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Abstract. Population change impacts almost every aspect of global change from land use, to greenhouse gas emissions, to 10 

biodiversity conservation, to the spread of disease. Data on spatial patterns of population density help us understand patterns 

and drivers of human settlement and can help us quantify the exposure we face to natural disasters, pollution, and infectious 

disease. Human populations are typically recorded by national or regional units that can vary in shape and size. Using these 

irregularly sized units and ancillary data related to population dynamics, we can produce high resolution, gridded estimates of 

population density through intelligent dasymetric mapping (IDM). The gridded population density provides a more detailed 15 

estimate of how the population is distributed within larger units. Furthermore, we can refine our estimates of population density 

by specifying uninhabited areas which have impacts on the analysis of population density such as our estimates of human 

exposure. In this study, we used various geospatial datasets to expand the existing specification of uninhabited areas within 

EPA’s EnviroAtlas Dasymetric Population Map for conterminous United States (CONUS). When compared to the existing 

definition of uninhabited areas for the EnviroAtlas Dasymetric Population Map, we found that IDM’s population estimates for 20 

U.S Census Bureau blocks improved across all states in CONUS. We also found that IDM performed better in states with 

larger urban areas than in states that are sparsely populated. Future updates of the Dasymetric Population Map might benefit 

from stratified (e.g., urban/exurban/rural) multi-state sampling of population density rather than state-specific sampling. We 

also updated the existing EnviroAtlas Intelligent Dasymetric Mapping toolbox and expanded its capabilities to accept 

uninhabited areas. 25 

1. Introduction 

Population density is a critical variable for understanding human-environment relationships. It has been recognized as an 

essential societal variable for studying human interactions with the environment and it is crucial for quantifying human 

exposure to natural hazards. Data on population density have facilitated global mapping of the changing human footprint on 

Earth’s terrestrial surface(Venter et al., 2016). The drivers and patterns of human settlement and population growth are a key 30 

part of understanding this expanding human footprint. Population density data allow researchers to investigate the spatio-
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temporal patterns of human settlement, monitor changes in those patterns, and investigate how urban areas expand (Yu Fang 

et al., 2018; Y. Fang & Jawitz, 2019; Taubenböck et al., 2019; Wei, Taubenböck, & Blaschke, 2017). Furthermore, population 

density maps have allowed researchers to identify natural drivers of population density such as elevation, temperature, and 

precipitation (Liu, Wang, & Xu, 2019; Samson, Berteaux, McGill, & Humphries, 2011). Population density data offer insights 35 

about the impact of human settlement and the risks and exposure people face from the environment. Population density has 

been used to assess the impacts of human activity on coral reefs (Bellwood, Hoey, & Hughes, 2012; Cinner, Graham, Huchery, 

& Macneil, 2013; Morais, Connolly, & Bellwood, 2019). Considerable work has used population density data to quantify 

human exposure and vulnerability to natural disasters and pollution (Carroll et al., 1997; Nahayo et al., 2019; Nasiri, Yusof, 

Ali, & Hussein, 2018; Nicholls & Small, 2002; Samoli et al., 2019; Smith et al., 2019; Yuan, Gao, & Qi, 2019). For example, 40 

population data has been used to quantify U.S population exposure to fine particles as a part of reporting the costs and benefits 

of the Clean Air Act Amendments of 1990 (U.S. Environmental Protection Agency, 2011). In Vietnam, researchers identified 

critical values of population density where the risk of dengue fever is high (Schmidt et al., 2011). Globally, population density 

was found to be a significant driver of the origins of emerging infectious diseases from 1940 – 2004 (Jones et al., 2008).  

In the United States (US), estimating population density usually involves distributing population counts collected within source 45 

units such as blocks, or block groups delineated by the U.S. Census Bureau. The Census Bureau, like many other organizations, 

relies on censuses and surveys to allocate people to source units. Population density is often simply estimated as the population 

count divided by the area for each source unit. However, the population recorded in these units can be disaggregated to provide 

estimates of how the population within source units is distributed. This disaggregation is important when source units are large, 

varying in shapes and sizes, or the population within the source units is not evenly distributed (Leyk et al., 2019). Various 50 

techniques have been used to allocate population counts from source units to estimate population density. Pycnophylactic 

interpolation estimates population density within source units using a grid of equal-sized cells (Tobler, 1979). The 

pycnophylactic property of this method ensures that the counts from each source unit are maintained in the process and that 

population is not lost nor displaced beyond the source unit within which it was recorded (Tobler, 1979). Source units can be 

divided up into smaller target units of homogenous population density. For example, target units can be determined by the 55 

spatial intersection between census blocks and land cover classes. In this example, a target unit consists of the area of a land 

cover class inside a census block. Areal weighting distributes the population of source units to target units by the proportion 

of the area of the target unit inside the source unit (Goodchild & Lam, 1980). This method maintains the counts of the source 

units as suggested by Tobler (1979). However, the only determinant of population density is the area of a target unit inside a 

source unit. This is problematic where area might not be the best indicator of population dynamics. For example, in a source 60 

unit that is largely covered by a wildlife refuge and minimally covered by urban land use, the proportion of the source unit’s 

population that resides in urban land use should, in reality, be greater than that in the wildlife refuge.  
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Dasymetric allocation of population can incorporate the population dynamics that are to be expected within source units in 

order to estimate population density. Dobson et al. (2000) used coefficients calculated by weighted combinations of factors 

that influence human populations to estimate population density from aggregate population counts. Other methods have used 65 

the Random Forest algorithm to predict population density at fine scales using aggregate population counts and aggregated 

fine-scale covariates that are related to population density (Sorichetta et al., 2015; Stevens, Gaughan, Linard, & Tatem, 2015). 

Researchers have modeled gridded population density from small area sampling of population counts rather than using a 

national census (Weber et al., 2018). To improve estimates, various dasymetric population mapping methods have used land 

use/land cover, climatic and topographic variables such as temperature, precipitation, elevation, and slope, and socio-economic 70 

variables such as nighttime lights, roads, and points of interest related to human activity (Karunarathne & Lee, 2019; Lloyd et 

al., 2019; Ye et al., 2019).  

Mennis and Hultgren (2006) developed an Intelligent Dasymetric Mapping (IDM) technique that estimates population density 

by determining class-specific representative population densities from an ancillary raster containing classes that are indicative 

of population dynamics. In 2016, IDM was used to develop a dasymetric population map of the conterminous US by the 75 

Environmental Protection Agency’s (EPA) Office of Research and Development. The map was developed for EnviroAtlas, an 

online collection of interactive tools and resources that provides data, research, and analysis on the relationships between 

nature, people, health, and the economy (Pickard, Daniel, Mehaffey, Jackson, & Neale, 2015). Census block counts for 2010 

were disaggregated to 30 m grid cells using the 2011 National Land Cover Database (NLCD) as the ancillary raster. The 

identification of uninhabited areas and not allocating people to those areas can further refine population density to areas where 80 

humans are more likely to settle. This refinement has a marked impact on the accuracy of estimates of population density (Y. 

Fang & Jawitz, 2018; Leyk et al., 2019; Smith et al., 2019).  

Uninhabited areas in the 2016 EnviroAtlas dasymetric population map effort were identified as the open water, perennial 

ice/snow, and emergent herbaceous wetlands land cover classes along with areas that have a slope greater than 25%. In this 

study, we updated the pre-existing EnviroAtlas dasymetric population map for the conterminous United States (CONUS) by 85 

incorporating additional geospatial data sets to expand areas identified as uninhabited. We then conducted an assessment to 

test the validity of our methods and measure any improvement in population density mapping associated with our effort. While 

updating the EnviroAtlas dasymetric population map, we also updated the EnviroAtlas IDM toolbox, a toolbox originally 

developed for ESRI ArcMap 10.3 that allows users to create dasymetric population maps of their own study areas. The updated 

methodology has been implemented as a toolbox for ArcGIS Pro and a standalone Python tool that relies on open source 90 

libraries. We expanded the IDM toolbox’s capabilities to accept additional uninhabited areas from users.  
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2. Data 

We updated the existing population density map for CONUS using data that were nationally consistent and complete, fit for 

purpose, freely available or available under existing license, and relevant to human land use. Table 1 presents the data sets and 

layers that were used to update the dasymetric population map. 95 

 

Table 1. Datasets used for updating the EnviroAtlas dasymetric population map. IDM uses in bold were used in the 2016 EnviroAtlas 

dasymetric population map. 

Source 
Dataset / Version / 

Format 
Name IDM use 

U.S. Census Bureau 

Census blocks 

Vintage, 2010 

TIGER/Line ESRI 

Shapefile 

Census blocks with population and 

housing counts 
Source units 

Multi-Resolution 

Land Characteristics 

Consortium/ National 

Land Cover Database 

  

2011 Land Cover 

Version 2 (2016) 

ERDAS Imagine 

 

  

Developed, Open Space Inhabited ancillary class 

Developed, Low Intensity Inhabited ancillary class 

Developed, Medium Intensity Inhabited ancillary class 

Developed, High Intensity Inhabited ancillary class 

Barren Land (Rock/Sand/Clay) Inhabited ancillary class 

Evergreen Forest Inhabited ancillary class 

Mixed Forest Inhabited ancillary class 

Shrub/Scrub Inhabited ancillary class 

Grassland/Herbaceous Inhabited ancillary class 

Pasture/Hay Inhabited ancillary class 

Cultivated Crops Inhabited ancillary class 

Woody Wetlands Inhabited ancillary class 

Emergent Herbaceous Wetlands Uninhabited ancillary class 

Perennial Ice/Snow Uninhabited ancillary class 

Open Water Uninhabited ancillary class 

Developed 

Imperviousness 

Descriptor 

2016 Edition, 2011 

ERDAS Imagine   

Primary road in urban area Uninhabited ancillary class 

Primary road outside urban area Uninhabited ancillary class 

Energy production site in urban area Uninhabited ancillary class 

Energy production site outside urban 

area 
Uninhabited ancillary class 

HERE/ 

NAVSTREETS  

Land Use A 

9.0, 2017 

ESRI Geodatabase  

Shopping center Uninhabited ancillary class 

Industrial complex Uninhabited ancillary class 

Cemetery Uninhabited ancillary class 

Land Use B 

9.0, 2017 

ESRI Geodatabase 

Aircraft roads Uninhabited ancillary class 

OpenStreetMap 

Foundation (OSMF) 

& Contributors  

Land use 

2019 

ESRI Shapefile 

Retail Uninhabited ancillary class 

Commercial Uninhabited ancillary class 

Mall Uninhabited ancillary class 

Industrial  Uninhabited ancillary class 

Places of interest 

2019 

ESRI Shapefile 

Supermarket Uninhabited ancillary class 

School Uninhabited ancillary class 
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North American Rail 

Network 

Rail network 

2019 

ESRI Shapefile 

Rail network Uninhabited ancillary class 

CoreLogic 

Residential parcels 

2018 

ESRI Geodatabase 

Residential parcels Inhabited ancillary class 

U.S. Geological 

Survey Gap Analysis 

Project/ Protected 

Areas Database of the 

U.S.   

Combined Protected 

Areas: Proclamation, 

marine, fee, designation, 

easement 

2.0, 2018 

ESRI Geodatabase  

Local park Uninhabited ancillary class 

State park Uninhabited ancillary class 

State forest Uninhabited ancillary class 

National wildlife refuge Uninhabited ancillary class 

National forest Uninhabited ancillary class 

National park Uninhabited ancillary class 

National lakeshore/seashore Uninhabited ancillary class 

National grassland Uninhabited ancillary class 

U.S. Geological 

Survey 
2012 (30m) National Elevation Dataset Uninhabited ancillary class 

 

2.1 Boundaries 100 

The TIGER/Line shapefiles from the United States Census Bureau provided state boundaries along with their Federal 

Information Processing Series (FIPS) codes (U.S. Census Bureau, 2012). The boundaries for statistical entities from the U.S. 

Census Bureau are organized hierarchically from census blocks within block groups which are contained within census tracts 

within the counties of a state (U.S. Census Bureau, 2012). We used a special release shapefile of the 2010 TIGER/Line census 

blocks that included the population and housing counts from the 2010 decennial census carried out by the U. S. Census Bureau 105 

(U.S. Census Bureau, 2012). The shapefile also includes the state FIPS code, county FIPS code, the census tract code, and the 

census tabulation block number for each block (U.S. Census Bureau, 2012).  

2.2 Land Cover 

The 30 m, 2011 land cover classification from the 2016 NLCD (i.e., NLCD2016 2011) was used as the ancillary raster (Homer 

et al., 2020; Yang et al., 2018). Yang et al. used a leaf-on Landsat image as the base image for the 2011 NLCD classification. 110 

Pixels with cloud, shade, and other anomalies in the base Landsat image were filled using leaf-on or leaf-off Landsat images 

within two years of the base image (Yang et al., 2018). The NLCD classification was carried out using a decision-tree classifier 

with the Landsat image and ancillary data (Yang et al., 2018). The overall users accuracy for NLCD2016 2011 is 86.8% 

(Wickham, Stehman, Sorenson, Gass, & Dewitz, 2021) 

2.3 Land Use 115 

In order to identify uninhabited areas, we used several publicly available and proprietary datasets from the OpenStreetMap 

Foundation & Contributors (OSM), NAVSTREETS, CoreLogic, the Protected Areas Database of the U.S. (PAD-US), the 

North American Rail Network (NARN), NLCD, and the National Elevation Dataset (NED)(CoreLogic, 2018; HERE, 2017; 

OpenStreetMap contributors, 2019; U.S. Geological Survey, EROS Data Center, 1999; U.S. Geological Survey, Gap Analysis 
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Program; Yang et al., 2018). From these data, we used several vector features and rasters related to built structures, zoning, 120 

topography, and protected areas. Volunteers contribute and maintain geospatial data about roads, rail roads, built structures, 

land use, parks, and various other categories for OSM (OpenStreetMap contributors, 2019). NAVSTREETS provides 

boundaries for built structures and land use and CoreLogic provides boundaries for residential and non-residential parcels 

(CoreLogic, 2018; HERE, 2017). PAD-US is produced by the United States Geological Survey (USGS) Gap Analysis Program 

and provides nation-wide spatial data outlining the boundaries of protected open space held by national, state, and 125 

regional/local governments, and non-profit conservation organizations (Gergely & McKerrow, 2016; U.S. Geological Survey, 

Gap Analysis Program, 2018). NARN is managed by the Federal Railroad Administration and is a comprehensive database of 

the US railway system (Federal Railroad Administration, 2019). NLCD includes a Developed Impervious Descriptor product 

that classifies the NLCD’s percent impervious product into types of roads and energy production (Yang et al., 2018). The 

impervious product was developed by MRLC using regression tree models with Landsat imagery and training datasets 130 

generated from nighttime lights imagery (Yang et al., 2018). 

3 Methods 

3.1 Uninhabited areas 

Uninhabited areas were identified and prepared for each CONUS state and Washington D.C. using both vector features and 

raster layers. The goal of this step was to produce a raster layer of uninhabited areas for each state that would be used to 135 

reclassify NLCD pixels to a new uninhabited land cover class. From NAVSTREETS, we identified shopping centers, industrial 

complexes, cemeteries, aircraft roads, and rail roads as uninhabited. A 30 m buffer was created around aircraft road centerlines 

and a 15 m buffer was created around railroad centerlines to ensure that all line features were converted to raster. Because we 

could find no existing railyard polygon data, railyard polygons were derived from railroad lines in NARN. We approximated 

railyard extents by applying a 500 m buffer around all rail line features with “YARDS’ in the name field and then dissolving 140 

the resulting polygons into one feature. We then applied a negative 480 m buffer to the results of the 500 m buffer to ensure 

we were not capturing areas outside the extent of the rail lines. These areas were identified as uninhabited. From OSM we 

identified retail, commercial land use, malls, industrial complexes, supermarkets, and schools as uninhabited (Table 1). 

Additionally, we designated local parks, state parks, state forests, national wildlife refuges, national forests, national parks, 

national lake shore or seashore, and national grasslands from PAD-US as uninhabited (Table 1). Finally, we used the 145 

Developed Imperviousness Descriptor raster from NLCD2016 2011to designate primary roads and energy production classes 

as uninhabited. 

The possibility of housing within the areas we identified as uninhabited warranted additional attention before marking the 

entire area as uninhabited. For example, national forests have experienced an estimated housing growth of about 940,000 units 

between 1940 and 2000 within their boundaries (Radeloff et al., 2010). In order to allocate potential population within areas 150 

identified as uninhabited, we removed (i.e., spatially clipped) areas covered by residential parcels within all uninhabited 
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features listed in Table 1. We used the residential parcels from the area parcel feature class from CoreLogic (2018). Residential 

parcels in this dataset included typical single-family residences; however, multi-family dwellings including apartment 

complexes, urban mixed-use, and retirement communities were often considered commercial properties. We found no 

consistent method to isolate these multi-family inhabited land-use parcels from other uninhabited commercial parcels; 155 

therefore, we could not identify all commercial parcels as uninhabited.  

Mixed-use zones may contain census blocks with a mix of retail, commercial, civic, business, industrial, and residential land 

uses (Moos, Vinodrai, Revington, & Seasons, 2018; Song & Knaap, 2004). Several of the land use types we identified as 

uninhabited can exist in mixed use zoning and thus potentially be inhabited. From OSM and NAVSTREETS, we labeled 

shopping centers, industrial complexes, malls, and supermarkets along with retail and commercial land uses as areas we 160 

initially identified as uninhabited that can be found in mixed-use zoning (Table 1). If the combined area of these features 

covered greater than 90% of the entire census block area, that block was labeled as mixed-use and those features within that 

block were excluded from our uninhabited features.  

Furthermore, if the combined area of features we identified as uninhabited covered more than 99% of a census block, all 

features within that block were excluded from our uninhabited features. This way, if a census block was covered almost entirely 165 

by uninhabited features, any population recorded in that block would not be lost. Uninhabited vector features remaining after 

excluding residential parcels, mixed-use features, and features that covered more than 99% of a block were projected to Albers 

Conical Equal Area projection and converted to a binary 30 m raster to match the resolution and extent of the NLCD. 

Finally, we retained the only non-land cover attribute for identifying uninhabited areas from the 2016 EnviroAtlas dasymetric 

population map; areas with a slope of greater than 25 % were considered uninhabited. The percent slope was calculated from 170 

the National Elevation Dataset using GDAL (GDAL/OGR contributors, 2019). NLCD pixels that coincided with either pixels 

in the uninhabited raster, primary roads and energy production classes from the Developed Imperviousness Descriptor, or a 

slope of greater than 25% were reclassified to a new uninhabited land cover class. This reclassified NLCD classification was 

used as the ancillary raster for IDM. 

3.2 Source Units 175 

The U.S. Census Bureau blocks with associated population counts from the 2010 decennial census were used as source units 

for IDM. IDM converts source units into a raster that matches the spatial resolution and extent of the input ancillary dataset. 

Small or irregularly shaped source units that do not coincide with the center of a pixel at the ancillary dataset resolution will 

not be represented in the derived raster and the population in that unit will not be included in the estimate of population density. 

In order to account for the population in these blocks, we identified any populated census block that would not be represented 180 

in a 30 x 30 m pixel. These blocks were spatially merged and had their population added to the neighboring block that met all 

the following criteria: 
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1. had the longest shared border. 

2. was in the same census tract.  

3. had a population greater than zero.  185 

If no neighboring block in the same census tract had population then criteria 3 was dropped. This allowed us to account for 

population in these small blocks while not displacing the population outside of the census tract and limiting displacing 

population into unpopulated blocks. Census blocks were projected to Albers Conical Equal Area projection to match the 

NLCD. This modification of the 2010 census blocks was used as the source units for IDM. 

3.3 Intelligent Dasymetric Mapping  190 

The IDM method from Mennis and Hultgren (2006) was used to estimate the population density (people per pixel). The 

modified 2010 U.S. Census Bureau blocks with associated population were used as source units and the NLCD reclassified to 

incorporate uninhabited areas was used as the ancillary raster. The target units were created by the spatial intersection between 

NLCD classes and U.S. Census Bureau blocks. Therefore, each target unit consists of the area of an NLCD class inside a block. 

A homogenous gridded population density (30 x 30 m) was estimated for each target unit inside the census blocks. 195 

In order to estimate the population density for the target units, a representative population density was estimated for each land 

cover class from NLCD for each state. The representative population density of a land cover class is the number of people per 

pixel that were expected to reside in that land cover class throughout the state. IDM offers three ways to estimate the 

representative population density for an ancillary class. First, a representative population density can be set for an ancillary 

class from expert or domain knowledge or previous research. In line with the 2016 specification of uninhabited areas, the 200 

representative population density for the following land cover classes from NLCD was preset to zero people/pixel: open water, 

perennial ice/snow, and emergent herbaceous wetlands. Since we added an additional “uninhabited” class to the NLCD 

classification, we also set the preset density for this class to zero people/pixel. Second, the representative population density 

for an ancillary class can be sampled from source units that are considered representative of that ancillary class. The IDM 

toolboxes we developed allow users to set sampling eligibility thresholds. For this effort we determined that a representative 205 

block, b, for a sampled land cover class, s, met the following criteria: 

1. Ninety five percent of the area of the source unit b was covered by land cover class s. 

2. The area of source unit b was greater than 900 m2 (1 pixel). 

At least three representative census blocks were required for a land cover class to be considered sampled. After collecting all 

the representative blocks for a sampled land cover class, the representative population density for the class was estimated as 210 

(Mennis & Hultgren, 2006):  
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𝐷�̂� =∑𝑦𝑏/∑𝐴𝑏

𝑚

𝑏=1

𝑚

𝑏=1

 (1) 

where:  

𝐷�̂�   = the representative population density of sampled land cover class s 

𝑦𝑏  = the population count of census block b 

𝐴𝑏 = the area of census block b 215 

𝑚 = the number of representative blocks for class s  

Since the entire area of the block is used to distribute population counts in Eq. (1), only using blocks where 95% of the area is 

covered by the sampled land cover class ensures that the representative population density estimated for the class is based on 

homogenous blocks. Lastly, intelligent areal weighting (IAW) was used to calculate the representative population density for 

all land cover classes within each state where insufficient representative blocks were found and no representative population 220 

density was preset. By this point, a representative population density had been determined by either a sampled or preset 

representative population density for land cover class k (i.e., {𝑘 ∈ 𝐶 | 𝑘 ∈ (𝑃 ∪ 𝑆)} where C is the set of all ancillary classes, 

P is the set of all preset ancillary classes, and S is the set of all sampled ancillary classes). IAW calculates the remaining 

population counts for each source unit after sampled and preset representative population densities have determined a 

population estimate for target units in the source unit when possible (Mennis & Hultgren, 2006): 225 

𝐺𝑏 = 𝑦𝑏 − ∑ 𝐷�̂�
𝑡(𝑘)∈𝑏

𝐴𝑡(𝑘) (2) 

where: 

𝐺𝑏 = the remaining census population count for block b 

𝐷�̂� = the representative population density of land cover class k 

𝐴𝑡(𝑘) = the area of the target unit associated with land cover class k in census block b  

After calculating the remaining population for each block, an initial population was allocated to a given block’s target units 230 

associated with land cover class i that had not been determined by either a sampled or preset representative population density 
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(i.e., { 𝑖 ∈ 𝐶 | 𝑖 ∉ (𝑃 ∪ 𝑆)}). IAW uses areal weighting to distribute the remaining census counts to the remaining target units 

(Mennis & Hultgren, 2006): 

�̂�𝑡(𝑖) = {

0, 𝑖𝑓 𝐺𝑏 < 0

𝐺𝑏(𝐴𝑡(𝑖)/ ∑ 𝐴𝑡(𝑖))

𝑡(𝑖)∈𝑏

, 𝑖𝑓 𝐺𝑏 ≥ 0  (3) 

where: 

�̂�𝑡(𝑖) = the initial estimated population count for the target unit associated with land cover class i in block b 235 

𝐴𝑡(𝑖) = the area of the target unit associated with land cover class i in block b 

Equation (3) differs slightly from the methods of Mennis and Hultgren in that here an initial population of zero was allocated 

to unsampled land cover classes if the total population estimated for sampled or preset classes in the block exceeded the census 

count for the block. Although not explicitly stated in Mennis and Hultgren, this was implied as it avoids negative population 

estimates attributed to target units. After the initial population counts were estimated for each target unit associated with land 240 

cover class i, the representative population density of land cover class i was determined as (Mennis & Hultgren, 2006): 

𝐷�̂� = ∑ �̂�𝑡(𝑖)

𝑝

𝑡(𝑖)=1

 / ∑ 𝐴𝑡(𝑖)

𝑝

𝑡(𝑖)=1

 (4) 

where: 

𝐷�̂� = the representative population density of land cover class i 

𝑝 = the number of target units in the study area that are associated with land cover class i 

After the representative population density for each land cover class was determined using either a preset density, sampling 245 

(Eq. (1)), or IAW (Eq. (4)), the final population estimate for target unit t which consists of the area of a land cover class c (i.e., 

{ 𝑐 ∈ 𝐶 }) inside block b was calculated as (Mennis & Hultgren, 2006): 

�̂�𝑡 =

{
 
 

 
 𝑦𝑏 (𝐴𝑡/∑𝐴𝑡

𝑛

𝑡=1

) , 𝑖𝑓 ∑𝐷𝑐(𝑡)̂

𝑛

𝑡=1

= 0

𝑦𝑏 (𝐴𝑡𝐷𝑐(𝑡)̂/∑𝐴𝑡

𝑛

𝑡=1

𝐷𝑐(𝑡)̂) , 𝑖𝑓 ∑𝐷𝑐(𝑡)̂

𝑛

𝑡=1

> 0 

 (5) 
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where: 

�̂�𝑡 = the population estimated for target unit t associated with land cover class c in block b 

𝑛 = the number of target units in block b 250 

𝐴𝑡 = the area of target unit t 

𝐷𝑐(𝑡)̂ = the representative population density of land cover class c associated with target unit t 

Equation (5) ensured that the population was not displaced beyond the block (Mennis & Hultgren, 2006). Equation (5) is also 

a slight deviation from Mennis and Hultgren in that area weighting would be used for population within a block made up 

entirely of land cover classes with representative population densities estimated at or preset to zero. Although rare, there were 255 

instances of populated Census blocks composed entirely of these land cover classes. This modification ensured any population 

within these blocks were not lost without giving weight to any specific land cover class. The final population density for a 

target unit t that is associated with ancillary class c and source unit b can be calculated as (Mennis & Hultgren, 2006):  

𝑑�̂� = 𝑦�̂�/𝐴𝑡 (6) 

where: 

𝑑�̂� = the population density (people / pixel) estimated for target unit t 260 

The input blocks, uninhabited features, and land cover rasters were prepared for each CONUS state and Washington D.C. In 

order to increase the number of representative blocks, all data for Rhode Island were combined with neighboring 

Massachusetts. Likewise, data for Washington D.C. were combined with Maryland. Representative population densities were 

determined for 17 land cover classes in 47 ‘states’ in the US for a total of 799 estimated densities (Fig. 1). Four land cover 

types were preset at zero for every state. Of the 611 unique land cover type / state combinations that were not initially preset 265 

at zero, 596 were determined with sampling, 14 were determined using IAW, and one was preset (Fig. 1). In Connecticut, the 

representative population density for scrub/shrub was estimated at 3.4 using IAW. This would have resulted in shrub/scrub 

having the highest representative population density for any land cover type in the state and the estimate was over six standard 

deviations above the mean for that land cover type in all states. We chose to rerun IDM for Connecticut using the average 

representative density for scrub/shrub from all other states as a preset density. Population density was determined for each 270 

NLCD pixel within each state then joined to create a seamless 30 m population density estimate for the CONUS (Fig. 2).  
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Figure 1. Representative population densities determined using IDM. Note: The heatmap is scaled light blue to dark blue based on 

the sorted rank of densities for each state. 
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 275 

Figure 2. Population density estimated by Intelligent Dasymetric Mapping at 30 m spatial resolution for the conterminous United 

States and areas around (a) Santa Clara County, CA, (b) Natrona and Converse Counties, WY, (c) Concho County, TX, (d) 

metropolitan Chicago, IL, (e) Durham County, NC, and (f) metropolitan New York City, NY.  

3.4 Assessment 

The method we described above results in census block estimates equal to the census block numbers reported by the US Census 280 

Bureau; therefore, there is no cumulative error at the block level. To assess the validity and accuracy of our representative 
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population density estimates, we applied IDM on a larger source unit (i.e., census tract) using densities that we determined 

from the smaller source unit (i.e., census block). In other words, we disaggregated the recorded population for the census tract 

using block-level representative population densities (Fig. 3). We concatenated the state FIPS code, the county FIPS code, and 

the tract code to aggregate the census blocks by tract. The census population count for each tract was calculated by summing 285 

the census population count from all the blocks inside each tract. An IDM population estimate for each block was then 

calculated by summing the per-pixel population densities estimated by using tracts as source units. 

 

Figure 3. A simulated illustration of six Census blocks and associated population within a single Census tract (a, d). This tract has 

two land cover types, A and B, with representative population densities estimated at 5.0 and 0.2 respectively and an uninhabited 290 
feature that is new to the updated specification of uninhabited areas. Block level errors are provided adjacent to each block. Because 

our method has no cumulative error at the block level (b,e) we assessed our representative population densities by applying the 

densities at the tract level (i.e., no cumulative error at the tract level) with the updated specification of uninhabited areas (c) and the 

2016 specification of uninhabited areas (f). In this illustration the tract has a MAE of 40.6 with the 2016 specification of uninhabited 

areas (f) and 11.3 with updated specification of uninhabited areas (c). Note: for illustrative purposes in this figure, we used the same 295 
representative population density estimates for both updated (a-c) and 2016 (d-f) specifications. In practice the representative 

population density estimates for the updated and 2016 specifications were determined independently and most likely would have 

been different. 

Mean absolute error (MAE) and root mean square error (RMSE) were calculated to assess the error between the estimated 

block population and the recorded block population. RMSE was normalized by the mean block population within the summary 300 

unit (i.e., state or county) to facilitate comparison between summary units (NRMSE). The metrics were calculated for each 

state and county in CONUS. The metrics were calculated as: 

https://doi.org/10.5194/essd-2021-277

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



15 

 

𝑀𝐴𝐸𝑠 = 
∑ |𝑦𝑏 − �̂�𝑏|
𝑛
𝑏=1

𝑛
  (7) 

𝑅𝑀𝑆𝐸𝑠 = √
∑ (𝑦𝑏 − �̂�𝑏)

2𝑛
𝑏=1

𝑛
 

(8) 

𝑁𝑅𝑀𝑆𝐸𝑠 = 
𝑅𝑀𝑆𝐸𝑠
𝑦
𝑠

 
(9) 

where: 

𝑦𝑏  = the census population count for block b 

 �̂�𝑏 = the estimated population for block b 305 

𝑠 = the unit for which census block errors are summarized. This can be a state or county. 

�̅�𝑠 = the mean census block population count for unit s 

𝑛 = the number of blocks in unit s 

We compared the RMSE and MAE between the 2016 specification of uninhabited areas and our updated specification by 

running IDM for all CONUS states using both specifications. The 2016 specification of uninhabited areas used a preset density 310 

of zero people/pixel for land cover classes open water, perennial ice/snow, and emergent herbaceous wetlands and included 

areas with a slope of greater than 25%.  

4 Results 

4.1 IDM Performance 

NRMSE ranged from 1.21 to 3.39 (Fig. 4;Table 2). The highest state NRMSE between census block population counts and 315 

IDM estimated block population counts are for North Dakota with an RMSE that is 3.39 times the mean census block 

population, Wyoming with an RMSE that is 2.91 times the mean census block population, and Montana with an RMSE that is 

2.60 times the mean census block population (Table 2). The lowest NRMSE between census block population counts and IDM 

estimated block population counts are for Connecticut with an RMSE that is 1.21 times the mean census block population, 

Michigan with an RMSE that is 1.36 times the mean census block population, and New Jersey with an RMSE that is 1.38 320 

times the mean census block population (Table 2). NRMSE was summarized by state and county (Fig. 5) highlighting areas 

with highest (tending towards less densely populated) and lowest values (tending towards more urban). 
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Figure 4. NRMSE between block population estimates and block population census counts calculated for CONUS states (left) and 

counties (right). Block population was estimated by running IDM with census tracts as source units and applying representative 325 
population densities estimated by IDM using census blocks as preset densities. 

 

Table 2. Census block average error by state after applying block level representative population densities for each ancillary class 

to census tracts and ensuring pycnophylactic integrity at the tract level. Change in error from the 2016 specification of uninhabited 

areas are in parenthesis.  330 

State RMSE NRMSE MAE 

AL 36.32  (-1.48) 1.86  (-0.08) 13.13  (-0.6) 

AR 33.21  (-0.92) 2.07  (-0.06) 11.50  (-0.35) 

AZ 52.18  (-2.88) 1.94  (-0.11) 15.84  (-1.02) 

CA 78.32  (-5.05) 1.47  (-0.09) 28.31  (-2.67) 

CO 44.50  (-2.84) 1.74  (-0.11) 15.46  (-1.29) 

CT 65.43  (-2.56) 1.21  (-0.05) 28.29  (-1.71) 

DC_MD 75.54  (-3.13) 1.73  (-0.07) 27.81  (-1.71) 

DE 64.97  (-4.45) 1.71  (-0.12) 25.09  (-1.97) 

FL 66.61  (-3.29) 1.68  (-0.08) 23.05  (-1.33) 

GA 59.00  (-4.44) 1.75  (-0.13) 20.58  (-1.65) 

IA 28.17  (-0.99) 1.97  (-0.07) 10.25  (-0.45) 

ID 23.80  (-1.46) 2.23  (-0.14) 7.51  (-0.46) 

IL 49.90  (-3.37) 1.72  (-0.12) 18.92  (-1.55) 

IN 41.92  (-1.74) 1.69  (-0.07) 15.62  (-0.86) 

KS 25.74  (-0.99) 2.11  (-0.08) 8.38  (-0.34) 

KY 43.22  (-3.17) 1.57  (-0.12) 16.54  (-1.17) 

LA 44.59  (-1.22) 1.96  (-0.05) 15.59  (-0.58) 

ME 36.80  (-1.56) 1.88  (-0.08) 13.10  (-0.48) 

MI 41.38  (-2.47) 1.36  (-0.08) 16.14  (-1.29) 

MN 36.80  (-1.87) 1.77  (-0.09) 13.05  (-0.83) 

MO 32.32  (-1.28) 1.80  (-0.07) 11.26  (-0.63) 

MS 39.11  (-0.98) 2.21  (-0.06) 13.08  (-0.58) 
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MT 19.66  (-1.68) 2.60  (-0.22) 6.08  (-0.49) 

NC 48.84  (-1.99) 1.46  (-0.06) 19.83  (-0.91) 

ND 17.27  (-0.76) 3.39  (-0.15) 4.61  (-0.23) 

NE 21.04  (-1.41) 2.18  (-0.15) 6.91  (-0.42) 

NH 46.90  (-1.81) 1.69  (-0.07) 17.33  (-0.91) 

NJ 73.17  (-7.85) 1.38  (-0.15) 29.52  (-3.72) 

NM 29.95  (-1.96) 2.41  (-0.16) 8.81  (-0.65) 

NV 64.16  (-2.33) 1.98  (-0.07) 18.42  (-1.07) 

NY 89.75  (-5.56) 1.60  (-0.1) 32.59  (-2.89) 

OH 48.09  (-2.6) 1.48  (-0.08) 17.89  (-1.42) 

OK 30.35  (-1.29) 2.12  (-0.09) 9.75  (-0.49) 

OR 36.90  (-2.57) 1.87  (-0.13) 11.75  (-0.88) 

PA 54.89  (-3.99) 1.79  (-0.13) 20.45  (-1.67) 

RI_MA 63.00  (-2.18) 1.46  (-0.05) 25.41  (-1.34) 

SC 44.46  (-1.93) 1.71  (-0.07) 16.53  (-0.81) 

SD 23.18  (-1.77) 2.49  (-0.19) 7.52  (-0.55) 

TN 44.51  (-1.99) 1.65  (-0.07) 16.63  (-0.81) 

TX 58.50  (-2.41) 2.08  (-0.09) 18.47  (-1.12) 

UT 41.00  (-3.08) 1.68  (-0.13) 13.38  (-1.27) 

VA 63.94  (-1.3) 2.24  (-0.05) 17.45  (-1.44) 

VT 34.48  (-3.03) 1.74  (-0.15) 11.83  (-1.04) 

WA 51.45  (-3.72) 1.47  (-0.11) 18.99  (-1.56) 

WI 36.56  (-3.27) 1.59  (-0.14) 13.61  (-1.53) 

WV 27.07  (-1.49) 1.91  (-0.11) 9.58  (-0.61) 

WY 19.35  (-1.47) 2.91  (-0.22) 5.79  (-0.46) 
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Figure 5. Census urban areas and county NRMSE between census block population count and the estimated block population 

count from IDM for some of the states with the lowest NRMSE: (a) Connecticut, (b) Michigan, and (c) New Jersey and highest 

NRMSE: (d) Montana, (e) Wyoming, and (f) North Dakota. 335 

 

4.2 Uninhabited areas 

The updated specification of uninhabited areas identified an additional 186,764,551 30 m pixels (~168,000 km2; an area 

slightly less than Washington State), as having zero population in comparison to the 2016 specification of uninhabited (Table 

3). Recalling that the nature of IDM does not allow for population to be displaced beyond the original source unit (i.e., census 340 

block), our updated definition reallocated approximately 9.56 million people from uninhabited areas to areas that are more 

likely to be inhabited (Table 3; Fig. 6). 

 

Table 3. Count of pixels with and without population using the 2016 specification of uninhabited and the updated specification of 

uninhabited. Note. Counts include pixels within zero population blocks. 345 

 Pixels with 

population = 0 

Pixels with 

population > 0 

Population in Updated 

Uninhabited 

2016 Dasymetric Map 4,338,376,834  4,641,477,058 9,564,807 

Updated Dasymetric Map 4,525,111,385  4,454,742,507 - 

Difference (186,734,551)  186,734,551  9,564,807  
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Figure 6. A census block near Sacramento, California with a cemetery (i.e., uninhabited feature) covering most of the block and 

residential housing along the eastern border (a). IDM results with the 2016 specification of uninhabited (b) have population 

throughout the block while IDM results with the updated specification of uninhabited (c) have zero population for the cemetery and 

denser population along the eastern border.  350 

RMSE and MAE improved for all states with the expansion of uninhabited areas (Table 2). RMSE improved by an average of 

2.46 persons per census block (σ = 1.37) and MAE improved by an average of 1.10 persons per census block (σ = 0.69) across 

all states. The most improved states were New Jersey and New York with a difference in RMSE of -7.85 and -5.56 and a 

difference in MAE of -3.72 and -2.89. Some of the least improved states were North Dakota and Arkansas with a difference 

in RMSE of -0.76 and -0.92 and a difference in MAE of -0.23 and -0.35 (Table 2).  355 

5 Discussion 

5.1 IDM Performance 

IDM is a useful method to allocate population within heterogeneous source units. Intuitively, we would expect that identifying 

uninhabited areas within those source units would improve the accuracy of the allocation. Improvements in population model 

performance by adding variables for uninhabited areas were demonstrated by others (Y. Fang & Jawitz, 2018). Many of the 360 

widely used models rely on multiple ancillary data layers to allocate population while acknowledging input data are often 

limited because of temporal constraints and necessity to cover large extents(Leyk et al., 2019). With a decrease in RMSE and 

MAE for every CONUS state after identifying additional uninhabited areas, we have shown that with suitable, nationally 

consistent data improvements in population density estimates can be realized on regional, state, and country scales at a high 

spatial resolution.  365 

The representative population densities determined from IDM (Fig. 1) intuitively make sense. The four developed land cover 

classes were consistently orders of magnitude higher than all other land cover classes for all states. The densities were higher 

for “Developed, Low Intensity” compared to “Developed, Open Space” and were almost always higher for “Developed, 

Medium Intensity” compared to “Developed, Low Intensity”. The “Developed, High Intensity” land cover class was, however, 

often lower than the medium intensity class likely due to the influence of highly developed and lightly populated industrial 370 

and commercial areas.  
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IDM’s accuracy seems to be dependent on the spatial distribution of the population. States with the lowest NRMSE such as 

Connecticut and New Jersey tend to have larger urban areas with higher population counts well distributed throughout the 

state. This trend is likely from these states having a higher number of homogenous blocks from across the state identified as 

representative blocks. Conversely, states with the highest NRMSE such as North Dakota and Wyoming tend to be characterized 375 

by small population centers surrounded by large sparsely populated lands (Fig. 5). These states tend to have fewer, less evenly 

distributed blocks eligible to be representative blocks. The same pattern seems to be repeated for counties. A given state’s 

IDM representative population densities perform better in counties with a dispersed distribution of high population throughout 

the county rather than a stark difference between high population centers and surrounding sparsely populated areas. For 

example, some of the counties with the highest NRMSE in central and western Montana are characterized by low population 380 

blocks throughout the county with small concentrations of higher population blocks (Fig. 5). Furthermore, the counties in 

Michigan’s upper peninsula with fewer urban areas tend to have higher NRMSE than the counties in the south with more 

distributed urban areas (Fig. 5).  

5.2 Uncertainty and Limitations 

The decision to substitute the representative population density of shrub/scrub in Connecticut with a national average illustrates 385 

the importance of reviewing the output of IDM. Indeed, we would not expect shrub/scrub to be the most densely populated 

land cover class within Connecticut, and the estimated density is clearly an outlier when compared to other state’s values for 

that same land cover class. While there are other values in our final estimates (Fig. 1) that may warrant additional attention, 

we believed this particular representative population density was so far outside the range of the other states we needed to 

consider an alternative value. It is imperative to review the results for logical consistency and consider modifications based on 390 

local knowledge before accepting the results.  

Data for our uninhabited areas have a wide temporal range due to the varying frequency at which they are updated. For 

example, OSM data reflect the most recent edits made by contributers while the NLCD roads and energy development are 

from 2011. Although our population estimates are from the 2010 decennial census, the uninhabited areas are not restricted to 

2010. There might be additional uninhabited areas since 2010. Furthermore, the rules applied to filter and refine uninhabited 395 

areas were determined for a national allocation of population. The EnviroAtlas IDM toolbox for ArcGIS Pro 

(https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro) or open source GIS (https://github.com/USEPA/Dasymetric-

Toolbox-OpenSource) can be used to refine population estimates if more detailed local or regional data for uninhabited areas 

are available. It is important to note that the accuracy of the population estimates is dependent on the accuracy of the input 

data. Some sources of uncertainty are the accuracy of the NLCD classification, the census block boundaries, and the boundaries 400 

and labels of various OSM, PAD-US, and NAVSTREETS layers.  
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5.3 Conclusion 

In this study, we updated the existing dasymetric population map by EPA’s EnviroAtlas by using additional geospatial datasets 

to expand the coverage of uninhabited areas. We used IDM developed by Mennis and Hultgren (2006) to estimate gridded 30 

m population density for CONUS. The improved identification and masking of uninhabited areas improved the accuracy of 405 

population estimates for all CONUS states. Our accuracy assessment method showed that the IDM method was better at 

mirroring the Census block population counts of states with larger urban areas and smaller areas of sparsely populated land. 

Future development of the dasymetric population map might benefit from stratified sampling for urban and non-urban areas 

conducted on a regional basis rather than by state. The state-level and county-level error maps from this study can serve as 

guidance on potential regions with similar population dynamics. The datasets and methods described here will be used to 410 

update the dasymetric population estimates for the CONUS once 2020 land cover and census data are available. Furthermore, 

the updated IDM toolbox will be used to specify uninhabited areas and to produce gridded population estimates for Alaska, 

Hawaii, Puerto Rico, and the Virgin Islands. The dasymetric population map and the IDM toolbox will be available in 

EnviroAtlas. 

6 Code and Data Availability 415 

The Dasymetric Toolbox for ArcGIS Pro (https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro) and Dasymetric 

Toolbox for Open Source GIS (https://github.com/USEPA/Dasymetric-Toolbox-OpenSource) are available on US EPA’s 

GitHub page. The updated EnviroAtlas dasymetric population map at 30 m resolution for the CONUS is available via EPA’s 

Environmental Dataset Gateway (Baynes et al., 2021; https://doi.org/10.23719/1522948). Data can also be accessed or viewed 

from EPA’s EnviroAtlas (https://www.epa.gov/enviroatlas). Dasymetric population estimates for US States and Territories 420 

outside CONUS are in progress. Updates for all US States and Territories for the 2020 US Census are planned and will be 

available on EPA’s EnviroAtlas.  
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