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Abstract. In the context of global carbon emission reduction, solar photovoltaics (PV) is experiencing rapid development. 12 

Accurate localized PV information, including location and size, is the basis for PV regulation and potential assessment of 13 

energy sector. Automatic information extraction based on deep learning requires high-quality labelled samples that should be 14 

collected at multiple spatial resolutions and under different backgrounds due to the diversity and variable scale of PV. We 15 

established a PV dataset using satellite and aerial images with spatial resolutions of 0.8m, 0.3m and 0.1 m, which focus on 16 

concentrated PV, distributed ground PV and fine-grained rooftop PV, respectively. The dataset contains 3716 samples of 17 

PVs installed on shrub land, grassland, cropland, saline-alkali, and water surface, as well as flat concrete, steel tile, and brick 18 

roofs. TheWe used this dataset is used to examine the model performance of different deep networks on PV segmentation. O, 19 

and on average, an intersection over union (IoU) greater than 85% iwas achieved. In addition, our experiments show that 20 

direct cross application between samples with different resolutions is not feasible, and that fine-tuning of the pre-trained 21 

deep networks using target samples is necessary. The dataset can support more works on PVs for greater value, such as, 22 

developing PV detection algorithm, simulating PV conversion efficiency, and estimating regional PV potential. The dataset 23 

is available from Zenodo on the following website: https://doi.org/10.5281/zenodo.5171712 (Jiang et al. 2021). 24 

1 Introduction 25 

Fossil fuels used by our society have caused unprecedented levels of carbon dioxide (CO2), with widespread climate impacts 26 

that threaten human survival and development (Chu and Majumdar 2012; Shin et al. 2021). Therefore, governments around 27 

the world intensively made commitments to reduce greenhouse gas emissions and formulated schedules for carbon peak and 28 

neutrality. For example, the U.S. government announced the goal of achieving carbon neutrality by 2050, and the Chinese 29 

government promised to achieve carbon peak by 2030 and carbon neutrality by 2060. To achieve this, a variety of techniques 30 
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have been developed to generate electricity from renewable energy sources (Moutinho and Robaina 2016), of which solar 31 

energy has attracted increasing attention because of its endless availability and environmental friendliness (Kabir et al. 2018).  32 

The photovoltaic (PV) market has experienced rapid growth over the past two decades owing to the reduced cost of 33 

PV modules and support programs from governments (La Monaca and Ryan 2017; Yan et al. 2019). Between 2000 and 2020, 34 

worldwide installed capacity increased from 4 GW to 714 GW, consistently exceeding expectations (IRENA 2021). Utility-35 

scale PV plants usually need large ground installation area, thusand face the land use competition with other human activities 36 

(Majumdar and Pasqualetti 2019; Sacchelli et al. 2016). Adverse impacts regarding the availability of land resources and 37 

land erosion are encountered in PV installed regions (Hernandez et al. 2015; Rabaia et al. 2021), which encourages regular 38 

monitoring of PV plants during their working lifetime. Distributed solar PVs are installed on marginal agricultural lands 39 

(Martins et al. 2007), building rooftops (Bódis et al. 2019), water surfaces (Liu et al. 2019), and other unused lands, to 40 

minimize potential ecological and environmental impacts. In contrast to utility-scale PVs, distributed PVs generate power in 41 

isolation; hence, it is necessary to adopt grid-connected technology to integrate them into electrical networks for achieving 42 

the greatest benefits (Zambrano-Asanza et al. 2021). To help with PV integration and monitoring, there are strong interests 43 

among governments and utility decision-makers in obtaining localized information of existing PVs, such as the location, 44 

size, capacity, and power output (Rico Espinosa et al. 2020; Yao and Hu 2017). Traditional methods, such as in-situ survey 45 

and bottom-up reporting, are generally time-consuming and incomplete. In addition, the obtained results lack the desired 46 

geospatial precision, and may be outdated due to the rapid growth of PVs. Therefore, frequent data collection is necessary, 47 

and efficient data acquisition method is required. 48 

With the advance of spatio-temporal resolution of on-board sensors, satellite and aerial photography can provide 49 

up-to-date images of specific ground targets, making them an ideal source for obtaining accurate PV information (Perez et al. 50 

2001; Peters et al. 2018; Wang et al. 2018). PV panels can be detected and segmented from satellite or aerial images by 51 

designing representative features (e.g., color, spectrum, geometry, and texture). However, these features vary with different 52 

atmospheric conditions, light circumstances, satellite sensors, observation scales, and surroundings, leading to the defects of 53 

generalization ability in extended applications (Ji et al. 2019; Ji et al. 2020; Wang et al. 2018). Deep learning is favoured in 54 

recent years in view of its success in object detection and image classification. Several convolutional neural networks 55 

(CNNs) have been proposed to localize solar PVs from satellite imagery and estimate their sizes (Golovko et al. 2017; House 56 

et al. 2018; Liang et al. 2020; Malof et al. 2015). For example, Yu et al. (2018) utilized the transfer learning to train a CNN 57 

classifier for PV identification, then added an additional CNN branch directly connected to the intermediate layers for PV 58 

segmentation. Apart from the structure of deep networks, the quality of labelled samples largely determines the final 59 

accuracy of obtained information (Ball et al. 2017; Reichstein et al. 2019). Researchers have spent a huge amount of time on 60 

building benchmark datasets generated from aerial or satellite imagery (Ji et al. 2019; Li et al. 2020; Xia et al. 2018). 61 

However, to date, there are no open-source datasets available for PVs, and no relevant studies evaluating the generalization 62 

ability of deep learning from aerial data to satellite data, and vice versa. 63 
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To meet the requirements of deep learning for labelled samples, we built a PV dataset from satellite and aerial 64 

imagery with at three different spatial resolutions (i.e., 0.8m, 0.3m and 0.1m). We tested the effectiveness of our datasets in 65 

extracting multi-scale PVs using the coarse satellite samples (0.8m) for concentrated PVs, the medium aerial samples (0.3m) 66 

for distributed ground PVs, and the high-resolution unmanned aerial vehicle (UAV) samples (0.1m) for fine-grained rooftop 67 

PVs. In addition, we evaluated the feasibility of deep networks for cross applications between satellite and aerial samples. 68 

Our dataset will contribute to a variety of PV applications in the future. 69 

2 Sampling area and data sources 70 

All PV samples are collected in Jiangsu province, China, covering a total area of 107,200 square kilometres (Fig. 1a). 71 

Located in the lower reaches of the Yangtze River and Huaihe River, the province is very flat, averaging only 12.3m above 72 

sea level. The land terrain is mostly made up of low lands and flat plains, with hills and mountains in the southwest and 73 

north (Fig. 1b). With the continuous economic development and population growth, the energy demand in Jiangsu province 74 

increases rapidly. The government was committed to energy transition by improving energy efficiency and promoting the 75 

use of green energy. A number of policies were introduced to popularize solar PVs. Due to the shortage of land resources, 76 

most of installed PVs in Jiangsu province are distributed in areas where land competition is not fierce (e.g., sparse shrubs, 77 

low-density grasslands, reservoirs, ponds, saline alkali lands and rooftops), which makes it convenient to collect various PVs 78 

with different backgrounds.  79 

The sizes of distributed PVs typically vary from a few panels to several hectares, depending on the area of available 80 

background land. It is difficult to identify all these PVs from a single data source; hence, we used satellite and aerial images 81 

with different spatial resolutions to collect PV samples at various scales. Gaofen-2 and Beijing-2 satellite images are used to 82 

prepare samples of large-scale PVs. Gaofen-2 is part of the CHEOS (China High Resolution Earth Observation System) 83 

family, and is capable of acquiring images with a ground sampling distance (GSD) of 0.81m in panchromatic and 3.24m in 84 

multispectral bands. Beijing-2 satellite constellation consists of three satellites, and can provide images with a GSD of 0.80m 85 

in panchromatic and 3.2 m in blue, green, red and near infrared bands. Aerial imagery with a GSD of 0.3m is used to collect 86 

samples of ground distributed PVs. The aerial photography was conducted by the Provincial Geomatics Centre of Jiangsu in 87 

2018, covering the whole Jiangsu province. UAV images are used to collect rooftop PV samples. The UAV flight was 88 

carried out in Hai'an County (yellow box in Fig. 1b), where the development of rooftop PVs is relatively mature. Ground 89 

control point (GCP) data obtained by continuous operating reference stations were used for georeferencing. The final 90 

orthophotos have a GSD of 0.1m and location accuracy of approximately 0.02m. Fig. 1c–d illustrate the appearance of two 91 

rooftop PVs in different images. In Gaofen-2 image, the PVs take up only a dozen of pixels that are mixed with surrounding 92 

rooftops (Fig. 1c). It is difficult to distinguish the PVs from the backgrounds, let alone get their exact position and size. In 93 

contrast, PV detection becomes slightly easier in the aerial photograph (Fig. 1d), but obtaining accurate PV boundaries is 94 
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still difficult. In the UAV image (Fig. 1e), we can clearly recognize the PVs, obtain their boundaries, and even count how 95 

many panels each PV is composed of. This example illustrates the necessity of using multi-resolution images to build PV 96 

datasets that meet the needs of a variety of applications. 97 

 98 

Figure 1: Sampling area and data sources. (a) The location of Jiangsu province in China; (b) spatial distribution of all sampling 99 
areas; (c) Gaofen-2 satellite image with a spatial resolution of 0.8m; (d) image from aerial photography with a spatial resolution of 100 
0.3m; and (e) image from unmanned aerial vehicle with a spatial resolution of 0.1m. The yellow boxes in sub-figure (c-e) represent 101 
the same rooftop PVs. 102 

3 Generation of PV samples 103 

The schematic workflow to generate PV samples is shown in Fig. 2. The main procedures are described in the following: 104 
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1) Data pre-processing. To obtain high-quality PV samples, a series of pre-processing methods were applied to the original 105 

satellite and aerial images. We first checked the raw data and removed images with lots of clouds, noise and bright spots. 106 

Geometric correction was undertaken to eliminate the spatial distortions in original images, and additional ortho-rectification 107 

was used for aerial images to minimise the perspective (tilt) and relief (terrain) effects. The adaptive Pan sharpening method 108 

(Song et al. 2016) was utilized to improve the spatial resolution of multi-spectral images by fusing the panchromatic band. 109 

We also performed block adjustment on multi-temporal images to ensure that they have the same location accuracy. Finally, 110 

we use histogram equalization to adjust the hue component of the images. 111 

2) Category designSample organization. Our PV dataset includes three groups of PV samples collected at different spatial 112 

resolutions (Table 1), namely PV08 from Gaofen-2 and Beijing-2 imagery, PV03 from aerial photography, and PV01 from 113 

UAV orthophotos. PV08 contains rooftop and ground PV samples. Ground samples in PV03 are divided into five categories 114 

according to their background land use type: shrub land, grassland, cropland, saline-alkali, and water surface. Rooftop 115 

samples in PV01 are divided into three categories according to their background roof type: flat concrete, steel tile, and brick. 116 

3) Image annotation. Due to the differences in the shape, size, and direction of various PVs, we used polygonal annotations, 117 

that is, drawing lines by placing points around the outer edges of each PV panel. The inner space surrounded by the points 118 

was then assigned a predefined code in Table 1 to indicate the category to which it belongs. The annotators worked in pairs 119 

to ensure that each PV panel was annotated twice. After getting the initial annotations, a third annotator would merge the two 120 

annotations and check one by one to fix the potential errors. Finally, a supervisor was responsible for checking the quality of 121 

all annotations, including location and category. Figure 3 shows some examples of PV panels and their annotations. 122 

4) Sample making. The shapefile of polygonal annotations was converted to a raster that has the same spatial resolution as 123 

satellite or aerial images. The raster and original red, green and blue (RGB) images were then seamlessly cropped into tiles 124 

at a fixed size by referring to the sampling grids. Tiles containing a single category of PV were paired with corresponding 125 

image blocks to form a complete sample (refer to the example in Fig. 2). We prepared PV08 and PV03 samples at the size of 126 

10241024 pixels, while PV01 samples at the size of 256256 pixels. The numbers of each category are listed in Table 1. 127 

One concern of our data set is the representativeness of the samples because the changes in geographic context will 128 

inevitably affect the performance of deep learning models. We compared the samples from Gaofen-2 and Beijing-2 images, 129 

and found that PV panels exhibit similar characteristic in high-resolution imagery and that the main difference comes from 130 

the background. Therefore, we collected samples covering as many backgrounds as possible to ensure the representativeness. 131 

Besides, some skills (e.g., transferring learning, cross-domain feature representation) in the deep learning community can be 132 

adopted to enhance the generalization ability of deep networks trained by our dataset, which is beyond the discussion of this 133 

study. In the following, we introduce some applications of deep learning to illustrate the quality and value of our dataset. 134 
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 135 

Figure 2: Flowchart to generate PV samples. 136 

Table 1: Organizational structureClassification system  of our PV dataset. 137 

Dataset Category Spatial 

Resolution 

Code Size Num. 

PV08 PV08_Rooftop ~0.8m 11 1,0241,024 90 

 PV08_Ground ~0.8m 12 1,0241,024 673 

PV03 PV03_Rooftop ~0.3m 111 1,0241,024 236 

PV03_Ground_Shrubwood ~0.3m 121 1,0241,024 119 

PV03_Ground_Grassland ~0.3m 122 1,0241,024 117 

PV03_Ground_Cropland ~0.3m 123 1,0241,024 859 

PV03_Ground_SalineAlkali ~0.3m 124 1,0241,024 352 

PV03_Ground_WaterSurface ~0.3m 125 1,0241,024 625 

PV01 PV01_Rooftop_FlatConcrete ~0.1m 211 256256 413 

PV01_Rooftop_SteelTile ~0.1m 212 256256 94 

PV01_Rooftop_Brick ~0.1m 213 256256 138 
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 138 

Figure 3: Examples of PV panels and their annotations. Red boxes indicate are the manually drawnthe  boundaries of PV panels. 139 
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4 Applications of the dataset 140 

4.1 PV segmentation using deep networks 141 

To examine the possibility of extracting multi-scale PVs from complex backgrounds based on our dataset, we 142 

carried out a group of segmentation experiments using deep learning. We compared the performance of three deep networks, 143 

including U-Net (Ronneberger et al. 2015), RefineNet (Lin et al. 2017) and DeepLab v3+ (Chen et al. 2018). The U-Net 144 

consists of a contracting path (encoder) to capture context and a symmetric expanding path (decoder) that enables precise 145 

localization. The feature map of the encoder is combined with the up-sampling feature map of the decoder through skip 146 

connection to generate final segmentation map. The RefineNet is a multi-path refinement network, which exploits all 147 

information available along the down-sampling process to enable high-resolution prediction. The high-level semantic 148 

features are refined using low-level fine-grained features. In addition, a chained residual pooling is introduced into individual 149 

residual connections to capture background context. The DeepLab v3+ combines the advantages from spatial pyramid 150 

pooling module and encode-decoder structure. The former is capable of encoding multi-scale contextual information, while 151 

the latter can enhance the ability to capture object boundaries.  152 

The experiments were conducted on PV08, PV03 and PV01 dataset dataset, respectively. For each sub-category 153 

(e.g., PV08_Rooftop, PV08_Ground), all samples were separated into 80% training set (from which 20% samples were used 154 

for validation) and 20% testing set. The Adam optimizer was used for training and an early-stopping mechanism was 155 

adopted to prevent overfitting. The final segmentation results were evaluated using five indicators, including accuracy, 156 

precision, recall, F1 score, and intersection over union (IoU). Accuracy refers to the ratio of PV and background correctly 157 

classified by the model to the sum of PV and background in the image. Precision is the ratio of PV correctly identified by the 158 

model to the total PV identified by the model, describing the reliability of PV segmentation results. The recall equals the 159 

ratio of PV correctly identified by the model to the actual total PV. F1 score (
2×precision×recall

precision+recall
) is a weighted average of 160 

precision and recall, providing a comprehensive evaluation of PV extraction results. IoU is the ratio of the intersection to the 161 

union between PV identified by the model and the actual PV. The evaluation accuracy of PV segmentation results is 162 

summarized in Table 2. It is noted that different networks were compared under equal conditions, and additional techniques 163 

(e.g., data augmentation, class weight) were not taken into account. 164 

Overall, DeepLab v3+ achieved the highest accuracy across all three datasets, followed by RefineNet and U-Net. 165 

The disparity among different models was relatively small at coarse spatial resolution (approximately 2% in terms of IoU), 166 

but the advantage of complex network became obvious as the spatial resolution increases (IoU difference reaches 5% for 167 

PV03 and 8% for PV01). The reasonable explanation is that in coarse satellite images the blurred boundaries between PV 168 

and background prevent the complex networks from acquiring more useful information. Figs. 4–6 show some examples, 169 

which helps in understanding the effects of network structure and image resolution on the final segmentation results. With 170 

respect to the results of DeepLab v3+, some parts of PV were lost (e.g., Figs. 4d, 5d and 6c) and the gaps between adjacent 171 
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PVs were wider than the actual (e.g., Figs. 4b, 5d and 6b). In contrast, RefineNet and U-Net misclassified portions with 172 

similar characteristics as PV (e.g., Figs. 4a, 4b, 4d, 5a, 5c, 5f, 6b and 6c). The phenomena suggest that DeepLab v3+ tends to 173 

ensure the extracted PVs are reliable, while RefineNet and U-Net try to identify all PVs as many as possible. This explains 174 

why the precision of DeepLab v3+ was superior to those of RefineNet and U-Net, but the recall was the opposite (Table 2). 175 

Table 2. Segmentation accuracy in terms of different evaluation indices.  176 

Dataset Model Accuracy Precision Recall F1 score IoU 

PV08 U-Net 0.980 0.871 0.864 0.868 0.776 

RefineNet 0.979 0.848 0.884 0.866 0.773 

DeepLab v3+ 0.984 0.877 0.857 0.867 0.790 

PV03 U-Net 0.973 0.897 0.935 0.916 0.858 

RefineNet 0.976 0.957 0.937 0.947 0.878 

DeepLab v3+ 0.983 0.959 0.931 0.945 0.908 

PV01 U-Net 0.961 0.831 0.900 0.864 0.787 

RefineNet 0.981 0.909 0.897 0.903 0.859 

DeepLab v3+ 0.983 0.928 0.894 0.911 0.868 

 177 

Figure 4: Segmentation results of PVs in PV08 dataset. We show examples of concentrated ground PVs (a, b), distributed ground 178 
PV (c), and distributed rooftop PV (d). IoU of each segmentation result is marked in blue within the image. 179 
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 180 

Figure 5: Segmentation results of PVs in PV03 dataset. Examples correspond to PV on shrub land (a), grassland (b), cropland (c), 181 
saline-alkali (d), water surface (e), and rooftop (f), respectively. IoU of each segmentation result is marked in blue within the 182 
image. 183 
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 184 

Figure 6: Segmentation results of PVs in PV01 dataset. Examples corresponds to PV on flat concrete (a), steel tile (b) and brick (c) 185 
roofs, respectively. IoU of each segmentation result is marked in blue within the image. 186 

Utility-scale PVs account for approximately 88% of the samples in PV08. The unbalance of training samples led to 187 

the difference in segmentation accuracy (higher for utility-scale PVs while lower for distributed PVs, Fig. 4). Except that, the 188 

spatial resolution was responsible for the poor performance on distributed PVs (Fig. 4c–d) that were mixed with background 189 

in the 0.8m satellite images. We may conclude that PV08 samples are only suitable for large-scale PV extraction, and higher 190 

resolution is required for distributed PVs. Intuitively, the texture of distributed PV becomes clear in the 0.3m aerial images, 191 

and the contrast to background is significant, making it easy to distinguish PV from various backgrounds. The average IoU 192 

of DeepLab v3+ reached 0.900, 0.884, 0.920, 0.903, 0.911, and 0.926 for PVs on shrub land, grassland, cropland, saline-193 

alkali, water surface, and rooftop, respectively, which revealed that the segmentation accuracy was slightly affected by the 194 

background land types. PVs on flat concrete and steel tile roofs occupy the entire roof of large buildings, such as factories, 195 

shopping malls, business centres and urban residential buildings, thus seem “large-scale” in the UAV images with a spatial 196 

resolution of 0.1 m. On average, DeepLab v3+ achieved an IoU of 0.873 for flat concrete PVs and 0.927 for steel tile PVs. In 197 

contrast, PVs on brick roofs of rural residential building and urban villa usually consist of several panels because the limited 198 

area available for PV installations. These “small-scale” PVs may share the same feature with surrounding roofs or shadows, 199 

thus the segmentation accuracy was reduced to 0.850 in terms of IoU. Based on the above analysis, we recommend PV08 for 200 

extracting concentrated PVs, PV03 for ground distributed PVs, and PV01 for rooftop distributed PVs. 201 

 202 
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4.2 Cross application at different resolutions 203 

The generalization capability of deep learning is critical to automatic information extraction. This section investigates the 204 

feasibility of cross application between PV samples with different spatial resolutions, including between PV08_Ground and 205 

PV03_Ground, and between PV03_Rooftop and PV01_Rooftop. We compared the segmentation results of DeepLab v3+ 206 

from direct training, cross application and fine-tuning. Taking the experiment between PV08_Ground and PV03_Ground as 207 

an example, direct training means that DeepLab v3+ trained on PV08 (PV03) samples was applied to PV08 (PV03) samples; 208 

cross application means that the model was trained on PV03 (PV08) samples but applied to PV08 (PV03) samples; and fine-209 

tuning means that the model was first pre-trained on PV03 (PV08) samples, then fine-tuned (fine-tuning process lasted 10 210 

epochs) using PV08 (PV03) samples, and finally applied to PV08 (PV03) samples. The training set account for 80% of the 211 

whole dataset and the testing set is the remaining 20%, but only 20% samples from the training set of the target PV dataset 212 

are randomly selected for fine-tuning. 213 

According to Table 3, the segmentation accuracy of cross application was terrible with extremely low recall and 214 

IoU. After fine tuning, the accuracy increased rapidly to a level comparable to direct training. Some examples are given in 215 

Figs. 7–8, where the feature maps indicating the probability that each pixel belongs to PV are illustrated for cross application 216 

and fine-tuning experiments. It can be seen that during cross application, the model captured the main feature of PV, but the 217 

difference between PV and background was not significant. Through fine-tuning, the differences were enhanced; hence, PV 218 

could be easily segmented. Our experiments demonstrate that there are inherent defects in the cross application at different 219 

resolutions, but these defects can be compensated by fine-tuning on target dataset. The fine-tuning approach avoids the time 220 

consumption of direct training and the huge investment of building compeletecomplete datasets with various resolutions. 221 

Table 3. Segmentation accuracy of DeepLab v3+ trained by different strategies 222 

Dataset Model Accuracy Precision Recall F1 score IoU 

PV08_Ground Direct training 0.984 0.907 0.908 0.908 0.845 

Cross application 0.935 0.856 0.517 0.645 0.492 

Fine tuning 0.978 0.867 0.922 0.894 0.823 

PV03_Ground Direct training 0.981 0.960 0.903 0.931 0.877 

Cross application 0.752 0.726 0.185 0.295 0.177 

Fine tuning 0.975 0.943 0.897 0.919 0.865 

PV03_Rooftop   Direct training 0.977 0.824 0.823 0.824 0.707 

Cross application 0.894 0.414 0.048 0.086 0.045 

Fine tuning 0.981 0.891 0.811 0.849 0.747 

PV01_Rooftop 

Direct training 0.983 0.928 0.894 0.911 0.868 

Cross application 0.846 0.672 0.403 0.504 0.368 

Fine tuning 0.965 0.918 0.809 0.860 0.784 

 223 
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 224 

Figure 7: Cross application of ground PV samples. Segmentation results of DeepLab v3+ from direct training, cross application 225 
and fine-tuning are shown for PVs in PV08 (a, b) and PV03 (c, d) dataset. Feature map for cross application and fine-tuning is 226 
displayed on the right of corresponding segmentation result. IoU of each segmentation result is marked in blue within the image. 227 
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 228 

Figure 8: Cross application of rooftop PV samples. Segmentation results of DeepLab v3+ from direct training, cross application 229 
and fine-tuning are shown for PVs in PV03 (a, b) and PV01 (c, d) dataset. Feature map for cross application and fine-tuning is 230 
displayed on the right of corresponding segmentation result. IoU of each segmentation result is marked in blue within the image. 231 

5 Data availability 232 

The PV dataset is freely available from the Zenodo website at https://doi.org/10.5281/zenodo.5171712 (Jiang et al. 2021). 233 

There are three compressed folders, namely PV08.zip, PV03.zip and PV01.zip, for PV samples collected at the spatial 234 

resolution of 0.8m, 0.3m and 0.1m, respectively. The original images are named as “PV0*_XXXXXX_YYYYYYY.bmp” 235 

and the corresponding labels are named as “PV0*_XXXXXX_YYYYYYY_label.bmp” (* can be the number 8, 3 or 1). The 236 

central location (latitude, longitude) of each image equals (XX.XXXX, YY.YYYYY). For each label, “0” indicates the 237 

background while the target PV is recorded as the code listed in Table 1. 238 

6 Conclusions 239 

This study built a multi-resolution dataset for PV panel segmentation, including PV08 from Gaofen-2 and Beijing-2 satellite 240 

image with spatial resolution of 0.8m, PV03 from aerial images with spatial resolution of 0.3m, and PV01 from UAV images 241 

https://doi.org/10.5281/zenodo.5171712
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with spatial resolution of 0.1m. Samples cover a variety of PVs installed on different lands (i.e., shrub land, grassland, 242 

cropland, saline-alkali, and water surface) and various rooftops (i.e., flat concrete, steel tile, and brick roofs), ranging in size 243 

from dozens of panels to several hectares. To the best of our knowledge, this is the first open PV dataset with multiple spatial 244 

resolutions. 245 

Based on the dataset, we investigated the performance of different deep networks on PV segmentation and 246 

evaluated the feasibility of cross application between different resolutions. It is recommended to use PV08 for concentrated 247 

PV, PV03 for distributed ground PV, and PV01 for distributed rooftop PV so as to achieve the best segmentation results with 248 

an IoU of 0.845, 0.871 and 0.868, respectively. It is also proved that direct cross applications do not work well and fine-249 

tuning of pre-trained network using the target samples is essential. Besides, this dataset may contribute to a diversity of other 250 

research and applications related to PV. For example, the segmentation networks are generally sensitive to the observational 251 

size and shape in the receptive field; hence, it is valuable to quantitatively explore the general guidelines on selecting image 252 

resolutions and input sample sizes for PVs with different sizes. Whether a network can be established to combine images 253 

with different resolutions to achieve synchronous identification or segmentation of multi-scale PVs is also of great interest. 254 
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