1 Supplementary 1

New synthesis of European Relative Pollen Productivities (RPPs) and RPP values used in the second generation of REVEALS reconstruction for Europe

5

Marie-Jose Gaillard, Anna-Kari Trondman, Esther Githumbi, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent
 Lebreton, Laurent Marquer, Florence Mazier, Nathalie Nebout-Combourieu, Anne-Birgitte Nielsen, Shinya Sugita, Ioan
 Tanţău, Martin Theuerkauf

9

10 S1 Introduction (Fig. S1)

11 We present a new synthesis of the relative pollen productivity (RPP) estimates and their standard deviations (SDs) available 12 for Europe. This synthesis was motivated by the necessity of performing a new REVEALS reconstruction of Holocene plant 13 cover in Europe for the purpose of a research project on land-cover change as climate forcing over the Holocene in Europe 14 (PI: M.-J.). RPP estimates are necessary to implement the modelling approach for pollen-based reconstruction of past plant 15 abundance known as the Landscape Reconstruction Algorithm (LRA), developed by Sugita (2007a&b). The LRA includes the 16 application of models of pollen dispersal and deposition requiring values of relative pollen productivity for the major plants of 17 the past. The most common method to estimate RPPs involves the application of the Extended R-Value (ERV) model on 18 datasets of modern pollen assemblages and related vegetation cover. A summary of the ERV model and its assumptions, and 19 an extensive description of standardised field methods for the purpose of RPP studies are found in (Bunting et al., 2013b). 20 Estimation of RPPs in Europe started around 2000 with the studies by Sugita in 1999 and then Broström in 2004 (Broström et 21 al., 2004; Sugita et al., 1999) in Southern Sweden, and Nielsen (2004) in Denmark. The first tests of the RPP in pollen-based 22 reconstructions of plant cover using the LRA's REVEALS (REgional VEgetation Abundance from Large Sites) model (Sugita, 23 2007a) were published by Soepboer et al., (2007) in Switzerland and in South Sweden (Hellman et al., 2008a, 2008b). Over 24 the last 15 years, a large number of RPP studies have been undertaken in Europe North of the Alps, but it is only recently that 25 RPP studies were initiated in the Mediterranean area ((Grindean et al., 2019); Mazier et al., unpublished). Two earlier syntheses of RPPs in Europe were published by Broström (Broström et al., 2008) and Mazier (Mazier et al., 2012). From 2012 onwards, 26 27 these RPP values have been used in numerous applications of the LRA's two models REVEALS and LOVE (LOcal Vegetation 28 Estimates) (Sugita, 2007a, 2007b) to reconstruct regional and local plant cover in Europe (Cui et al., 2013; Fyfe et al., 2013; 29 Mazier et al., 2015; Nielsen et al., 2012; Nielsen and Odgaard, 2010; Trondman et al., 2015). Recently, Wieczorek and 30 Herzschuh (2020) published a synthesis of the RPPs available for the Northern Hemisphere; it includes new mean RPP values

- 31 for Europe that were produced independently from the synthesis we present here. Therefore, we compare our mean RPP values
- 32 for Europe with those of Wieczorek and Herzschuh (2020) and discuss causes for dissimilarities.

33 S2 Methods

36

34 S2.1 Selection of RPP studies (Fig. S1, Table S1)

35 The synthesis of mean RPPs presented here was produced in 2018 and applied in REVEALS reconstructions 2018-2020. Of

37 study in 2018 (now published as Grindean et al., 2019). The sixteen study regions are distributed in twelve European countries

nineteen RPP studies available (in July 2021), we selected fifteen published between 1998 and 2018 and one unpublished

38 (Fig. S1) and detailed in Table S1.

- 40 Figure S1: Location of the selected studies of relative pollen productivities (RPP) in Europe. 1. Britain, Bunting et al., (2005); 2.
- 41 Czech Republic, (Abraham and Kozáková, 2012); 3. Denmark, (Nielsen, 2004); 4. Estonia, (Poska et al., 2011); 5. Finland.
- 42 (Räsänen et al., 2007); 6. France, Mazier et al., unpublished; 7. Germany, (Matthias et al., 2012); 8. Germany, (Theuerkauf et al.,
- 43 2013); 9. Norway, (Hjelle, 1998); 10. Poland, Baker et al., (2016); 11. Romania, Grindean et al., (2019); 12. Sweden, (von Stedingk 44 et al., 2008); 13. Sweden, Sugita et al., (1999); 14. Sweden, Broström et al., (2004); 15. Switzerland, (Soepboer et al., 2007); 16.
- 45 Switzerland, (Mazier et al., 2008).

46 Table S1: Selection of studies for the synthesis of relative pollen productivity (RPP) estimates. For explanation of

47 symbols, see captions below the Table. Emphasized in bold: additional, new studies compared to the studies included

48 in the synthesis of Mazier et al., (2012).

Country	Region	No	Site distrib.	Pollen	ERV	Distance	Reference	No	Reference
		sites		sample ¹	sub-	weighting	taxon	taxa ³	
					model	model ²			
Britain	East Anglian:	(34 +	selected	М	1	GPM	Quercus	6	Bunting et
	Norfolk	19)^				Prentice's	Poaceae**		al., 2005
	woodlands					bog			
Czech	Central	54	stratified	М	1	GPM	Poaceae	13	Abraham &
Republic	Bohemia:		random			Prentice's			Kózaková
	agricultural					bog			2012
	landscape								
Denmark	Ancient	30	selected	L++	1	GPM	Poaceae	7	Nielsen
	agricultural					Sugita's			2004
	landscape ⁺					lake			
Estonia	Hemi-boreal	40	selected	L	3	GPM	Poaceae	10	Poska et al.,
	forest zone:					Sugita's			2011
	mixed woodland					lake			
	- agricultural								
	landscape								
Finland	N Finland	24	stratified	М	3	GPM	Poaceae	6	Räsänen et
			random			Prentice's			al., 2007
						bog			
France	Mediterranean	23	random	М	3	GPM	Poaceae	11	Mazier et
	region:					Prentice's			al., unpubl.
						bog			
Germany	Eastern	49	selected	L	3	GPM	Pinus	16	Matthias et
	Germany:					Sugita's	Poaceae*		al., 2012
	Brandenburg,					lake			
	agricultural								
	landscape								
	NE Germany:	27	selected	L	3	LSM	Pinus	11	Theuerkauf
	agricultural					GPM	Poaceae*	$(15)^3$	et al., 2013
	landscape					Sugita's			
						Lake ²			
Norway	SW Norway:	39	selected	М	1	None [#]	Poaceae	17	Hjelle et al.,
	Hordaland and								1998
	Sogn og								
	Fjordane, mown								
	or grazed grass-								
	land and heath	10			2	CDM	D		
Poland	NE Poland:	18	stratified	M	5	GPM	Poaceae	8	Baker et al.,
	Bialowieza		random			Prentice's			2016
D ·	Forest	26	1		2	bog	D	10	
Romania	SE Romania:	26	random	M&S	3	GPM	Poaceae	13	Grindean et
	Forest-steppe					Prentice's			al., 2019
	region					bog			

Sweden	West- Central Sweden: Forest-tundra ecotone	30	random	М	3	GPM Prentice's bog	Poaceae	10	von Stedingk et al., 2008
	S Sweden: ancient cultural landscapes	114	selected	М	3	None [#]	<i>Juniperus</i> Poaceae*	$ \begin{array}{c} 14 \\ (17)^3 \end{array} $	Sugita et al., 1999
	S Sweden: unfertilized mown or grazed grasslands	42	selected	М	3	GPM Prentice's bog	Poaceae	11	Broström et al., 2004
Switzerland	Lowland: agricultural landscape	20	selected	L	3	GPM Prentice's bog	Poaceae	13	Soepboer et al., 2007
	Jura Mountain: pasture woodlands	20	(stratified) random^^	М	1	GPM Prentice's bog	Poaceae	11	Mazier et al., 2008

50 ¹L=lakes; M=moss pollsters; S=surface soil

² Other distance-weighting models were used in most studies, including the Gaussian Plume Model (GPM), 1/d, $1/d^2$ (d=distance) and the Lagrangian Stochastic Model (LSM). The GPM is used in both the model developed for (Parsons and Prentice, 1981; Prentice and Parsons, 1983) and lakes (Sugita, 1993). For this RPP synthesis, we chose the results from the analyses using GPM rather than 1/d or $1/d^2$. Note: In the study of Theuerkauf et al., (2013) the LSM was used. For this synthesis, Theuerkauf recalculated his RPPs using the lake model developed by Sugita (1993).

³Number of plant taxa for which RPP was estimated, including the reference taxon. Note: In the study by Theuerkauf et al.,

57 (2013) RPPs were estimated for 17 taxa using LSM. The RPPs were recalculated using the lake model (Sugita, 1993)

for 15 taxa (see note under ² above) for this synthesis. In the study of Sugita et al., (1999) RPPs were calculated for 14 trees

and 3 herbs. We used only the values for the 14 trees in this synthesis, following the syntheses by Broström et al., (2008) and
Mazier et al., (2012).

- 61 ^ Britain: the study includes two areas (a and b) in which RPP estimates were calculated for different sets of taxa and the two
- 62 areas have different numbers of sites: a. Calthorpe (34), 5 taxa; b. Wheatfen (17), same 5 taxa and *Corylus* (6 taxa in total)
- 63 ^^ random distribution of sites in areas with existing vegetation maps (therefore not truly random) (Mazier et al., 2008)
- ⁶⁴ ⁺Vegetation data from historical maps around 1800 CE

65 ⁺⁺ lake sediments dated to ca. 1800

* The reference taxon used in the original study is different from Poaceae. For this synthesis the RPPs were converted to values
relative to Poaceae.

68 ** The study of Bunting et al., (2005) does not include a RPP for Poaceae. In order to calculate the RPPs relative to Poaceae,

69 it was assumed that the RPP of *Quercus* was equal to the mean of RPPs from three other studies in Europe (see Mazier et al.,

- 70 2012 for details). Although we have included new RPP values for *Quercus* in this synthesis, we did not recalculate the RPPs
- from Bunting et al., (2005) with a new mean value for *Quercus*, but used the same values as in Mazier et al., (2012). For
- 72 comparison, the mean value for *Quercus* using the RPPs of the additional studies included in this synthesis is 4.28 (instead of

- 5.83 in Mazier et al., 2012). This would imply slightly lower RPPs in Britain also for *Alnus*, *Betula*, *Corylus*, *Fraxinus* and
 Salix.
- 75 # No distance weighting used for vegetation data because there was no information about vegetation with increasing distance from the pollen sample (Hjelle et al., 1998; Sugita et al., 1999). In the Swedish study, vegetation data within a 10^2 m² (herb taxa) and 10^3 m² quadrat (tree taxa) centred on the pollen sample was used (Sugita et al., 1999).
- 78

Three studies are not included in our synthesis: Britain (Twiddle et al., 2012) because of the absence of Poaceae in the calculated RPPs, curves of likelihood function scores exhibiting departures from theoretically correct curves, and doubts expressed by the authors on the reliability of the values; Greenland (Bunting et al., 2013a) because it is not considered in our reconstruction of Holocene plant cover in Europe; and Czech Republic (Kuneš et al., 2019) because the study was not ready when we finalized our synthesis. However, we compare the RPP values from these three studies with the mean RPP values in this synthesis (Table S5).

85 All studies used the ERV model to calculate RPPs, and all but one study used modern pollen assemblages and vegetation; only 86 Nielsen (2004; Denmark) used historical pollen and vegetation data. Eleven studies used pollen assemblages from moss 87 pollsters, five studies from lake sediments. Grindean et al., (2019; Romania) also used some pollen assemblages from surface 88 soil samples. All studies used distance-weighted vegetation except two, Hjelle et al., (1998; SW Norway) and Sugita et al., 89 (1999; S Sweden). The Gaussian Plume Model (GPM) was used for pollen dispersal and deposition to distance-weight 90 vegetation, i.e. the Prentice's bog model (Parsons and Prentice, 1981; Prentice and Parsons, 1983) in studies using pollen from 91 moss pollsters, and the Sugita's lake model (Sugita, 1993) in studies using pollen from lake sediments (see also caption of 92 Table S1). In the case of the study by Theuerkauf et al., (2013), the published RPP values were calculated using the Lagrangian 93 Stochastic Model. For the purpose of this synthesis, Theuerkauf recalculated the RPPs using the GPM bog model in the 94 application of the ERV model. The distribution of sites for collection of pollen samples and vegetation data within the study 95 regions is random or random stratified in seven of the eleven studies using moss pollsters; the five remaining studies used 96 selected sites (or systematic distribution). Studies using lake sediments normally result in a systematic site distribution. 97 (Broström et al., 2005) and Twiddle et al., (2012) showed that random distribution of sites provided better estimates of 98 "relevant source area of pollen" (RSAP; sensu Sugita, 1994) and thus RPPs, given that the reliable RPPs are those obtained 99 for the RSAP distance, i.e. the RPPs are based on the relationship between pollen and distance weighted vegetation within the 100 RSAP distance. Both studies indicated that systematic distribution of sites have the tendency to result in curves of likelihood 101 function scores that do not follow the theoretical behaviour, i.e. an increase of the scores with distance until the values reach 102 an asymptote. However, the difference in RPPs between systematic and random sampling is generally not very large. 103 Nonetheless, systematic sampling may lead to uncertainty in terms of reliability of RPPs and random distribution of sites is 104 recommended and has generally been used in studies using moss pollsters or soil samples published from 2008 and onwards.

106 S2.2 Selection of RPP values and calculation of the mean RPPs and their SDs (Tables S2 and S3)

- 107 Tables S2 (Boreal and Temperate Europe) and 3 (Mediterranean Europe) list the RPP values from the 16 selected studies
- 108 according to the information on models used provided in Table S1 (with further explanations in the section on selection of
- 109 RPP studies, above). We followed similar procedures and rules as Mazier et al., (2012) and Li et al., (2018) to produce a new
- 110 standard RPP dataset for Europe. We consider that there are still too few RPP values per taxon to disentangle variability in the
- 111 RPP values for a particular taxon due to methodological issues, landscape characteristics, land use, or climate. We therefore
- 112 use the mean of selected RPP values for each taxon in the new standard RPP dataset, following Broström et al., (2008) and
- 113 Mazier et al., (2012) (Table S4). In boreal and temperate Europe, the number of RPP values per taxon varies between one and
- 114 nine (Betula) (Table S2 A and B), and in Mediterranean Europe, there is only one value per taxon (Table S3).
- 115 Table S2: Europe (Mediterranean area excluded): RPP estimates and their SDs (in brackets) with the total number of
- 116 taxa per study indicated and in brackets the number of taxa with selected RPP estimates. A. Studies using moss pollsters
- 117 as pollen samples. B. Studies using surface lake sediments as pollen samples. For explanation of symbols, see captions
- 118 below Table B.

A

Type op Dentify Burgles Finland C Sweden S Sweden# Norway England## Swiss Jura Czech Rep* Poland** ERV submodel ERV 3 ERV 3 ERV 3 ERV 1 <
Instand C. Sweden J. Sweden <thj. sweden<="" th=""> <thj. sweden<="" th=""></thj.></thj.>
ERV SUITUDE: ERV 3 ERV 3 ERV 3 ERV 1
The box of
Calcease Artemisia Calicacia Calicacia Calicacia Calicacia Caluna vulgaris 0.30 (0.33) 4.70 (0.69) 1.07 (0.03) 2.77 (0.39) Caluna vulgaris 0.30 (0.33) 4.70 (0.69) 1.07 (0.03) 0.0462 (0.0018) Cerealia t 0.24 (0.06) 0.06 (0.004) 4.28 (0.27) 4.28 (0.27) Comp. SF. Cichorioideae 0.07 (0.06) 0.11 (0.03) 0.73 (0.08)
Artemisia Unitable
Arternadu a.20 (0.33) 4.70 (0.69) 1.07 (0.03) Cerealia-t 3.20 (1.14)
Calinal Vorgen's 0.30 (0.03) 4.70 (0.89) 107 (0.03) Cerealia-t 3.20 (1.14) 0.0462 (0.0018) 4.28 (0.27) Chenopodiaceae 0.24 (0.06) 0.06 (0.004) 4.28 (0.27) Comp. Sr. Cichorioideae 0.07 (0.06) 0.11 (0.03) 0.73 (0.08) Image: Comparison of the comparison of
Certeand Control Control Control Chenopodiaceae
Chenopolalezea U.24 (0.06) 0.06 (0.004) U.22 (0.27) Comp. SF. Clobroidleae 0.002 (0.0022) 0.89 (0.03) 1.00 (0.16) 0.29 (0.01) 0.73 (0.08) Empetrum 0.07 (0.06) 0.11 (0.03) U.22 (0.002) 0.73 (0.08) U.21 (0.002) Filipendula 0.07 (0.04) 1.07 (0.04) U.21 (0.002) U.21 (0.002) Plantago media 0.07 (0.04) 1.2.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago media 1.2.76 (1.83) 1.99 (0.04) 3.70 (0.77) U.21 (0.13) Plantago media 1.2.76 (1.83) 1.99 (0.04) 3.70 (0.77) U.21 (0.13) Plantago media 1.2.77 (0.18) 0.99 (0.13) 0.99 (0.13) U.21 (0.13) Runuculus acris -t 8.38 (0.72) 0.07 (0.004) U.21 (0.01) 3.47 (0.35) U.21 (0.13) Secale 3.02 (0.05) 4.20 (0.14) 3.83 (0.37) U.22 (0.31) U.22 (0.31)<
Comp. Sr. Clemoniodeae 0.24 (0.06) 0.06 (0.004) Cyperaceae 0.07 (0.06) 0.11 (0.03) Ericaceae 0.07 (0.06) 0.11 (0.03) Filipendula 2.48 (0.82) 3.39 (0.00) Leucanthemum (Anthemis)-t 0.10 (0.008) Plantago inaceolata 12.76 (1.83) 1.99 (0.04) Plantago montana 0.47 (0.03) 0.47 (0.03) Potentilla -t 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) Ranunculus acris -t 3.85 (0.72) 0.07 (0.04) 3.47 (0.35) Rubiaceae 3.95 (0.59) 0.42 (0.01) 3.47 (0.35) - Trollius 4.74 (0.83) 0.13 (0.004) - - Vaccinium 001 (0.01) - - 1.52 (0.31) Vaccinium 001 (0.01) - - 1.39 (0.229) Rubia 4.6 (0.70) 2.24 (0.20) 8.74 (0.35) 1.39 (0.229) Gorinus - - 1.39 (0.229) 1.39 (0.229) Gorinus - 2.53 (0.07) - 4.48 (0.0301)
Cryperaceae Index (v1002) 0.89 (0.03) 1.00 (0.16) 0.79 (0.05) 0.73 (0.08) Empetrum 0.07 (0.06) 0.11 (0.03)
Empetrum 0.07 (0.06) 0.11 (0.03) Ericaceae 0.07 (0.04) 2.48 (0.82) 3.39 (0.00) Leucanthemum (Anthemis)-t 12.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago inaceolata 12.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago media 12.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago media 1.27 (0.18) 0.74 (0.13) 1.27 (0.18) Plantago media 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) 1.27 (0.18) Plantago media 3.85 (0.72) 0.07 (0.04) 3.47 (0.35) 1.27 (0.18) Rubiaceae 3.95 (0.59) 0.42 (0.01) 3.47 (0.35) 1.27 (0.18) Secale 3.02 (0.05) 3.47 (0.35) 1.52 (0.31) 1.52 (0.31) Vrtica 3.02 (0.05) 3.83 (0.37) 1.52 (0.31) 1.59 (0.6622) Abies 1.27 (0.45) 0.32 (0.75) 1.59 (0.6622) 15.95 (0.6622) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 13.94 (0.2293) Carylus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 1.39.4 (0.2293) <
Ericaceae 0.07 (0.04) Filipendu/a 2.48 (0.82) 3.39 (0.00) Leucanthemum (Anthemis)-t 0.10 (0.008) Plantago lanceolata 12.76 (1.83) 1.99 (0.04) Plantago media 1.27 (0.18) 3.70 (0.77) Plantago media 1.27 (0.18) 0.96 (0.13) Plantago montana 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) Patentilla -t 3.85 (0.72) 0.07 (0.004)
Fillpendula 2.48 (0.82) 3.39 (0.00) Leucanthemum (Anthemis) •t
Leucanthemum (Anthemis)-t 0.10 (0.008) Plantago lanceolata 12.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago media 1.27 (0.18) 1.27 (0.18) Plantago montana 0.74 (0.13) 0.96 (0.13) Potentilla -t 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) Ranunculus acris -t 3.85 (0.72) 0.07 (0.004)
Plantago lanceolata 12.76 (1.83) 1.99 (0.04) 3.70 (0.77) Plantago media 12.77 (0.18) 12.77 (0.18) Plantago montana 0.74 (0.03) 0.96 (0.13) Patentilla -t 3.85 (0.72) 0.07 (0.004) 3.47 (0.35) Ranunculus acris -t 3.85 (0.72) 0.07 (0.004) 3.47 (0.35) Rumex acetosa -t 3.95 (0.59) 0.42 (0.01) 3.47 (0.35) Secale 3.02 (0.05) 3.47 (0.35) 4.74 (0.83) Trollius 2.29 (0.36) 4.74 (0.83) 0.13 (0.004) Vaccinium 0.01 (0.01) 2.29 (0.36) 4.74 (0.83) Abies 3.82 (0.72) 1.27 (0.43) 1.59 (0.622) Acer 3.83 (0.37) 3.83 (0.37) 4.20 (0.14) Alnus 4.20 (0.14) 8.74 (0.35) 2.56 (0.32) 15.95 (0.6622) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.35) 4.88 (0.301) Corylus 4.6 (0.70) 2.24 (0.20) 8.70 (0.41) 5.10 (0.06) 1.35 (0.0512) Fagus 0.11 (0.45) 2.07 (0.44) 1.20 (0.16) 1.35 (0.0512) 1.35 (0.0512) Fagus
Plantago media 1.27 (0.18) Plantago montana 0.74 (0.13) Potentilla -t 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) Ranunculus acris -t 3.85 (0.72) 0.07 (0.004)
Plantago montana
Potentilla -t 2.47 (0.38) 0.14 (0.005) 0.96 (0.13) Ranunculus acris -t 3.85 (0.72) 0.07 (0.004)
Ranunculus acris - t 3.85 (0.72) 0.07 (0.004) Rubiaceae 3.95 (0.59) 0.42 (0.01) 3.47 (0.35) Rumex acetosa -t 3.95 (0.59) 0.13 (0.004) Secale 3.02 (0.05) 2.29 (0.36) Trollius 2.29 (0.36) 10.52 (0.31) Vaccinium 0.01 (0.01) 10.52 (0.31) Vaccinium 0.01 (0.01) 10.52 (0.31) Abies 3.83 (0.77) 0.32 (0.10) Acer 1.27 (0.45) 3.83 (0.37) Alnus 4.40 (0.14) 8.74 (0.35) 56 (0.32) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 13.94 (0.2293) Carpinus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 4.48 (0.0301) Fagus 6.67 (0.17) 1.20 (0.16) 1.35 (0.512) 1.35 (0.512) Fagus 6.67 (0.17) 1.20 (0.16) 1.11 (0.09) 1.35 (0.512) Juniperus 0.11 (0.45) 2.76 (0.03) 0.70 (0.06) 1.11 (0.09) Picea 2.78 (0.21) 1.76 (0.00) 6.17 (0.41) 2.312 (0.2388)
Rubiaceae 3.95 (0.59) 0.42 (0.01) 3.47 (0.35) Rumex acetosa -t 4.74 (0.83) 0.13 (0.004) Secale 3.02 (0.05)
Rumex acetosa -t 4.74 (0.83) 0.13 (0.004) Secale 3.02 (0.05) Trollius 2.29 (0.36) Urtica 10.52 (0.31) Vaccinium 0.01 (0.01) TREE TAXA 10.52 (0.31) Abies 1.27 (0.45) Acer 3.83 (0.37) Alnus 1.27 (0.45) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 2.56 (0.32) 15.95 (0.6622) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 2.56 (0.32) 15.95 (0.6622) Garpinus 6.67 (0.17) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 13.94 (0.2293) Carpinus 6.67 (0.17) 1.40 (0.04) 1.51 (0.06) 13.94 (0.2293) Carpinus 6.67 (0.17) 1.20 (0.16) 13.94 (0.2293) Gargus 6.67 (0.17) 1.51 (0.06) 1.35 (0.0512) Juniperus 0.11 (0.45) 2.07 (0.04) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 8.43 (0.30) Juniperus 0.13 (0.34) 1.76 (0.00) 6.17 (0.41) 2.12 (0.2388) </td
Secale 3.02 (0.05) Trollius 2.29 (0.36) Urtica 2.29 (0.36) Vaccinium 0.01 (0.01) TREE TAXA Abies 3.83 (0.37) Acer 3.83 (0.37) Alnus 4.20 (0.14) 8.74 (0.35) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) Carpinus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 1.3.94 (0.2293) Carpinus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 1.3.94 (0.2293) Garpinus 6.67 (0.17) 1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.35 (0.0512) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 1.51 (0.06) 1.11 (0.09) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) 1.17 (0.41) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Trollius 2.29 (0.36) Urtica 10.52 (0.31) Vaccinium 0.01 (0.01) TREE TAXA Abies 3.83 (0.37) Acer 3.83 (0.37) Alnus 8.74 (0.35) 2.56 (0.32) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) Carpinus 2.53 (0.07) 1.394 (0.2293) Carylus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) Fagus 6.67 (0.17) 1.20 (0.16) 1.35 (0.0512) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 8.43 (0.30) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30)
Urtica 0.01 (0.01) Vaccinium 0.01 (0.01) TREE TAXA
Vaccinium 0.01 (0.01) TREE TAXA Sass (0.37) Abies 1.27 (0.45) 3.83 (0.37) Acer 1.27 (0.45) 0.32 (0.10) Alnus 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) Carpinus 5.35 (0.07) 5.35 (0.07) Carpinus 1.40 (0.04) 1.51 (0.06) 1.3.94 (0.2293) Fagus 6.67 (0.17) 1.20 (0.16) 1.35 (0.0512) Fagus 6.67 (0.31) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 1.43 (0.30) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00)
TREE TAXA Image: Second Se
Abies
Acer 1.27 (0.45) 0.32 (0.10) Alnus 4.20 (0.14) 8.74 (0.35) 2.56 (0.32) 15.95 (0.6622) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 2.5 13.94 (0.2293) Carpinus 2.53 (0.07) 2.53 (0.07) 4.48 (0.0301) 4.48 (0.0301) Corylus 1.40 (0.04) 1.51 (0.06) 1.20 (0.16) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.11 (0.09) 1.51 (0.06) 1.11 (0.09) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) 1.10 (0.01) 1.10 (0.01) Juniperus 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) 1.51 (0.04) 1.51 (0.04) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 8.43 (0.30) 1.10 (0.41)
Alnus 4.20 (0.14) 8.74 (0.35) 2.56 (0.32) 15.95 (0.622) Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 13.94 (0.2293) Carpinus 2.53 (0.07) 2.53 (0.07) 4.48 (0.0301) Corylus 1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.11 (0.09) Fraxinus 0.11 (0.45) 2.07 (0.04) 1.11 (0.09) Juniperus 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Betula 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 6.18 (0.35) 13.94 (0.2293) Carpinus 2.53 (0.7) 4.48 (0.0301) Corylus 1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.11 (0.09) Fraxinus 0.11 (0.45) 2.07 (0.04) 1.70 (0.06) 1.11 (0.09) Juniperus 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) 1.71 (0.41) 23.12 (0.2388) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 5.67 (0.21) 6.17 (0.41) 23.12 (0.2388)
Carpinus 2.53 (0.07) 4.48 (0.0301) Corylus 1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.35 (0.0512) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 8.43 (0.30) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) 23.12 (0.2388)
Corylus 1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) Fagus 6.67 (0.17) 1.20 (0.16) 1.11 (0.09) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 8.43 (0.30) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) 6.17 (0.41) 23.12 (0.2388)
Fagus 1.20 (0.16) Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04) 1.12 (0.16) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Fraxinus 0.67 (0.03) 0.70 (0.06) 1.11 (0.09) Juniperus 0.11 (0.45) 2.07 (0.04)
Juniperus 0.11 (0.45) 2.07 (0.04) Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Picea 2.78 (0.21) 1.76 (0.00) 8.43 (0.30) Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Pinus 8.40 (1.34) 21.58 (2.87) 5.66 (0.00) 6.17 (0.41) 23.12 (0.2388)
Populus
Ouercus 7,53 (0,08) 5,83 (0,00)## 1,76 (0,20) 18,47 (0,1032)
Salix 0.09 (0.03) 1.27 (0.31) 1.05 (0.17) 1.19 (0.12)
Sambucus niara -t
Tilia 0.80 (0.03) 1 36 (0.26) 0 98 (0.0263)
Ullmus 1.27 (0.05)
Total number of taxa 40 (39) 6 (4) 10 (7) 26 (25) 12 (8) 7 (7) 11(10) 13(12) 8 (5)

B

Type of pollen sample		la	ke surface sediment		
Region	Estonia	Denmark	Swiss Plateau	Germanv***	Germany ****
FRV submodel	FRV 3	FRV 1	FRV 3	FRV 3	Germany
HERB TAXA				2	
Poaceae (Reference taxon)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)
Apjaceae	,				
Artemisia	3.48 (0.20)				5.56 (0.020)
Calluna vulgaris	0.10 (0.20)	1.10 (0.05)			0.00 (0.01010)
Cerealia-t	1.60 (0.07)	0.75 (0.04)	0.00076 (0.0019)	9.00 (1.92)	0.08 (0.001)
Chenopodiaceae	2.00 (0.07)		0.00010 (0.0020)		
Comp. SF. Cichorioideae			0.17 (0.03)		
	1.23 (0.09)			•	
Empetrum	1.10 (0.00)	-			
Fricaceae					
Filinendula	3 13 (0 24)				
Leucanthemum (Anthemis)-t	5.15 (0.24)				
Plantago lanceolata		0.00 (0.23)	0.24 (0.15)		2 73 (0 0/13)
Plantago media		0.50 (0.23)	0.24 (0.13)		2.75 (0.045)
Plantago mentang					
Plantago montana					
Polenunu -l					
Rununculus uchs -l					
		4 56 (0.00)			2.76 (0.022)
Rumex acetosa -t		1.56 (0.09)		4.00 (0.00)	2.76 (0.022)
				4.08 (0.96)	4.87 (0.006)
I TOILIUS					
			()		
Abies			9.92 (2.86)		
Acer					
Alnus	13.93 (0.15)			15.51 (1.25)	13.68 (0.049)
Betula	1.81 (0.02)		2.42 (0.39)	9.62 (1.92)	19.70 (0.117)
Carpinus			4.56 (0.85)	9.45 (0.51)	
Corylus			2.58 (0.39)		
Fagus		5.09 (0.22)	0.76 (0.17)	5.83 (0.45)	9.63 (0.008)
Fraxinus			1.39 (0.21)	6.74 (0.68)	1.35 (0.012)
Juniperus					
Picea	4.73 (0.13)	1.19 (0.42)	0.57 (0.16)	1.58 (0.28)	5.81 (0.007)
Pinus	5.07 (0.06)		1.35 (0.45)	5.66 (0.00)	5.39 (0.222)
Populus		_		2.66 (1.25)	
Quercus	7.39 (0.20)		2.56 (0.39)	2.15 (0.17)	17.85 (0.049)
Salix	2.31 (0.08)				
Sambucus nigra -t					
Tilia				1.47 (0.23)	12.38 (0.101)
Ulmus					11.51 (0.101)
Total number of taxa (selected values) 40 (39)	11 (11)	7 (7)	13 (9)	13 (10)	15 (11)

- 124 # RPPs for herbs from Broström et al., (2004); RPPs for trees from Sugita et al., (1999) (reference taxon Juniperus), converted
- 125 to Poaceae as reference taxon by Broström et al., (2004).
- 126 ## Bunting et al., (2005), reference taxon Quercus and no RPP for Poaceae; RPPs relative to Poaceae calculated by Mazier et
- 127 al., (2012) assuming that the RPP of Quercus relative to Poaceae is the same as the mean RPP of Quercus from three other
- 128 studies in NW Europe.
- 129 * New RPPs from the Czech Republic (Abraham & Kozáková, 2012).
- 130 ** New RPPs from Poland. Poaceae as reference taxa (see text for more details)
- 131 *** New RPPs from Germany (Matthias et al., 2012), reference taxon *Pinus*. RPPs converted to Poaceae as reference
- 132 taxon. We selected the RPP estimates obtained with the dataset of vegetation cover including only the trees that had reached
- 133 their flowering age (allFIDage) (for more information, see Matthias et al., 2012).
- 134 **** New RPPs from Germany (Theuerkauf et al., 2013); in the original publication, the ERV analysis was performed with
- 135 the Lagrangian Stochastic Model (LSM) for dispersal of pollen and with *Pinus* as reference taxon. For this synthesis, Martin
- 136 Theuerkauf redid the analysis with the Gaussian Plume Model for dispersal of pollen (Parsons and Prentice, 1981; Prentice
- 137 and Parsons, 1983) and with Poaceae as reference taxon.
- 138 Green: selected RPP estimates to be included in the mean RPP values.
- 139 **Red**: RPP estimates excluded because $SE \ge RPP$.
- 140 Orange: RPP estimates excluded because of a too large difference with the other available estimates and their mean, (less than
- 141 half or more than double the mean RPP).
- 142 Light blue: RPP estimates excluded due to its extreme high value compared to the other available estimates, i.e. from the 143 study at Bialowice forest (Poland, Baker et al., 2016) for *Betula*, *Pinus* and *Quercus*, Central Sweden for *Pinus*, and 144 Germany**** for *Betula*, *Quercus*, *Tilia*, and *Ulmus*.
- 145

In general, all three sub-models of the ERV model were used in the RPP studies. We selected the RPP values obtained with 146 147 the ERV sub-model considered by the authors to have provided the best results (Li et al., 2018) (Table S1). The latter is usually evaluated by the shape of the curve of likelihood function scores (LFS), or log likelihood (LL), see e.g. Twiddle et al., 2012) 148 149 and the LFS and LL values themselves. All RPPs selected for this synthesis are expressed relative to Poaceae (RPP=1). In 150 studies that used another reference taxon and calculated a RPP for Poaceae, the RPPs were recalculated relative to Poaceae. In 151 studies that did not include a RPP value for Poaceae, it was assumed that the reference taxon had a RPP related to Poaceae equal to the mean of the RPP values for that taxon in the other studies (e.g. Mazier et al., 2012). For simplicity, we used the 152 153 value of *Quercus* (5.83) calculated by Mazier et al., (2012) for the study by Bunting et al., (2005) (*Quercus* as reference taxon, 154 no RPP value for Poaceae). We could also have used the new mean RPP for Quercus (4.54) using our selected RPPs (five values, instead of three in Mazier et al., (2012)). The latter would not have changed our results significantly; the mean RPP 155 156 for *Quercus* would have been 4.28 instead of 4.54 (Table S4). For the study by Baker et al., (2016), we used the RPP values 157 obtained with Poaceae as the reference taxon, given that the RPPs relative to Quercus or Pinus were almost identical when

- ERV submodel 3 was used. The selection of RPP values in boreal and temperate Europe for the calculation of the mean RPPvalues of each taxon (values emphasized in green in Table S2A and B) is based on the following rules:
- 160 1. We excluded the RPP values that were not significantly different from zero considering the lower bound of its SE. 161 and values that were considered as uncertain by the authors of the original publications (e.g., Vaccinium for Finland 162 (Räsänen et al., 2007), Pinus for Central Sweden (von Stedingk et al., 2008)). Moreover, some RPP values were 163 excluded as they were assumed to be outliers or unreliable based on experts' knowledge on the plants involved, the 164 pollen-vegetation dataset, and the field characteristics of the related studies. For example, the RPPs for Cyperaceae, Potentilla-t and Rubiaceae obtained in SW Norway (Hjelle, 1998) and those for Salix and Calluna vulgaris from 165 166 Central Sweden (von Stedingk et al., 2008) were assumed to be too low compared to the values obtained in other 167 study areas (Mazier et al., 2012).
- 168 (i) when five or more RPP estimates of pollen productivity ($N \ge 5$) were available for a pollen type, the largest and the 2. 169 smallest RPP values (generally outlier values) were excluded, and the mean was calculated using the remaining three 170 or more RPP estimates; (ii) when N=4, the most deviating value was excluded, and the mean calculated using the 171 other three RPP values; (iii) when N=3, the mean was based on all values available except if one value was strongly 172 deviating from the other two; and (iv) when N=2, the mean was based on the two values available; an exception is 173 Ulmus for which we excluded the value from Germany (Theuerkauf et al., 2013) given that several of the RPPs in 174 this study are considerably higher than most values in the other available studies, i.e. for Betula (18.7), Ouercus 175 (17.85) and *Tilia* (12.38). The latter values were also excluded from the mean RPP, as well as the unusually high 176 values found by Baker et al., (2016) for Betula (13.94), Pinus (23.12) and Ouercus (18.47). Baker et al., (2016) argue 177 that the high RPP values might be characteristic of temperate deciduous forests that were little impacted by human 178 activities. More studies in this type of wooded environments would be needed to confirm this assumption. In the 179 absence of such studies we consider these values as outliers.
- The SDs for the mean RPP values were calculated using the delta method (Stuart. and Ord., 1994), a mathematical solution
 to the problem of calculating the mean of individual SDs (Li et al., 2020).
- 182

183 Table S3: Mediterranean area: RPP estimates and their SDs from two available studies, and mean RPPs for northern

184 and temperate Europe (Table S2, A and B), for comparison. The single RPPs emphasized in green were used in the

185 new REVEALS reconstruction for Europe. The plant taxa emphasized in **bold** are sub-Mediterranean and/or

186 Mediterranean plant species and genera. The values emphasized with grey shadow are the mean RPPs that were used

187 for entire Europe (Mediterranean area included). See Method section for more details. Mean RPP values and SEs for

188 * Cereals (Secale excluded) and for Secale (in bracket), ** Carpinus betulus, *** Juniperus communis, ^ Ericaceae

- 189 (Calluna and Empetrum excluded), ^^ Fraxinus excelsior, and ^^^ Quercus spp (deciduous), for comparison. '
- 190

Study reference	Mazier e	et al. (unpubl.)	Grindea	n et al. (2019)	This paper (sy	nthesis 2A, 2B)
	RPP	SD	RPP	SD	RPP	SD
HERB TAXA						
Poaceae (reference taxon)	1.00	0.00	1.00	0.00	1.00	0.00
Apiaceae			5.91	1.23	0.26	0.01
Artemisia			5.89	3.16	3.94	0.14
Cerealia (Cerealia type, Secale included)			0.22	0.12	1.85 (3.99)*	0.38 (0.32)*
Plantago lanceolata			0.58	0.32	2.33	0.20
TREE/SHRUB TAXA						
Buxus sempervirens	1.89	0.068				
Carpinus orientalis			0.24	0.07	4.52**	0.43**
Castanea sativa	3.258	0.059				
Corylus avellana	3.44	0.89			1.71	0.10
Cupressaceae (Juniperus communis , J. phoenica, J. oxycedrus)	1.618	0.16			2.07***	0.04***
Ericaceae (Arbutus unedo, Erica arborea, E. cinerea, E. multiflora)	4.265	0.094			0.07^	0.04^
Fraxinus (F. excelsior , F. ornus)			2.99	0.88	1.04^^	0.02^^
Phillyrea	0.512	0.075				
Pistacia	0.755	0.201				
Quercus evergreen (Q. ilex, Q. coccifera)	11.043	0.261				
Quercus deciduous (Q. spp, Q. peduncularis dominant)			1.10	0.35	4.54^^^	0.09^^^
Total number of taxa	9		8			

192 S3 Results (Table S4)

193 Table S4 presents the new mean RPPs based on the selected RPP values in Table S2 (emphasized in green) for 39 plant taxa 194 of boreal and temperate Europe (Mediterranean area excluded), of which 22 (Poaceae included) are herbs or low shrubs. The 195 number of selected RPP values (n) for Poaceae included in the three synthesis is larger than the total number of RPP (tn), i.e. 196 n = nt + 1 in our synthesis and those by Mazier et al., (2012) and Wieczorek and Herzschuh (2020). This is because the study 197 of Bunting et al., in 2005 (Bunting et al., 2005) does not include a value for Poaceae and the RPP values are related to Quercus 198 and the RPPs related to Poaceae were calculated by assuming a RPP value related to Poaceae for *Quercus*. For details, see the 199 Methods section. The ranking of RPPs for the 17 tree taxa, from the largest (13.56) to the smallest (0.8), is as follows: Alnus> 200 Abies alba> Pinus> Fagus sylvatica> Picea abies> Betula> Quercus> Carpinus betulus> Populus> Juniperus> Corylus 201 avellana> Sambucus

202

203 Table S4: New synthesis of European RPPs, Mediterranean RPPs excluded: mean RPPs with their SDs in brackets, 204 and mean RPPs from the syntheses by Mazier et al., (2012) and Wieczorek and Herzschuh (2020), for comparison. This 205 synthesis: values in bold are new mean RPPs compared to Mazier et al., (2012). The values emphasized in grey are the 206 mean RPPs used in the new REVEALS reconstruction for Europe (see Introduction section and main article). The values of fall speed of pollen (FSP) are from Mazier et al., (2012) except those in italic, i.e. FSPs for Chenopodiaceae, 207 208 Urtica and Sambucus nigra-t. (Abraham and Kozáková, 2012), and Populus (Wieczorek and Herzschuh, 2020). For the 209 three syntheses, the number of selected RPP values (n) included in the calculation of the mean RPP estimate is indicated with the total number of RPP values (tn) in brackets. The number of selected RPP values (n) for Poaceae included in 210 211 the three synthesis is larger than the total number of RPP (tn), see text, Result section, for details. For explanation of symbols, see captions below the Table.

Study	This paper, synthesis		Mazier et al. 2012 St 3		Wieczorek & Herzschuh 2020 Europe version 2			
n (tn), FSP, RPP	n (tn)	FSP	RPP (SE)	n (tn)	RPP (SE)	n(tn)	RPP (SE)	Notes
HERB TAXA								
Poaceae (Reference taxon)	16(15)	0.035	1.00 (0.00)	9(8)	1.00 (0.00)	14(12)	1.00 (0.00)	
Herb taxa								
Apiaceae	1(1)	0.042	0.26 (0.01)	1(1)	0.26 (0.01)	3(3)	2.13 (0.41)	
Artemisia	3(3)	0.025	3.94 (0.14)	1(1)	3.48 (0.20)	2(2)	4.33 (1.59)	
Calluna vulgaris*	2(4)	0.038	1.09 (0.03)	2(4)	1.09 (0.03)			see Ericales all*
Cerealia-t**	3(7)	0.06	1.85 (0.38)	2(4)	1.18 (0.04)	4(6)	2.36 (0.42)	Cereals all**
Chenopodiaceae	1(1)	0.019	4.28 (0.27)	none	none	1(1)	4.28 (0.27)	Same value as in this synthesis
Comp. SF. Cichorioideae***	3(3)	0.051	0.16 (0.02)	3(3)	0.16 (0.02)	8(10)	0.22 (0.02)	Asteraceae all***
Cyperaceae	4(6)	0.035	0.96 (0.05)	4(6)	0.83 (0.04)	6(8)	0.56 (0.02)	
Empetrum*	1(2)	0.038	0.11 (0.03)	1(2)	0.11 (0.03)			see Ericales all*
Ericaceae*	1(1)	0.038	0.07 (0.04)	1(1)	0.07 (0.04)	7(9)	0.44 (0.02)	Ericales all*
Filipendula^	3(3)	0.006	3.00 (0.28)	2(3)	2.81 (0.43)	4(6)	0.97 (0.11)	Rosaceae all ^
Leucanthemum (Anthemis) -t***	1(1)	0.029	0.10 (0.01)	1(1)	0.10 (0.01)			see Asteraceae all***
Plantago lanceolata^^	4(6)	0.029	2.33 (0.20)	3(4)	1.04 (0.09)	8(10)	2.49 (0.11)	Plantaginaceae all^^
Plantago media^^	1(1)	0.024	1.27 (0.18)	1(1)	1.27 (0.18)			see Plantaginaceae all^^
Plantago montana^^	1(1)	0.030	0.74 (0.13)	1(1)	0.74 (0.13)			see Plantaginaceae all^^
Potentilla -t^	2(3)	0.018	1.72 (0.20)	2(3)	1.72 (0.20)			see Rosaceae all^
Ranunculus acris -t^^^	2(2)	0.014	1.96 (0.36)	2(2)	1.96 (0.36)	3(5)	0.99 (0.12)	Ranunculaceae all^^^
Rubiaceae	2(3)	0.019	3.71 (0.34)	2(3)	3.71 (0.34)	3(5)	1.56 (012)	
Rumex acetosa -t	3(4)	0.018	3.02 (0.28)	3(3)	0.85 (0.05)	3(4)	0.58 (0.03)	
Secale **	3(3)	0.06	3.99 (0.32)	1(1)	3.02 (0.05)			see Cereals all**
Trollius ^^^	1(1)	0.013	2.29 (0.36)	1(1)	2.29 (0.36)			see Ranunculaceae all^^^
Urtica	1(1)	0.007	10.52 (0.31)	none	none	1(1)	<u>10.52 (0.31</u>	Same value as in this synthesis
TREE TAXA								
Abies alba	2(2)	0.12	6.88 (1.44)	2(2)	6.88 (1.44)	2(2)	<u>6.88 (1.44)</u>	Same value as in this synthesis
Acer spp	2(2)	0.056	0.80 (0.23)	2(2)	0.80 (0.23)	3(3)	0.23 (0.04)	
Alnus spp	5(7)	0.021	13.56 (0.29)	3(3)	9.07 (0.10)	4(6)	8.49 (0.22)	
Betula (mainly B. pubescens, B. pendula)	7(9)	0.029	5.11 (0.30)	6(6)	3.99 (0.17)	6(8)	4.94 (0.44)	
Carpinus betulus	2(4)	0.042	4.52 (0.43)	2(2)	3.55 (0.43)	3(5)	3.09 (0.28)	
Corylus avellana	4(4)	0.025	1.71 (0.10)	3(3)	1.99 (0.20)	3(4)	1.05 (0.33)	
Fagus sylvatica	3(6)	0.057	5.86 (0.18)	4(4)	3.43 (0.09)	3(3)	2.35 (0.11)	
Fraxinus excelsior	5(6)	0.022	1.04 (0.02)	3(3)	1.03 (0.11)	5(5)	2.97 (0.25)	
Juniperus communis	1(2)	0.016	2.07 (0.04)	1(2)	2.07 (0.04)	1(1)	7.94 (1.28)	
Picea abies	4(8)	0.056	5.44 (0.10)	4(6)	2.62 (0.12)	4(6)	1.65 (0.15)	
Pinus (mainly P. sylvestris)	6(9)	0.031	6.06 (0.24)	3(5)	6.38 (0.45)	4(6)	10.86 (0.80)	1
<i>Popul</i> us spp	1(1)	0.025	2.66 (1.25)	none	none	1(1)	3.42 (1.60)	
Quercus (mainly Q. robur, Q. petraea)	6(8)	0.035	4.54 (0.09)	4(4)	5.83 (0.15)	5(7)	2.42 (0.10)	
Salix spp	5(5)	0.022	1.18 (0.08)	3(4)	1.79 (0.16)	3(4)	0.39 (0.06)	
Sambucus nigra -t	1(1)	0.013	1.30 (0.12)	none	none	1(1)	<u>1.30 (0.12)</u>	Same value as in this synthesis
Tilia spp	4(5)	0.032	1.21 (0.12)	1(1)	0.80 (0.03)	3(4)	0.93 (0.09)	
Ulmus spp	1(2)	0.032	1.27 (0.05)	1(1)	1.27 (0.05)	none		

- 215 * Separate mean RPP values for Calluna vulgaris, Empetrum, and Ericaceae (Calluna and Empetrum excluded) in this
- 216 synthesis, a single mean RPP values for all Ericales in Wieczorek and Herzschuh (2020)
- 217 ** Separate mean RPP values for Cerealia type (Secale excluded) and Secale in this synthesis, a single mean RPP for all cereals
- 218 in Wieczorek and Herzschuh (2020)
- 219 *** Separate mean RPP values for Compositae SF Cichoriodae and Leucanthemum (Anthemis) type in this synthesis, a single
- 220 mean RPP for all Asteraceae in Wieczorek and Herzschuh (2020). Note that there are no RPP for Asteraceae (Compositae SF
- 221 Cichoriodae and Leucanthemum (Anthemis) type excluded) in our synthesis
- 222 ^ Separate mean RPP values for Filipendula and Potentilla type in this synthesis, a single mean RPP for all Rosaceae in
- 223 Wieczorek and Herzschuh (2020); note that there are no RPP for Rosaceae (Filipendula and Potentilla-t. excluded) in our
- synthesis; moreover *Filipendula* and *Potentilla*-t. are classified as herbs, while Rosaceae is classified as tree in Wieczorek and
 Herzschuh (2020)
- 226 ^^ Separate mean RPP values for *Plantago lanceolata*, *P. media* and *P. montana* in this synthesis, a single mean RPP for all
- 227 Plantaginaceae in Wieczorek and Herzschuh (2020); note that there are no RPP for Plantaginaceae (Plantago lanceolata, P.
- 228 media and P. montana excluded) in our synthesis
- 229 ^^^ Separate mean RPP values for Ranunculus acris type and Trollius in this synthesis, a single mean RPP for all
- 230 Ranunculaceae in Wieczorek and Herzschuh (2020); note that there are no RPP for Ranunculaceae (Ranunculus acris-t and
- 231 Trollius excluded) in our synthesis
- 232 nigra-t.> Ulmus> Tilia> Salix> Fraxinus> Acer. All tree taxa have mean RPPs larger than 1 except Acer (0.8). For four taxa,
- 233 only one RPP was available (Populus, Sambucus nigra-t.) or selected from two values (Juniperus, Ulmus). The ranking of
- RPPs for the 22 herb and low shrub taxa, from the largest (10.52) to the smallest (0.07), is as follows: Urtica> Chenopodiaceae>
- 235 Secale> Artemisia> Rubiaceae> Rumex acetosa-t.> Filipendula> Plantago lanceolata> Trollius> Ranunculus acris-t.>
- 236 Cerealia-t.> Potentilla-t.> Plantago media> Calluna vulgaris> Poaceae (1)> Cyperaceae> Plantago montana> Apiaceae>
- 237 Compositae SF. Cichorioideae> Empetrum> Leucanthemum (Anthemis)-t.> Ericaceae. All RPPs of herbs are lower than 4,
- except Chenopodiaceae (4.28) and Urtica (10.52). Seven herb taxa have RPPs lower than 1. Note that among the 17 tree taxa,
- 239 eight have values larger than 4: Alnus, Abies alba, Pinus, Fagus sylvatica, Picea, Betula, Ouercus, and Carpinus betulus. For
- 240 nine taxa, only one RPP was available (Apiaceae, Chenopodiaceae, Ericaceae, Leucanthemum (Anthemis)-t., Plantago media,
- 241 Pantago montana, Trollius, Urtica) or selected from two values (Empetrum).
- The two studies in the Mediterranean area provide single RPP values for 16 taxa, five herb taxa (Poaceae included) and 11 tree taxa of which six are sub-Mediterranean and/or Mediterranean, and three include both temperate and Mediterranean taxa (Cupressaceae, Ericaceae, *Fraxinus*) (Table S3). The RPP of herb taxa are significantly different between the study of Grindean et al., (2019) and our synthesis, except for *Artemisia* (5.89 and 3, 94, respectively). The RPP of *Corylus avellana* from the study of Mazier et al., (unpublished) (3.44) is double as large as the mean RPP in our synthesis (1.71), and the mean RPP of *Ouercus* (deciduous species) in our synthesis (4.54) is four times as large as the RPP from the study of Grindean et al., (2019)
- 248 (1.10).

Table S5: Comparison of the mean RPPs in this synthesis with the RPP estimates from Twiddle et al., (2012: Britain), Bunting et al., (2013b; Greenland) and Kuneš et al., (2019; Czech Republic). Explanations for symbols in the taxa list, see caption below Table S4. + The original paper does not provide a RPP for Poaceae and values of standard deviations (SDs) for the RPPs. We extracted the RPP values related to Picea from Table 5 in Twiddle et al., (2012). RPPs related to Poaceae (1.00+) were then calculated by assuming that the RPP of *Picea* was equal to the mean RPP of *Picea* in Europe (this synthesis) (in **bold**). ++ The RPPs and their SDs are not listed in the original paper, we therefore read the values from Fig. 4 (Bunting et al., 2013b) and the decimals are approximate. +++ Kuneš et al., (2019): we chose the RPP values that were considered best by the authors, i.e. using the lake dataset (pollen from lake sediment), ERV sub-model 1 and the Lagrangian Stochastic Model (see text, Discussion section, for details). # value for Plantago maritima and ## two values for *Rumex acetosa* and *Rumex acetosella*, respectively (Bunting et al., 2013b), for comparison with *Plantago* spp. and Rumex acetosa-t. (This paper). Underlined RPPs are close to mean RPPs (this synthesis).

	This paper, synthesis	Twiddle et al. (2012)+	Bunting et al. (2013b)++	Kunes et al (2019)+++
	RPP (SE)	RPP ERV3 random GPM	RPP (SE) ERV1 GPM	RPP-R ERV1 LSM (SE)
HERB TAXA				
Poaceae (Reference taxon)	1.00 (0.00)	1.00+	1.00 (0.00)	1.00 (0.00)
Herb taxa				
Calluna vulgaris*	1.09 (0.03)	11.42		
Chenopodiaceae	4.28 (0.27)			1.58 (0.74)
Comp. SF. Cichorioideae***	0.16 (0.02)			1.04 (0.64)
Cyperaceae	0.96 (0.05)		<u>0.95 (0.05)</u>	2.10 (0.88)
Leucanthemum (Anthemis) -t***	0.10 (0.01)			0.94 (0.43)
Plantago lanceolata^^	2.33 (0.20)		5.8 (0.3)#	<u>2.24 (0.71)</u>
Potentilla -t^	1.72 (0.20)		0.4 (0.03)	
Ranunculus acris -t^^^	1.96 (0.36)		<u>2.0 (0.1)</u>	<u>1.38 (1.13)</u>
Rubiaceae	3.71 (0.34)			1.03 (0.74)
Rumex acetosa -t	3.02 (0.28)		<u>3.5 (0.3)/ 2.0 (0.1)##</u>	<u>1.94 (1.35)</u>
Urtica	10.52 (0.31)			1.16 (0.52)
TREE TAXA				
Abies alba	6.88 (1.44)			1.08 (0.99)
Acer spp	0.80 (0.23)			<u>1.25 (0.75)</u>
Alnus spp	13.56 (0.29)			2.44 (0.73)
Betula (mainly B. pubescens, B. pendula)	5.11 (0.30)	13.16	3.75 (0.4)	2.53 (0.91)
Carpinus betulus	4.52 (0.43)			1.36 (0.36)
Corylus avellana	1.71 (0.10)			<u>2.31 (1.13)</u>
Fagus sylvatica	5.86 (0.18)			0.88 (0.25)
Fraxinus excelsior	1.04 (0.02)			<u>0.79 (0.37)</u>
Picea abies	5.44 (0.10)	<u>5.44</u>		2.39 (0.93)
Pinus (mainly P. sylvestris)	6.06 (0.24)	16.32		1.55 (0.44)
Quercus (mainly Q. robur, Q. petraea)	4.54 (0.09)			2.08 (0.46)
Salix spp	1.18 (0.08)		0.7 (0.03)	<u>1.43 (0.62)</u>
<i>Tilia</i> spp	1.21 (0.12)			2.30 (1.24)
Ulmus spp	1.27 (0.05)			<u>0.96 (0.77)</u>

265 S4 Discussion and conclusions

266 S4.1 Comparison of the new synthesis with two earlier syntheses (Tables S4)

Of the 39 plant taxa for which we have a mean RPP in our new synthesis (N), 21 have a new mean RPP value compared to the earlier synthesis of Mazier et al., (2012) (M), 18 taxa have the same mean RPPs in both syntheses. There are three new taxa for which there were no RPP in M, i.e. Chenopodiaceae, *Sambucus nigra*-t. and *Urtica*. The mean RPPs are comparable between the two syntheses N and M, except for *Plantago lanceolata* (2.33 in N/1.04 in M), *Rumex acetosa*-t. (3.02/0.85), *Alnus* (13.56/9.07), *Betula* (5.11/3.99), *Carpinus betulus* (4.52/3.55), *Fagus* (5.86/3.43), *Picea* (5.44/2.62) and *Quercus* (4.54/5.83).

- 273 Abies alba has the same RPP in all three syntheses. Chenopodiaceae, Sambucus nigra-t. and Urtica have the same single RPP 274 values in the synthesis of Wieczorek and Herzschuh (2020) (W&H) and N. N and W&H also have comparable mean RPP 275 values for Artemisia, Cereals (Cereals, Secale excluded in N, all Cereals in W&H), Compositae (SF Cichorioidae in N, all 276 Asteraceae in W&H), Cyperaceae, Plantago (P. lanceolata in N, all Plantaginaceae in W&H), Betula, Corylus, Populus and 277 Tilia. There are relatively large differences in mean RPPs in W&H and N for 16 plant taxa, although the ranking of the plant 278 taxa in terms of their mean RPPs is almost the same. Mean RPP is larger in W&H than in N for Apiaceae (2.13/0.26), Ericales 279 (0.44 in W&H) - Empetrum (0.11) and Ericaceae (0.07) in N, Fraxinus (2.97/1.04), Juniperus (7.94/2.07), Pinus (10.86/6.06). 280 Mean RPP is smaller in W&H than in N for Filipendula (0.97/3.00), Rubiaceae (1.56/3.71), Rumex acetosa (0.58/3.02), Acer
- 281 (0.23/0.80), Alnus (8.49/13.56), Carpinus (3.09/4.52), Fagus (2.35/5.86)), Picea (1.65/5.44), Quercus (2.42/4.54) and Salix
- 282 (0.39/1.18).

The larger differences between the mean RPPs in N and W&H than between N and M have not been examined in detail. It is due to a slightly different selection of studies, i.e. the study of Theuerkauf et al., (2013) is not included in W &H and we did not include in N (boreal and temperate Europe, Mediterranean area excluded) the studies of Bunting et al., (2013b), Kuneš et al., (2019) and Grindean et al., (2020). Another important influencing factor is the selection of RPP values for calculation of the mean RPP. Although the rules used to select RPP values are very similar between the syntheses, there are obvious differences between N and W&H that are sometimes very significant (e.g. *Juniperus*).

289 S4.2 Comparison of the new synthesis with three additional individual studies (Tables S5)

290 The RPPs from Twiddle et al., (2012) (T) for Pinus, Betula and Calluna are considerably larger than the mean RPPs in our

- 291 synthesis (N) (Table S5). This is probably due to the assumption made on the RPP of *Picea* related to Poaceae. The RPP of
- 292 Picea varies greatly between the selected studies in N, from 0.57 to 8.43 (eight values available). If we assumed that the RPP
- of *Picea* related to Poaceae in the study region of T was the mean RPP of the five smallest RPPs, i.e. 1.57, the RPP of the three
- taxa would be 4.8 for *Pinus*, 3.4 for *Betula*, and 3.3 for *Calluna*, which is more comparable to the mean RPPs in N.
- 295 Three taxa in Bunting et al., (2013b) (B) have a RPP comparable to the mean RPP in N, i.e. for Cyperaceae, Ranunculus acris-
- t., and *Rumex acetosa*-t. (*R. acetosa* in B). The other taxa have a RPP in B smaller than the mean RPP in N, except *Plantago*
- 297 *maritima* that has a larger RPP (5.8) in B than the mean RPP for *P. lanceolata* in N.
- 298 Of nine taxa, three have a RPP in Kuneš et al., (2019) (K) that is comparable to the mean RPP in N, i.e. for *Plantago lanceolata*,
- 299 Ranunculus acris-t. and Rumex acetosa-t.. The other six taxa have a RPP larger than the mean RPP in N (Compositae SF
- 300 Cichorioideae, Cyperaceae and Leucanthemum (Anthemis)-t., or smaller (Chenopodiaceae, Rubiaceae) to considerably smaller
- 301 (Urtica). Of the 14 tree taxa, only four have a RPP in K comparable to the mean RPP in N, i.e. for Corylus, Fraxinus, Salix,
- 302 and Ulmus. For the other 10 tree taxa, the RPP in K is much smaller than the mean RPP in N for Abies alba, Alnus, Carpinus,
- 303 Fagus, Picea, Pinus, smaller for Quercus, and larger for Acer and Tilia.
- 304 Nevertheless, most of the RPP values of the three studies T, B and K are in the range of the values selected from the studies
- 305 included in our synthesis (N) except for Urtica, Abies alba, Carpinus, and Pinus in K. The Lagrangian Stochastic Model is
- 306 used in K instead of the Gaussian Plume Model in N, which may be one of the factors behind the lower RPPs in K, in particular
- 307 (but not only) for taxa with heavy pollen grains.

308 **S4.3 Use of the new RPP datasets**

309 The new RPP datasets for Europe can be used in different ways. Tables S3 (Mediterranean area) and 4 (boreal and temperate 310 Europe) can be used in combination for entire Europe, including entomophilous taxa or not, and including all values from the 311 Mediterranean area or only the values for the strictly sub-Mediterranean and/or Mediterranean taxa. If one uses all RPPs from 312 the Mediterranean area, the values for plant taxa that are also characteristic of boreal and temperate Europe need to be used only for the Mediterranean area. This is not straightforward to achieve, because the northern border of this region shifted over 313 314 the Holocene, but it can be approximated. We chose to use only the RPPs for the sub-Mediterranean and/or Mediterranean taxa (including Ericaceae) (Table S3), and for all other taxa we used the mean RPP dataset for boreal and temperate Europe 315 316 (Table S4). The major issue with this choice is the RPP value of Ericaceae. In both the Mediterranean area and boreal-temperate 317 Europe there is only one reliable value available, one large and one small, respectively. Using only the large value may lead 318 to an under-representation of Ericaceae (*Calluna* excluded), in particular in boreal Europe, but perhaps also in temperate 319 Europe. This is one of the major weaknesses of the new REVEALS reconstruction of Holocene plant-cover change in entire 320 Europe (main article). The latter reconstruction uses a RPP dataset that does not exclude the RPPs of all entomophilous taxa.

321 The excluded taxa are Compositae SF Cichoriodae, Leucanthemum (Anthemis)-t., Potentilla-t., Ranunculus acris-t., and 322 Rubiaceae. The included entomophilous taxa have also some anemophily, e.g. Artemisia, Chenopodiaceae, Rubiaceae, 323 Plantago lanceolata. We excluded plant taxa with only one RPP value except Chenopodiaceae, Urtica, Juniperus, and Ulmus. 324 Until we have more RPP values for each taxon, it is not possible to disentangle the effect of all factors influencing the 325 estimation of RPPs and to separate the effect of methodological factors from those of factors such as vegetation type, climate 326 and land use. It is therefore not possible either to decide whether the selection of RPPs for calculation of a mean RPP is better 327 in one synthesis than in the other. The only way to evaluate the reliability of a RPP dataset is to test it with modern pollen 328 assemblages and related plant cover. Such a test has not been performed yet with the synthesis of W & H and our new datasets. 329 We argue that RPP values of certain taxa may not vary substantially within a taxon (family, genus), while they might be 330 variable for other taxa, depending on the characteristics of the flowers and inflorescences in different species of a genera and 331 different genera of a family, and of their number per plant. Therefore, we propose that it is still preferable to make compilations 332 of RPPs at a continental or sub-continental scale, rather than mix the RPPs from several sub-regions (as the Mediterranean, 333 temperate and boreal regions in Europe) or continents (as the entire North Hemisphere in W & H, dataset not shown here).

334 References

- Abraham, V. and Kozáková, R.: Relative pollen productivity estimates in the modern agricultural landscape of Central
 Bohemia (Czech Republic), Rev. Palaeobot. Palynol., 179, 1–12, doi:10.1016/j.revpalbo.2012.04.004, 2012.
- Broström, A., Sugita, S. and Gaillard, M.-J. J.: Pollen productivity estimates for the reconstruction of past vegetation cover in
 the cultural landscape of southern Sweden, The Holocene, 14(3), 368–381, doi:10.1191/0959683604hl713rp, 2004.
- Broström, A., Sugita, S., Gaillard, M.-J. and Pilesjö, P.: Estimating the spatial scale of pollen dispersal in the cultural landscape
 of southern Sweden, The Holocene, 15(2), 252–262, doi:10.1191/0959683605hl790rp, 2005.
- 341 Broström, A., Nielsen, A. B., Gaillard, M.-J., Hjelle, K., Mazier, F., Binney, H., Bunting, J., Fyfe, R., Meltsov, V., Poska, A.,
- Räsänen, S., Soepboer, W., von Stedingk, H., Suutari, H. and Sugita, S.: Pollen productivity estimates of key European plant
 taxa for quantitative reconstruction of past vegetation: a review, Veg. Hist. Archaeobot., 17(5), 461–478, doi:10.1007/s00334008-0148-8, 2008.
- Bunting, M. J., Armitage, R., Binney, H. A. and Waller, M.: Estimates of relative pollen productivity' and relevant source
 area of pollen' for major tree taxa in two Norfolk (UK) woodlands, The Holocene, 15(3), 459–465,
 doi:10.1191/0959683605hl821rr, 2005.
- 348 Bunting, M. J., Schofield, J. E. and Edwards, K. J.: Estimates of relative pollen productivity (RPP) for selected taxa from
- 349 southern Greenland: A pragmatic solution, Rev. Palaeobot. Palynol., 190, 66–74, doi:10.1016/j.revpalbo.2012.11.003, 2013a.
- 350 Bunting, M. J., Farrell, M., Broström, A., Hjelle, K. L., Mazier, F., Middleton, R., Nielsen, A. B., Rushton, E., Shaw, H. and
- 351 Twiddle, C. L.: Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary
- 352 land cover, Quat. Sci. Rev., 82, 41–55, doi:10.1016/j.quascirev.2013.10.006, 2013b.

- 353 Cui, Q.-Y., Gaillard, M.-J., Lemdahl, G., Sugita, S., Greisman, A., Jacobson, G. L. and Olsson, F.: The role of tree composition
- in Holocene fire history of the hemiboreal and southern boreal zones of southern Sweden, as revealed by the application of the
- 355 Landscape Reconstruction Algorithm: Implications for biodiversity and climate-change issues, The Holocene, 23(12), 1747–
- 356 1763, doi:10.1177/0959683613505339, 2013.
- 357 Fyfe, R., Twiddle, C., Sugita, S., Gaillard, M. J., Barratt, P., Caseldine, C. J., Dodson, J., Edwards, K. J., Farrell, M., Froyd,
- 358 C., Grant, M. J., Huckerby, E., Innes, J. B., Shaw, H. and Waller, M.: The Holocene vegetation cover of Britain and Ireland:
- 359 Overcoming problems of scale and discerning patterns of openness, Quat. Sci. Rev., 73, 132-148,
- 360 doi:10.1016/j.quascirev.2013.05.014, 2013.
- Grindean, R., Nielsen, A. B., Tanțău, I. and Feurdean, A.: Relative pollen productivity estimates in the forest steppe landscape
 of southeastern Romania, Rev. Palaeobot. Palynol., 264, 54–63, doi:10.1016/j.revpalbo.2019.02.007, 2019.
- Hellman, S., Gaillard, M.-J., Broström, A. and Sugita, S.: The REVEALS model, a new tool to estimate past regional plant
 abundance from pollen data in large lakes: validation in southern Sweden, J. Quat. Sci., 23(1), 21–42, doi:10.1002/jqs.1126,
 2008a.
- Hellman, S. E. V., Gaillard, M., Broström, A. and Sugita, S.: Effects of the sampling design and selection of parameter values
 on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS
 model, Veg. Hist. Archaeobot., 17(5), 445–459, doi:10.1007/s00334-008-0149-7, 2008b.
- Hjelle, K. L.: Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway, Veg.
 Hist. Archaeobot., 7(2), 79–96, doi:10.1007/BF01373926, 1998.
- 371 Kuneš, P., Abraham, V., Werchan, B., Plesková, Z., Fajmon, K., Jamrichová, E. and Roleček, J.: Relative pollen productivity
- 372 estimates for vegetation reconstruction in central-eastern Europe inferred at local and regional scales, The Holocene, 29(11),
- 373 1708–1719, doi:10.1177/0959683619862026, 2019.
- Li, F., Gaillard, M.-J., Xu, Q., Bunting, M. J., Li, Y., Li, J., Mu, H., Lu, J., Zhang, P., Zhang, S., Cui, Q., Zhang, Y. and Shen,
- W.: A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction
 of Past Plant Cover, Front. Plant Sci., 9(September), doi:10.3389/fpls.2018.01214, 2018.
- 377 Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P. E., Wagner, M., Xu, Q., Ni, J., Wang, W., Zhao, Y., An,
- 378 C., Beusen, A. H. W., Chen, F., Feng, Z., Goldewijk, C. G. M. K., Huang, X., Li, Y., Li, Y., Liu, H., Sun, A., Yao, Y., Zheng,
- 379 Z. and Jia, X.: Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light
- 380 of pollen-based REVEALS reconstructions of regional plant cover, Earth-Science Rev., 203(February), 103119,
- 381 doi:10.1016/j.earscirev.2020.103119, 2020.
- Matthias, I., Nielsen, A. B. and Giesecke, T.: Evaluating the effect of flowering age and forest structure on pollen productivity estimates, Veg. Hist. Archaeobot., 21(6), 471–484, doi:10.1007/s00334-012-0373-z, 2012.
- 384 Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P. and Buttler, A.: Pollen productivity estimates and relevant
- 385 source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland), Veg. Hist.
- 386 Archaeobot., 17(5), 479–495, doi:10.1007/s00334-008-0143-0, 2008.

- 387 Mazier, F., Gaillard, M. J., Kunes, P., Sugita, S., Trondman, A.-K. and Brostrom, A.: Testing the effect of site selection and
- 388 parameter setting on REVEALS-model estimates of plant abundance using th Czech Quaternary Palynological database
- 389 Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abunda, Rev. Palaeobot.
- 390 Palynol., 187, 38–49 [online] Available from: https://halshs.archives-ouvertes.fr/halshs-00959845, 2012.
- Mazier, F., Broström, A., Bragée, P., Fredh, D., Stenberg, L., Thiere, G., Sugita, S. and Hammarlund, D.: Two hundred years of land-use change in the South Swedish Uplands: comparison of historical map-based estimates with a pollen-based reconstruction using the landscape reconstruction algorithm, Veg. Hist. Archaeobot., 24(5), 555–570, doi:10.1007/s00334-015-0516-0, 2015.
- Nielsen, A. B.: Modelling pollen sedimentation in Danish lakes at c.ad 1800: an attempt to validate the POLLSCAPE model,
 J. Biogeogr., 31(10), 1693–1709, doi:10.1111/j.1365-2699.2004.01080.x, 2004.
- 397 Nielsen, A. B. and Odgaard, B. V.: Quantitative landscape dynamics in Denmark through the last three millennia based on the
- Landscape Reconstruction Algorithm approach, Veg. Hist. Archaeobot., 19(4), 375–387, doi:10.1007/s00334-010-0249-z,
 2010.
- 400 Nielsen, A. B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K., Beug, H., Chen, S., Christiansen, J., Dörfler, W., Endtmann,
- 401 E., Jahns, S., de Klerk, P., Kühl, N., Latałowa, M., Odgaard, B. V., Rasmussen, P., Stockholm, J. R., Voigt, R., Wiethold, J.
- 402 and Wolters, S.: Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into
- 403 old questions, Quat. Sci. Rev., 47, 131–149, doi:10.1016/j.quascirev.2012.05.011, 2012.
- 404 Parsons, R. W. and Prentice, I. C.: Statistical approaches to R-values and the pollen—vegetation relationship, Rev. Palaeobot.
 405 Palynol., 32(2–3), 127–152, doi:10.1016/0034-6667(81)90001-4, 1981.
- 406 Poska, A., Meltsov, V., Sugita, S. and Vassiljev, J.: Relative pollen productivity estimates of major anemophilous taxa and
 407 relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia), Rev. Palaeobot. Palynol., 167(1–
 408 2), 30–39, doi:10.1016/j.revpalbo.2011.07.001, 2011.
- 409 Prentice, I. C. and Parsons, R. A.: Maximum Likelihood Linear Calibration of Pollen Spectra in Terms of Forest Composition,
 410 Biometrics, 39(4), 1051–1057 [online] Available from: https://www-jstor411 org.proxy.lnu.se/stable/pdf/2531338.pdf?refreqid=excelsior%3A0a1269ce2e31754011525047e9760d27, 1983.
- 412 Räsänen, S., Suutari, H. and Nielsen, A. B.: A step further towards quantitative reconstruction of past vegetation in
- 413 Fennoscandian boreal forests: Pollen productivity estimates for six dominant taxa, Rev. Palaeobot. Palynol., 146(1–4), 208–
- 414 220, doi:10.1016/j.revpalbo.2007.04.004, 2007.
- Soepboer, W., Sugita, S., Lotter, A. F., van Leeuwen, J. F. N. and van der Knaap, W. O.: Pollen productivity estimates for
 quantitative reconstruction of vegetation cover on the Swiss Plateau, The Holocene, 17(1), 65–77,
 doi:10.1177/0959683607073279, 2007.
- 418 von Stedingk, H., Fyfe, R. and Allard, A.: Pollen productivity estimates from the forest-tundra ecotone in west-central
- 419 Sweden: implications for vegetation reconstruction at the limits of the boreal forest, The Holocene, 18(2), 323-332,
- 420 doi:10.1177/0959683607086769, 2008.

- 421 Stuart., A. and Ord., J. K.: Kendall's advanced theory of statistics, Distrib. theory, 1 [online] Available from: 422 https://ci.nii.ac.jp/naid/10004597057 (Accessed 2 July 2021), 1994.
- 423 Sugita, S.: A Model of Pollen Source Area for an Entire Lake Surface, Quat. Res., 39(2), 239–244, 424 doi:10.1006/qres.1993.1027, 1993.
- Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation
 composition, The Holocene, 17(2), 229–241, doi:10.1177/0959683607075837, 2007a.
- 427 Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, The Holocene, 17(2), 243-257,
- 428 doi:10.1177/0959683607075838, 2007b.
- Sugita, S., Gaillard, M. J. and Broström, A.: Landscape openness and pollen records: A simulation approach, Holocene, 9(4),
 409–421, doi:10.1191/095968399666429937, 1999.
- 431 Theuerkauf, M., Kuparinen, A. and Joosten, H.: Pollen productivity estimates strongly depend on assumed pollen dispersal,
- 432 The Holocene, 23(1), 14–24, doi:10.1177/0959683612450194, 2013.
- 433 Trondman, A. K., Gaillard, M. J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B.,
- 434 Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke,
- 435 T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latalowa, M., Lechterbeck, J.,
- 436 Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A.,
- 437 Rösch, M., Seppä, H., Veski, S. and Wick, L.: Pollen-based quantitative reconstructions of Holocene regional vegetation cover
- 438 (plant-functional types and land-cover types) in Europe suitable for climate modelling, Glob. Chang. Biol., 21(2), 676–697,
 439 doi:10.1111/gcb.12737, 2015.
- 440 Twiddle, C. L., Jones, R. T., Caseldine, C. J. and Sugita, S.: Pollen productivity estimates for a pine woodland in eastern
 441 Scotland: The influence of sampling design and vegetation patterning, Rev. Palaeobot. Palynol., 174, 67–78,
 442 doi:10.1016/j.revpalbo.2011.12.006, 2012.
- Wieczorek, M. and Herzschuh, U.: Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised
 RPP datasets for single continents and Northern Hemisphere extratropics, Earth Syst. Sci. Data, 12(4), 3515–3528,
 doi:10.5194/essd-12-3515-2020, 2020.
- 446