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Abstract 1 

Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes 2 

through time in the geological past. Existing global compilations are not geographically 3 

comprehensive and do not provide consistent metadata for all sites. Furthermore, the age 4 

models provided for these records are not harmonised and many are based on older calibrations 5 

of the radiocarbon ages. These issues limit the use of existing compilations for research into 6 

past fire regimes. Here, we present an expanded database of charcoal records, accompanied by 7 

new age models based on recalibration of radiocarbon ages using INTCAL2020 and Bayesian 8 

age-modelling software. We document the structure and contents of the database, the 9 

construction of the age models, and the quality control measures applied. We also record the 10 

expansion of geographical coverage relative to previous charcoal compilations and the 11 

expansion of metadata that can be used to inform analyses. This first version of the Reading 12 

Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database  13 

is available from  https://doi.org/10.17864/1947.000345.  14 
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1. Introduction 15 

Wildfires have major impacts on terrestrial ecosystems (Bond et al., 2005; Bowman et al., 16 

2016; He et al., 2019; Lasslop et al., 2020), the global carbon cycle (Li et al., 2014; Arora and 17 

Melton, 2018; Pellegrini et al., 2018; Lasslop et al., 2019), atmospheric chemistry (van der 18 

Werf et al., 2010; Voulgarakis and Field, 2015; Sokolik et al., 2019) and climate (Randerson 19 

et al., 2006; Li et al., 2017; Harrison et al., 2018; Liu et al., 2019). Although the climatic, 20 

vegetation and anthropogenic controls on wildfires are relatively well understood (e.g. 21 

Harrison et al., 2010; Bistinas et al., 2014; Knorr et al., 2016; Forkel et al., 2017; Li et al., 22 

2019), recent years have seen wildfires occurring in regions where they were historically rare 23 

(e.g. northern Alaska, Greenland, northern Scandinavia: Evangeliou et al., 2019; Hayasaka, 24 

2021) and an increase in fire frequency and severity in more fire-prone regions (e.g. California, 25 

the circum-Mediterranean, eastern Australia; e.g. Abatzoglou and Williams, 2016; Dutta et al., 26 

2016; Williams et al., 2019: Nolan et al., 2020). It is useful to look at the pre-industrial era 27 

(conventionally defined as pre 1850 CE) to understand whether these events are atypical. The 28 

pre-industrial past also provides an opportunity to characterise fire regimes before 29 

anthropogenic influences, both in terms of ignitions and fire suppression, became important.   30 

Ice-core records provide a global picture of changes in wildfire in the geologic past (Rubino et 31 

al., 2016). However, wildfires exhibit considerable local to regional variability because of the 32 

spatial heterogeneity of the various factors controlling their occurrence and intensity (Bistinas 33 

et al., 2014; Andela et al., 2019; Forkel et al., 2019). Thus, it is useful to use information that 34 

can provide a picture of regional changes through time. Charcoal, preserved in lake, peat or 35 

marine sediments, can provide a picture of such changes (Clark and Patterson, 1997; Conedera 36 

et al., 2009). The wildfire regime can be characterised from sedimentary charcoal records 37 

through total charcoal abundance per unit of sediment, which can be considered as a measure 38 

of the total biomass burned (e.g. Marlon et al., 2006) or by the presence of peaks in charcoal 39 

accumulation which, in records with sufficiently high temporal resolution, can indicate 40 

individual episodes of fire (e.g. Power et al., 2006). 41 

The Global Palaeofire Working Group (GPWG) was established in 2006 to coordinate the 42 

compilation and analysis of charcoal data globally, through the construction of the Global 43 

Charcoal Database (GCD: Power et al., 2008). The GPWG was initiated by the International 44 

Geosphere-Biosphere Programme (IGBP) Fast-Track Initiative on Fire and subsequently 45 
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recognised as a working group of the Past Global Changes (PAGES) Project in 2008. There 46 

have now been several iterations of the GCD (Power et al., 2008; Power et al., 2010; Daniau 47 

et al., 2012; Blarquez et al., 2014; Marlon et al., 2016), which since 2020 has been managed 48 

by the International Palaeofire Network as the Global Palaeofire Database (GPD; 49 

https://paleofire.org). The GCD has been used to examine changes in fire regimes over the past 50 

two millennia (Marlon et al., 2008), during the current interglacial (Marlon et al., 2013), on 51 

glacial-interglacial timescales (Power et al., 2008; Daniau et al., 2012; Williams et al., 2015) 52 

and in response to rapid climate changes (Marlon et al., 2009; Daniau et al., 2010), as well as 53 

to examine regional fire histories (e.g. Mooney et al., 2011; Vannière et al., 2011; Marlon et 54 

al., 2012; Power et al., 2013; Feurdean et al., 2020). However, there are a number of limitations 55 

to the use of the GCD for analyses of palaeofire regimes. Firstly, the database does not include 56 

many recently published records and needs to be updated. Secondly, there are inconsistencies 57 

among the various versions of the database including duplicated and/or missing sites, 58 

differences in the metadata included for each site or record, and missing metadata and dating 59 

information for some sites or records. Perhaps most crucially, the age models included in the 60 

database were made at different times, using different radiocarbon calibration curves, and using 61 

different age-modelling methods. The disparities between the archived age models preclude a 62 

detailed comparison of changes in wildfire regimes across regions. 63 

Here, we present an expanded database of charcoal records (the Reading Palaeofire Database, 64 

RPD), accompanied by new age models based on recalibration of radiocarbon ages using 65 

INTCAL2020 (Reimer et al., 2020) and using a consistent Bayesian approach (BACON: 66 

Blaauw. et al., 2021) to age-model construction. However, we have retained the original age 67 

models for all the sites for comparison and to allow the user to choose a preferred age model.  68 

The RPD is designed to facilitate regional analyses of fire history; it is not designed as a 69 

permanent repository. We document the structure and contents of the database, the construction 70 

of the new age models, the expanded metadata available, and the quality control measures 71 

applied to check the data entry. We also document the expansion of the geographic and 72 

temporal coverage, and in the availability of metadata, relative to previous GCD compilations. 73 
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2. Data and Methods 74 

2.1. Compilation of data 75 

The database contains sedimentary charcoal records, metadata to facilitate the interpretation of 76 

these records, and information on the dates used to construct the original age model for each 77 

record. Some records were obtained from the GCD. There are multiple versions of the GCD 78 

which differ in terms of the sites and the types of metadata included. We compared the GCDv3 79 

(Marlon et al., 2016), GCDv4 (Blarquez, 2018) and GCD webpage versions 80 

(http://paleofire.org) and extracted a single unique version of each site and entity across the 81 

three versions. Where sites or entities were duplicated in different versions of the GCD, we 82 

used the latest version. Missing metadata and dating information for these records were 83 

obtained from the literature or from the original data providers. Some sites in the GCD were 84 

represented by both concentration data and the same data expressed as influx (i.e. concentration 85 

per year) from the same samples; because influx calculations are time dependent, we have only 86 

retained concentration data for such sites to allow for future improvements to age models. 87 

Influx can be easily computed using data available in the RPD. We also removed duplicates 88 

where the GCD contained both raw data and concentration data from the same entity. We 89 

extracted published charcoal records that do not appear in any version of the GCD from public 90 

repositories, specifically PANGAEA (https://www.pangaea.de/), NOAA National Centre for 91 

Environmental Information (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data), 92 

the Neotoma Paleoecology Database (https://www.neotomadb.org/), the European Pollen 93 

Database (http://www.europeanpollendatabase.net/index.php) and the Arctic Data Centre 94 

(https://arcticdata.io/catalog/); if these records were also in the GCD we replaced the GCD 95 

version. Additional charcoal data, dating information and metadata were provided directly by 96 

the authors. All the records in the current version of the database are listed in the Supplementary 97 

Information (SI Table 1). 98 

2.2 Structure of the database 99 

The data are stored in a relational database (MySQL), which consists of 10 linked tables, 100 

specifically "site", "entity", "sample", "date info", "unit", "entity link publication", 101 

"publication", "chronology", "age model", and "model name". Figure 1 shows the relationships 102 

between these tables. A description of the structure and content of each of the tables is given 103 
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below, and more detailed information about individual fields is given in the Supplementary 104 

Material (SI Table 2).  105 

 106 

Figure 1. Entity-relation diagram showing the structure of the database, individual tables and 107 

their contents, and the nature of the relationships between the component tables. One-to-many 108 

linkages indicate that it is possible to have several entries on one table linked to a single entry 109 

in another table. The database uses both primary and foreign keys. The primary key ensures 110 

that data included in a specific field is unique. The foreign key refers to the field in a table 111 

which is the primary key of another table and ensures that there is a link between these tables. 112 

2.2.1 Site metadata (table name: site) 113 

A site is defined as the hydrological basin from which charcoal records have been obtained 114 

(Table 1). There may be several charcoal records from the same site, for example where 115 

charcoal records have been obtained on central and marginal cores from the same lake or where 116 

there is a lake core and additional cores from peatlands and/or terrestrial deposits (e.g. small 117 

hollows, soils) within the same hydrological basin. A site may therefore be linked to several 118 

charcoal records, where each record is treated as a separate entity. The site table contains basic 119 

metadata about the basin, including site ID, site name, latitude, longitude, elevation, site type, 120 

and maximum water depth. The site names are expressed without diacritics to facilitate 121 



6 
 

database querying and subsequent analyses in programming languages that do not handle these 122 

characters.  Latitude and longitude are given in decimal degrees, truncated to six decimal places 123 

since this gives an accuracy of <1m at the equator.  Broad categories of site type are 124 

differentiated (e.g. terrestrial, lacustrine, marine), with subdivisions according to geomorphic 125 

origin (e.g. lakes are recorded according to whether they are e.g. fluvial, glacial or volcanic in 126 

origin). In addition to coastal salt marshes and estuaries, we include a generic coastal category 127 

for all types of sites that lie within the coastal zone and the hydrology may therefore have been 128 

affected by changes in sea level.  Wherever possible, the size of the basin and the catchment 129 

are recorded (in km2) but if accurate quantified information is not available the basin and 130 

catchment size are recorded by size classes. The site table also contains information on whether 131 

the lake or peatland is hydrologically closed or has inflows and outflows, which can affect the 132 

source, quantity and preservation of charcoal in the sediments. A complete listing of the sites 133 

and entities in the RPD is given in Table S1. A list of the valid choices for fields that are 134 

selected from a pre-defined list (e.g. site type) is given in Table S2.  135 

Table 1 Definition of the site table. 136 

Field name Definition Data type Constraints / Notes 

ID_SITE Unique identifier for each site  Unsigned 

integer 

positive integer 

site_name Site name as given by original 

authors or as defined by us where 

there was no unique name given 

to the site  

Text Required 

latitude Latitude of the sampling site, 

given in decimal degrees, where 

N is positive and S is negative  

Double Numeric value 

between -90 and 90 

longitude Longitude of the sampling site in 

decimal degrees, where E is 

positive and W is negative  

Double  Numeric value 

between -180 and 

180 

elevation Elevation of the sampling site in 

metres above (+) or below (-) sea 

level 

Double None 
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site_type Information about type of site 

(e.g. lake, peatland, terrestrial) 

Text Selected from pre-

defined list  

water_depth Water depth of the sampling site 

in metres 

Double None 

flow_type Indication of whether there is 

inflow and/or outflow from the 

sampled site 

Text Selected from pre-

defined list 

basin_size_km2 Size of sampled site (e.g. lake or 

bog) in km2  

Double None 

catch_size_km2 Size of hydrological catchment in 

km2 

Double None 

basin_size_class Categorical estimate of basin size Text Selected from pre-

defined list 

catch_size_class Categorical estimate of 

hydrological catchment size  

Text Selected from pre-

defined list 

2.2.2 Entity metadata (table name: entity) 137 

This table provides metadata for each individual entity (Table 2). In addition to distinguishing 138 

multiple cores from the same basin as separate entities, we also distinguish different size 139 

classes of charcoal from the same core when these data are available. Different charcoal size 140 

classes from the same core are also treated as separate entities in the database. However, we 141 

have removed duplicates where the same record was expressed in different ways (e.g. as both 142 

raw counts and concentration, or as concentration and influx) to avoid confusion and mistakes 143 

when subsequently processing these data. The RPD contains raw data wherever possible, 144 

concentration data when the raw data is not available, and only includes influx data if neither 145 

are available. When specific cores were given distinctive names in the original publication or 146 

by the original author, we include this information in the entity name for ease of cross-147 

referencing. The entity metadata include information that can be used to interpret the charcoal 148 

records, including depositional context, core location, measurement method, and measurement 149 

unit. There is no standard measurement unit for charcoal, and in fact, there are >100 different 150 

units employed in the database. For convenience, there is a link table to the measurement units 151 

(table name: unit). In addition, the entity table provides the source from which the charcoal 152 

data were obtained, including whether these data are from a version of the GCD, a data 153 
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repository or were provided by the original author, and an indication of when the record was 154 

last updated. A list of the valid choices for fields that are selected from a pre-defined list (e.g. 155 

depositional context) is given in Table S2. A list of the charcoal measurement units currently 156 

in use in the RPD is given in Table S3. 157 

Table 2 Definition of the entity table. 158 

Field name Definition Data type Constraints / Notes 

ID_ENTITY Unique identifier for each 

entity 

Unsigned 

integer 

Positive integer  

ID_SITE Refers to unique identifier for 

each site (as given in site 

table) 

Unsigned 

integer 

Auto-numeric, 
foreign key of the 
site table, a 
positive integer 

entity_name Name of entity, where an 

entity may be a separate core 

from the site or a separate type 

of measurement on the same 

core 

Text Required 
 

latitude Latitude of the entity, given in 

decimal degrees, where N is 

positive and S is negative 

Double A numeric value 

between -90 and 

90 

longitude Longitude of the entity, given 

in decimal degrees, where E is 

positive and W is negative 

Double  A numeric value 

between -180 and 

180 

elevation Elevation of the sampling site, 

in metres above (+) or below 

(-) sea level 

Double None 

depositional_context Type of sediment sampled for 

charcoal  

Text Selected from pre-

defined list 

measurement_metho

d 

Method used to measure the 

amount of charcoal  

Text Selected from pre-

defined list 

TYPE The unit type of the measured 

charcoal values (e.g. 

concentration, influx) 

Text Selected from pre-

defined list 
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source Source of charcoal data  Text Selected from pre-

defined list 

core_location Location of the entity within 

the site (e.g. central core or 

marginal core) 

Text Selected from pre-

defined list 

last_updated Date when the entity or its 

linked data was last updated 

Date In format 

YYYY/mm/dd 

ID_UNIT Unique identifier for 

measurement unit (as in unit 

table) 

Unsigned 

integer 

Auto-numeric, 

foreign key of the 

unit table, a 

positive integer 

 159 

2.2.3 Sample metadata and data (table name: sample) 160 

The sample table provides information on the average depth in the core or profile and the 161 

thickness of the sample on which charcoal was measured. The thickness measurements relate 162 

to the total thickness of the charcoal sample and provide an indication of whether the sampling 163 

was contiguous downcore. The sample table also provides information on the sample volume 164 

and the quantity of charcoal present. The charcoal measurement units have been standardised 165 

by converting units expressed as multiples (e.g. fragments x100) back to the whole numbers 166 

and by converting units expressed in mg or kg to g. As a result, the values in the RPD may 167 

apparently differ from published values. 168 

Table 3 Definition of the sample table. 169 

Field name Definition Data type Constraints / Notes 

ID_SAMPLE Unique identifier for 

each charcoal sample  

Unsigned 

integer 

Auto-numeric, 

primary key, a 

positive integer  

ID_ENTITY Unique identifier for the 

entity (as in entity table)  

Unsigned 

integer 

Auto-numeric, 

foreign key of the 

entity table, a 

positive integer 
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avg_depth Average sampling depth, 

in metres 

Double None 

sample_thickness Sample thickness, in 

metres 

Double None 

charcoal_measurement Quantity of charcoal 

measured in the sample  

Double None 

analytical_sample_size Total amount of sediment 

sampled 

Text 255 characters 

maximum length 

analytical_sample_size_unit Units used for the 

sampling 

Text 255 characters 

maximum length 

 170 

2.2.4 Dating information (table name: date info) 171 

This table provides information about the dates available for each entity that can be used to 172 

construct an age model. We include information about the age of the core top for records that 173 

were known to be actively accumulating sediment at the time of collection. In addition to 174 

radiometric dates, we include information about the presence of tephras (either dated at the site 175 

or independently dated elsewhere) and stratigraphic events that can be used to establish 176 

correlative ages (e.g. changes in the pollen assemblage that are dated in other cores from the 177 

region, or evidence of known fires in the catchment). Wherever possible the name of a tephra 178 

is given, to facilitate the use of subsequent and more accurate estimates of its age. Similarly, 179 

the basis for correlative dates is given, again to facilitate the use of updated estimates of the 180 

age of the event. Radiocarbon ages are given in radiocarbon years, but all other ages are given 181 

in calendar years BP using 1950 CE as the reference zero date. Error estimates are given for 182 

radiometric ages and wherever possible for calendar ages. We provide an indication of whether 183 

a specific date was used in the original age model for the entity, and an explanation for why 184 

specific dates were rejected, since this can be a guide as to whether the dates should be 185 

incorporated in the construction of new age models. A list of the valid choices for fields that 186 

are selected from a pre-defined list (e.g. material dated) is given in Table S2. 187 

  188 
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Table 4 Definition of the date info table. 189 

Field name Definition Data type Constraints / Notes 

ID_DATE_INFO Unique identifier for the 

date record  

Unsigned 

integer 

Auto-numeric, 

primary key, a 

positive integer 

ID_ENTITY Unique identifier for the 

entity (as in entity table) 

Unsigned 

integer 

Auto-numeric, foreign 

key of the entity table, 

a positive integer 

material_dated Material from which the 

date was obtained, if 

applicable 

Text Selected from pre-

defined list 

date_type Technique used to obtain 

the date measurement  

Text Selected from pre-

defined list 

avg_depth Average depth in the 

sedimentary sequence 

where the date was 

measured, in metres 

Double None 

thickness Thickness of the sample 

used for dating, in metres 

Double None 

lab_number Unique identifying code 

assigned by the dating 

laboratory  

Text 65,535 characters 

maximum lenght 

age_C14 Uncalibrated radiocarbon 

age  

Double None 

age_calib The calendar age of a date Double None 

error Analytical or measurement 

error on the date 

Double None 

correlation_info Indication of basis for 

correlative dating (e.g. 

pollen, tephra or 

stratigraphic correlations)  

Text Selected from pre-

defined list 

age_used Indicates whether date was 

used by the author(s) in the 

Text Selected from pre-

defined list 
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construction of the original 

age model 

reason_age_not_used Indication of why a date 

was not used in the original 

age model. Blank if dates 

were used in original 

model 

Text Selected from pre-

defined list 

notes Additional comments 

regarding a date record 

Text The maximum length 

is 65,535 characters 

2.2.5 Publication information (table name: publication) 190 

This table provides full bibliographic citations for the original references documenting the 191 

charcoal records and/or their age models. There may be multiple publications for a single 192 

charcoal record, and all of these references are listed. Conversely, there may be a single 193 

publication for multiple charcoal records. There is also a table (table name: 194 

entity_link_publication) that links the publications to the specific entity. 195 

2.2.6 Original age model information (table name: chronology) 196 

This table provides information about the original age model for each record, and the ages 197 

assigned to individual samples. There can be many records that use the same type of age model 198 

(e.g. linear interpolation, spline, regression), and for convenience, there is a table that links the 199 

records to the age model name (table name: model name). 200 

2.2.7 New age model information (table name: age_model) 201 

This table contains information about the age models that have been constructed for this version 202 

of the database using the INTCAL2020 calibration curve (Reimer et al., 2020) and the BACON 203 

(Blaauw et al., 2021) age modelling R package (see section 2.3). We preserve information on 204 

the mean and median ages, as well as the quantile ranges for each sample. 205 

  206 
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Table 5 Definition of the age model table. 207 

Field name Definition Data type Constraints / Notes 

ID_MODEL Unique identifier for the 

technique used to generate the 

age model (original age models 

from existing authors in the 

chronology table, and new age 

models in the age_model table) 

Unsigned 

integer 

Auto-numeric, 

composite primary 

key with 

ID_SAMPLE, foreign 

key of the 

model_name table, 

positive integer 

ID_SAMPLE Unique identifier for the sample 

(as in sample table) 

Unsigned 

integer 

Auto-numeric, 

composite primary 

key with 

ID_MODEL, foreign 

key of the sample 

table, positive integer 

mean Mean age of the sample Integer None 

median Median age of the sample Integer None 

UNCERT_5 Lower bound of the 95% 

confidence interval for the 

median age 

Integer None 

UNCERT_95 Upper bound of the 95% 

confidence interval for the 

median age 

Integer None 

UNCERT_25 Lower bound of the 75% 

confidence interval for the 

median age 

Integer None 

UNCERT_75 Upper bound of the 75% 

confidence interval for the 

median age 

Integer None 

2.3 Construction of new age models  208 

The original age models for the charcoal records were made at different times, using different 209 

radiocarbon calibration curves, and using different age-modelling methods. We standardised 210 
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the age modelling, using RBacon (Blaauw and Christen, 2011; Blaauw et al., 2021) to construct 211 

new Bayesian age-depth models in the ageR package (Villegas-Diaz et al., 2021). The ageR 212 

package provides functions that facilitate the supervised creation of multiple age models for 213 

many cores and different data sources, including databases, comma and tab separated files. The 214 

INTCAL20 Northern Hemisphere calibration curve (Reimer et al., 2020) and the SHCAL20 215 

Southern Hemisphere calibration curve (Hogg et al., 2020) were used for entities between the 216 

latitudes of 90° and 15°N and 15 to 90°S respectively. Entities in equatorial latitudes (15°N to 217 

15°S) used a 50:50 mixed calibration curve to account for north-south air mass-mixing 218 

following Hogg et al. (2020), and radiocarbon ages from marine entities were calibrated using 219 

the Marine20 calibration curve (Heaton et al., 2020). 220 

To estimate the optimum age modelling scenarios based upon the date and sample information 221 

for each entity, multiple RBacon age models were run using different prior accumulation rate 222 

(acc.mean) and thickness values. Prior accumulation rate values were selected using an initial 223 

linear regression of the ages in each entity, which was then increased (decreased) sequentially 224 

from the default value up to twice more (less) than the initial value. As an example, if the initial 225 

accumulation rate value selected from the linear regression was 20 yr/cm, age models would 226 

also be run using values of 10, 15, 20, 30 and 40 yr/cm. In cases where the regional 227 

accumulation rate was known, the upper and lower values of the accumulation rate scenarios 228 

were manually constrained. The range of prior thicknesses used in the models were calculated 229 

by increasing and decreasing the RBacon default thickness value (5 cm) up to a value one 230 

eighth of the overall length of the core. For a 400 cm core for example, the thickness scenarios 231 

would be 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 cm. Thus, the number of scenarios created by 232 

possible accumulation rates and thicknesses varies between different entities. Depths of known 233 

hiatuses reported in the original publications were included in the date info table (section 2.2.4) 234 

and have also been included in the age models run in ageR. In instances where the 235 

sedimentation rates were different above and below an hiatus, separate age models were run 236 

before and after the non-deposition period to account for these variations (Blaauw and Christen, 237 

2011). 238 

A three-step procedure was used to select the best model for each entity. First, an optimum 239 

model was selected by ageR, using the lowest quantified area between the prior and posterior 240 

accumulation rate distribution curves (Supplementary Figure 1). This selection was checked 241 

manually using comparisons between the distance of the estimated ages and the controls to 242 
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check the accuracy of the model interpolation. Finally, the age model was visually inspected 243 

to ensure that final interpolation accurately represented the date information and did not show 244 

abrupt shifts in accumulation rates or changes at the dated depths. If the ageR model selection 245 

was deemed to be erroneous or inaccurate, the next suitable model with the lowest area between 246 

the prior and posterior curves, which accurately represented the distribution of dates in the 247 

sequence, was selected (Supplementary Figure 2).  248 

2.4 Quality control 249 

Individual records in the RPD were compiled either by the original authors or from published 250 

and open-access material by specialists in the collection and interpretation of charcoal records. 251 

Records that were obtained from published and open-access material were cross-checked 252 

against publications or with the original authors of those publications whenever possible. Null 253 

values for metadata fields were identified during the initial checking procedure, and checks 254 

were made with the data contributors to determine whether these genuinely corresponded to 255 

missing information. In the database, null values are reserved for fields where the required 256 

information is not applicable, for example water depth for terrestrial sites or laboratory sample 257 

numbers for correlative dates. We distinguish fields where information could be available but 258 

was never recorded or has subsequently been lost (represented by -999999), and fields where 259 

we were unable to obtain this information but it could be included in subsequent updates of the 260 

database (represented by -777777). We also distinguish fields where specific metadata is not 261 

applicable (represented by -888888), for example basin size for a marine core or water depth 262 

for a terrestrial small hollow.  263 

Prior to entry in the database, the records were automatically checked using specially designed 264 

database scripts (in R) to ensure that the entries to individual fields were in the format expected 265 

(e.g. text, decimal numeric, positive integers) or were selected from the pre-defined lists 266 

provided for specific fields. Checks were also performed to find duplicated rows (e.g. 267 

duplicated sampling depths within the same entity). 268 

3. Overview of database contents  269 

This first version of the RPD contains 1676 individual charcoal records from 1480 sites 270 

worldwide. This represents a 128% increase compared to the number of records in version 3 271 
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of the Global Charcoal Database (GCDv3: Marlon et al., 2016; 736 records) and a 79% increase 272 

compared to version 4 (Blarquez, 2018; 935 records) and a 36% increase compared to the 273 

online version of the GCD (1232 records). The RPD includes 840 records that are not available 274 

in any version of the GCD, and provides updated or corrected information for a further 485 275 

records that were included in the GCD.  Raw data are available for 14% of the entities and 276 

concentration for 67% of the entities; influx based on the original age models is given for 16% 277 

of the entities. The original age models for 67 (4%) of the records included in the RPD were 278 

derived solely by layer counting, U/Th or Pb dates, or isotopic correlation and therefore are 279 

already expressed in calendar ages. However, we have provided new age models for 22 of these 280 

records (33%), where the dates or correlations points were specified, using the supervised age 281 

modelling procedure for consistency. New age models have been created for 807 (50%) of the 282 

remaining charcoal records where the original chronology was based on radiometric dating. 283 

The geographic coverage of the RPD (Figure 2) is biased towards the northern extratropics. 284 

However, there is a growing representation of records from China, the Neotropics (Central and 285 

South America), southern and eastern Africa, and eastern Australia. The largest gaps 286 

geographically are in currently dry regions, which often lack sites with anoxic sedimentation 287 

suitable for the preservation of charcoal and are generally under-represented in palaeofire 288 

reconstructions (Leys et al., 2018). The temporal coverage of the records is excellent for the 289 

interval since 22,000 years ago, with 774 records with a minimum resolution of 10 years for 290 

the past 2000 years, 1335 records with a minimum resolution of 500 years for the past 12,000 291 

years, and 1382 records with a minimum resolution of 1000 years for the past 22,000 years. 292 

There are fewer records for earlier intervals.  Nevertheless, there are 70 records that provide 293 

evidence for the interval of the last glacial period before the Last Glacial Maximum (22-115 294 

ka) including the response of fire to rapid climate warmings (Dansgaard-Oeschger events).  295 

 296 
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Figure 2. Map showing the location of sites included in the RPD. As shown here, some sites 297 
have multiple records, either representing separate cores from the same hydrological basin or 298 
representing measurements of different charcoal size fractions on the same core. These records 299 
are treated as separate entities in the database itself.  300 
 301 

 302 
Figure 3. Plot showing the temporal coverage of individual entities in the database. Panel (a) 303 
shows records covering the past 2000 years (2kyrBP), (b) shows records covering the past 304 
12,000 years, (c) for the past 22 000 years (22 kyr BP) and thus encompassing the Last Glacial 305 
Maximum. (LGM), and (d) shows records that cover the interval of the last glacial prior to the 306 
LGM (22–115 kyr BP). 307 

Information about site type (Figure 4a) is included in the database because this could influence 308 

whether the charcoal is of local origin or represents a more regional palaeofire signal. For 309 

example, records from small forest hollows provide a very local signal of fire activity and 310 

records from peat bogs most likely sample fires on the peatland itself, whereas records from 311 
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lakes could provide both local and regional fire signals. More than half (55%) of the records in 312 

the RPD are derived from lakes (811 entities). Records from peatlands are also well represented 313 

(471 entities, 32%). Basin size, particularly in the case of lakes, influences the source area for 314 

charcoal particles transported by wind. However, the existence of inflows and outflows to the 315 

system can also affect the charcoal record. Quantitative information is now available for more 316 

than half of the lake sites (Figure 4b), and most (691 sites, 81%) of the records (Figure 4c) are 317 

from relatively small lakes (<1 km2). A quarter of the charcoal records from lakes (Figure 4d) 318 

are from closed basins (334 sites). 319 

320 
Figure 4. Availability of metadata that can be used to select suitable sites for specific analyses 321 
or for quality control. Plot (a) shows the distribution of sites by type. Some site types have finer 322 
distinctions recorded in the database: lacustrine environments, for example, are sub-divided 323 
according to origin. Plot (b) shows the number of sites with quantitative estimates versus 324 
categorical assessments of basin size and plot (c) shows the number of sites in specific basin 325 
size ranges. Plot (d) shows the distribution of different hydrological types for lake records. 326 
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4. Data availability 327 

Version 1 of the Reading Palaeofire Database (RPDv1b: Harrison et al., 2021, doi: 328 

10.17864/1947.000345) is available in SQL format from 329 

https://doi.org/10.17864/1947.000345. The individual tables are also available as csv files. The 330 

R package used to create the new age models is available from https://github.com/special-331 

uor/ageR (Villegas-Diaz et al., 2021). 332 

5. Conclusions 333 

The Reading Palaeofire Database (RPD) is an effort to improve the coverage of charcoal 334 

records that can be used to investigate palaeofire regimes. New age models have been 335 

developed for 48% of the records to take account of recent improvements in radiocarbon 336 

calibration and age modelling methods. In addition to expanded coverage and improved age 337 

models, considerable effort has been made to include metadata and quality control information 338 

to allow the selection of records appropriate to address specific questions and to document 339 

potential sources of uncertainty in the interpretation of the records. The first version of the RPD 340 

contains 1676 individual charcoal records (entities) from 1480 sites worldwide. Geographic 341 

coverage is best for the northern extratropics, but the coverage is good except for semi-arid and 342 

arid regions. Temporal coverage is good for the past 2000 years, the Holocene and back to the 343 

LGM, but there is a reasonable number of longer records. The database is publicly available, 344 

both as an SQL database and as csv files. 345 
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