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Abstract. Among the multitude of magnitude scales developed to measure the size of an earthquake, the surface wave mag-

nitude MS is the only magnitude type that can be computed since the dawn of modern observational seismology (beginning

of the 20th century) for most shallow earthquakes worldwide. This is possible thanks to the work of station operators, analysts

and researchers that performed measurements of surface wave amplitudes and periods on analogue instruments well before

the development of recent digital seismological practice. As a result of a monumental undertaking to digitize such pre-19715

measurements from printed bulletins and integrate them in parametric data form into the database of the International Seismo-

logical Centre (ISC, www.isc.ac.uk, last access: August 2021), we are able to recompute MS using a large set of stations and

obtain it for the first time for several hundred earthquakes. We summarize the work started at the ISC in 2010 which aims to

provide the seismological and broader geoscience community with a revised MS dataset (i.e., catalogue as well as the under-

lying station data) starting from December 1904 up to the last complete year reviewed by the ISC (currently 2018). This MS10

dataset is available at the ISC Dataset Repository at https://doi.org/10.31905/0N4HOS2D.

1 Introduction

Since its introduction, the surface wave magnitude MS has been very popular and for a long period of time, before the moment

magnitude Mw was introduced by Kanamori (1977) and Hanks and Kanamori (1979), it was considered the most reliable

magnitude to estimate an earthquake size. Its popularity originated due to: 1) as opposed to the magnitude concept introduced15

at a local scale by Richter (1935), MS allows seismologists to compute magnitudes for earthquakes worldwide, including

those recorded at teleseismic distances (i.e., from 20° onward), without relying on local recordings that were not available in

most seismic zones; 2) thanks to the work of station operators, analysts and researchers at various observatories around the

world that produced readings of surface wave data for shallow earthquakes since the beginning of the last century, MS can

be computed (systematically) since the dawn of instrumental seismology (Fig. 1). In addition, MS is probably the only type20

of earthquake magnitude that can be computed systematically for all damaging earthquakes for the last 100+ years. However,

as any magnitude type MS has also shortcomings, as the possible underestimation for some large earthquake (as discussed

later), the inability of processing surface waves from short-period instruments (hence for many small local earthquakes) and

the limitation, at least in standard procedures (IASPEI, 2013), of being defined for shallow earthquakes.
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Gutenberg (1945), using measurements of amplitudes and periods of surface waves accumulated during the first 40 years of25

the last century, introduced MS as: MS = logA+1.656log∆+1.8. Since then a team of researchers from Moscow and Prague

further developed Gutenberg’s work and proposed the formula (Kárník et al., 1962; Vanĕk et al., 1962): MS = log(A
T )max +

σS(∆) = log(A
T )max + 1.66log∆ + 3.3, where A and T are the amplitude (in µm) and period (in seconds) of the surface wave

train, respectively, and ∆ is the distance in degrees of the seismic station from the earthquake epicentre (distance and period

limits will be discussed in the next section). This is the so-called Moscow-Prague formula and it was accepted as the standard30

for MS computation by the International Association of Seismology and Physics of the Earth’s Interior (IASPEI, http://www.

iaspei.org/, last access: August 2021) at the 1967 Zürich meeting (Bormann et al., 2012; IASPEI, 2013). The calibration

function σS(∆) and its best fit up to 160° (1.66log∆ + 3.3) are shown in Fig. 2.

Several earthquake catalogues that listed MS have served the seismological community for various purposes in the past

decades. One that has been instrumental for many studies is Abe’s catalogue (Abe, 1981; Abe and Noguchi, 1983a, b; Abe,35

1984). This catalogue lists MS values for large earthquakes (mostly MS > 6.5) up to 1980 and its reliability was recently

confirmed by Di Giacomo et al. (2015a). Since then researchers have extend Abe’s catalogue beyond 1980 with MS solutions

from the International Seismological Centre (ISC, www.isc.ac.uk, last access: August 2021) and/or the National Earthquake

Information Center of the USGS (https://earthquake.usgs.gov/earthquakes/search/, last access: August 2021). Such a composite

MS catalogue was then used as the magnitude basis for recent compilations such as the Centennial Catalogue (Engdahl and40

Villaseñor, 2002) and PAGER-CAT (Allen et al., 2009) as well as various types of research, from calibration purposes (Herak

and Herak, 1993; Rezapour and Pearce, 1998) to patterns of the Earth’s seismicity (e.g., Pérez and Scholz, 1984; Ogata and

Abe, 1991; Pacheco and Sykes, 1992; Pérez, 1999).

Considering the important legacy of MS in the seismological community, here we present a revised MS catalogue (cut-off

magnitude of 4.5) listing over 46,000 earthquakes as well as the underlying station data (files described in Section 8) used to45

derive MS for each earthquake. Hereafter we refer to the catalogue and underlying station data as ISC MS dataset (International

Seismological Centre, 2021d). To create this product we benefit from the work done by Di Giacomo et al. (2015b, 2018) to

digitize (i.e., converted from printed to computer accessible format) a large volume of surface wave parametric data prior to

1971 and by Storchak et al. (2017, 2020) to rebuild the ISC Bulletin from 1964 onwards.

We first recall the basic steps in our procedure to compute MS and outline the major features of the station data behind the50

calculation of the network MS. Then we discuss some properties of the ISC MS dataset in terms of completeness and rates in

different time periods. Finally, we briefly discuss the largest earthquakes ever recorded and outline further activities that could

improve this dataset in different time periods.

2 Reporters and MS recomputation

A big part of the ISC mission consists of collecting and reprocessing reports from seismological agencies all over the world55

to produce the ISC Bulletin (International Seismological Centre, 2021c). Details about agencies contributing data to the ISC

can be found at http://www.isc.ac.uk/iscbulletin//agencies/, last access: August 2021. The summary of the agencies (hereafter
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also referred to as reporters or data contributors) that contributed surface wave parametric data to create the ISC MS dataset is

shown in Fig. 3. A few aspects are worth mentioning regarding the surface wave data reporters.

Originally, the ISC had no surface wave data available in digital form for pre-1971 earthquakes. Hence, to fill this data gap,60

an onerous undertaking of digitizing surface wave data from station/network printed bulletins began in 2010 (Di Giacomo

et al., 2015b, 2018). As shown in Fig. 3, this effort resulted in the ISC having digitized surface wave data from a total of 282

stations for over 12,000 earthquakes (it is our intention to continue this effort, see Section 6).

Between 1971 and 1998 the ISC Bulletin contains surface wave data from 457 stations worldwide. However, in this time

period we cannot associate such data to specific reporters (hence reporter = UNK, unknown, in Fig. 3). The only exceptions65

to that are data reports (e.g., agency MOS, JEN, CLL) parsed in the ISC Bulletin during the Rebuild project (Storchak et al.,

2017, 2020). Since 1999, coinciding with a major update in ISC data collection procedures and the setup of the ISC database,

we are able to routinely associate station data with their agency. Only 30 reporters out of about 150 contributed surface wave

data in the last 20 years, with the largest contributors being IDC, NEIC, MOS and BJI (Fig. 3).

Our approach to computing MS closely follows the standard ISC procedure (Bondár and Storchak, 2011) and is already70

detailed in Di Giacomo et al. (2015a). However, it is beneficial here to 1) recall some aspects of the procedure in light of the

content of station data files (Section 8), and 2) explain some necessary deviations from it.

First, we consider the surface wave data belonging to a reading (in ISC jargon a reading groups all parametric data from

a single station associated to a specific seismic event and reported by the same agency). A reading can have any number

of surface wave data entries and different reporters may provide a reading for the same station. An example of a reading is75

shown in Table 1 for station CLL (Collm, Germany) for an earthquake which occurred in the Northern Mid-Atlantic Ridge, 24

September 1969. We have chosen this example as the reading lists multiple surface wave data entries on all three components.

Within the surface wave phases of the reading (L in our example), we first search for the maximum of A
T on the vertical

component, and, if available, the component magnitude MSZ is obtained via the Moscow-Prague formula. Then, for periods

within ±10 seconds of T on the vertical component, the maximum of A
T for the horizontal vector component

√
(A
T )2N + (A

T )2E80

is searched to calculate the component MSH magnitude. If one of the two horizontal components is not available then (A
T )H =√

2 ∗ (A
T )2N |E . Although our procedure finds the maximum of A

T within the reading, a reporter may have provided single

component measurements of Amax
T . In our CLL reading example the maximum A

T on the vertical component is defined by

ampid = 601627636, whereas ampid = 601627639 and 601627638 on the North-South and East-West component, respectively,

define the maximum horizontal vector component. Such defining entries are included in the station data files (more details in85

International Seismological Centre, 2021d). Then the MS for the reading is computed as (MSZ +MSH)/2 if both exists, or

MS =MSZ|H if one of them is not available. If more than one reading MS exists for a station, the median of the readings MS

is used as station MS. Finally, the network MS is computed as the median of the stations MS if at least three or five station

magnitudes are available prior or since 1971, respectively. The uncertainty of the network MS is expressed as standard median

absolute deviation (SMAD) of the α-trimmed station magnitudes (α = 20%).90
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In line with IASPEI recommendations (IASPEI, 2013), we only allow MS for earthquakes with depth ≤ 60 km. The locations

adopted in this work come from the ISC-GEM Catalogue (Bondár et al., 2015; Di Giacomo et al., 2018) between 1904 and

1963 and the rebuilt ISC Bulletin (Storchak et al., 2017, 2020) from 1964 onward.

Standard procedures at the ISC consider surface wave periods between 10 and 60 seconds and distances between 20° and

160°. Such delta-period ranges are also adopted here for earthquakes which occurred after 1963 (hereafter also referred to as95

standard delta-period ranges). Prior to 1964 we expand the period and distance ranges to 5-60 seconds and 2°-180°, respectively,

as discussed in Di Giacomo et al. (2015b). The augmentation of the delta-period limits prior to 1964 is mainly due to the relative

scarcity of surface wave data in the first part of the last century compared to its second half (hence the need for not discarding

station MS), and to changes in seismological practice in many institutes coinciding with the introduction of the World-Wide

Standardized Seismograph Network (WWSSN, Oliver and Murphy, 1971; Peterson and Hutt, 2014). When stations beyond100

160° are used we use the tabulated values of σS(∆) instead of its best-fit (Fig. 2), as recommended by Bormann et al. (2012). In

the next section we show that the amplitude/period measurements prior to the WWSSN introduction justifies our delta-period

expansion for pre-1964 earthquakes.

3 Station data

The decadal spatial distribution of the stations contributing to the ISC MS dataset is summarized in Figs. 4-5. At times we105

mention seismic stations that, for sake of brevity, we may only identify by their code (station’s full details can be accessed at

International Seismological Centre, 2021b).

Not surprisingly, the MS network geometry is unbalanced as the Northern hemisphere features many more stations than the

Southern one (a known issue in every aspect of instrumental seismology). In more detail, these figures highlight how the MS

network became more dense and widespread over time after most of the stations were located in Europe at the beginning of110

the last century. Indeed, most of the MS in the first two decades of the last century heavily rely on stations in Germany (e.g.,

GTT, JEN), UPP in Sweden, and a few others (e.g., DBN in Netherlands and PUL in Russia). From the 1920s to the 1960s the

station density increased in Europe and in former Soviet Union territory. North American stations also contributed but for a

small number of earthquakes.

The Southern hemisphere had only a handful of MS reporting stations up to the 1970s-1980s. However, thanks to the115

extraordinary efficiency in observatory practice at the Observatorio San Calixto (LPZ, Bolivia, opened in 1913, Coenraads,

1993) and Riverview (RIV, Australia, opened in 1909, Drake, 1993), both from the Jesuit network (Udias and Stauder, 1996),

our capabilities of obtaining MS improved significantly in the first half of last century both for Southern hemisphere and

worldwide earthquakes, as was noted by Gutenberg and Richter (1954).

From the 1970s, when surface wave data started to be digitally available in the ISC Bulletin, we witness a significant increase120

in the MS network coverage, particularly in the last two decades, where many more stations in the Southern hemisphere have

contributed to MS. However, their spatial distribution is not yet as dense as in North America or the Euro-Mediterranean area.
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To summarize the evolution of the MS network over the decades, Fig. 6 shows the network MS decadal box-and-whisker plot

of the number of stations (Nsta) and secondary gap (i.e., the largest azimuthal gap in which only one station exists, and the

quality of the data at that station may bias the solution). The latter parameter is normally used as a network geometry parameter125

in earthquake location (Bondár et al., 2004), but here it is used as a measure of the azimuthal coverage of the station contributing

to MS computation (both gap and secondary gap are included in the MS catalogue file). Ideally, the station distribution should

sample the focal sphere from different azimuth to reduce the effects of propagation path heterogeneities and radiation pattern

(von Seggern, 1970) on the network MS, although the latter is symmetric for surface waves (either two-lobed or four-lobed).

In light of the station distributions shown in Figs. 4-5, it is not surprising that for most of the last century the secondary gap is130

usually 180°-270° or above, meaning that the stations contributing to the network MS are often located in a narrow azimuth. To

showcase the possible effects of this aspect, in Fig. A1 we show the azimuthal distribution of the station MS for the 1960-03-20

off east coast of Honshu earthquake (event 878564). Most of the MS stations are located in Europe and it appears that those

are responsible for making the network MS = 7.9, as most of the station magnitudes at different azimuth are well below the

final network MS. Nevertheless, significant improvements in the station azimuthal coverage occur from the 1970s, and with the135

increase in Nsta we observe an overall decrease in secondary gap.

The final aspect of the station data we discuss here regards the period at which the amplitudes of the surface waves are

measured. We do that by showing, similarly to Bormann et al. (2009, 2012), the distance-period distributions of (A
T )max for

earthquakes prior to and since 1964 (Fig. 7 and Fig. 8, respectively). The separation in these two time periods is linked both to

the start of the original ISC Bulletin (Adams et al., 1982) in 1964 and a change in observatory practice by many institutions140

due to the WWSSN introduction in the early 1960s. The standard WWSSN practice produces amplitudes of surface waves as

measured for T around 20 seconds (usually ±2 or ±3 seconds) for distances ≥ 20° (in addition, measurements on the vertical

component were preferred to horizontal ones since the 1970s). Before WWSSN, however, the standard practice was to measure

the surface wave amplitudes in broader period ranges (such differences led IASPEI, 2013, to recommend the computation of

two types of MS, MS20 and MSBB). Therefore, before 1964 we observe in Fig. 7 that T falls reasonably well within the expected145

period ranges of Vanĕk et al. (1962) (i.e., amplitudes measured over a broad T range and using data below 20°), whereas from

1964 onward we see surface amplitudes predominantly measured around T of 20 seconds throughout the entire distance range,

as shown by the vertical component of Fig. 8. The surface wave amplitude-period measurements pre-WWSSN, therefore, allow

us to expand the delta-period limits for pre-1964 earthquakes as outlined in Section 2.

However, not all reporters fully adopted WWSSN standards. Indeed, among the largest ones (Fig. 3), agency BJI, MOS and150

PRU report surface wave amplitudes in broad period ranges. The delta-period plots of those agencies are shown in Appendix

A (Figs. A2, A3, A4). Other agencies, instead, strictly adhere to amplitude-period measurements around 20 seconds (Figs. A5,

A6, A7, for agencies IDC, LDG and NEIC from 2009, respectively).

As a final remark in this section, we reiterate, as already done in Di Giacomo et al. (2015a), that the differences in distance

and period ranges do not introduce a discontinuity in the MS estimates before-after 1964. The expansion of the delta-period155

limits pre-1964 is allowed by the data and it often gives us the opportunity to increase Nsta for our network MS computation

in a time period where surface wave data was scant (compared to current times) and not digitally available (hence the need
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of not discarding precious and hard to get data). As a result of our approach, about 40% of the pre-1964 earthquakes we list

in the ISC MS dataset gained from 1 to 28 station magnitudes, and 1,000 of those earthquakes would not have network MS

without delta-period augmentation. This is synthesized in Fig. 9. An area encompassing the North Atlantic mid-oceanic ridges,160

the Euro-Mediterranean and the Middle-East benefitted the most thanks to European and central Asian stations that measured

surface waves in broad period ranges at distances below 20°.

4 Catalogue properties

The ISC MS dataset has a minimum cut-off magnitude of 4.5. Earthquakes with lower MS values are available in the ISC

Bulletin but mostly in recent decades. The major improvements regard earthquakes prior to 1964, where, according to our165

records, out of 10,057 earthquakes the ISC is the first to compute MS for 4,940 of them (their distribution and timeline is

shown in Fig. A8).

Considering the whole ISC MS dataset, major features can be discussed using Fig. 10, where we show the magnitude time-

line, number of earthquakes per year for various magnitude thresholds and annual magnitude of completeness (Mc) computed

with the maximum curvature method of Wiemer and Wyss (2000).
::::
The

:::::::::::
completeness

:::::::
analysis

::
is
:::::

only
:::::
meant

:::
to

::::::::
highlight170

::::::
general

:::::::
features

::
of

:::
the

::::::
dataset

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(a more detailed study in this respect, as the one by Michael, 2014, is not the aim of this work).

::
As

::
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::::
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::::
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::::::::
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:::
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::::::
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:::::::
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::
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:::::::
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::::::::::
earthquakes

:::::
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::::
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::
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:::::

them
::::
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::
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::::::
poorly

::::::::
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::
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:::
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::::::::
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:::
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::::::::
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::::::
criteria.

:::::::
Hence,

:::
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:::::::
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::::::
annual

:::
Mc

:::::::::
estimations

::::::::
knowing

:::
that

:::
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:::::::
dataset

::::
may

::::
have

:::::::
missing

::::::
records.

::::
This

::
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:::::
more

:::::
likely

::
to

::
be

:::
the

::::
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::
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:::
the

::::
first

:::
part

:::
of

:::
the

:::
last

:::::::
century.

::
As

::
a
:::::
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::::::
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:::
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::::::::::
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:::::
(error

::::
bars

::
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::
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::::
top

:::::
panel

::
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:::::::
Fig. 10)

:::
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::::::::
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:::::
larger

:::
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:::
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::::
early

:::::::
decades

::
of

:::
the

::::
last

::::::
century

:::::::::
compared

::
to

:::::
recent

:::::
times.

:
175

Overall, we include MS < 5.5 earthquakes mostly from the 1980s, and Mc approaches approximately 4.5 in the last 20 years.

We note that we were able to obtain more solutions at the low magnitude end particularly in the late-1920s-1930s. This has

been possible thanks to the establishment of the backbone network in former Soviet Union territory and a general increase of

MS stations in other areas (see annual station maps in International Seismological Centre, 2021d). An overall dip is observed

in the 1940s, most likely caused by the disruption of World War II on the seismic network (Di Giacomo et al., 2018). The180

period 1960-1977 also features less earthquakes below 5.5 than previous and following decades. This is due both to the limited

number of stations available and the fact that we digitized surface wave data from the 1960s printed station bulletins only

for earthquakes selected in the first version of the ISC-GEM Catalogue (magnitude 5.5 and above, Storchak et al., 2013). In

Section 6 we propose activities that are likely to mitigate significantly the deficiencies of the ISC MS dataset in most of the

1960s-1970s. Another fluctuation at low magnitudes is observed in the early-1980s. Indeed both the annual counts and Mc185

show a significant variation from 1978-1979 (Mc close to 5.0) to 1980-1983 (higher Mc ranging between 5.2-5.5). We believe

this is due to the temporary absence of MOS surface wave data in 1980-1983 (see Section 6), which was included into the

rebuilt ISC Bulletin (Storchak et al., 2020) from 1984 onward (Mc dropping again to about 5 and below).
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Less strong variations are seen for moderate size earthquakes (i.e., MS between 5.0 and 6.0). The early part of last century

(up to the mid-1920s) is clearly complete above magnitude 6.0, whereas since the 1950s the frequency of MS 5.5 and 6.0190

appears rather stable. Pronounced variations are observed from the mid-1920 to the 1940s for reasons mentioned above.

Variations over time of the frequency of large (i.e., MS ≥ 6.0 ) earthquakes based on past catalogues have been the subject of

debate in past literature. In particular, Pérez and Scholz (1984) suggested that, under the assumption of constant rate earthquake

occurrence, temporal variations of large shallow earthquakes were driven by instrumental changes. Ogata and Abe (1991) and

more recently Ogata (2021), however, suggest that variations in the frequency of global large earthquakes are a real effect of195

the Earth’s seismic activity (long-range dependence nature of earthquake occurrence). Therefore, to further discuss the rate

of the Earth’s large shallow seismicity, we show in Fig. 11 the cumulative number of strong to major earthquakes in the ISC

MS dataset similarly to the figures in Pérez and Scholz (1984) and Pérez (1999). Compared to these works, our rates for MS

≥ 7.0 and 6.0 in different time intervals (Table 2) show some significant differences and lack large jumps from one period to

another. This is strikingly evident for the MS ≥ 6.0 distribution, where Pérez (1999) rate goes down to 38y−1 during 1964-1978200

compared to a rate of about 78y−1 in the ISC MS dataset. We note that this period in the original ISC Bulletin lacked the ISC’s

own computations of MS. Therefore, Pérez (1999) rates may have been biased by using largely incomplete inputs.

In general, we see that shallow seismicity rates are characterized by a global low occurring between the great earthquakes

of the early 1960s and the beginning of the current century (Ammon et al., 2010). Although rates for MS ≥ 7.0 in the first part

of the last century are comparable to the rate we have observed since 2005, it seems that rates for MS ≥ 6.0 from the WWSSN205

introduction appear to be lower than rates in the first part of the last century. We also assessed if by declustering (Reasenberg,

1985) the MS catalogue the rates would be different but only small variations occur, and, more importantly, relative differences

between time periods remain. This is not surprising as the ISC MS dataset does not contain a large number of aftershocks for

MS ≥ 6.0 (by the very nature of MS it is more difficult to obtain it for aftershocks of large earthquakes due to association

challenges in overlapping signals, particularly in routine operations).210

It is not the aim of this work to investigate whether fluctuations in seismic activity rates are partially due to instrumental

changes or purely due to natural variations of the Earth’s seismicity. However, we believe that the ISC MS dataset is one of

the best inputs to date to do such studies. In this context it is important to point out that the quality of instrumental earthquake

catalogues depends on the quality of the data available at the time of processing. In our experience, for long-term datasets it

is almost unavoidable that different types of shortcomings may occur in different time periods, for example due to external215

factors (e.g., network deficiencies during World Wars) and that faulty individual entries may be present. It is of paramount

importance, therefore, that datasets are well-documented and that users know how they are created in order to properly use

them for research.

5 On the MS saturation and large differences with Mw

By the time MS was introduced by Gutenberg (1945) no magnitude 9 or 9+ earthquake had been recorded instrumentally. The220

occurrence of the 4 November 1952, Kamchatka earthquake and the well-know great earthquakes of the early 1960s (22 May
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1960, Chile and 28 March 1964, Alaska earthquakes), drew attention to a shortcoming of MS, that is commonly referred to

as magnitude saturation. This was one of the factors that led Kanamori (1977) and Hanks and Kanamori (1979) to introduce

the moment magnitude Mw, which is based on a physical parameter of the seismic source (i.e., seismic moment) rather than

amplitude-period measurements.225

In Fig. 12 we compare the ISC MS dataset with Mw from GCMT and the bibliographic search for pre-1976 earthquakes of

Lee and Engdahl (2015) and follow-up updates as listed at www.isc.ac.uk/iscgem/mw_bibliography.php, last access: August

2021 (hereafter referred to as Mw from literature). Such magnitude comparison has been discussed in several papers, partic-

ularly to derive magnitude conversion relationships. For this work, however, we show this comparison to focus on the MS

saturation issue and briefly touch upon earthquakes with large (Mw-MS) differences.230

The ten largest earthquakes (in Mw terms) ever recorded are easily identified in Fig. 12 by the event code in the ISC Event

Bibliography (Di Giacomo et al., 2014; International Seismological Centre, 2021a). As already summarized by Kanamori

(1983), the saturation of MS is generally expected to start between 8.2 and 8.5. For recent (26 December 2004, Sumatra and 11

March 2011, Tohoku) and pre-GCMT earthquakes (the above mentioned Chile 1960 and Alaska 1964) with Mw 9 and above,

the effects of saturation are quite severe and vary between 0.6 and 1 magnitude unit (m.u.). However, for earthquakes with Mw235

between 8 and 9 the variation of the saturation appears to vary much more (from near to 0 up to 1 m.u.). For example, the 27

February 2010, Maule, Mw 8.8 earthquake has an MS of only 0.25 m.u. smaller, close to common Mw-MS differences observed

across a wide magnitude range before the saturation of MS is expected. Fig. 12 shows other examples where Mw and MS are

close to the 1:1 line between 8 and 8.7 (including the 15 August 1950 Assam earthquake). With regard to great earthquakes

with large Mw-MS differences, some of those belong to a peculiar category, the so-called tsunami earthquakes (Kanamori,240

1972). These have a relatively small MS compared to their Mw and are well-documented in the literature. The most striking

example is probably the 1 April 1946, Aleutian earthquake, where our MS of 7.4 is much smaller than the Mw 8.6 by López

and Okal (2006). On the other hand, large differences are observed for other earthquakes (e.g., 4 February 1965, Rat Islands

and the 28 March 2005, Nias earthquakes) not strictly considered as tsunami earthquakes.

In light of the MS values for the largest earthquakes ever recorded, we support the remarks by Bormann (2011) that it would245

be more correct to speak of MS underestimation rather than saturation, as the latter would require to be systematically observ-

able for great earthquakes with Mw between 8.2-8.5 and above. However, we have shown that underestimation (“saturation”)

depends on the type of earthquake, and it is severe only for a handful of the largest earthquakes ever recorded (Mw ≥ 9).

Therefore, the underestimation (“saturation”) of MS should not discourage researches to use it as a reliable measure of the size

of shallow earthquakes. We also suggest that MS and Mw, as expressions at different periods of the earthquake size, should be250

used together to better characterize the source properties of an earthquake.

Overall, the magnitude comparison of Fig. 12 shows that MS is typically close to Mw over the magnitude range 6.2 to 8,

whereas for smaller earthquakes MS is usually smaller than Mw. However, some earthquakes show large differences (examples

listed in Table A1, for MS � Mw and vice-versa). For the sake of brevity we do not discuss every earthquake with such large

differences but touch only on the case of the 18 April 1906, San Francisco earthquake (SANFRANCISCO1906, first event in255

Table A1) to clarify our reasons for keeping such entries in the ISC MS dataset.
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The MS of the SANFRANCISCO1906 earthquake is dominated by stations located in Germany (GTT, POT, LEI and JEN),

plus Apia (API, Samoa Islands) and OSA (Osaka, Japan) at different azimuths. All station MS are consistently above 8,

resulting in a network MS of 8.6±0.1 (full station details listed under event = 16957905 in International Seismological Centre,

2021d). This is a much higher value than the Mw = 7.7 obtained by Wald et al. (1993). Such outliers occur in most earthquake260

catalogues for various reasons. As mentioned earlier, parameters of individual earthquakes are the result of the processing of

the data available at a given time. For the SANFRANCISCO1906 earthquake, instrumental issues could have played a major

role in the high MS value. However, we believe that listing such results in the dataset (rather than deprecating) is important

for legacy reasons, and that users may still use such information for further studies and, ideally, motivate the community to

attempt additional data collection. The latter is an activity that we will continue and discuss in the next section.265

6 Future developments

The maintenance and development of the ISC MS dataset will not cease with this work. First, we intend to routinely add the last

calendar year reviewed by the ISC. This means that once the ISC review is over for 2019 earthquakes, the ISC MS dataset will

be updated and end in 2019, and so on in following years. Secondly, we aim at refining and adding MS solutions for past years.

Indeed, we are aware that the MS station contribution can be improved in certain years. One example was already pointed out270

for 1980-1983, where MOS surface wave data was not included in time for ISC rebuild project (Storchak et al., 2020). By

adding such data we expect to fill (or, at least, partially fill) the gap shown in those years for low MS earthquakes, as shown in

Fig. 10.

Before the early 1980s, the following time periods may benefit from additional station contributions:

• During the 1970s, one source that, to our knowledge, has never been digitized, is the printed bulletins of the Chinese network.275

Tens of stations with plenty of surface wave data are available in those bulletins, which can potentially increase Nsta for

earthquakes already listed in the dataset and allow us to compute MS for several new ones;

• Due to time and funding limitations, the digitazion of 1964-1970 surface wave data from printed station/network bulletins

(Di Giacomo et al., 2015b) was not done for all bulletins available at the ISC, and, if done, it focused on earthquakes

with magnitude 5.5 and above. Hence, a more comprehensive approach for surface wave data digitazion is desirable for280

these years;

• For the period 1936-1963 we are finalizing the digitazion of station arrival times for earthquakes in the bulletins of the

Bureau Central International de Séismologie (BCIS, 1933-1968) that were not listed in the International Seismological

Summary (ISS, 1918-1963) (earthquakes in this time period that are not listed in the ISS currently have no station data

digitally available in the ISC database). Once this undertaking is finished, we will add surface wave data for earthquakes285

recorded teleseismically and attempt to obtain MS for as many earthquakes as possible;

• Improvements in the first part of the last century are more challenging as we have nearly exhausted the digitazion of printed

bulletins available to us. It is hard to verify if our surface wave data collection from printed bulletins is as complete as
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possible. Assistance in this respect from observatories and archives around the world would be highly appreciated (the

presence or absence of a set of station data can be easily checked in the ISC MS dataset).290

Hence, if conditions permit, we wish to continue the digitazion of printed bulletins and add surface wave data in order to

improve the MS solutions for a significant fraction of pre-1980 earthquakes. However, we stress that additional contributions

for earthquakes in recent decades are welcome as well and we will strive to include them in the ISC Bulletin, and in turn, in

the ISC MS dataset.

7 Conclusions295

An aspect that differentiates MS from other magnitude scales is that it can be computed from original measurements of surface

wave amplitudes and periods throughout the instrumental period. The ISC MS dataset we presented here includes 100+ years of

earthquakes with MS ≥ 4.5 starting from the dawn of modern instrumental seismology (1904) up to the last complete reviewed

year by the ISC (2018). This achievement is possible as a result of a monumental undertaking thanks to which pre-1971

measurements of surface waves were digitized from a multitude of printed station/network bulletins.300

We have summarized the evolution of the station network contributing to MS and highlighted its shortcomings (e.g., sig-

nificant lack of stations in the Southern hemisphere for a large part of the last century) and strengths (e.g., high density in

Europe that allowed us to obtain MS for earthquakes in a wide area in low magnitude ranges before the introduction of modern

digital stations). The expansion of the delta-period ranges, as allowed by the data, resulted in more and better constrained MS

estimations for about 40% of the pre-1964 earthquakes.305

We have discussed the MS underestimation for the largest earthquakes ever recorded and pointed out the presence of occa-

sional large differences with Mw. Those entries are listed for legacy and other purposes and may require further work.

Inevitably, the dataset has fluctuations in terms of completeness and earthquake rates over different time periods. We dis-

cussed the most relevant ones and outlined plans for continuing and improving this dataset.

In the years to come we envisage the ISC MS dataset as one of the best input researchers can use for various seismological310

studies, including the Earth’s seismicity patterns.

8 Data availability

The ISC MS dataset (International Seismological Centre, 2021d) is available in the ISC Dataset Repository at http://doi.org/

10.31905/0N4HOS2D. The dataset is released without licence. It is composed of a catalogue file (CSV format) and annual

files containing the underlying station data used to obtain MS for each earthquake. All parameters in the catalogue and annual315

files are detailed in the README file in International Seismological Centre (2021d). The annual files include, below the

earthquake parameters, two data blocks: first the station magnitude block (sorted by distance) and then the phase data block,

which includes the original amplitude and period measurements as well as the intermediate magnitude results (amplitude and
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reading magnitude, MSZ, MSH) that lead to the station magnitude computation (see Section 2). Annual station plots and annual

station lists are also included as well as the file with the data points to generate Fig. 12.320
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Figure 1. Availability over time of common magnitude scales for worldwide (MS, Mw, broad-band and short-period body-wave magnitude

mB and mb, respectively) and local/regional (e.g., Richter and duration magnitude ML and MD, respectively) earthquakes. Solid thick black

lines represent time periods over which a magnitude scale is available or can be recomputed systematically, dashed-dotted thin grey lines

otherwise. For local/regional magnitudes the availability only regards limited continental areas (Di Giacomo and Storchak, 2016). On top

are listed some significant developments in terms of earthquake magnitude. Among those GTT refers one of the first printed station bulletin

produced at the Göettingen observatory in Germany (Schering, 1905), which pioneered modern observational seismological practice, and

GCMT is the Global Centroid Moment Tensor project (www.globalcmt.org, last access: August 2021, Dziewonski et al., 1981; Ekström

et al., 2012).
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Figure 2. MS calibration function (tabulated values, σS) from the Moscow-Prague (grey solid curve) group and its best-fit for distances

between 2° and 160° (1.66log∆ + 3.3, black dashed curve). See Bormann (2012) for details.
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Figure 3. Timelines of the agencies contributing with surface wave data (amplitude and period measurements). Each symbol represents the

origin time of an earthquake. Details about each agency code can be found by typing the agency code at www.isc.ac.uk/iscbulletin//agencies/,

last access: August 2021. The total number of earthquakes and stations for each agency are listed in curly and square brackets, respectively.

Note that reporter = UNK (unknown) is not a genuine reporter code but it simply represents data collected before the ISC database was set

up, i.e., when the association between data and reporter was not maintained.
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Figure 4. Decadal (up to the 1950s) distribution of the stations (triangles) that contributed with surface wave data. Symbols are colour-coded

by number of station MS. For each decade, the top five stations in terms of Count(station MS) are identified by a white circle and listed in

the bottom-right corner outside each map. Maps drawn using the Generic Mapping Tools (GMT) (Wessel et al., 2013) software. Plots of the

annual station MS distributions are included in International Seismological Centre (2021d).
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Figure 5. As for Fig. 4 but since the 1960s. Maps drawn using the Generic Mapping Tools (GMT) (Wessel et al., 2013) software.
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Figure 6. Decadal box-and-whisker plot of the secondary gap for MS (top) and number of MS stations (bottom).
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Figure 7. 3-component distance-period plots of (A
T

)max for surface wave readings digitized from printed bulletins for earthquakes that

occurred before 1964. The horizontal grey shaded area depicts measurements around 20 seconds, whereas the vertical grey bars represent

the expected period ranges at various distances (Vanĕk et al., 1962) as published in Table 3.2.2.1 of Willmore (1979). The histograms on the

right-hand side show the period distribution in bins of 5 seconds. See text for details.
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Figure 8. As for Fig. 7 but for 1964-2018.
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Figure 9. Map of the pre-1964 earthquakes where the expansion of the delta-period ranges compared to the current ISC practice allowed

us to better constrain MS. Stars are for the 1,000 earthquakes that otherwise would not have network MS. All symbols colour-coded by MS.

Map drawn using the Generic Mapping Tools (GMT) (Wessel et al., 2013) software.
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Figure 10. Bottom panel: magnitude timeline of the ISC MS dataset. Middle panel: number of MS per year for different MS thresholds (4.5,

5.5, 6.0, 7.0 and 8.0 in black, light red, blue, red and yellow, respectively). Top panel: annual magnitude of completeness Mc (Wiemer and

Wyss, 2000) in the dataset, shown as average ± 1 standard deviation.
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Figure 11. Cumulative number of earthquakes with MS ≥7.0 (red), ≥6.5 (blue) and ≥6.0 (cyan). The vertical black segments on the red and

cyan symbols locate the time periods considered by Pérez and Scholz (1984) for MS ≥7.0 (up to 1980) and Pérez (1999) MS ≥6.0 (from

1950 to 1997), respectively. IGY stands for International Geophysical Year started in 1957. See text for details.
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Figure 12. Comparison of MS with Mw from GCMT (black dots) and from the literature (red, Lee and Engdahl, 2015, and further updates

listed at www.isc.ac.uk/iscgem/mw_bibliography.php, last access: August 2021). The black solid curve is a digitized version of the mid-point

Mw-MS curve shown in Figure 4b of Kanamori (1983). The largest 10 earthquakes in terms of Mw (bulls eye symbols) are also identified by

the event code in the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php, last access: August 2021).
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Table 1. Reading example from station CLL (Collm, Germany) associated to an event in the Northern Mid-Atlantic Ridge occurred the 24

of September 1969 (∆ = 58.8°). The surface wave measurements (L phases) are used by our procedure to obtain the reading MS. Rdid and

ampid are database identifiers for the reading and single amplitude-period entries, respectively. See text for details.

Phase Comp. Arrival Time (UTC) rdid ampid A (nm) T (s)

S N 1969-09-24 18:21:14 38936 601627645 16500 20.0

S E 1969-09-24 18:21:14 38936 601627644 25500 20.0

L N 1969-09-24 18:32:00 38936 601627642 23000 24.0

L E 1969-09-24 18:32:00 38936 601627641 44500 24.0

L Z 1969-09-24 18:32:00 38936 601627640 43500 24.0

L N 1969-09-24 18:39:00 38936 601627639 24000 17.0

L E 1969-09-24 18:39:00 38936 601627638 30000 17.0

L Z 1969-09-24 18:39:00 38936 601627637 25000 17.0

L Z 1969-09-24 18:43:00 38936 601627636 32000 16.0

28



Table 2. Rates of seismicity in the ISC MS dataset and in Pérez and Scholz (1984); Pérez (1999). See text for details.

MS≥7.0 Period Rate (ISC MS) Rate (Pérez and Scholz, 1984)

1905-1922 10.9 ± 3.5 7.3 ± 1.8

1922-1948 12.3 ± 4.0 12.6 ± 4.0

1948-1980 9.6 ± 4.0 7.1 ± 2.8

MS≥6.0 Period Rate (ISC MS) Rate (Pérez, 1999)

1950-1956 90.9 ± 16.3 109 ± 17

1957-1963 80.4 ± 17.4 137 ± 14

1964-1978 77.6 ± 11.3 38 ± 6

1979-1997 69.4 ± 11.3 55 ± 7
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Appendix A: Additional plots

Here we show figures in support of the main text. Most of them regard additional delta-period plots similar to Fig. 7 for major

MS reporters.
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Figure A1. Top: map showing the location of the 1960-03-20 off east coast of Honshu earthquake (event id = 878564, white circle) and

the stations (triangles) contributing to the network MS = 7.9. Contours every 40 degrees distance shown for guidance. Map drawn using the

Generic Mapping Tools (GMT) (Wessel et al., 2013) software; Bottom: azimuthal distribution of the single station MS for this event.
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Figure A2. As for Fig. 7 but for reporter BJI.
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Figure A3. As for Fig. 7 but for reporter MOS.
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Figure A4. As for Fig. 7 but for reporter PRU, vertical component only.
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Figure A5. As for Fig. 7 but for reporter IDC, vertical component only.
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Figure A6. As for Fig. 7 but for reporter LDG, vertical component only.
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Figure A7. As for Fig. 7 but for reporter NEIC, vertical component only. Here we split the plot in two time periods to emphasize the change

in 2009 by NEIC in reporting surface wave amplitudes strictly around 20 seconds
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Figure A8. Map colour-coded by MS and timeline of the pre-1964 earthquakes where, according to our records, MS has been computed for

the first time. Map drawn using the Generic Mapping Tools (GMT) (Wessel et al., 2013) software.
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Table A1. Examples of Mw < 8.2 earthquakes characterized by large differences between Mw and MS. Mw is from literature for pre-1976

earthquakes, GCMT otherwise. The last column is the ISC event identifier.

Mw � MS Origin Time (UTC) Lat. Long. Mw MS ISC_evid

1906-04-18 13:12:26 38.04 -122.40 7.70 8.61 16957905

1915-10-03 06:53:21 40.27 -117.58 6.80 7.61 913944

1927-03-07 09:27:41 35.56 134.99 7.00 7.82 909128

1969-07-18 05:24:45 38.35 119.51 6.90 7.72 807162

1970-05-27 19:05:37 40.27 143.03 5.90 6.85 796053

Mw � MS Origin Time (UTC) Lat. Long. Mw MS ISC_evid

1940-12-28 16:37:44 18.20 147.46 7.70 6.60 901750

1954-08-27 10:54:55 23.99 143.02 7.20 6.23 891003

1983-01-13 09:23:49 -35.83 -102.88 6.12 5.10 584568

1995-05-26 03:11:15 11.89 58.02 6.46 5.42 106101
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