isostatic rebound; These circular-shaped lakes can be found in regions 393 

with thick moraines or widespread peatlands in the boreal Hudson Bay lowlands and the Mackenzie River Basin. The high-394 

resolution WBD-NAHL could help further explore the distribution of water bodies by size and shape. 395 

6.3 Limitations 396 

The data and methods used to derive the 10-m resolution WBD-NAHL dataset are able to detect water bodies smaller than the 397 

30-m or coarser-resolution satellite-derived datasets, but have difficulty identifying water bodies smaller than 0.001 km2. This 398 

limitation can be further improved by incorporating higher resolution satellite data, such as from Planet, WorldView, 399 

QuickBird, and Gaofen (Veremeeva and Günther, 2017; Sun et al., 2020; Watson et al., 2016; Andresen and Lougheed, 2015). 400 

Limit errors in the satellite data provide substantial sources of uncertainty, including an inability to separate rivers and streams 401 

because the resolution is too coarse, bias in estimates of water extent resulting from temporal gaps in the data, and 402 

misclassifications resulting from spectral resolution. The misclassifications impacted by terrain (e.g., mountain shadows) still 403 

exist even though they have been substantially reduced during data processing. Further processing may be possible to further 404 

reduce these errors.  405 

The WBD-NAHL dataset was produced based on Sentinel-2 data acquired in the summer of 2019 and represents the 406 

distribution of surface water in the corresponding year. The mean total precipitation in 2019 in the region was 438.5 mm, 407 

which was close to the historical average from 2010 to 2019 (mean: 435.9 mm, standard deviation: 11.5 mm) (Huffman et al. 408 

2019). Although 2019 can be considered a normal year of the past decade in terms of precipitation, the spatial extent of high-409 

latitude water bodies, especially smaller water bodies, can still vary significantly both inter- and intra-annually locally. 410 

Nevertheless, it would be interesting to explore water bodies’ changes using observations from multiple years. Further efforts 411 

can be carried out to produce an inland water dataset for multiple time periods using these methods to capture the seasonal and 412 

multi-year dynamics of inland water in the region. The WBD-NAHL dataset focused on the tundra and boreal forest regions 413 

of North America. The methodology can be extended to Eurasia to provide a complete representation of the biomes. 414 

7 Data availability 415 

This WBD-NAHL dataset can be accessed via the website of the National Tibetan Plateau/Third Pole Environment Data Center 416 

(TPDC, http://data.tpdc.ac.cn): DOI: 10.11888/Hydro.tpdc.271021 (Feng et al., 2020). The dataset is provided in ESRI 417 

Geodatabase format. The volume of this dataset is about 1.5 GB.  418 

8 Conclusions 419 

This study presents an inland surface water body dataset for the North American high latitudes. The WBD-NAHL dataset was 420 

generated using Sentinel-2 data with machine learning methods and an object-based algorithm. Three morphological metrics 421 

(area, perimeter, and SI) were calculated for each water body. The accuracy of the dataset was carefully assessed with respect 422 

to detecting inland surface water extent (or pixel level) and identifying water bodies. The dataset's overall accuracy for water 423 

extent reached 96.36%. In addition, the WBD-NAHL showed a high consistency with high-resolution images in terms of water 424 

area, perimeter, and quantity.  425 



 

 

To our knowledge, the WBD-NAHL dataset provided the most complete inventory of inland surface water bodies for the 426 

tundra and boreal forest regions of North America. Overall, 6.47 million water bodies were identified, covering 10.3% of the 427 

region. Small water bodies dominate the region, as ~90.3% have an area smaller than 0.1 km2. The WBD-NAHL indicates that 428 

the tundra biome is dominated by densely distributed small water bodies with regular shapes (the average SI was 1.37), while 429 

the boreal forest biome is dominated by large water bodies with complex shapes (the average SI was 1.45). The WBD-NAHL 430 

is expected to be able to provide supporting data for modeling hydrologic, biochemical, and energy cycling in these areas. 431 
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