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Abstract. In the context of global carbon emission reduction, solar photovoltaics (PV) is experiencing rapid development. 

Accurate localized PV information, including location and size, is the basis for PV regulation and potential assessment of 

energy sector. Automatic information extraction based on deep learning requires high-quality labelled samples that should be 

collected at multiple spatial resolutions and under different backgrounds due to the diversity and variable scale of PV. We 15 

established a PV dataset using satellite and aerial images with spatial resolutions of 0.8m, 0.3m and 0.1 m, which focus on 

concentrated PV, distributed ground PV and fine-grained rooftop PV, respectively. The dataset contains 3716 samples of 

PVs installed on shrub land, grassland, cropland, saline-alkali, and water surface, as well as flat concrete, steel tile, and brick 

roofs. We used this dataset to examine the model performance of different deep networks on PV segmentation, and on 

average an intersection over union (IoU) greater than 85% was achieved. In addition, our experiments show that direct cross 20 

application between samples with different resolutions is not feasible, and fine-tuning of the pre-trained deep networks using 

target samples is necessary. The dataset can support more works on PVs for greater value, such as, developing PV detection 

algorithm, simulating PV conversion efficiency, and estimating regional PV potential. The dataset is available from Zenodo 

on the following website: https://doi.org/10.5281/zenodo.5171712 (Jiang et al. 2021). 

1 Introduction 25 

Fossil fuels used by our society have caused unprecedented levels of carbon dioxide (CO2), with widespread climate impacts 

that threaten human survival and development (Chu and Majumdar 2012; Shin et al. 2021). Therefore, governments around 

the world intensively made commitments to reduce greenhouse gas emissions and formulated schedules for carbon peak and 

neutrality. For example, the U.S. government announced the goal of achieving carbon neutrality by 2050, and the Chinese 

government promised to achieve carbon peak by 2030 and carbon neutrality by 2060. To achieve this, a variety of techniques 30 
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have been developed to generate electricity from renewable energy sources (Moutinho and Robaina 2016), of which solar 

energy has attracted increasing attention because of its endless availability and environmental friendliness (Kabir et al. 2018).  

The photovoltaic (PV) market has experienced rapid growth over the past two decades owing to the reduced cost of 

PV modules and support programs from governments (La Monaca and Ryan 2017; Yan et al. 2019). Between 2000 and 2020, 

worldwide installed capacity increased from 4 GW to 714 GW, consistently exceeding expectations (IRENA 2021). Utility-35 

scale PV plants usually need large ground installation area, and face the land use competition with other human activities 

(Majumdar and Pasqualetti 2019; Sacchelli et al. 2016). Adverse impacts regarding the availability of land resources and 

erosion are encountered in PV installed regions (Hernandez et al. 2015; Rabaia et al. 2021), which encourages regular 

monitoring of PV plants during their working lifetime. Distributed solar PVs are installed on marginal agricultural lands 

(Martins et al. 2007), building rooftops (Bódis et al. 2019), water surfaces (Liu et al. 2019), and other unused lands, to 40 

minimize potential ecological and environmental impacts. In contrast to utility-scale PVs, distributed PVs generate power in 

isolation; hence, it is necessary to adopt grid-connected technology to integrate them into electrical networks for achieving 

the greatest benefits (Zambrano-Asanza et al. 2021). To help with PV integration and monitoring, there are strong interests 

among governments and utility decision-makers in obtaining localized information of existing PVs, such as the location, size, 

capacity, and power output (Rico Espinosa et al. 2020; Yao and Hu 2017). Traditional methods, such as in-situ survey and 45 

bottom-up reporting, are generally time-consuming and incomplete. In addition, the obtained results lack the desired 

geospatial precision, and may be outdated due to the rapid growth of PVs. Therefore, frequent data collection is necessary, 

and efficient data acquisition method is required. 

With the advance of spatio-temporal resolution of on-board sensors, satellite and aerial photography can provide 

up-to-date images of specific ground targets, making them an ideal source for obtaining accurate PV information (Perez et al. 50 

2001; Peters et al. 2018; Wang et al. 2018). PV panels can be detected and segmented from satellite or aerial images by 

designing representative features (e.g., color, spectrum, geometry, and texture). However, these features vary with different 

atmospheric conditions, light circumstances, satellite sensors, observation scales, and surroundings, leading to the defects of 

generalization ability in extended applications (Ji et al. 2019; Ji et al. 2020; Wang et al. 2018). Deep learning is favoured in 

recent years in view of its success in object detection and image classification. Several convolutional neural networks (CNNs) 55 

have been proposed to localize solar PVs from satellite imagery and estimate their sizes (Golovko et al. 2017; House et al. 

2018; Liang et al. 2020; Malof et al. 2015). For example, Yu et al. (2018) utilized the transfer learning to train a CNN 

classifier for PV identification, then added an additional CNN branch directly connected to the intermediate layers for PV 

segmentation. Apart from the structure of deep networks, the quality of labelled samples largely determine the final accuracy 

of obtained information (Ball et al. 2017; Reichstein et al. 2019). Researchers have spent a huge amount of time on building 60 

datasets generated from aerial or satellite imagery (Ji et al. 2019; Li et al. 2020; Xia et al. 2018). However, to date, there are 

no open-source datasets available for PVs, and no relevant studies evaluating the generalization ability of deep learning from 

aerial data to satellite data, and vice versa. 
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To meet the requirements of deep learning for labelled samples, we built a PV dataset from satellite and aerial 

imagery with three different spatial resolutions (i.e., 0.8m, 0.3m and 0.1m). We tested the effectiveness of our datasets in 65 

extracting multi-scale PVs using the coarse satellite samples (0.8m) for concentrated PVs, the medium aerial samples (0.3m) 

for distributed ground PVs, and the high-resolution unmanned aerial vehicle (UAV) samples (0.1m) for fine-grained rooftop 

PVs. In addition, we evaluated the feasibility of deep networks for cross applications between satellite and aerial samples. 

Our dataset will contribute to a variety of PV applications in the future. 

2 Sampling area and data sources 70 

All PV samples are collected in Jiangsu province, China, covering a total area of 107,200 square kilometres (Fig. 1a). 

Located in the lower reaches of the Yangtze River and Huaihe River, the province is very flat, averaging only 12.3m above 

sea level. The land terrain is mostly made up of low lands and flat plains, with hills and mountains in the southwest and 

north (Fig. 1b). With the continuous economic development and population growth, the energy demand in Jiangsu province 

increases rapidly. The government was committed to energy transition by improving energy efficiency and promoting the 75 

use of green energy. A number of policies were introduced to popularize solar PVs. Due to the shortage of land resources, 

most of installed PVs in Jiangsu province are distributed in areas where land competition is not fierce (e.g., sparse shrubs, 

low-density grasslands, reservoirs, ponds, saline alkali lands and rooftops), which makes it convenient to collect various PVs 

with different backgrounds.  

The sizes of distributed PVs typically vary from a few panels to several hectares, depending on the area of available 80 

background land. It is difficult to identify all these PVs from a single data source; hence, we used satellite and aerial images 

with different spatial resolutions to collect PV samples at various scales. Gaofen-2 and Beijing-2 satellite images are used to 

prepare samples of large-scale PVs. Gaofen-2 is part of the CHEOS (China High Resolution Earth Observation System) 

family, and is capable of acquiring images with a ground sampling distance (GSD) of 0.81m in panchromatic and 3.24m in 

multispectral bands. Beijing-2 satellite constellation consists of three satellites, and can provide images with a GSD of 0.80m 85 

in panchromatic and 3.2 m in blue, green, red and near infrared bands. Aerial imagery with a GSD of 0.3m is used to collect 

samples of ground distributed PVs. The aerial photography was conducted by the Provincial Geomatics Centre of Jiangsu in 

2018, covering the whole province. UAV images are used to collect rooftop PV samples. The UAV flight was carried out in 

Hai'an County (yellow box in Fig. 1b), where the development of rooftop PVs is relatively mature. Ground control point 

(GCP) data obtained by continuous operating reference stations were used for georeferencing. The final orthophotos have a 90 

GSD of 0.1m and location accuracy of approximately 0.02m. Fig. 1c-d illustrate the appearance of two rooftop PVs in 

different images. In Gaofen-2 image, the PVs take up only a dozen of pixels that are mixed with surrounding rooftops (Fig. 

1c). It is difficult to distinguish the PVs from the backgrounds, let alone get their exact position and size. In contrast, PV 

detection becomes slightly easier in the aerial photograph (Fig. 1d), but obtaining accurate PV boundaries is still difficult. In 

the UAV image (Fig. 1e), we can clearly recognize the PVs, obtain their boundaries, and even count how many panels each 95 
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PV is composed of. This example illustrates the necessity of using multi-resolution images to build PV datasets that meet the 

needs of a variety of applications. 

 

Figure 1: Sampling area and data sources. (a) The location of Jiangsu province in China; (b) spatial distribution of all sampling 

areas; (c) Gaofen-2 satellite image with a spatial resolution of 0.8m; (d) image from aerial photography with a spatial resolution of 100 
0.3m; and (e) image from unmanned aerial vehicle with a spatial resolution of 0.1m. The yellow boxes in sub-figure (c-e) represent 

the same rooftop PVs. 

3 Generation of PV samples 

The schematic workflow to generate PV samples is shown in Fig. 2. The main procedures are described in the following: 

1) Data pre-processing. To obtain high-quality PV samples, a series of pre-processing methods were applied to the original 105 

satellite and aerial images. We first checked the raw data and removed images with lots of clouds, noise and bright spots. 
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Geometric correction was undertaken to eliminate the spatial distortions in original images, and additional ortho-rectification 

was used for aerial images to minimise the perspective (tilt) and relief (terrain) effects. The adaptive Pan sharpening method 

(Song et al. 2016) was utilized to improve the spatial resolution of multi-spectral images by fusing the panchromatic band. 

We also performed block adjustment on multi-temporal images to ensure that they have the same location accuracy. Finally, 110 

we use histogram equalization to adjust the hue component of the images. 

2) Category design. Our PV dataset includes three groups of PV samples collected at different spatial resolutions (Table 1), 

namely PV08 from Gaofen-2 and Beijing-2 imagery, PV03 from aerial photography, and PV01 from UAV orthophotos. 

PV08 contains rooftop and ground PV samples. Ground samples in PV03 are divided into five categories according to their 

background land use type: shrub land, grassland, cropland, saline-alkali, and water surface. Rooftop samples in PV01 are 115 

divided into three categories according to their background roof type: flat concrete, steel tile, and brick. 

3) Image annotation. Due to the differences in the shape, size, and direction of various PVs, we used polygonal annotations, 

that is, drawing lines by placing points around the outer edges of each PV panel. The inner space surrounded by the points 

was then assigned a predefined code in Table 1 to indicate the category to which it belongs. The annotators worked in pairs 

to ensure that each PV panel was annotated twice. After getting the initial annotations, a third annotator would merge the two 120 

annotations and check one by one to fix the potential errors. Finally, a supervisor was responsible for checking the quality of 

all annotations, including location and category. Figure 3 shows some examples of PV panels and their annotations. 

4) Sample making. The shapefile of polygonal annotations was converted to a raster that has the same spatial resolution as 

satellite or aerial images. The raster and original red, green and blue (RGB) images were then seamlessly cropped into tiles 

at a fixed size by referring to the sampling grids. Tiles containing a single category of PV were paired with corresponding 125 

image blocks to form a complete sample (refer to the example in Fig. 2). We prepared PV08 and PV03 samples at the size of 

10241024 pixels, while PV01 samples at the size of 256256 pixels. The numbers of each category are listed in Table 1. 
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Figure 2: Flowchart to generate PV samples. 

Table 1: Classification system of our PV dataset. 130 

Dataset Category Spatial 

Resolution 

Code Size Num. 

PV08 PV08_Rooftop ~0.8m 11 1,0241,024 90 

 PV08_Ground ~0.8m 12 1,0241,024 673 

PV03 PV03_Rooftop ~0.3m 111 1,0241,024 236 

PV03_Ground_Shrubwood ~0.3m 121 1,0241,024 119 

PV03_Ground_Grassland ~0.3m 122 1,0241,024 117 

PV03_Ground_Cropland ~0.3m 123 1,0241,024 859 

PV03_Ground_SalineAlkali ~0.3m 124 1,0241,024 352 

PV03_Ground_WaterSurface ~0.3m 125 1,0241,024 625 

PV01 PV01_Rooftop_FlatConcrete ~0.1m 211 256256 413 

PV01_Rooftop_SteelTile ~0.1m 212 256256 94 

PV01_Rooftop_Brick ~0.1m 213 256256 138 
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Figure 3: Examples of PV panels and their annotations. Red boxes are the manually drawn boundaries of PV panels. 
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4 Applications of the dataset 

4.1 PV segmentation using deep networks 

To examine the possibility of extracting multi-scale PVs from complex backgrounds based on our dataset, we carried out a 135 

group of segmentation experiments using deep learning. We compared the performance of three deep networks, including U-

Net (Ronneberger et al. 2015), RefineNet (Lin et al. 2017) and DeepLab v3+ (Chen et al. 2018). The U-Net consists of a 

contracting path (encoder) to capture context and a symmetric expanding path (decoder) that enables precise localization. 

The feature map of the encoder is combined with the up-sampling feature map of the decoder through skip connection to 

generate final segmentation map. The RefineNet is a multi-path refinement network, which exploits all information available 140 

along the down-sampling process to enable high-resolution prediction. The high-level semantic features are refined using 

low-level fine-grained features. In addition, a chained residual pooling is introduced into individual residual connections to 

capture background context. The DeepLab v3+ combines the advantages from spatial pyramid pooling module and encode-

decoder structure. The former is capable of encoding multi-scale contextual information, while the latter can enhance the 

ability to capture object boundaries.  145 

The experiments were conducted on PV08, PV03 and PV01 dataset, respectively. For each category, all samples were 

separated into 80% training set (from which 20% samples were used for validation) and 20% testing set. The Adam 

optimizer was used for training and an early-stopping mechanism was adopted to prevent overfitting. The final segmentation 

results were evaluated using five indicators, including accuracy, precision, recall, F1 score, and intersection over union (IoU). 

Accuracy refers to the ratio of PV and background correctly classified by the model to the sum of PV and background in the 150 

image. Precision is the ratio of PV correctly identified by the model to the total PV identified by the model, describing the 

reliability of PV segmentation results. The recall equals the ratio of PV correctly identified by the model to the actual total 

PV. F1 score (
2×precision×recall

precision+recall
) is a weighted average of precision and recall, providing a comprehensive evaluation of PV 

extraction result. IoU is the ratio of the intersection to the union between PV identified by the model and the actual PV. The 

evaluation accuracy of PV segmentation results is summarized in Table 2. It is noted that different networks were compared 155 

under equal conditions, and additional techniques (e.g., data augmentation, class weight) were not taken into account. 

Table 2. Segmentation accuracy in terms of different evaluation indices.  

Dataset Model Accuracy Precision Recall F1 score IoU 

PV08 U-Net 0.980 0.871 0.864 0.868 0.776 

RefineNet 0.979 0.848 0.884 0.866 0.773 

DeepLab v3+ 0.984 0.877 0.857 0.867 0.790 

PV03 U-Net 0.973 0.897 0.935 0.916 0.858 

RefineNet 0.976 0.957 0.937 0.947 0.878 

DeepLab v3+ 0.983 0.959 0.931 0.945 0.908 

PV01 U-Net 0.961 0.831 0.900 0.864 0.787 

RefineNet 0.981 0.909 0.897 0.903 0.859 

DeepLab v3+ 0.983 0.928 0.894 0.911 0.868 
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Overall, DeepLab v3+ achieved the highest accuracy across all three datasets, followed by RefineNet and U-Net. 

The disparity among different models was relatively small at coarse spatial resolution (approximately 2% in terms of IoU), 

but the advantage of complex network became obvious as the spatial resolution increases (IoU difference reaches 5% for 160 

PV03 and 8% for PV01). The reasonable explanation is that in coarse satellite images the blurred boundaries between PV 

and background prevent the complex networks from acquiring more useful information. Figs. 4–6 show some examples, 

which helps in understanding the effects of network structure and image resolution on the final segmentation results. With 

respect to the results of DeepLab v3+, some parts of PV were lost (e.g., Figs. 4d, 5d and 6c) and the gaps between adjacent 

PVs were wider than the actual (e.g., Figs. 4b, 5d and 6b). In contrast, RefineNet and U-Net misclassified portions with 165 

similar characteristics as PV (e.g., Figs. 4a, 4b, 4d, 5a, 5c, 5f, 6b and 6c). The phenomena suggest that DeepLab v3+ tends to 

ensure the extracted PVs are reliable, while RefineNet and U-Net try to identify all PVs as many as possible. This explains 

why the precision of DeepLab v3+ was superior to those of RefineNet and U-Net, but the recall was the opposite (Table 2). 

 

Figure 4: Segmentation results of PVs in PV08 dataset. We show examples of concentrated ground PVs (a, b), distributed ground 170 
PV (c), and distributed rooftop PV (d). The IoU of each segmentation result is marked in blue within the image. 
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Figure 5: Segmentation results of PVs in PV03 dataset. Examples correspond to PV on shrub land (a), grassland (b), cropland (c), 

saline-alkali (d), water surface (e), and rooftop (f), respectively. The IoU of each segmentation result is marked in blue within the 

image. 175 
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Figure 6: Segmentation results of PVs in PV01 dataset. Examples corresponds to PV on flat concrete (a), steel tile (b) and brick (c) 

roofs, respectively. The IoU of each segmentation result is marked in blue within the image. 

Utility-scale PVs account for approximately 88% of the samples in PV08. The unbalance of training samples led to 

the difference in segmentation accuracy (higher for utility-scale PVs while lower for distributed PVs, Fig. 4). Except that, the 180 

spatial resolution was responsible for the poor performance on distributed PVs (Fig. 4c–d) that were mixed with background 

in the 0.8m satellite images. We may conclude that PV08 samples are only suitable for large-scale PV extraction, and higher 

resolution is required for distributed PVs. Intuitively, the texture of distributed PV becomes clear in the 0.3m aerial images, 

and the contrast to background is significant, making it easy to distinguish PV from various backgrounds. The average IoU 

of DeepLab v3+ reached 0.900, 0.884, 0.920, 0.903, 0.911, and 0.926 for PVs on shrub land, grassland, cropland, saline-185 

alkali, water surface, and rooftop, respectively, which revealed that the segmentation accuracy was slightly affected by the 

background land types. PVs on flat concrete and steel tile roofs occupy the entire roof of large buildings, such as factories, 

shopping malls, business centres and urban residential buildings, thus seem “large-scale” in the UAV images with a spatial 

resolution of 0.1 m. On average, DeepLab v3 achieved an IoU of 0.873 for flat concrete PVs and 0.927 for steel tile PVs. In 

contrast, PVs on brick roofs of rural residential building and urban villa usually consist of several panels because the limited 190 

area available for PV installations. These “small-scale” PVs may share the same feature with surrounding roofs or shadows, 

thus the segmentation accuracy was reduced to 0.850 in terms of IoU. Based on the above analysis, we recommend PV08 for 

extracting concentrated PVs, PV03 for ground distributed PVs, and PV01 for rooftop distributed PVs. 
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4.2 Cross application at different resolutions 195 

The generalization capability of deep learning is critical to automatic information extraction. This section investigates the 

feasibility of cross application between PV samples with different spatial resolutions, including between PV08_Ground and 

PV03_Ground, and between PV03_Rooftop and PV01_Rooftop. We compared the segmentation results of DeepLab v3+ 

from direct training, cross application and fine-tuning. Taking the experiment between PV08_Ground and PV03_Ground as 

an example, direct training means that DeepLab v3+ trained on PV08 (PV03) samples was applied to PV08 (PV03) samples; 200 

cross application means that the model was trained on PV03 (PV08) samples but applied to PV08 (PV03) samples; and fine-

tuning means that the model was first pre-trained on PV03 (PV08) samples, then fine-tuned (fine-tuning process lasted 10 

epochs) using PV08 (PV03) samples, and finally applied to PV08 (PV03) samples.  

According to Table 3, the segmentation accuracy of cross application was terrible with extremely low recall and IoU. After 

fine tuning, the accuracy increased rapidly to a level comparable to direct training. Some examples are given in Figs. 7–8, 205 

where the feature maps indicating the probability that each pixel belongs to PV are illustrated for cross application and fine-

tuning experiments. It can be seen that during cross application, the model captured the main feature of PV, but the 

difference between PV and background was not significant. Through fine-tuning, the differences were enhanced; hence, PV 

could be easily segmented. Our experiments demonstrate that there are inherent defects in the cross application at different 

resolutions, but these defects can be compensated by fine-tuning on target dataset. The fine-tuning approach avoids the time 210 

consumption of direct training and the huge investment of building compelete datasets with various resolutions. 

Table 3. Segmentation accuracy of DeepLab v3+ trained by different strategies 

Dataset Model Accuracy Precision Recall F1 score IoU 

PV08_Ground Direct training 0.984 0.907 0.908 0.908 0.845 

Cross application 0.935 0.856 0.517 0.645 0.492 

Fine tuning 0.978 0.867 0.922 0.894 0.823 

PV03_Ground Direct training 0.981 0.960 0.903 0.931 0.877 

Cross application 0.752 0.726 0.185 0.295 0.177 

Fine tuning 0.975 0.943 0.897 0.919 0.865 

PV03_Rooftop   Direct training 0.977 0.824 0.823 0.824 0.707 

Cross application 0.894 0.414 0.048 0.086 0.045 

Fine tuning 0.981 0.891 0.811 0.849 0.747 

PV01_Rooftop 

Direct training 0.983 0.928 0.894 0.911 0.868 

Cross application 0.846 0.672 0.403 0.504 0.368 

Fine tuning 0.965 0.918 0.809 0.860 0.784 

 

https://doi.org/10.5194/essd-2021-270

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 August 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

 

Figure 7: Cross application of ground PV samples. Segmentation results of DeepLab v3+ from direct training, cross application 215 
and fine-tuning are shown for PVs in PV08 (a, b) and PV03 (c, d) dataset. Feature map for cross application and fine-tuning is 

displayed on the right of corresponding segmentation result. IoU of each segmentation result is marked in blue within the image. 
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Figure 8: Cross application of rooftop PV samples. Segmentation results of DeepLab v3+ from direct training, cross application 

and fine-tuning are shown for PVs in PV03 (a, b) and PV01 (c, d) dataset. Feature map for cross application and fine-tuning is 220 
displayed on the right of corresponding segmentation result. IoU of each segmentation result is marked in blue within the image. 

5 Data availability 

The PV dataset is freely available from the Zenodo website at https://doi.org/10.5281/zenodo.5171712 (Jiang et al. 2021). 

There are three compressed folders, namely PV08.zip, PV03.zip and PV01.zip, for PV samples collected at the spatial 

resolution of 0.8m, 0.3m and 0.1m, respectively. The original images are named as “PV0*_XXXXXX_YYYYYYY.bmp” 225 

and the corresponding labels are named as “PV0*_XXXXXX_YYYYYYY_label.bmp” (* can be the number 8, 3 or 1). The 

central location (latitude, longitude) of each image equals (XX.XXXX, YY.YYYYY). For each label, “0” indicates the 

background while the target PV is recorded as the code listed in Table 1. 

6 Conclusions 

This study built a multi-resolution dataset for PV panel segmentation, including PV08 from Gaofen-2 and Beijing-2 satellite 230 

image with spatial resolution of 0.8m, PV03 from aerial images with spatial resolution of 0.3m, and PV01 from UAV images 

with spatial resolution of 0.1m. Samples cover a variety of PVs installed on different lands (i.e., shrub land, grassland, 
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cropland, saline-alkali, and water surface) and various rooftops (i.e., flat concrete, steel tile, and brick roofs), ranging in size 

from dozens of panels to several hectares. To the best of our knowledge, this is the first open PV dataset with multiple spatial 

resolutions. 235 

Based on the dataset, we investigated the performance of different deep networks on PV segmentation and 

evaluated the feasibility of cross application between different resolutions. It is recommended to use PV08 for concentrated 

PV, PV03 for distributed ground PV, and PV01 for distributed rooftop PV so as to achieve the best segmentation results with 

an IoU of 0.845, 0.871 and 0.868, respectively. It also proved that direct cross applications do not work well and fine-tuning 

of pre-trained network using the target samples is essential. Besides, this dataset can contribute to various research and 240 

applications related to PV. 
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