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Abstract. Population change impacts almost every aspect of global change from land use, to greenhouse gas emissions, to 10 

biodiversity conservation, to the spread of disease. Data on spatial patterns of population density help us understand patterns 

and drivers of human settlement and can help us quantify the exposure we face to natural disasters, pollution, and infectious 

disease. Human populations are typically recorded by national or regional units that can vary in shape and size. Using these 

irregularly sized units and ancillary data related to population dynamics, we can produce high resolution, gridded estimates of 

population density through intelligent dasymetric mapping (IDM). The gridded population density provides a more detailed 15 

estimate of how the population is distributed within larger units. Furthermore, we can refine our estimates of population density 

by specifying uninhabited areas which have impacts on the analysis of population density such as our estimates of human 

exposure. In this study, we used various geospatial datasets to expand the existing specification of uninhabited areas within 

the United States (US) Environmental Protection Agency’s (EPA) EnviroAtlas Dasymetric Population Map for conterminous 

United States (CONUS). When compared to the existing definition of uninhabited areas for the EnviroAtlas Dasymetric 20 

Population Map, we found that IDM’s population estimates for U.S Census Bureau blocks improved across all states in 

CONUS. We found that IDM performed better in states with larger urban areas than in states that are sparsely populated. We 

also updated the existing EnviroAtlas Intelligent Dasymetric Mapping toolbox and expanded its capabilities to accept 

uninhabited areas. The updated 30 m population density for the CONUS is available via EPA’s Environmental Dataset 

Gateway (Baynes et al., 2021 ); https://doi.org/10.23719/1522948) and EPA’s EnviroAtlas (https://www.epa.gov/enviroatlas). 25 

1. Introduction 

Population density is a critical variable for understanding human-environment relationships. It has been recognized as an 

essential societal variable for studying human interactions with the environment and it is crucial for quantifying human 

exposure to natural hazards. Data on population density have facilitated global mapping of the changing human footprint on 

Earth’s terrestrial surface (Venter et al., 2016). The drivers and patterns of human settlement and population growth are a key 30 

part of understanding this expanding human footprint. Population density data allow researchers to investigate the spatio-
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temporal patterns of human settlement, monitor changes in those patterns, and investigate how urban areas expand (Fang et 

al., 2018;Wei et al., 2017;Fang and Jawitz, 2019;Taubenböck et al., 2019). Furthermore, population density maps have allowed 

researchers to identify natural drivers of population density such as elevation, temperature, and precipitation (Liu et al., 

2019;Samson et al., 2011). Population density data offer insights about the impact of human settlement and the risks and 35 

exposure people face from the environment. Population density has been used to assess the impacts of human activity on coral 

reefs (Bellwood et al., 2012;Cinner et al., 2013;Morais et al., 2019). Considerable work has used population density data to 

quantify human exposure and vulnerability to natural disasters and pollution (Smith et al., 2019;Nicholls and Small, 

2002;Carroll et al., 1997;Samoli et al., 2019;Nahayo et al., 2019;Nasiri et al., 2018;Yuan et al., 2019). For example, population 

data has been used to quantify U.S population exposure to fine particles as a part of reporting the costs and benefits of the 40 

Clean Air Act Amendments of 1990 (U.S. Environmental Protection Agency, 2011). In Vietnam, researchers identified critical 

values of population density where the risk of dengue fever is high (Schmidt et al., 2011). Globally, population density was 

found to be a significant driver of the origins of emerging infectious diseases from 1940 – 2004 (Jones et al., 2008).  

In the United States (US), estimating population density usually involves distributing population counts collected within source 

units such as blocks, or block groups delineated by the U.S. Census Bureau. The Census Bureau, like many other organizations, 45 

relies on censuses and surveys to allocate people to source units. Population density is often simply estimated as the population 

count divided by the area for each source unit. However, the population recorded in these units can be disaggregated to provide 

estimates of how the population within source units is distributed. This disaggregation is important when source units are large, 

varying in shapes and sizes, or the population within the source units is not evenly distributed (Leyk et al., 2019). Various 

techniques have been used to allocate population counts from source units to estimate population density. Pycnophylactic 50 

interpolation estimates population density within source units using a grid of equal-sized cells (Tobler, 1979). The 

pycnophylactic property of this method ensures that the counts from each source unit are maintained in the process and that 

population is not lost nor displaced beyond the source unit within which it was recorded (Tobler, 1979). Source units can be 

divided up into smaller target units of homogenous population density. For example, target units can be determined by the 

spatial intersection between census blocks and land cover classes. In this example, a target unit consists of the area of a land 55 

cover class inside a census block. Areal weighting distributes the population of source units to target units by the proportion 

of the area of the target unit inside the source unit (Goodchild and Lam, 1980). This method maintains the counts of the source 

units as suggested by Tobler (1979). However, the only determinant of population density is the area of a target unit inside a 

source unit. This is problematic where area might not be the best indicator of population dynamics. For example, in a source 

unit that is largely covered by a wildlife refuge and minimally covered by urban land use, the proportion of the source unit’s 60 

population that resides in urban land use should, in reality, be greater than that in the wildlife refuge.  

Dasymetric allocation of population can incorporate the population dynamics that are to be expected within source units in 

order to estimate population density. Dobson et al. (2000) used coefficients calculated by weighted combinations of factors 
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that influence human populations to estimate population density from aggregate population counts. Other methods have used 

the Random Forest algorithm to predict population density at fine scales using aggregate population counts and aggregated 65 

fine-scale covariates that are related to population density (Sorichetta et al., 2015;Stevens et al., 2015). Researchers have 

modeled gridded population density from small area sampling of population counts rather than using a national census (Weber 

et al., 2018). To improve estimates, various dasymetric population mapping methods have used land use/land cover, climatic 

and topographic variables such as temperature, precipitation, elevation, and slope, and socio-economic variables such as 

nighttime lights, roads, and points of interest related to human activity (Karunarathne and Lee, 2019;Lloyd et al., 2019;Ye et 70 

al., 2019). Dmowska and Stepinski (2017) used dasymetric modeling with a hybrid land cover and land use map to produce a 

U.S.-wide grid of population density at 30 m resolution. Their effort estimated land cover densities using nation-wide sampling 

of homogeneous Census Blocks but left open the possibility that local sampling from smaller spatial extents could improve 

results. Mennis and Hultgren (2006) developed an Intelligent Dasymetric Mapping (IDM) technique that estimates population 

density by determining class-specific representative population densities from an ancillary raster containing classes that are 75 

indicative of population dynamics. IDM relies on a limited number of required input datasets, an ancillary raster and population 

source units. This makes IDM an appealing method over other promising, but more complex, methods (e.g., machine learning) 

because of its usability among broad audiences and applicability at various locations and scales. In 2016, IDM was used to 

develop a dasymetric population map of the conterminous US (CONUS) by the Environmental Protection Agency’s (EPA) 

Office of Research and Development. The map was developed for EnviroAtlas, an online collection of interactive tools and 80 

resources that provides data, research, and analysis on the relationships between nature, people, health, and the economy 

(Pickard et al., 2015). Census block counts for 2010 were disaggregated to 30 m grid cells using the 2011 National Land Cover 

Database (NLCD) as the ancillary raster. The identification of uninhabited areas and not allocating people to those areas can 

further refine population density to areas where humans are more likely to settle. This refinement has a marked impact on the 

accuracy of estimates of population density (Fang and Jawitz, 2018;Smith et al., 2019;Leyk et al., 2019).  85 

Uninhabited areas in the 2016 EnviroAtlas dasymetric population map effort were identified as the open water, perennial 

ice/snow, and emergent herbaceous wetlands land cover classes along with areas that have a slope greater than 25%. In this 

study, we updated the pre-existing EnviroAtlas dasymetric population map for the CONUS by incorporating additional 

geospatial data sets to expand areas identified as uninhabited. We then conducted an assessment to test the validity of our 

methods and measure any improvement in population density mapping associated with our effort. While updating the 90 

EnviroAtlas dasymetric population map, we also updated the EnviroAtlas IDM toolbox, a toolbox originally developed for 

ESRI ArcMap 10.3 that allows users to create dasymetric population maps of their own study areas. The updated methodology 

has been implemented as a toolbox for ArcGIS Pro and a standalone Python tool that relies on open source libraries. We 

expanded the IDM toolbox’s capabilities to accept additional uninhabited areas from users.  

 95 
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2. Data 

We updated the existing population density map for CONUS using data that were nationally consistent and complete, fit for 

purpose, freely available or available under existing license, and relevant to human land use. Table 1 presents the data sets and 

layers that were used to update the dasymetric population map. 

 100 

Table 1. Datasets used for updating the EnviroAtlas dasymetric population map. IDM uses in bold were used in the 2016 EnviroAtlas 

dasymetric population map. (m/u: possible mixed-use feature) 

Source 
Dataset / Version / 

Format / Data Type 
Data Name IDM use 

U.S. Census Bureau 

Census blocks  

Vintage, 2010  

TIGER/Line ESRI 

Shapefile  

Vector - Polygon 

Census blocks with population and 

housing counts 
Source units 

Multi-Resolution Land 

Characteristics Consortium/ 

National Land Cover 

Database 

2011 Land Cover 

Version 2 (2016) 

ERDAS Imagine 

Raster - 30 m 

Developed, Open Space Ancillary Class 

Developed, Low Intensity Ancillary Class 

Developed, Medium Intensity Ancillary Class 

Developed, High Intensity Ancillary Class 

Barren Land (Rock/Sand/Clay) Ancillary Class 

Evergreen Forest Ancillary Class 

Mixed Forest Ancillary Class 

Shrub/Scrub Ancillary Class 

Grassland/Herbaceous Ancillary Class 

Pasture/Hay Ancillary Class 

Cultivated Crops Ancillary Class 

Woody Wetlands Ancillary Class 

Emergent Herbaceous Wetlands Ancillary Class 

Perennial Ice/Snow Ancillary Class 

Open Water Ancillary Class 

Developed 

Imperviousness 

Descriptor 

2016 Edition, 2011 

ERDAS Imagine 

Raster - 30 m 

Primary road in urban area Uninhabited Area 

Primary road outside urban area Uninhabited Area 

Energy production site in urban area Uninhabited Area 

Energy production site outside urban 

area 
Uninhabited Area 

HERE/ NAVSTREETS  

Land Use A 

9,0, 2017 

ESRI Geodatabase 

Vector - Polygon 

Shopping center Uninhabited Feature (m/u) 

Industrial complex Uninhabited Feature (m/u) 

Cemetery Uninhabited Feature 

Land Use B 

9,0, 2017 

ESRI Geodatabase 

Vector - Polygon 

Aircraft roads Uninhabited Feature 

Retail Uninhabited Feature (m/u) 
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OpenStreetMap Foundation 

(OSMF) & Contributors 

Land use 

2019 

ESRI Shapefile 

Vector - Polygon 

Commercial Uninhabited Feature (m/u) 

Mall Uninhabited Feature (m/u) 

Industrial   Uninhabited Feature (m/u) 

Places of interest 

2019 

ESRI Shapefile 

Vector - Polygon 

Supermarket Uninhabited Feature (m/u) 

School Uninhabited Feature 

North American Rail Network 

Rail network 

2019 

ESRI Shapefile 

Vector - Line 

Rail network Uninhabited Feature 

CoreLogic 

Residential parcels 

2018 

ESRI Geodatabase 

Vector - Polygon 

Residential parcels Inhabited Feature 

U.S. Geological Survey Gap 

Analysis Project/ Protected 

Areas Database of the U.S.  

Combined Protected 

Areas: Proclamation, 

marine, fee, 

designation, 

easement 

2.0, 2018 

ESRI Geodatabase 

Vector - Polygon 

Local park Uninhabited Feature 

State park Uninhabited Feature 

State forest Uninhabited Feature 

National wildlife refuge Uninhabited Feature 

National forest Uninhabited Feature 

National park Uninhabited Feature 

National lakeshore/seashore Uninhabited Feature 

National grassland Uninhabited Feature 

U.S. Geological Survey 

2012 

Raster - 30 m 

(projected to match 

NLCD) 

National Elevation Dataset 
> 25% slope = Uninhabited 

Area 

 

2.1 Boundaries 

The TIGER/Line shapefiles from the United States Census Bureau provided state boundaries along with their Federal 105 

Information Processing Series (FIPS) codes (U.S. Census Bureau, 2012). The boundaries for statistical entities from the U.S. 

Census Bureau are organized hierarchically from census blocks within block groups which are contained within census tracts 

within the counties of a state (U.S. Census Bureau, 2012). We used a special release shapefile of the 2010 TIGER/Line census 

blocks that included the population and housing counts from the 2010 decennial census carried out by the U. S. Census Bureau 

(U.S. Census Bureau, 2012). The shapefile also includes the state FIPS code, county FIPS code, the census tract code, and the 110 

census tabulation block number for each block (U.S. Census Bureau, 2012).  

2.2 Land Cover 

The 30 m, 2011 land cover classification from the 2016 NLCD (i.e., NLCD2016 2011) was used as the ancillary raster (Yang 

et al., 2018;Homer et al., 2020). Yang et al. used a leaf-on Landsat image as the base image for the 2011 NLCD classification. 

Pixels with cloud, shade, and other anomalies in the base Landsat image were filled using leaf-on or leaf-off Landsat images 115 
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within two years of the base image (Yang et al., 2018). The NLCD classification was carried out using a decision-tree classifier 

with the Landsat image and ancillary data (Yang et al., 2018). The overall users accuracy for NLCD2016 2011 is 86.8% 

(Wickham et al., 2021) 

2.3 Land Use 

In order to identify uninhabited areas, we used several publicly available and proprietary datasets from the OpenStreetMap 120 

Foundation & Contributors (OSM), NAVSTREETS, CoreLogic, the Protected Areas Database of the U.S. (PAD-US), the 

North American Rail Network (NARN), NLCD, and the National Elevation Dataset (NED)(U.S. Geological 

Survey;OpenStreetMap contributors, 2019;CoreLogic, 2018;HERE, 2017;U.S. Geological Survey, 1999;Yang et al., 2018). 

From these data, we used several vector features and rasters related to built structures, zoning, topography, and protected areas. 

Volunteers contribute and maintain geospatial data about roads, rail roads, built structures, land use, parks, and various other 125 

categories for OSM (OpenStreetMap contributors, 2019). NAVSTREETS provides boundaries for built structures and land 

use and CoreLogic provides boundaries for residential and non-residential parcels (CoreLogic, 2018;HERE, 2017). PAD-US 

is produced by the United States Geological Survey (USGS) Gap Analysis Program and provides nation-wide spatial data 

outlining the boundaries of protected open space held by national, state, and regional/local governments, and non-profit 

conservation organizations (U.S. Geological Survey, 2018;Gergely and McKerrow, 2016). NARN is managed by the Federal 130 

Railroad Administration and is a comprehensive database of the US railway system (Federal Railroad Administration, 2019). 

NLCD includes a Developed Impervious Descriptor product that classifies the NLCD’s percent impervious product into types 

of roads and energy production (Yang et al., 2018). The impervious product was developed by MRLC using regression tree 

models with Landsat imagery and training datasets generated from nighttime lights imagery (Yang et al., 2018). 

3 Methods 135 

3.1 Uninhabited features 

Uninhabited features were identified and prepared for each CONUS state and Washington D.C. The goal of this step was to 

produce a single layer of uninhabited features for each state that would be used to reclassify NLCD pixels to a new uninhabited 

land cover class. From NAVSTREETS, we identified shopping centers, industrial complexes, cemeteries, aircraft roads, and 

rail roads as uninhabited. A 30 m buffer was created around aircraft road centerlines and a 15 m buffer was created around 140 

railroad centerlines to ensure that all line features were converted to raster. Because we could find no existing railyard polygon 

data, railyard polygons were derived from railroad lines in NARN. We approximated railyard extents by applying a 500 m 

buffer around all rail line features with “YARDS’ in the name field and then dissolving the resulting polygons into one feature. 

We then applied a negative 480 m buffer to the results of the 500 m buffer to ensure we were not capturing areas outside the 

extent of the rail lines. These areas were identified as uninhabited. From OSM we identified retail, commercial land use, malls, 145 

industrial complexes, supermarkets, and schools as uninhabited (Table 1). Additionally, we designated local parks, state parks, 

state forests, national wildlife refuges, national forests, national parks, national lake shore or seashore, and national grasslands 

from PAD-US as uninhabited (Table 1).  
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The possibility of housing within the areas we identified as uninhabited warranted additional attention before marking the 

entire area as uninhabited. For example, national forests have experienced an estimated housing growth of about 940,000 units 150 

between 1940 and 2000 within their boundaries (Radeloff et al., 2010). In order to allocate potential population within areas 

identified as uninhabited, we removed (i.e., spatially clipped) areas covered by residential parcels within all uninhabited 

features listed in Table 1. We used the residential parcels from the area parcel feature class from CoreLogic (2018). Residential 

parcels in this dataset included typical single-family residences; however, multi-family dwellings including apartment 

complexes, urban mixed-use, and retirement communities were often considered commercial properties. We found no 155 

consistent method to isolate these multi-family inhabited land-use parcels from other uninhabited commercial parcels; 

therefore, we could not identify all commercial parcels as uninhabited.  

Mixed-use zones may contain census blocks with a mix of retail, commercial, civic, business, industrial, and residential land 

uses (Moos et al., 2018;Song and Knaap, 2004). Several of the land use types we identified as uninhabited can exist in mixed 

use zoning and thus potentially be inhabited. From OSM and NAVSTREETS, we labeled shopping centers, industrial 160 

complexes, malls, and supermarkets along with retail and commercial land uses as areas we initially identified as uninhabited 

that can be found in mixed-use zoning (Table 1). If the combined area of these features covered greater than 90% of the entire 

census block area, that block was labeled as mixed-use and those features within that block were excluded from our uninhabited 

features.  

Furthermore, if the combined area of features we identified as uninhabited covered more than 99% of a census block, all 165 

features within that block were excluded from our uninhabited features. This way, if a census block was covered almost entirely 

by uninhabited features, any population recorded in that block would not be lost. Uninhabited vector features remaining after 

excluding residential parcels, mixed-use features, and features that covered more than 99% of a block were projected to Albers 

Conical Equal Area projection and used as the uninhabited features for IDM (Fig 1a). The updated IDM toolbox reclassifies 

ancillary raster pixels that coincide with uninhabited features to a new uninhabited ancillary class. 170 
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Figure 1. Data preparation workflow for uninhabited features (a), ancillary raster (b), and source units (c) for IDM processing. 

3.2 Ancillary Raster 

NLCD2016 2011 was the basis for the ancillary raster. We retained the only non-land cover attribute for identifying 

uninhabited areas from the 2016 EnviroAtlas dasymetric population map; areas with a slope of greater than 25 % were 175 

considered uninhabited. The percent slope was calculated from the National Elevation Dataset using GDAL (GDAL/OGR 

contributors, 2019). In addition to slope, we used other gridded datasets to mask uninhabited areas. Land cover pixels that 

coincided with uninhabited area pixels from Table 1 (i.e., primary roads and energy production classes from the Developed 

Imperviousness Descriptor, or a slope of greater than 25%) were reclassified to a new uninhabited land cover class. This 

reclassified NLCD classification was used as the ancillary raster for IDM (Fig 1b). 180 

3.3 Source Units 

The U.S. Census Bureau blocks with associated population counts from the 2010 decennial census were used as source units 

for IDM. The IDM toolbox converts source units into a raster that matches the spatial resolution and extent of the input ancillary 

dataset. Small or irregularly shaped source units that do not coincide with the center of a pixel at the ancillary dataset resolution 

will not be represented in the derived raster and the population in that unit will not be included in the estimate of population 185 
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density. To account for the population in these blocks, we identified any populated census block that would not be represented 

in a 30 x 30 m pixel. These blocks were spatially merged and had their population added to the neighbouring block that met 

all the following criteria: 

1. had the longest shared border. 

2. was in the same census tract.  190 

3. had a population greater than zero.  

If no neighbouring block in the same census tract had population, then criteria 3 was dropped. This allowed us to account for 

population in these small blocks while not displacing the population outside of the census tract and limiting displacing 

population into unpopulated blocks. Census blocks were projected to Albers Conical Equal Area projection to match the 

NLCD. This modification of the 2010 census blocks was used as the source units for IDM (Fig 1c). 195 

3.4 Intelligent Dasymetric Mapping  

The IDM method from Mennis and Hultgren (2006) was used to estimate the population density (people per pixel). The 

modified 2010 U.S. Census Bureau blocks with associated population were used as source units and the NLCD reclassified to 

incorporate uninhabited areas was used as the ancillary raster. The target units were created by the spatial intersection between 

NLCD classes and U.S. Census Bureau blocks. Therefore, each target unit consists of the area of an NLCD class inside a block. 200 

A homogenous gridded population density (30 x 30 m) was estimated for each target unit inside the census blocks. 

In order to estimate the population density for the target units, a representative population density was estimated for each land 

cover class from NLCD for each state. The representative population density of a land cover class is the number of people per 

pixel that were expected to reside in that land cover class throughout the state. IDM offers three ways to estimate the 

representative population density for an ancillary class. First, a representative population density can be set for an ancillary 205 

class from expert or domain knowledge or previous research. In line with the 2016 specification of uninhabited areas, the 

representative population density for the following land cover classes from NLCD was preset to zero people/pixel: open water, 

perennial ice/snow, and emergent herbaceous wetlands. Since we added an additional “uninhabited” class to the NLCD 

classification, we also set the preset density for this class to zero people/pixel. Second, the representative population density 

for an ancillary class can be sampled from source units that are considered representative of that ancillary class. The IDM 210 

toolboxes we developed allow users to set sampling eligibility thresholds. For this effort we determined that a representative 

block, b, for a sampled land cover class, s, met the following criteria: 

1. Ninety five percent of the area of the source unit b was covered by land cover class s. 

2. The area of source unit b was greater than 900 m2 (1 pixel). 
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At least three representative census blocks were required for a land cover class to be considered sampled. After collecting all 215 

the representative blocks for a sampled land cover class, the representative population density for the class was estimated as 

(Mennis and Hultgren, 2006):  

𝐷𝑠̂ =∑𝑦𝑏/∑𝐴𝑏

𝑚

𝑏=1

𝑚

𝑏=1

 (1) 

where:  

𝐷𝑠̂   = the representative population density of sampled land cover class s 

𝑦𝑏  = the population count of census block b 220 

𝐴𝑏 = the area of census block b 

𝑚 = the number of representative blocks for class s  

Since the entire area of the block is used to distribute population counts in Eq. (1), only using blocks where 95% of the area is 

covered by the sampled land cover class ensures that the representative population density estimated for the class is based on 

homogenous blocks. Lastly, intelligent areal weighting (IAW) was used to calculate the representative population density for 225 

all land cover classes within each state where insufficient representative blocks were found and no representative population 

density was preset. By this point, a representative population density had been determined by either a sampled or preset 

representative population density for land cover class k (i.e., {𝑘 ∈ 𝐶 | 𝑘 ∈ (𝑃 ∪ 𝑆)} where C is the set of all ancillary classes, 

P is the set of all preset ancillary classes, and S is the set of all sampled ancillary classes). IAW calculates the remaining 

population counts for each source unit after sampled and preset representative population densities have determined a 230 

population estimate for target units in the source unit when possible (Mennis and Hultgren, 2006): 

𝐺𝑏 = 𝑦𝑏 − ∑ 𝐷𝑘̂
𝑡(𝑘)∈𝑏

𝐴𝑡(𝑘) (2) 

where: 

𝐺𝑏 = the remaining census population count for block b 

𝐷𝑘̂ = the representative population density of land cover class k 

𝐴𝑡(𝑘) = the area of the target unit associated with land cover class k in census block b  235 



11 

 

After calculating the remaining population for each block, an initial population was allocated to a given block’s target units 

associated with land cover class i that had not been determined by either a sampled or preset representative population density 

(i.e., { 𝑖 ∈ 𝐶 | 𝑖 ∉ (𝑃 ∪ 𝑆)}). IAW uses areal weighting to distribute the remaining census counts to the remaining target units 

(Mennis and Hultgren, 2006): 

𝑦̂𝑡(𝑖) = {

0, 𝑖𝑓 𝐺𝑏 < 0

𝐺𝑏(𝐴𝑡(𝑖)/ ∑ 𝐴𝑡(𝑖))

𝑡(𝑖)∈𝑏

, 𝑖𝑓 𝐺𝑏 ≥ 0  (3) 

where: 240 

𝑦̂𝑡(𝑖) = the initial estimated population count for the target unit associated with land cover class i in block b 

𝐴𝑡(𝑖) = the area of the target unit associated with land cover class i in block b 

Equation (3) differs slightly from the methods of Mennis and Hultgren in that here an initial population of zero was allocated 

to unsampled land cover classes if the total population estimated for sampled or preset classes in the block exceeded the census 

count for the block. Although not explicitly stated in Mennis and Hultgren, this was implied as it avoids negative population 245 

estimates attributed to target units. After the initial population counts were estimated for each target unit associated with land 

cover class i, the representative population density of land cover class i was determined as (Mennis and Hultgren, 2006): 

𝐷𝑖̂ = ∑ 𝑦̂𝑡(𝑖)

𝑝

𝑡(𝑖)=1

 / ∑ 𝐴𝑡(𝑖)

𝑝

𝑡(𝑖)=1

 (4) 

where: 

𝐷𝑖̂ = the representative population density of land cover class i 

𝑝 = the number of target units in the study area that are associated with land cover class i 250 

After the representative population density for each land cover class was determined using either a preset density, sampling 

(Eq. (1)), or IAW (Eq. (4)), the final population estimate for target unit t which consists of the area of a land cover class c (i.e., 

{ 𝑐 ∈ 𝐶 }) inside block b was calculated as (Mennis and Hultgren, 2006): 



12 

 

𝑦̂𝑡 =

{
 
 

 
 𝑦𝑏 (𝐴𝑡/∑𝐴𝑡

𝑛

𝑡=1

) , 𝑖𝑓 ∑𝐷𝑐(𝑡)̂

𝑛

𝑡=1

= 0

𝑦𝑏 (𝐴𝑡𝐷𝑐(𝑡)̂/∑𝐴𝑡

𝑛

𝑡=1

𝐷𝑐(𝑡)̂) , 𝑖𝑓 ∑𝐷𝑐(𝑡)̂

𝑛

𝑡=1

> 0 

 (5) 

where: 

𝑦̂𝑡 = the population estimated for target unit t associated with land cover class c in block b 255 

𝑛 = the number of target units in block b 

𝐴𝑡 = the area of target unit t 

𝐷𝑐(𝑡)̂ = the representative population density of land cover class c associated with target unit t 

Equation (5) ensured that the population was not displaced beyond the block (Mennis and Hultgren, 2006). Equation (5) is 

also a slight deviation from Mennis and Hultgren in that area weighting would be used for population within a block made up 260 

entirely of land cover classes with representative population densities estimated at or preset to zero. Although rare, there were 

instances of populated Census blocks composed entirely of these land cover classes. This modification ensured any population 

within these blocks were not lost without giving weight to any specific land cover class. The final population density for a 

target unit t that is associated with ancillary class c and source unit b can be calculated as (Mennis and Hultgren, 2006):  

𝑑𝑡̂ = 𝑦𝑡̂/𝐴𝑡 (6) 

where: 265 

𝑑𝑡̂ = the population density (people / pixel) estimated for target unit t 

We chose to apply IDM using sub-national zones versus a national analysis. States were selected as zones because they are 

generally large enough to collect a suitable number of homogenous source units for sampling while being small enough to 

represent some of the heterogeneity in population density across the CONUS. The input blocks, uninhabited features, and land 

cover rasters were prepared for each CONUS state and Washington D.C. In order to increase the number of representative 270 

blocks, all data for Rhode Island were combined with neighbouring Massachusetts. Likewise, data for Washington D.C. were 

combined with Maryland. Representative population densities were determined for 17 land cover classes in 47 ‘states’ in the 

US for a total of 799 estimated densities (Fig. 2). Four land cover types were preset at zero for every state. Of the 611 unique 
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land cover type / state combinations that were not initially preset at zero, 596 were determined with sampling, 14 were 

determined using IAW, and one was preset (Fig. 2). In Connecticut, the representative population density for scrub/shrub was 275 

estimated at 3.4 using IAW. This would have resulted in shrub/scrub having the highest representative population density for 

any land cover type in the state and the estimate was over six standard deviations above the mean for that land cover type in 

all states. We chose to rerun IDM for Connecticut using the average representative density for scrub/shrub from all other states 

as a preset density. Population density was determined for each NLCD pixel within each state then joined to create a seamless 

30 m population density estimate for the CONUS (Fig. 3).  280 

 

Figure 2. Representative population densities determined using IDM. Note: The heatmap is scaled light blue to dark blue based on 

the sorted rank of densities for each state. 
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Figure 3. Population density estimated by Intelligent Dasymetric Mapping at 30 m spatial resolution for the conterminous United 285 
States and areas around (a) Santa Clara County, CA, (b) Natrona and Converse Counties, WY, (c) Concho County, TX, (d) 

metropolitan Chicago, IL, (e) Durham County, NC, and (f) metropolitan New York City, NY.  

3.4 Assessment 

The method we described above results in census block estimates equal to the census block numbers reported by the US Census 

Bureau; therefore, there is no cumulative error at the block level. To assess the validity and accuracy of our representative 290 
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population density estimates, we applied IDM on a larger source unit (i.e., census tract) using densities that we determined 

from the smaller source unit (i.e., census block). In other words, we disaggregated the recorded population for the census tract 

using block-level representative population densities (Fig. 4). We concatenated the state FIPS code, the county FIPS code, and 

the tract code to aggregate the census blocks by tract. The census population count for each tract was calculated by summing 

the census population count from all the blocks inside each tract. An IDM population estimate for each block was then 295 

calculated by summing the per-pixel population densities estimated by using tracts as source units. 

 

Figure 4. A simulated illustration of six Census blocks and associated population within a single Census tract (a, d). This tract has 

two land cover types, A and B, with representative population densities estimated at 5.0 and 0.2 respectively and an uninhabited 

feature that is new to the updated specification of uninhabited areas. Block level errors are provided adjacent to each block. Because 300 
our method has no cumulative error at the block level (b,e) we assessed our representative population densities by applying the 

densities at the tract level (i.e., no cumulative error at the tract level) with the updated specification of uninhabited areas (c) and the 

2016 specification of uninhabited areas (f). In this illustration the tract has a MAE of 40.6 with the 2016 specification of uninhabited 

areas (f) and 11.3 with updated specification of uninhabited areas (c). Note: for illustrative purposes in this figure, we used the same 

representative population density estimates for both updated (a-c) and 2016 (d-f) specifications. In practice the representative 305 
population density estimates for the updated and 2016 specifications were determined independently and most likely would have 

been different. 

Mean absolute error (MAE) and root mean square error (RMSE) were calculated to assess the error between the estimated 

block population and the recorded block population. RMSE was normalized by the mean block population within the summary 

unit (i.e., state or county) to facilitate comparison between summary units (NRMSE). These metrics were calculated for each 310 

state and county in CONUS. Additionally, these metrics were calculated for the CONUS to compare model and zone 

performance and to facilitate comparison with other dasymetric population mapping efforts. The metrics were calculated as: 
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𝑀𝐴𝐸𝑠 = 
∑ |𝑦𝑏 − 𝑦̂𝑏|
𝑛
𝑏=1

𝑛
  (7) 

𝑅𝑀𝑆𝐸𝑠 = √
∑ (𝑦𝑏 − 𝑦̂𝑏)

2𝑛
𝑏=1

𝑛
 

(8) 

𝑁𝑅𝑀𝑆𝐸𝑠 = 
𝑅𝑀𝑆𝐸𝑠
𝑦
𝑠

 
(9) 

where: 

𝑦𝑏  = the census population count for block b 

 𝑦̂𝑏 = the estimated population for block b 315 

𝑠 = the unit for which census block errors are summarized. We used state , county, and CONUS. 

𝑦̅𝑠 = the mean census block population count for unit s 

𝑛 = the number of blocks in unit s 

We compared the RMSE and MAE between the 2016 specification of uninhabited areas and our updated specification by 

running IDM for all CONUS states using both specifications. The 2016 specification of uninhabited areas used a preset density 320 

of zero people/pixel for land cover classes open water, perennial ice/snow, and emergent herbaceous wetlands and included 

areas with a slope of greater than 25%.  

4 Results 

4.1 IDM Performance 

NRMSE ranged from 1.21 to 3.39 (Fig. 5;Table 2). The highest state NRMSE between census block population counts and 325 

IDM estimated block population counts are for North Dakota with an RMSE that is 3.39 times the mean census block 

population, Wyoming with an RMSE that is 2.91 times the mean census block population, and Montana with an RMSE that is 

2.60 times the mean census block population (Table 2). The lowest NRMSE between census block population counts and IDM 

estimated block population counts are for Connecticut with an RMSE that is 1.21 times the mean census block population, 

Michigan with an RMSE that is 1.36 times the mean census block population, and New Jersey with an RMSE that is 1.38 330 

times the mean census block population (Table 2). NRMSE was summarized by state and county (Fig. 6) highlighting areas 

with highest (tending towards less densely populated) and lowest values (tending towards more urban).  
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Figure 5. NRMSE between block population estimates and block population census counts calculated for CONUS states (left) and 

counties (right). Block population was estimated by running IDM with census tracts as source units and applying representative 335 
population densities estimated by IDM using census blocks as preset densities. 

 

Table 2. Census block average error by state after applying block level representative population densities for each ancillary class 

to census tracts and ensuring pycnophylactic integrity at the tract level. Change in error from the 2016 specification of uninhabited 

areas are in parenthesis.  340 

State RMSE NRMSE MAE 

AL 36.32  (-1.48) 1.86  (-0.08) 13.13  (-0.6) 

AR 33.21  (-0.92) 2.07  (-0.06) 11.50  (-0.35) 

AZ 52.18  (-2.88) 1.94  (-0.11) 15.84  (-1.02) 

CA 78.32  (-5.05) 1.47  (-0.09) 28.31  (-2.67) 

CO 44.50  (-2.84) 1.74  (-0.11) 15.46  (-1.29) 

CT 65.43  (-2.56) 1.21  (-0.05) 28.29  (-1.71) 

DC_MD 75.54  (-3.13) 1.73  (-0.07) 27.81  (-1.71) 

DE 64.97  (-4.45) 1.71  (-0.12) 25.09  (-1.97) 

FL 66.61  (-3.29) 1.68  (-0.08) 23.05  (-1.33) 

GA 59.00  (-4.44) 1.75  (-0.13) 20.58  (-1.65) 

IA 28.17  (-0.99) 1.97  (-0.07) 10.25  (-0.45) 

ID 23.80  (-1.46) 2.23  (-0.14) 7.51  (-0.46) 

IL 49.90  (-3.37) 1.72  (-0.12) 18.92  (-1.55) 

IN 41.92  (-1.74) 1.69  (-0.07) 15.62  (-0.86) 

KS 25.74  (-0.99) 2.11  (-0.08) 8.38  (-0.34) 

KY 43.22  (-3.17) 1.57  (-0.12) 16.54  (-1.17) 

LA 44.59  (-1.22) 1.96  (-0.05) 15.59  (-0.58) 

ME 36.80  (-1.56) 1.88  (-0.08) 13.10  (-0.48) 

MI 41.38  (-2.47) 1.36  (-0.08) 16.14  (-1.29) 

MN 36.80  (-1.87) 1.77  (-0.09) 13.05  (-0.83) 

MO 32.32  (-1.28) 1.80  (-0.07) 11.26  (-0.63) 

MS 39.11  (-0.98) 2.21  (-0.06) 13.08  (-0.58) 
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MT 19.66  (-1.68) 2.60  (-0.22) 6.08  (-0.49) 

NC 48.84  (-1.99) 1.46  (-0.06) 19.83  (-0.91) 

ND 17.27  (-0.76) 3.39  (-0.15) 4.61  (-0.23) 

NE 21.04  (-1.41) 2.18  (-0.15) 6.91  (-0.42) 

NH 46.90  (-1.81) 1.69  (-0.07) 17.33  (-0.91) 

NJ 73.17  (-7.85) 1.38  (-0.15) 29.52  (-3.72) 

NM 29.95  (-1.96) 2.41  (-0.16) 8.81  (-0.65) 

NV 64.16  (-2.33) 1.98  (-0.07) 18.42  (-1.07) 

NY 89.75  (-5.56) 1.60  (-0.1) 32.59  (-2.89) 

OH 48.09  (-2.6) 1.48  (-0.08) 17.89  (-1.42) 

OK 30.35  (-1.29) 2.12  (-0.09) 9.75  (-0.49) 

OR 36.90  (-2.57) 1.87  (-0.13) 11.75  (-0.88) 

PA 54.89  (-3.99) 1.79  (-0.13) 20.45  (-1.67) 

RI_MA 63.00  (-2.18) 1.46  (-0.05) 25.41  (-1.34) 

SC 44.46  (-1.93) 1.71  (-0.07) 16.53  (-0.81) 

SD 23.18  (-1.77) 2.49  (-0.19) 7.52  (-0.55) 

TN 44.51  (-1.99) 1.65  (-0.07) 16.63  (-0.81) 

TX 58.50  (-2.41) 2.08  (-0.09) 18.47  (-1.12) 

UT 41.00  (-3.08) 1.68  (-0.13) 13.38  (-1.27) 

VA 63.94  (-1.3) 2.24  (-0.05) 17.45  (-1.44) 

VT 34.48  (-3.03) 1.74  (-0.15) 11.83  (-1.04) 

WA 51.45  (-3.72) 1.47  (-0.11) 18.99  (-1.56) 

WI 36.56  (-3.27) 1.59  (-0.14) 13.61  (-1.53) 

WV 27.07  (-1.49) 1.91  (-0.11) 9.58  (-0.61) 

WY 19.35  (-1.47) 2.91  (-0.22) 5.79  (-0.46) 
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Figure 6. Census urban areas and county NRMSE between census block population count and the estimated block population 

count from IDM for some of the states with the lowest NRMSE: (a) Connecticut, (b) Michigan, and (c) New Jersey and highest 

NRMSE: (d) Montana, (e) Wyoming, and (f) North Dakota. 345 

 

 

4.2 Uninhabited areas 

The updated specification of uninhabited areas identified an additional 186,764,551 30 m pixels (~168,000 km2; an area 

slightly less than Washington State), as having zero population in comparison to the 2016 specification of uninhabited (Table 350 

3). Recalling that the nature of IDM does not allow for population to be displaced beyond the original source unit (i.e., census 

block), our updated definition reallocated approximately 9.56 million people from uninhabited areas to areas that are more 

likely to be inhabited (Table 3; Fig. 7). 

 

Table 3. Count of pixels with and without population using the 2016 specification of uninhabited and the updated specification of 355 
uninhabited. Note. Counts include pixels within zero population blocks. 

 Pixels with 

population = 0 

Pixels with 

population > 0 

Population in Updated 

Uninhabited 

2016 Dasymetric Map 4,338,376,834 4,641,477,058 9,564,807 

Updated Dasymetric Map 4,525,111,385 4,454,742,507 - 

Difference (186,734,551) 186,734,551  9,564,807 
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Figure 7. A census block near Sacramento, California with a cemetery (i.e., uninhabited feature) covering most of the block and 

residential housing along the eastern border (a). IDM results with the 2016 specification of uninhabited (b) have population 

throughout the block while IDM results with the updated specification of uninhabited (c) have zero population for the cemetery and 360 
denser population along the eastern border.  

RMSE and MAE improved for all states with the expansion of uninhabited areas (Table 2). RMSE improved by an average of 

2.46 persons per census block (σ = 1.37) and MAE improved by an average of 1.10 persons per census block (σ = 0.69) across 

all states. The most improved states were New Jersey and New York with a difference in RMSE of -7.85 and -5.56 and a 

difference in MAE of -3.72 and -2.89. Some of the least improved states were North Dakota and Arkansas with a difference 365 

in RMSE of -0.76 and -0.92 and a difference in MAE of -0.23 and -0.35 (Table 2). The expanded use of uninhabited areas 

improved overall RMSE for the CONUS when applying IDM both with nationally determined densities and with state level 

densities (Table 4). 

Table 4. Census block error for CONUS after applying block level representative population density for each ancillary class to 

census tracts and ensuring pycnophylactic integrity at the tract level. 370 

 RMSE NRMSE  MAE 

2016 uninhabited areas (nationally determined densities) 58.14 2.04 4.48 

Updated uninhabited areas (nationally determined densities) 55.31 1.95 4.34 

2016 uninhabited areas (state-by-state determined densities)  54.80 1.93 4.30 

Updated uninhabited areas (state-by-state determined densities) 51.93 1.83 4.15 

  

5 Discussion 

5.1 IDM Performance 

IDM is a useful method to allocate population within heterogeneous source units. Intuitively, we would expect that identifying 

uninhabited areas within those source units would improve the accuracy of the allocation. Improvements in population model 375 

performance by adding variables for uninhabited areas were demonstrated by others (Fang and Jawitz, 2018). Many of the 

widely used models rely on multiple ancillary data layers to allocate population while acknowledging input data are often 

limited because of temporal constraints and necessity to cover large extents (Leyk et al., 2019). With a decrease in RMSE and 
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MAE for every CONUS state after identifying additional uninhabited areas, we have shown that with suitable, nationally 

consistent data improvements in population density estimates can be realized on regional, state, and country scales at a high 380 

spatial resolution.  

Dasymetric mapping across an area as large and heterogenous as the CONUS benefited from the use of sub-national zones. 

Applying IDM on a state-by-state basis showed an improvement over using densities determined from a national analysis. A 

balance must be found in defining zones to ensure they are large enough to provide enough data to develop a useful model and 

small enough to maintain a suitable level of homogeneity within the zone. We attempted to further refine our product by using 385 

county-level 2013 United States Department of Agriculture Rural Urban Continuum Codes (RUCC) to create additional 

ancillary classes (U.S. Department of Agriculture, 2020). RUCC has nine classes but can be collapsed to official Office of 

Management and Budget metro and nonmetro county classification. We processed each state as described above but altered 

the ancillary raster so that the four NLCD developed classes within metro counties were given different values than the 

developed classes within nonmetro counties. This analysis did not show a significant difference in RMSE when compared to 390 

our state-by-state analysis. There may be a better scheme to highlight the differing population dynamics between rural and 

urban areas, but it would likely require more refined data than county-level. Dmowska and Stepinski (2017) used nationally 

determined densities but achieved lower error by taking advantage of a national land use map (Theobald, 2014) to identify 

uninhabited areas. We calculated a measure of error following the methods described in Dmowska and Stepinski and our error 

was comparable, but higher (43.17 mean block group RMSE versus 45.21 mean block group RMSE). However, the 395 

development of the Theobald land use map required a significant effort, and it is not clear whether those data will be available 

beyond 2010. The methods described here resulted in a comparable product using a variety of readily available and frequently 

updated data sources that can be appended as new sources become available or replaced entirely when more refined locally 

available data identifying uninhabited areas are available. The combination of identifying uninhabited areas along with the use 

of local or regional zones reduced RMSE and resulted in a more accurate dasymetric population product.   400 

The representative population densities determined from IDM (Fig. 2) intuitively make sense. The four developed land cover 

classes were consistently orders of magnitude higher than all other land cover classes for all states. The densities were higher 

for “Developed, Low Intensity” compared to “Developed, Open Space” and were almost always higher for “Developed, 

Medium Intensity” compared to “Developed, Low Intensity”. The “Developed, High Intensity” land cover class was, however, 

often lower than the medium intensity class likely due to the influence of highly developed and lightly populated industrial 405 

and commercial areas.  

IDM’s accuracy seems to be dependent on the spatial distribution of the population. States with the lowest NRMSE such as 

Connecticut and New Jersey tend to have larger urban areas with higher population counts well distributed throughout the 

state. This trend is likely from these states having a higher number of homogenous blocks from across the state identified as 

representative blocks. Conversely, states with the highest NRMSE such as North Dakota and Wyoming tend to be characterized 410 
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by small population centers surrounded by large sparsely populated lands (Fig. 6). These states tend to have fewer, less evenly 

distributed blocks eligible to be representative blocks. The same pattern seems to be repeated for counties. A given state’s 

IDM representative population densities perform better in counties with a dispersed distribution of high population throughout 

the county rather than a stark difference between high population centers and surrounding sparsely populated areas. For 

example, some of the counties with the highest NRMSE in central and western Montana are characterized by low population 415 

blocks throughout the county with small concentrations of higher population blocks (Fig. 6). Furthermore, the counties in 

Michigan’s upper peninsula with fewer urban areas tend to have higher NRMSE than the counties in the south with more 

distributed urban areas (Fig. 6).  

5.2 Uncertainty and Limitations 

Dasymetric modeling assumes a predictive relationship between ancillary data and a ground truth population surface, but, like 420 

any model, it only represents an approximation, with various sources of uncertainty. The core assumption is that population 

density is homogenous within ancillary classes, and many studies, including this one, put emphasis on refining those ancillary 

classes to make them more homogenous, or to allow for a degree of spatial autocorrelation in the heterogeneity of in-class 

density by using different estimates in different zones. As higher resolution ancillary data becomes more readily available, 

such efforts may face diminishing returns because a smaller spatial unit of measurement may have less sub-unit heterogeneity 425 

but more proportional uncertainty with regard to the population estimates (Azar et al., 2013;Nagle et al., 2014). Reducing 

uncertainty, therefore, is a matter of refining the fidelity between the ancillary data and the population density surface through 

a combination of automated and expert-guided techniques, often iteratively.  

The decision to substitute the representative population density of shrub/scrub in Connecticut with a national average illustrates 

the importance of reviewing the output of IDM. Indeed, we would not expect shrub/scrub to be the most densely populated 430 

land cover class within Connecticut, and the estimated density is clearly an outlier when compared to other state’s values for 

that same land cover class. While there are other values in our final estimates (Fig. 2) that may warrant additional attention, 

we believed this particular representative population density was so far outside the range of the other states we needed to 

consider an alternative value. It is imperative to review the results for logical consistency and consider modifications based on 

local knowledge before accepting the results.  435 

Data for our uninhabited areas have a wide temporal range due to the varying frequency at which they are updated. For 

example, OSM data reflect the most recent edits made by contributers while the NLCD roads and energy development are 

from 2011. Although our population estimates are from the 2010 decennial census, the uninhabited areas are not restricted to 

2010. There might be additional uninhabited areas since 2010. Furthermore, the rules applied to filter and refine uninhabited 

areas were determined for a national allocation of population. The EnviroAtlas IDM toolbox for ArcGIS Pro 440 

(https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro) or open source GIS (https://github.com/USEPA/Dasymetric-

Toolbox-OpenSource) can be used to refine population estimates if more detailed local or regional data for uninhabited areas 

https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro
https://github.com/USEPA/Dasymetric-Toolbox-OpenSource
https://github.com/USEPA/Dasymetric-Toolbox-OpenSource
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are available. It is important to note that the accuracy of the population estimates is dependent on the accuracy of the input 

data. Some sources of uncertainty are the accuracy of the NLCD classification, the census block boundaries, and the boundaries 

and labels of various OSM, PAD-US, and NAVSTREETS layers.  445 

5.3 Conclusion 

In this study, we updated the existing dasymetric population map by EPA’s EnviroAtlas by using additional geospatial datasets 

to expand the coverage of uninhabited areas. We used IDM developed by Mennis and Hultgren (2006) to estimate gridded 30 

m population density for CONUS. The improved identification and masking of uninhabited areas improved the accuracy of 

population estimates for all CONUS states. Our accuracy assessment method showed that the IDM method was better at 450 

mirroring the Census block population counts of states with larger urban areas and smaller areas of sparsely populated land. 

The datasets and methods described here will be used to update the dasymetric population estimates for the CONUS once 2020 

land cover and census data are available. Furthermore, the updated IDM toolbox will be used to specify uninhabited areas and 

to produce gridded population estimates for Alaska, Hawaii, Puerto Rico, and the Virgin Islands. The dasymetric population 

map and the IDM toolbox will be available in EnviroAtlas. 455 

6 Code and Data Availability 

The Dasymetric Toolbox for ArcGIS Pro (https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro) and Dasymetric 

Toolbox for Open Source GIS (https://github.com/USEPA/Dasymetric-Toolbox-OpenSource) are available on US EPA’s 

GitHub page. The updated EnviroAtlas dasymetric population map at 30 m resolution for the CONUS is available via EPA’s 

Environmental Dataset Gateway (Baynes et al., 2021; https://doi.org/10.23719/1522948). Data can also be accessed or viewed 460 

from EPA’s EnviroAtlas (https://www.epa.gov/enviroatlas). Dasymetric population estimates for US States and Territories 

outside CONUS are in progress. Updates for all US States and Territories for the 2020 US Census are planned and will be 

available on EPA’s EnviroAtlas.  
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